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Abstract

We derive in this paper the asymptotics of several-partition Hurwitz numbers, relying on a theorem of
Maxim Kazarian for the one-partition case. Essentially, the asymptotics for several partitions is the same
as the one-partition asymptotics obtained by concatenating the partitions. The genus-depending constant
appearing in the asymptotics is trivially linked to Bender-Gao-Richmond's map universal constant tg.
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1 Introduction

Hurwitz wondered at the end of the XIXth century in how many ways a permutation in Sn of given type
λ could be factorised into a product of a minimal number of transpositions whose generated group acts
transitively. If one denotes by h0

n (λ) that number divided par n!, Hurwitz proved in [3] the following elegant
formula (write λ = (d1, ..., dp))

h0
n (λ)

(n+ p− 2)!
=

1

#Autλ

(
p∏
i=1

ddii
di!

)
np−3. (1)

A fruitful generalisation of the original wonderings of Hurwitz is to look for such factorisation numbers
hgn (λ1, ..., λk) with prescribed genus g (not only 0) and by remplacing the single permutation σ by a product
of an arbitrary number of permutations of given types λ1, ..., λk.

It is remarkable that three factors always appear in all known formulas of Hurwitz numbers. The �rst is
the decremented genus

g′ := g − 1. (2)

The second can be seen on the denominator of the fraction above on the left: if one sets r (λ) :=
∑

(di − 1)
for any partition λ = (d1, ..., dp), this factor is equal to the factorial of the number

Tn := 2n+ 2g′ − r (λ1)− r (λ2)− · · · − r (λk) . (3)

We will consequently encode Hurwitz numbers by the generating series

Hg (λ1, ..., λk) :=
∑
n≥1

hgn (λ1, ..., λk)

Tn!
tn. (4)

The third factor depends only on the partitions λi: if one sets λ := 1
#Autλ

∏p
i=1

d
di
i
di!

, then this third factor

equals the product λ1λ2 · · ·λk. It will therefore be convenient to normalize Hurwitz numbers and series by
this third factor.

Explicit formulas are known in spherical and toric genus (g = 0 or g = 1) for one-partition Hurwitz
numbers h0

n (λ) and h1
n (λ), thanks to the Ekedahl-Lando-Shapiro-Vainshtein formula (see [2]). Moreover,

there exist some algorithms to compute hgn (λ) with g-free complexity O (Cn) (for some constant C > 0) as
well as explicit formulas to express the series Hg (λ1, ..., λk) as polynomials in the series Hg (λ) � both are
described in [4]. However, except for these algorithms, computing Hurwitz numbers hgn (λ1, ..., λk) remains
to our knowledge an open problem.

Nevertheless, the asymptotics of all Hurwitz numbers hgn (λ1, ..., λk) when n becomes in�nitely large is
now completely understood.

The central tool is the algebra A := Q [Y,Z] spanned by the exponential generating functions of one-

and two-rooted Cayley trees Y :=
∑
n≥1

nn−1

n!
tn and Z :=

∑
n≥1

nn

n!
tn. This algebra was introduced by

Zvonkine in [8] (and, to his knowledge, earlier by D. Zagier).
The algebra A is very convenient to study asymptotics. Indeed, the linear freedom of Y and Z and the

linearisation Y Z = Z − Y allows one to assign to every series in A = Q [Y ] + Q [Z] two polynomials up to
their constant coe�cients; once these polynomials are known, the asymptotics of the coe�cient in tn of the
given series is straightforward.

On the other hand, Zvonkine proved in [7] that all series Hg (λ1, ..., λk) but H1 (∅) lay in the algebra A
by induction on the number k of partitions. The induction relies on two items: an unexplicited induction
formula to decrease k, and � in the more recent proof [Zvon06] � a theorem of Kazarian (see also [4]) which
gives an explicit formula for one-partition series Hg (λ) as a polynomial in Y and Z.

The main idea of our paper is to make explicit the induction formula of Zvonkine, to combine it with the
theorem of Kazarian, and to use the asymptotics proprieties of the algebra A to derive the asymptotics of
the coe�cient hgn (λ1, ..., λk) in the series Hg (λ1, ..., λk). Our result states that the asymptotic for several
partitions λ1, ..., λk is the same as the asymptotics for the concatenation λ1 t · · · t λk: for any genus g ≥ 0,
one has the following asymptotics for some constant cg:

hgn (λ1, ..., λk)

Tn! λ1λ2 · · ·λk
n→∞∼ cg

en

n
n

5
2
g′nl(λ1)+···+l(λk). (5)

The constants cg do not appear in the induction formula and come only from the theorem of Kazarian. In
genera 0 and 1, the explicit formulas for one-partition Hurwitz numbers can be seen through their generating
series, whence the values

c0 =
1√
2π

and c1 =
1

48
. (6)
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In higher genera, the theorem of Kazarian links the constants cg≥2 with some integrals on the Deligne-
Mumford compacti�cation Mg

n of the moduli space Mg
n of g-genused n-marked curves. A theorem of

Kontsevitch (formerly a conjecture of Witten) yields recursion formulas to compute some integrals onMg
n

and can be used to show that the rational numbers αg′ := cg2
5g−1

2 Γ
(

5g−1
2

)
satisfy the recursion formula

α−1 = −1 and αg =
25g2 − 1

12
+

p,q≥0∑
p+q=g′

αpαq. (7)

From this recursion, it is easy to derive the equality

cg =
√

2
g−3

tg (8)

where tg is the Bender-Gao-Richmond universal constant appearing in map asymptotics (see [1]).
Another way to describe the above recursion is to say that the series

u (t) :=
∑
g≥0

cg
Γ
(

5g−1
2

)
t

5g−1
2

=
∑
g≥0

αg′

(2t)
5g−1

2

(9)

satis�es the Painlevé I equation

u (t)2 +
1

6

d2u (t)

dt2
= 2t. (10)

Therefore, until someone clears out the combinatorial meaning of the above recursion (which amounts to
yielding a more profound understanding on the Painlevé I equation), we do not believe that much else can
be said about the constants cg.

This paper is about clearing the asymptotic of all Hurwitz numbers. Our new results are the general
asymptotics (5) of Hurwitz numbers hgn (λ1, ..., λk) (Corollary 1) and the relation (8) between the asymptotics
constants cg and tg (Theorem 7). However, we do not believe our explicited induction formula (Theorem
8) is computationally e�cient (the simple case H0 ((a) , (3)), not included in this paper, is already very
cumbersome).

Plan of the paper.
We �rst recall in Section 2 some properties of the algebra A := Q [Y,Z] of formal power series in the

indeterminate variable t introduced by Zvonkine in [8]. The asymptotics of the coe�cient in tn of a series
lying in A only requires to know the leading coe�cient in Z.

We then de�ne in Section 3 Hurwitz numbers hgn (λ1, ..., λk) and their corresponding generating function
Hg (λ1, ..., λk) for any degree n ≥ 0, genus g ≥ 0 and partitions λ1, ..., λk, as well as convenient renormalisa-
tions hgn (λ1, ..., λk) and Hg

n (λ1, ..., λk). We are then ready in Section 3.3 to state our main theorem on the
asymptotics of all Hurwitz numbers (Theorem 1 and Corollary 1). We recall in Section 3.4 explicit formulas
in spherical and toric genera for the numbers hgn (λ) which come from the ELSV formula (see [2]) and then
carry on with the asymptotics by expliciting the corresponding series Hg (λ).

So as to be able, in Section 4.3, to prove and use the theorem of Kazarian (see [4] and [Zvon06]), which
gives for genera g ≥ 2 an explicit formula for one-partition series Hg (λ) as a polynomial in Y and Z, we
recall in Section 4.1 and Section 4.2 some de�nitions and facts about the Deligne-Mumford compacti�cation
Mg

n of the moduli space Mg
n of g-genused n-marked curves. In Section 4.4, we derive as an immediate

corollary of Kazarian formulas the asymptotics of one-partition Hurwitz numbers in any genus.
The latter asymptotics involves some constants cg, only depending on the genus g, which can be encoded

in a function satisfying the Painlevé I equation (see Section 4.5), a fact already proved in [9] in the "physical"
part. One can show the same behaviour for the universal constants tg de�ned in [1] appearing in the

asymptotics of map enumeration (see Section 4.6), a fact that boils down to the equality cg =
√

2
g−3

tg
(Theorem 7).

Zvonkine proved in [7] that, with the only exception of empty partitions in genus 1, all seriesHg (λ1, ..., λk)
lay in the algebra A by induction on the number k of partitions, the case k = 1 being an immediate corollary
from the theorem of Kazarian. In Section 5, which contains the most technical part of our paper, we explicit
the (unexplicited) induction formula used by Zvonkine so as to control the leading coe�cients in Z of the
series Hg (λ1, ..., λk) and derive the asymptotics of the numbers hgn (λ1, ..., λk).

Notations.
For sake of conciseness, we will use throughout the paper the genus-notation

g′ := g − 1. (11)

We will also use the de/increasing power notations{
a↑k = a (a+ 1) (a+ 2) · · · (a+ k − 1)

a↓k = a (a− 1) (a− 2) · · · (a− k + 1)
where both have comprise k factors. (12)
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One has the identity a↑(p+q) = a↑p (a+ p)↑q for any integers p, q ≥ 0. So that the latter remains valid for
negative integers, one has to de�ne

a↑(−k) :=
1

(a− k)↑k
for any integer k ≥ 0. (13)

The (mean) elementary symmetric functions will be written with the letter e:

ek (x1, ..., xn) :=
∑

k1<k2<···<kn

xi1xi2 · · ·xin (14)

ẽk (x1, ..., xn) :=
1(
n

k

)ek (x1, ..., xn) . (15)

We de�ne a symmetry (or automorphism) of a family (ai)i∈I as a permutation σ ∈ SI of the set
I leaving the family (ai) =

(
aσ(i)

)
invariant. Their set will be denoted Sym (ai) and is clearly in bijection

with the product of the symmetric groups of the multiplicities of the values of the family:

Sym (ai) ∼=
∏

α∈{ai}i∈I

S#{i∈I ; ai=α}. (16)

2 The algebra Q
[∑

n≥1
nn−1

n! t
n,
∑

n≥1
nn

n! t
n
]
used to study asymp-

totics

Details for the following claims can be found in [8] and [Zvon06].

Let us de�ne an algebra A := Q [Y,Z] ⊂ Q [[t]] where

Y :=
∑
n≥1

nn−1

n!
tn and Z :=

∑
n≥1

nn

n!
tn. (17)

Cayley trees are enumerated by the exponenial generating function
∑

nn−2

n!
tn, so that Y and Z enumerate

Cayley trees with one or two marked vertices. From that description of Y , one can derive the equality

Y = teY (18)

(erasing the root of a rooted tree yields a forest of rooted trees). Notice that leading coe�cients in Z are
obtained from those in Y by mulplication by n, i.e., by applying the di�erential operator

D := t
∂

∂t
: (an) 7→ (nan) , so that Z = DY . (19)

One can therefore linearise the product

Y Z = Z − Y , i.e., (1− Y ) (1 + Z) = 1,

whence many identites

DZ = Z (1 + Z)2

∀P ∈ Q [X] , DP (Z) = Z (1 + Z)2 P ′ (Z)

∀k ∈ N, Y kZ = Z − Y − Y 2 − Y 3 − · · · − Y k

∀k ∈ N, Y Zk = Zk − Zk−1 + Zk−2 − · · ·+ (−1)k−1 Z + (−1)k Y

. (20)

This linearisation allows one to dispose of "cross-terms" in a series lying in A; in others words, one has the
description

A = Q [Y ] + Q [Z] . (21)

As an immediate consequence, one can see by setting
{
X,X−1

}
:= {1 + Z, 1− Y } that A is formally

isomorphic to an algebra Q
[
X,X−1

]
, but we won't make use of that description.

The linear freedom of Y and Z allows one to assign to every series in A a Z-polynomial (i.e., an element
of Q [Z]) up to the constant coe�cient. Then, a series lies in

AZ := A\Q [Y ] (22)
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if and only if its corresponding Z-polynomial is non-constant.
The above description shows that, in order to carry out calculations in A, one only has to describe powers

of Y and Z. When dealing with the coe�cient in tn, it will be more adequate to study the action of the
operator D.

For sake of convenience, we will use a pseudo-inverse of the operator D, de�ned by

D−1 :
∑
n≥0

ant
n 7→ 0 +

∑
n≥1

an
n
tn. (23)

(Recall that an element i is a pseudo-inverse of an element a in a monoid if iai = i. Obviously, an inverse
is a pseudo-inverse.)

Claim 1 (powers of Y ).

1. Powers of Y are given by the formula (for any k ≥ 1)

Y k

k
=
∑
n≥1

n↓k

nk+1

nn

n!
tn =

∑
n≥k

nn−k−1

(n− k)!
tn. (24)

2. The algebra Q [Y ] is stable by D−1: one has for any a ≥ 1

D−1 Y
a

a
=
∑
n≥a

n↓a

na+2

nn

n!
tn =

1

a

(
Y a

a
− Y a+1

a+ 1

)
. (25)

3. The algebra spanned by Y is that of D−1 applied on Y :

Q [Y ] = Q
[
D−1] (Y ) . (26)

To study powers of Z, let us �rst describe its square Z2 =
∑ An

n!
tn where we set

An
n!

:=

p,q≥1∑
p+q=n

ppqq

p!q!
=

n−2∑
i=0

ni

i!

n→∞∼ en

2
. (27)

The above equivalent is a standard exercise, the second equality amounts to the following identity

Y + ln (1− Y ) = −D−1Z2 = −
∑
n≥2

Y n

n
. (28)

Claim 2 (powers of Z). Let k ≥ 0 an integer.

1. The series DkZ and DkZ2 are polynomials in Z whose coe�cients are non-negative integers. Their
degrees and leading coe�cients are given as follows:

DkZ =
∑
n≥1

nn+k

n!
tn ∈ (2k − 1)!! Z2k+1 + N2k [Z] ,

DkZ2 =
∑
n≥1

nkAn
n!

tn ∈ (2k)!! Z2k+2 + N2k+1 [Z] .
(29)

2. The series Zk is a linear combinaison of the k �rsts terms of the list
(
Z,Z2, DZ,DZ2, D2Z,D2Z2, ...

)
,

with weight 1
(k−2)!!

for the k-th term (and weight 1 for k = 1, 2).

3. The subalgebra spanned by Z is described by

Q [Z] = Q [D] (Z) + Q [D]
(
Z2) . (30)

From the previous claims, one can give the following description of the algebra A which proves it to be
stable by D:

A = Q
[
D,D−1] (Z) + Q [D]

(
Z2) . (31)

In other words, each series in A equals const+
∑
n≥1

L(n)nn+P (n)An
n!

tn for some Laurent polynomial L and
polynomial P .

Claim 3 (asymptotics in A). For any integer i ≥ 1, the sequence of the coe�cient in tn of the

sequence of series
(
Y i

i
, Z, Z2, Z3, Z4, ...

)
form a comparison scale following the powers ≥ −1 of

√
n, up to

a factor en

n
:

∀i, k ≥ 1,

(
coe�cient of tn in Y i

i

)
n→∞∼ C−1

en

n

√
n
−1(

coe�cient of tn in Zk
) n→∞∼ Ck

en

n

√
n
k

where

1
C−1

=
√

2π
1
Ck

= Γ
(
k
2

)
2
k
2

. (32)
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Remarks. Notices that there are no i's appearing in the asymptotics of the series Y i

i
. The formula

for Ck actually holds for k = −1 if one remplaces Γ by |Γ|. For k = 1, the formula merely states Stirling's
equivalent of n!. For k = 0, one will remind lim0 Γ =∞.

The previous claim shows that two series in AZ have the same asymptotics if and only if their Z-leading
terms are equal. For sake of convenience, we will introduce the following notation.

De�nition 1 (Z-equality and notation
Z
=). Two series in AZ = A\Q [Y ] will be called Z-equal if

their Z-leading terms are equal. Such an equivalence will be denoted as

S
Z
= T

def.⇐⇒ S and T have same Z-leading terms. (33)

For instance, one can write

∀k ≥ 0, DkZ
Z
= (2k − 1)!! Z2k+1 (34)

∀k ≥ 0, DkZ2 Z
= (2k)!!Z2k+2 (35)

∀p, q ≥ 1, ZpY q
Z
= Zp (36)

∀ (P, q) ∈ Q [X]× N∗, P (Z)Y q
Z
= P (Z) (37)

∀P,Q ∈ Q [X] , P (Z)Q (Y )
Z
= P (Z) ⇐⇒ Q (1) 6= 0. (38)

3 Hurwitz numbers

3.1 Reminders on partitions

Recall that a partition is any �nite non-increasing sequence λ of positive integers. The integers appearing in
the sequence are the parts of the partition. Its length l (λ) is the number of parts, its size |λ| is the sum of
the parts. The multiplicity mk (λ) of any integer k is the number of parts in λ equal to k, the rami�cation
r (λ) is |λ| − l (λ) (for a topological interpretation, see [5]), its symmetries are the permutation of Sl(λ)

leaving the sequence λ unchanged after acting on the indexes 1, ..., l (λ). A partition is called reduced if it
contains no ones, i.e., if m1 = 0. The reduction λ̊ of a partition λ is the partition obtained by removing
all ones from λ. When an integer n ≥ |λ| is contextly given, we de�ned the completion λ of λ by the
n-sized partition obtained from λ by additing as many ones as necessary. The concatenation λ t µ of
two partitions λ and µ is the partition whose parts are those of λ union those of µ. The length, size and
rami�cation are morphisms from the concatenation to the addition and can therefore be extended to a tuple
of partitions by concatenating the latter.

Let us summarise all notations used for a partition λ = (d1 ≥ d2 ≥ · · · ≥ dp) = 1m12m2 · · · :

length
l (λ) :=

∑
k≥1 mk

(also denoted above by p)

size
|λ| :=

∑
di =

∑
k≥1 kmk

(also denoted above by a)

rami�cation r (λ) :=
∑

(di − 1) = |λ| − l (λ)

number of
symmetries

#Symλ :=
∏
k≥1 mk!

reduction λ̊ := λ \1m1

(n-)completion λ := λ t 1n−m1

concatenation λ t µ

. (39)

Let n ≥ 1 an integer and σ a permutation in Sn . Recall that its support is the complement Sσ = Suppσ
in [1, n] of all σ-�xed points and its type is the partition type (σ) whose parts are the lengths of the cycles
of σ (including �xed cycles). For instance, the type of the disjoint product of two permutations is the
concatenation of their types and the cardinality of the support of a permutation is equal to the size of the
reduction of its type.

Let us recall that conjugacy classes in Sn are indexed by partitions of size n.
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3.2 Constellations and Hurwitz numbers

Set n and k positive integers. De�ne a k-constellation of degree n to be a k-tuple −→σ = (σ1, ..., σk) ∈ Sk
n

such that σ1 · · ·σk = Id and that the subgroup 〈σ1, ..., σk〉 acts transitively on [1, n]. The type of a k-
constellation −→σ is the k-tuple of the types of the σi. Its rami�cation is the sum of those of the σi's. Its
genus g is de�ned by the Riemann-Hurwitz formula :

r = 2n+ 2g′ or g :=
r

2
− (n− 1) . (40)

Although the genus has a topological interpretation that we won't need, its existence can proved by showing
r is even, which comes from

1 = ε (Id) = ε
(∏

σi
)

=
∏

(−1)r(σi) = (−1)r . (41)

The term constellation has a topological interpretation (lifting up a star graph via a rami�ed covering
yields some interlaced stars, i.e., a constellation) that can be found in [5]. One could instead speak of tran-
sitive factorisations. When translated in topological terms, the transitivity amounts to a connectedness
condition.

With the above langage, the original question raised by Hurwitz in [3] was to enumerate the constellations

of degree n, genus 0, and type (λ, 2, 2, ..., 2). Their number involves a factor 1
#Symλ

∏p
i=1

d
di
i
di!

which happens

to be rampant throughout formulas on Hurwitz numbers hgn

(−→
λ
)
we are about to de�ne. It is therefore

more than reasonable to introduce the following notations:

λ :=
1

#Symλ

dd1
1 · · · d

dp
p

d1! · · · dp!
−→
λ = λ1λ2 · · ·λk hgn

(−→
λ
)

=
hgn

(−→
λ
)

−→
λ

. (42)

A fruitful generalisation of the original wonderings of Hurwitz is to enumerate constellations with a
prescribed genus (not only 0) and with prescribed types of an arbitrary number of the �rst factors (not only
the very �srt one).

De�nition 2 (the Hurwitz numbers hgn

(−→
λ
)
and the Hurwitz series Hg

(−→
λ
)
). Set g and n two

non-negative integers and set partitions λ1, ..., λk of non-negative integers.
De�ne T = T gn (λ1, ..., λk) by the Riemann-Hurwitz formula:

2n+ 2g′ = T +
∑

r (λi) , namely T := 2n+ 2g′ − r. (43)

De�ne hgn (λ1, ..., λk) by 1
n!

times the number of ordered pairs(C,F ) where C is a constellation (−→σ ,−→τ ) ∈

Sk
n ×ST

n of type

{
∀i, type (σi) = λi
∀j, type (τj) = 2

(in particular, all τi's are transpositions) and where F is a k-tuple

of parts in [1, n] such that

{
∀i, Fi ⊂ Fixσi

|Fi| = m1 (λi)
(choosing Fi amounts to choosing a subset of [1, n] where

σi can be seen as a permutation of type λi).
De�ne Hurwitz series by the following generating functions:

Hg
(−→
λ
)

:=
∑
n≥1

hgn

(−→
λ
)

Tn!
tn, (44)

Hg
(−→
λ
)

:=
∑
n≥1

hgn

(−→
λ
)

Tn!
tn =

Hg
(−→
λ
)

−→
λ

, (45)

Hg (λ1, ..., λk
)

:=
∑
n≥1

hgn
(
λ1, ..., λk

)
Tn!

tn. (46)

Some remarks.
By choosing �rst the constellation then the �xed parts, one has

hgn

(−→
λ
)

:= Card

{
constellations

(−→σ
−→τ

)
∈ Sk

n ×ST
n

}∀i, type(σi)=λi

∀j, type(τj)=2

(47)

× 1

n!

k∏
i=1

(
n− (|λi| −m1 (λi))

m1 (λi)

)
, namely

hgn (λ1, ..., λk) = hgn
(
λ1, ..., λk

)
×

k∏
i=1

(
n− (|λi| −m1 (λi))

m1 (λi)

)
. (48)
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When seen through Hurwitz series, the latter identity becomes

Hg (λ1, ..., λk) =

[
k∏
i=1

(
D − (|λi| −m1 (λi))

m1 (λi)

)]
Hg (λ1, ..., λk

)
. (49)

When adding a partition which contains either nothing, either some ones, or one two, one can easily
check the following:


hgn

(−→
λ , ∅

)
= hgn

(−→
λ
)

hgn

(−→
λ , (1p)

)
=

(
n

p

)
hgn

(−→
λ
)

hgn

(−→
λ , (2)

)
= hgn

(−→
λ
) and



Hg
(−→
λ , ∅

)
= Hg

(−→
λ
)

Hg
(−→
λ , (1p)

)
=

(
D

p

)
Hg
(−→
λ
)

Hg
(−→
λ , (2)

)
=
(

2D + 2g′ − r
(−→
λ
))

Hg
(−→
λ
)

Hg
(−→
λ , (2)

)
=

(
D + g′ −

r
(−→
λ
)

2

)
Hg
(−→
λ
)

. (50)

As the series Hg suggest, we always consider the number hgn divided by Tn!. Nonetheless, if ever needed,
one can derive the asymptotics of Tn! by Stirling (in the following, α, β and γ are constants with γ > 1):

T gn

(−→
λ
)

!
n→∞∼

√
π22g′−r+1

(
4

e2

)n
n2g′−r+ 1

2 n2n = α
nβ

γn
n2n. (51)

3.3 The main theorem and the general asymptotics of Hurwitz numbers

We can now state the main theorem of this paper, which reduces the understanding of the asymptotics
of several-partition Hurwitz numbers to that of single-partition Hurwitz numbers. Since the latter is a
straightforward corollary of Corollary 3 (see Section 4.3), we will be able to derive the following corollary
(see Section 4.4).

Theorem 1. For any partitions λ1, ..., λk and any genus g ≥ 0, one has the following Z-equality in the
algebra AZ :

D3Hg (λ1, ..., λk)
Z
= D3+m1(λi)+···+m1(λk)Hg

(
λ̊1 t λ̊2 t · · · t λ̊k

)
. (52)

Corollary 1 (general asymptotics of Hurwitz numbers). For any partitions λ1, ..., λk and any
genus g ≥ 0, one has the following asymptotics for some constant cg:

hgn (λ1, ..., λk)

Tn!

n→∞∼ cg
en

n
n

5
2
g′nl(λ1)+···+l(λk). (53)

More precisely, c0 = 1√
2π
, c1 = 1

48
and cg≥2 =

〈
τ

3g′
2

〉
(3g′)!

1

Γ( 5
2
g′)2

5
2
g′

for some rationnal numbers
〈
τ3g′

2

〉
de�ned

in Section 4.2.

It is shown in Section 4.5 that the constants cg can be encoded in a function satisfying the Painlevé I
equation (a fact already known in [9]), which enables one to compute them recursively. More precisely, if
one sets

∀g ≥ 0, αg′ := cgΓ

(
5g − 1

2

)
2

5g−1
2 , (54)

then one has α−1 = −1 and

∀g ≥ 0, αg =
25g2 − 1

12
αg′ +

1

2

p,q≥0∑
p+q=g′

αpαq.

Sanity-checks.
When k = 1, Theorem 5 yields the above asymptotic.

When adding a empty partition ∅, the relation Hg
(−→
λ , ∅

)
= Hg

(−→
λ
)
show that the asymptotics is

unchanged, which is consistant with the above equivalent (the empty partition has length 0).
When adding a partition (1), the series Hg is multiplied by the operator D, hence the asymptotics is

multiplied by n = nl((1)).

When adding a partition (2), the series Hg is multiplied by the operator D + g′ −
r
(−→
λ
)

2
, hence the

asymptotics is multiplied by n+ g′ −
r
(−→
λ
)

2

n→∞∼ nl((2)).
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3.4 One-partition Hurwitz numbers and series in genera 0 and 1

In spherical (g = 0) or toric (g = 1) genus, considerations from algebraic geometry (more speci�cally the
ELSV formula, see [2] or [5] and Section 4 below) allow one to compute all one-partition Hurwitz numbers.

Claim 4 (Hurwitz numbers in genera 0 and 1).
For n ≥ 1 and λ partition of an integer a ≤ n, one has:

h0
n (λ)

Tn!
=

h0
n (λ)

(2n− 2− r)! =
nn−r−3

(n− a)!
=

n↓a

nr+3

nn

n!

n→∞∼ 1√
2π
ennp−

7
2 . (55)

For λ (non empty) partitionning a (positive) integer n, one has

h1
n (λ)

Tn!
=

h1
n (λ)

(n+ p)!
=

1

24

(
np − np−1 −

p∑
i=2

(i− 2)!ei (λ)np−i
)
. (56)

For λ empty and n ≥ 1, one has

h1
n (∅)

(2n)!
=
h1
n (∅)

(2n)!
=

1

24

1

n!

An
n

n→∞∼ 1

48

en

n
. (57)

When seen through the generating functions, these identities become

H0 (λ) =
∑
n≥1

n↓a

nr+3

nn

n!
tn (58)

H1 (λ) =
1

24

∑
n≥1

nn−r

(n− a)!
tn
(

1− 1

n
−
n−r∑
i=2

(i− 2)!
ei
(
λ
)

ni

)
(59)

H1 (∅) =
1

24

∑
n≥1

An
n

nn

n!
tn. (60)

We now carry on with the description of the series H0 (λ) and H1 (λ) as polynomials in Y and Z in the
algebra A. The following theorem is a reformulation of results already known by Kazarian in [4] but yet
apparently unpublished � the reason why we produce all detailed computations.

Theorem 2 (Hurwitz series in genera 0 and 1). Set a partition λ of an integer a ≥ 0 in p ≥ 0
parts. Then, one has the identities

H0 (λ) = Dp−3 (Y a−1Z
)

and (61)

24H1 (λ) = Dp−1 (Y a−1Z2)+ (a− 1)Dp−1 (Y a−1Z
)
−

p∑
x=2

(x− 2)!ex (λ)Dp−x (Y a−xZx) . (62)

Examples.
In spherical genus, one has the identites

H0
p=2 =

Y a

a
H0
p=1 =

1

a

(
Y a

a
− Y a+1

a+ 1

)
H0
p=1 (1) = Y − Y 2

2
(63)

H0
p=0 = Y − 3

2

(
Y 2

2

)
+

1

2

(
Y 3

3

)
=

(
Y − Y 2

2

)
− 1

2

(
Y 2

2
− Y 3

3

)
= D−1H0

p=1 (1) . (64)

In toric genus, one has the equalities

24H1 (∅) = D−1Z2 24H1 ((1)) = Z2 24H1 ((2)) = Z2 (65)

and for any d ≥ 0:

24H1 ((d+ 1)) = Y dZ (Z + d) = Z2 − Y 2 − 2Y 3 − 3Y 4 − · · · − (d− 1)Y d. (66)

The reader will notice that H1 (∅) is the only series Hg (λ) for g ∈ {0, 1} not belonging to the algebra A.
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Corollary 2 (asymptotics of Hurwitz number in genera 0 and 1). For any partition λ and any
genus g ∈ {0, 1}, one has the following asymptotics:

hgn (λ)

Tn!

n→∞∼ cge
nn

5
2
g′+p−1 where (c0, c1) =

(
1√
2π
,

1

48

)
. (67)

Proof of Corollary 2. The equivalent of
h0
n(λ)

Tn!
= n↓a

nr+3
nn

n!
is straightforward by Stirling formula but

we prefer using the Z-techniques coming from the algebra A so as to get acquainted to them.
In null genus, one has for any partition λ the relation

H0 (λ) = Dp−3 (Y a−1Z
) Z

= Dp−3Z.

Its coe�cient in tn is therefore equivalent to C1
en

n

√
n

1
(Claim 3) multiplied by np−3 (Claim 2):

coe�cient in tn of H0 (λ)
n→∞∼ C1

en√
n
np−3 =

1√
2π
ennp−

7
2 .

In toric genus, the �rst term Dp−1
(
Y a−1Z2

) Z
= Dp−1Z2 has degree 2 + 2 (p− 1) = 2p whereas the

following terms Dp−x (Y a−xZx) Z= Dp−xZx for x ≥ 1 have Z-degrees x+ 2 (p− x) = 2p− x < 2p. One has

therefore 24H1 (λ)
Z
= Dp−1Z2, hence the asymptotics

coe�cient in tn of H1 (λ)
n→∞∼ np−1 × C2

en

n

√
n

2
=

1

2
ennp−1.

Proof of Theorem 2 for genus 0.
Using Formulas (55) from Claim 4, one can derive

H0 (λ) =
∑
n≥1

h0
n (λ)

Tn!
tn =

∑
n≥a

nn−r−3

(n− a)!
tn =

∑
n≥1

n↓a

nr+3

nn

n!
tn

= Da−r−2
∑
n≥1

n↓a

na+1

nn

n!
tn = Dp−2 Y

a

a
,

hence the results for p ≥ 2.
For p = 1, one can check that

Y a

a
− Y a+1

a+ 1
=

∑
n≥a

(
n↓a

na+1
− n↓a+1

na+21

)
nn

n!
tn =

∑
n≥a

n↓a

na+2
(n− (n− a))

nn

n!
tn

= a
∑
n≥a

n↓a

na+2

nn

n!
tn = aH0 (λ) .

At last, for p = 0, recall that H0 (∅) =
∑
n≥1

nn−3

n!
tn. By expanding

Y 2

2
=
∑
n≥1

n (n− 1)
nn−3

n!
tn = Y −

∑
n≥1

nn−2

n!
tn,

one derives
∑
n≥1

nn−2

n!
tn = Y − Y 2

2
, then by expanding

Y 3

3
=
∑
n≥1

n (n− 1) (n− 2)︸ ︷︷ ︸
=n3−3n2+2n

nn−4

n!
tn = Y − 3

(
Y − Y 2

2

)
+ 2

∑
n≥1

nn−3

n!
tn,

one obtains the announced expression for H0 (∅) = H0 (∅).

Proof of Theorem 2 for genus 1.
Noticing that the equality λm1 (λ)! =λm1

(
λ
)
! can be rewritten

λ

λ
=

(m1 (λ) + n− |λ|)!
m1 (λ)!

=

(
n− (|λ| −m1 (λ))

m1 (λ)

)
(n− |λ|)!, (68)
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and using Formula (56) for h1
n

(
λ
)
, one can derive the equalities

h1
n (λ)

Tn!
=

(
n− (a−m1 (λ))

m1 (λ)

)
h1
n

(
λ
)

Tn!
=
λ

λ

(
n− (a−m1 (λ))

m1 (λ)

)
h1
n

(
λ
)

Tn!

=
1

24

nn−r

(n− a)!

(
1− 1

n
−
n−r∑
i=2

(i− 2)!
ei
(
λ
)

ni

)
.

When λ = ∅, one can work out further the sum on the right (multiplied by nn−r

(n−a)!
= nn

n!
):

n∑
i=2

(i− 2)!

(
n

i

)
nn−i

n!
=

n∑
i=2

(i− 2)!n!

i! (n− i)!
nn−i

n!

=

n∑
i=2

(
1

i− 1
− 1

i

)
nn−i

(n− i)!

=

n−1∑
i=1

1

i

nn−i−1

(n− i− 1)!
−

n∑
i=2

1

i

nn−i

(n− i)!

=
nn−2

(n− 2)!
− 1

n
+

n−1∑
i=2

nn−i−1

(n− i)!
1

i
((n− i)− n)

=
n (n− 1)nn−2

n!
− 1

n

(
1 +

n−1∑
i=2

nn−i

(n− i)!

)

=
nn

n!

(
1− 1

n

)
− 1

n

n−2∑
i=0

ni

i!
.

Recalling that
∑n−2
i=0

ni

i!
= An

n!
, one obtains the formula for p = 0.

The case p > 0 is far longer to carry out.
The generating series of the �rst two terms are easy to compute:∑

n≥1

nn−r

(n− a)!
tn = Dp

∑
n≥1

nn−a

(n− a)!
tn = Dp (Y a−1Z

)
and

∑
n≥1

nn−r

(n− a)!

1

n
tn = Dp

∑
n≥1

nn−a−1

(n− a)!
tn = Dp

(
Y a

a

)
= Dp−1 (Y a−1Z

)
.

Let us then look at each term of the x-sum. Since ei
(
λ
)

=
∑p
x=0 ex

(
n− a
i− x

)
(some terms being of course

likely to cancel out according to the position of i with respect to p and n− a), one has

24
h1
n (λ)

Tn!
=

nn−r

(n− a)!

1− 1

n
−

p∑
x=0

ex

n−r∑
i=2

x≤i≤x+n−a

(i− 2)!

ni

(
n− a
i− x

)
=

nn−r

n′!

1− 1

n
−

p∑
x=0

ex

n′∑
i≥2−x,0

(
n′

i

)
(i+ x′)!

ni+x

 where
n′ := n− a
x′ = x− 2

.

Let us look at the terms for x ≥ 2:

nn−r

n′!

n′∑
i=0

n′!

i! (n′ − i)!
(i+ x′)!

ni+x
= np−x

n′∑
i=0

x′!

(
i+ x′

i

)
nn
′−i

(n′ − i)! .
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Taking the series of this term in tn yields x′!Dp−x applied on

∑
n≥a

n′∑
i=0

(
i+ x′

i

)
nn
′−i

(n′ − i)! t
n =

∑
i≥0

(
i+ x′

i

) ∑
n≥i+a

nn−(a+i)

(n− (a+ i))!
tn

=
∑
i≥0

(
i+ x′

i

)
Y a+i−1Z

= Y a−1Z
∑
i≥0

(
i+ x′

i

)
Y i

= Y a−1Z

(
1

1− Y

)x−1

= Y a−1Z (1 + Z)x−1

= Y a−xZx.

For x = 1, we carry out the same thing by replacing x′!

(
i+ x′

i

)
by (i−1)!

i!
= 1

i
and by starting the sum

at i = 1: the generating series becomes Dp−1 applied on Y a−1Z
∑
i≥1

Y i

i
. Notice by the way that

D

∑
i≥1

Y i

i

 =
∑
i≥0

Y iZ =
Z

1− Y = Z (1 + Z) .

For x = 0, idem by replacing x′!

(
i+ x′

i

)
by 1

i(i−1)
: the series becomes Dp applied on

Y a−1Z
∑
i≥2

(
Y i

i− 1
− Y i

i

)
= Y a−1Z

Y 1

1
+ (Y − 1)

∑
i≥1

Y i

i

 = Y aZ − Y a
∑
i≥1

Y i

i
.

The second term is equal to −Dp−1 applied on aY a−1Z
∑
i≥1

Y i

i
+Y aZ (1 + Z): in this sum, the �rst terms

kills the contribution of x = 1 (the latter is weighted by −e1 = −a) and the second becomes Y a−1Z2.
Therefore, the four �rst series (1− 1

n
− e0?− e1?) bring a contribution

Dp (Y a−1Z
)
−Dp−1 (Y a−1Z

)
−
[
Dp (Y aZ)−Dp−1 (Y a−1Z2)]

= Dp [Y a−1Z (1− Y )
]

+Dp−1 [Y a−1 (Z2 − Z
)]

= Dp−1DY a +Dp−1 (Y a−1Z2)−Dp−1 (Y a−1Z
)

= Dp−1 (Y a−1Z2)+ (a− 1)Dp−1 (Y a−1Z
)
.

Adding everything yields the result.

4 A present from algebraic geometry

4.1 The Ekedahl-Lando-Shapiro-Vainshtein formula

Let us give some de�nitions and intuitions (taken from [10]) of the space and of the integration theory
involved in the ELSV formula proved in [2].

De�ne a n-marked Riemann surface as a compact connected one-dimensional complex manifold
S together with a family of n pairwise distinct points on S. An isomorphism between two n-marked
Riemann surfaces (S, a1, ..., an) and (T, b1, ..., bn) is an isomorphism f : S−̃→T of Riemann surfaces such
that f (ai) = bi for any i = 1, ..., n.

One can prove that a g-genused n-marked Riemann surface has a �nite group of automorphisms if and
only if

[g ≥ 2] or [g = 1 and n ≥ 1] or [g = 0 and n ≥ 3] , (69)

which can be summarised as
n+ 2g′ > 0. (70)

Such a pair (g, n) will be called stable.
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For a stable pair (g, n), de�ne the moduli space Mg
n as the set of isomorphism classes of g-genused

n-marked Riemann surfaces. For instance, the classical fact that homographies act 3-transitively on the
Riemann sphere S shows thatM0

3 is a point and thatM0
4 ' S \{0, 1,∞} . This fact also explains why the

pairs (0, n) are unstable for n ≤ 2.
The example of M0

4 shows that the moduli spaces Mg
n are not always compact. One can build a

convenient compacti�cation Mg
n, called the Deligne-Mumford compacti�cation of Mg

n, which is a
manifold for g �xed and n large enough. It can be shown that, for any stable pair (g, n), the space Mg

n is
a compact complex orbifold of dimension 3g′ + n. Intuitively, a d-dimensional complex orbifold is locally
isomorphic to an open ball in Cd modulo the orbits of a �nite group; the �niteness explains why we consider
the spacesMg

n only when the pair (g, n) is stable.

On a compact orbifold O, one can de�ne a Q-algebra of cohomology H∗ (O) =
⊕

k≥0 H
k (O): it is an

anti-commutative algebra over the �eld Q, graded by the Hk (O)'s, whose elements are called cohomology
classes. A cohomology class lying in a homogeneous component Hk (O) is said to have pure degree k.

One can then de�ne an integration theory of cohomology classes on a compact orbifold O. By construc-
tion, the integral of a cohomology class lying in Hk (O) is zero unless k = dimO. Therefore, if αi are (com-
mutating) homogeneous cohomology classes, the integral

∫
O

∏
αi will cancel out unless

∑
degαi = dimO.

This allows to write expressions like
∫
O

1
1−α

1
1−β by formally expanding the fractions into power series and

by keeping only the terms of degree dimO.

The reason for introducing integration of cohomology classes onMg
n is the ELSV formula which expresses

hgn(λ)

Tn!
as an integral involving on the one hand the �rst Chern classes ψk ∈ H2

(
Mg

n

)
of the cotangent

bundles at the k-th marked point (for any k = 1, ..., n) and on the other hand the Chern classes (−1)i λi ∈
H2i

(
Mg

n

)
of the dual Hodge bundle Λg∗n .

We will not need the precise de�nition of the Chern classes ψk and λi but only the knowing that they
have pure even degree (and therefore commute)

∀k = 1, ..., n, degψk = 2
∀i = 1, ..., g, deg λi = 2i

. (71)

Theorem 3 (ELSV formula). Let g, n ≥ 0 be integers and λ = (a1, ..., an) a partition of an integer
≤ n. The following formula holds as long as n+ 2g′ > r:

hgn (λ)

Tn!
=

1

(n− |λ|)!

∫
Mg
n−r(λ)

1− λ1 + λ2 − · · ·+ (−1)g λg

(1− a1ψ1) · · · (1− apψp) (1− ψp+1) · · ·
(
1− ψn−r(λ)

) . (72)

When the size |λ| is equal to n, the formula becomes

hgn (λ)

Tn!

|λ|=n
=

∫
Mg
p

1− λ1 + λ2 − · · ·+ (−1)g λg

(1− a1ψ1) · · · (1− apψp)
. (73)

When expanding the fraction of the integrand, one obtains a �nite linear combinaison of integrals whose
generic form is

∫
Mg
p
λjψk1

1 · · ·ψ
kp
p for some integers j, k1, ..., kp.

The other reason for speaking about integration onMg
n is a formula from Kazarian (Theorem 4 in Section

4.3) which expresses the series Hg (λ) as a polynomial in Y and Z, whose Z-leading term can be expressed
as an integral of the classes ψi. We are actually only interested in the Z-leading term, which we give as a
straightforward corollary (Corollary 3 in Section 4.3) of the Kazarian formula .

Before stating the Kazarian formula, let us recall some classical notations and facts about the classes ψi.
(For details and proofs see [10] or [5].)

4.2 The Witten brackets 〈τd1 , ..., τdn〉

For integers d1, ..., dn ≥ 0, one denotes the integral of
∏
ψdii by the Witten (pointed-) bracket :

〈τd1 , ..., τdn〉 :=

∫
Mg
n

ψd1
1 · · ·ψ

dn
n . (74)

Notice that the n in the integrand is the same as the n of the Mg
n on which the integration is carried

out and that the genus is de�ned by the relation 3g′ + n =
∑
di. Moreover, since the n marked points in

Mg
n play symmetric roles, the bracket is invariant under permutations of the di's.
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For instance, when considering the bracket
〈
τ5
0 τ3τ

2
7

〉
, one must have n = 5 + 1 + 2, then n + 3g′ =

5 · 0 + 3 + 2 · 7, hence (g, n) = (4, 8). One therefore integrates overM4
8 the class ψ0

1ψ
0
2ψ

0
3ψ

0
4ψ

0
5ψ

3
6ψ

7
7ψ

7
8 , which

amounts to integrating the class α7β7γ3 for any α, β, γ distinct ψi's.
The brackets 〈τd1 , ..., τdn〉 satisfy two recurrence formulas on the number of di's whenever one of the di's

is zero or one (see [10] or [5] for details).

Claim 5 (string and dilaton equations). For any stable pair (g, n), one has

〈τd1 , ..., τdn , τ0〉
string

=
equation

n∑
i=1

〈
τd1 , ..., τdi−1 , τdi−1, τdi+1 , ..., τdn

〉
, (75)

〈τd1 , ..., τdn , τ1〉
dilaton

=
equation

(
2g′ + n

)
〈τd1 , ..., τdn〉 (set τ−1 = 0). (76)

In spherical genus, the dimension condition
∑
di = n− 3 shows that all brackets obtained in the ELSV

formula have at least three null indexes, which allows their computation with the knowledge of
〈
τ3
0

〉
= 1.

In toric genus, the dimensional identity
∑
di = n show that at least one the index is 0 or 1, hence the

1-genused Witten brackets once known 〈τ1〉 = 1
24
. Combining these formulas (Claim 6) with the ELSV

formula (Theorem 3) yields all spherical and toric one-partition Hurwitz numbers (Claim 4).

Claim 6 (Witten brackets in genera 0 and 1). For any integers d1, ..., dn ≥ 0 and genus g ∈ {0, 1}
satisfying the dimensional condition n+ 3g′ =

∑
di, one has the identities

〈τd1 , ..., τdn〉g=0 =

(
n− 3

d1, ..., dn

)
and (77)

〈τd1 , ..., τdn〉g=1 =
1

24

(
n

d1, ..., dn

)(
1−

n∑
i=2

ẽi (d1, ..., dn)

i (i− 1)

)
. (78)

4.3 The Kazarian formulas

The following theorem and remark are entirely borrowed from [4]. The given proof was however not complete
(and unpublished), the reason why we carry out all the details.

Theorem 4 (Kazarian formula). Give λ = (a1, ..., ap) a partition of an integer a ≥ 0 and set a genus
g ≥ 0. Then one has the following equality whenever the pair (g, p) is stable:

Hg (λ) = Y a (Z + 1)2g′+p λP g (Z) (79)

where λP g (Z) is the following series in Z:

λP g (Z) :=
∑
k≥0

Zk

k!

∫
Mg
p+k

1− λ1 + λ2 − · · ·+ (−1)g λg
(1− a1ψ1) · · · (1− apψp)

ψ2
p+1 · · ·ψ2

p+k

(1− ψp+1) · · · (1− ψp+k)
. (80)

Remark. Some combinatorial explanation for the factor Y a (Z + 1)2g′+p can be found in [8]. Essentially,
once a certain graph has been constructed, the presence of powers of Y corresponds to planting a Cayley
tree on each vertex and the presence of the powers of 1 + Z to planting a Cayley tree (or nothing) on each
edge.

The series λP g in Theorem 4 is actually a polynomial for dimensional reasons: the integrand has degree
≥ 2 + 2 + · · ·+ 2 = 2k, but that very degree must equal the dimension 3g′ + p+ k, hence 3g′ + p+ k ≥ 2k

and k ≤ 3g′ + p. The equality k = 3g′ + p yields the leading term of λP g (Z): Zd

d!

〈
τd2 τ

p
0

〉
. Multiplying by

Y a (Z + 1)2g′+p Z
= Z2g′+p yields Corollary 3. Knowing that λP g is a polynomial reduces the computation

of the in�nite list (hgn (λ))n≥1 to that of one of its �nite sublists (see remark below).

Examples. Let us check, thanks to Theorem 2, that Hg
(λ)

Y a(Z+1)2g
′+p belongs to Q [Z] in genera 0 and 1

with a partition λ having minimal length.
On spherical gender, when λ has length 3, one has

Hg (λ)

Y a (Z + 1)2g′+p
=

H0
p=3

Y a (Z + 1)
=

Y a−1Z

Y a (Z + 1)
=

Z

Y (1 + Z)
= 1. (81)
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In toric gender, when λ = (d+ 1) has length 1, one has

Hg (λ)

Y a (Z + 1)2g′+p
=

H1 ((d+ 1))

Y d+1 (Z + 1)
=

1

24

Y dZ (Z + d)

Y d+1 (Z + 1)
=
Z + d

24

Z

Y (1 + Z)
=
Z + d

24
. (82)

Unstable pairs. When (g, p) is one of the four unstable pairs, the �rst terms of the polynomial λP g

fail to exist. One can nevertheless wonder if the series λP g := Hg
(λ)

Y a(Z+1)2g
′+p is still a Z-polynomial. The

following identities (which are straightforward computations from Theorem 2 left to the reader) show that
λP g ∈ Q [Z] if and only if λ is non-empty :

(g, p) = (0, 2) (x,a−x)P 0 = 1
a

(g, p) = (0, 1) (a)P 0 = 1
a2

(
1 + Z

a+1

)
(g, p) = (0, 0) ∅P 0 = Z + 5Z2

12
− Z

6
+ Y

6

(g, p) = (1, 0) ∅P 1 = D−1Z2

24

.

Corollary 3 (Kazarian Z-formula). For any partition λ and genus g ≥ 0 such that (g, p) is stable,
one has the following Z-equality:

Hg (λ)
Z
=

〈
τp0 τ

3g′+p
2

〉
(3g′ + p)!

Z5g′+2p. (83)

Examples. Let us cross-check Corollary 3 in spherical and toric genus with the explicit formulas of
Theorem 2.

In null genus, Claim 2 and Theorem 2 allow us to write

H0 (λ) = Dp−3 (Y a−1Z
) Z

= Dp−3Z
Z
= (2p− 7)!!Z2p−5.

According to Kazarian, one should have H0 (λ)
Z
=
〈τp0 τp−3

2 〉
(p−3)!

Z2p−5. But Claim 6 for spherical Witten brackets
yields 〈

τp0 τ
p−3
2

〉
(p− 3)!

=
1

(p− 3)!

(
(2p− 3)− 3

0, ..., 0, 2, ..., 2

)
=

(2p− 6)!

(p− 3)!

1

2p−3
= (2p− 7)!!.

In genus 1, Claim 2 and Theorem 2 allow us to write

24H1 (λ)
Z
= Dp−1 (Y a−1Z2) Z= Dp−1Z2 Z

= (2p− 2)!!Z2p.

Compared to Kazarian, one should expect H1 (λ)
Z
=
〈τp0 τp2 〉
p!

Z2p. But the string and dilaton equations show
that

〈τp0 τ
p
2 〉

p!

string
=

p
〈
τp−1
0 τ1τ

p−1
2

〉
p!

dilaton
= (2p− 2)

〈
τp−1
0 τp−1

2

〉
(p− 1)!

= · · ·

= (2p− 2)!! 〈τ0τ2〉
string

= (2p− 2)!! 〈τ1〉 =
(2p− 2)!!

24
.

Compacity remark. So as to recall the variable t in Hg (λ), the latter will also be written λHg or
λHg (t). Recalling computations in the algebra A, one can write

t = Y e−Y =
Z

1 + Z
e−

Z
1+Z ∈ ZQ [[Z]] . (84)

One the other hand, since hgn (λ) = 0 when n < |λ| = a, one can also write

λHg (t) ∈ taQ [[t]] ⊂ ZaQ [[Z]] . (85)

As a result, the series Hg(λ)
Za

(1 + Z)a−l−2g′︸ ︷︷ ︸
∈1+ZQ[[Z]]

is a Z-polynomial of degree 3g′+ l (it equals the polynomial λP g

in Theorem 4) and is therefore determined by its �rst coe�cients. Theorem 4 then yields Corollary 4.

Corollary 4. For any �xed genus g ≥ 0,

one can compute the Hurwitz numbers hgn (λ) for any n

once known the numbers hgn (λ) for n ≤ a+ 3g′ + l.
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More precisely, for any function f , de�ne Truncdegx=df :=
∑d
k=0

xk

k!

[
∂kxf

]
(0) as its Taylor-Mac Laurin

truncation of degree d. Then one has

Hg (λ) = Y a (1 + Z)2g′+l × TruncdegZ=3g′+l

[
λHg (t (Z))

Za
(1 + Z)a−l−2g′

]
. (86)

Proof of Theorem 4. Let us abbreviate λ̌ := 1− λ1 + λ2 − · · · ± λg and

1

1− aψ :=
1

(1− a1ψ1) ... (1− apψp)
and an := an1

1 · · · a
np
p for any n ∈ Np. (87)

When one encodes the ELSV formula (Theorem 3) in the series

Hg (λ) =
∑
n≥a

tn

(n− a)!

∫
Mg
n−r

1− λ1 + λ2 − · · ·+ (−1)g λg

(1− a1ψ1) · · · (1− apψp) (1− ψp+1) · · · (1− ψn−r)
(88)

n←a+k
=

∑
k≥0

ta+k

k!

∫
Mg
p+k

λ̌

1− aψ
1

(1− ψp+1) · · · (1− ψp+k)

= ta
∑

k,d1,...,dk≥0

tk

k!

∫
Mg
p+k

λ̌

1− aψψ
d1
p+1 · · ·ψ

dk
p+k, (89)

one can make the classes ψi in the Hodge integral to be of degree di ≥ 2 thanks to the string and dilaton
equations, hence the pattern of the polynomial λP g in Theorem 4. Let us be more precise.

De�ne a series F in Q [[t0, t1, ...]] by

F (t0, t1, ...) :=
∑
k≥0

1

k!

∫
Mg
p+k

 λ̌

1− aψ
∑

d1,...,dk≥0

(
td1ψ

d1
p+1

)
· · ·
(
tdkψ

dk
p+k

) (90)

=
∑

k,d1,...,dk≥0

td1 · · · tdk
k!

∫
Mg
p+k

λ̌

 ∑
n1,...,np≥0

an1
1 · · · a

np
p ψn1

1 · · ·ψ
np
p

ψd1
p+1 · · ·ψ

dk
p+k

=
∑

k,d1,...,dk,n1,...,np≥0

an
td1 · · · tdk

k!

〈
λ̌, τn1 , τn2 , ..., τnp , τd1 , ..., τdk

〉
. (91)

The theorem is a trivial consequence of the two following lemmas (mind the switch of the starting index of
the series F in Lemma B).

Lemma A. One has the following identities and di�erential equations:{
λHg (t) = taF (t, t, ...)
λP g (t) = F (0, 0, t...)

and

{
∂t0F = aF +

∑
i≥0 ti+1 ∂tiF

∂t1F = (2g′ + p)F +
∑
i≥0 ti ∂tiF

. (92)

Lemma B. Let K be a �eld and F be a series in K [[t1, t2, ...]] which satisifes both equations{
∂t1F = λF +

∑
i≥1 ti+1 ∂tiF

∂t2F = µF +
∑
i≥1 ti ∂tiF

for some scalars λ and µ. (93)

Then, one has the following equality in the algebra K [[Y,Z]]:

tλF (t, t, t, ...) = Y λ (1 + Z)µ F (0, 0, Z, Z, Z, ...) . (94)

Proof of Lemma A. When one cancels ti ← 0 for any i < N (where N is a given integer), then the
powers appearing in the product ψd1

p+1...ψ
dk
p+k range from N to ∞, whence the equality (recall the generic

identity
∑
d1,...,dk≥N

xd1
1 ...x

dk
k =

xN1 ...x
N
k

(1−x1)···(1−xk)
)

F

0, ..., 0︸ ︷︷ ︸
N zeros

, t, t, t...

 =
∑
k≥0

tk

k!

∫
Mg,p+k

λ̌

1− aψ
ψNp+1...ψ

N
p+k

(1− ψp+1) · · · (1− ψp+k)
. (95)

For instance, N = 0 and N = 2 yields the �rst two wanted identities

λHg (t) = taF (t, t, ...) and λP g (t) = F (0, 0, t, ...) .
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To handle the di�erentiation of F , let us cluster all factors tdi with same di's.
Since the summand is symmetric in the indexes di, one can cluster the summand having same mul-

tiset
[(

0
m0

)
,
(

1
m1

)
,
(

2
m2

)
, ...
]
where mi := # {n ; dn = i} for any i ≥ 0. Once chosen the multiplicities

(m0,m1,m2, ...) ∈ N(N), choosing a family (d1, ..., dk) ∈
⋃
p≥0 N

p such that k =
∑
i≥0 mi amounts to choos-

ing a set partition of {1, ..., k} into disjoint parts of cardinalities mi, hence a multinomial
(
k
−→m

)
. The series F

can therefore be rewritten

F =
∑
−→m∈N(N)

n1,...,np≥0

an
tm0
0

m0!

tm1
1

m1!

tm2
2

m2!
· · ·
〈
λ̂, τn1 , ..., τnp , τ

m0
0 , τm1

1 , τm2
2 , ...

〉

=
∑
−→m∈N(N)

n1,...,np≥0

antm
〈
λ̂, τn, τ

m
〉

with the obvious abbreviations.

Let us compute

∑
i≥0

ti+1 ∂tiF =
∑
i≥0

∑
−→m∈N(N), mi≥1
n1,...,np≥0

an
tm0
0

m0!
· · · tmi−1

i

(mi − 1)!

t
mi+1+1

i+1

mi+1!
· · ·
〈
λ̂, τn, τ

m0
0 , ..., τmii , ...

〉

mi←mi+1
=

∑
i≥0

∑
−→m∈N(N)

n1,...,np≥0

an
tm0
0

m0!
· · · t

mi
i

mi!

t
mi+1+1

i+1

mi+1!
· · ·
〈
λ̂, τn, τ

m0
0 , ..., τmi+1

i , ...
〉
.

On the other hand, the partial derivative ∂t0F equals

∂t0F =
∑

−→m∈N(N), m0≥1
n1,...,np≥0

an
tm0−1
0

(m0 − 1)!

tm1
1

m1!

tm2
2

m2!
· · ·
〈
λ̂, τn, τ

m
〉

m0←m0+1
=

∑
−→m∈N(N)

n1,...,np≥0

antm
〈
λ̂, τn, τ

m, τ0
〉

string
=

equation

∑
−→m∈N(N)

n1,...,np≥0

antm

 ∑
j=1,...,p

〈
λ̂, τn1 , ..., τnj−1, ..., τnp , τ

m
〉

+
∑
i≥0

〈
λ̂, τn, τ

m0
0 , ..., τmi+1

i , τ
mi+1−1

i+1 , ...
〉  .

The sum
∑
j=1,...,p equals (after renaming nj ← nj + 1) the series F multiplied by a factor

∑
j=1,...,p aj = a,

the second sum
∑
i≥0 equals (after renaming mi+1 ← mi+1 + 1) the above computation of

∑
i≥0 ti+1 ∂tiF ,

hence the �rst di�erential equation.
On the other hand, the partial derivative ∂t1F equals

∂t1F =
∑

−→m∈N(N), m1≥1
n1,...,np≥0

an
tm0
0

m0!

tm1−1
1

(m1 − 1)!

tm2
2

m2!
· · ·
〈
λ̂, τn, τ

m
〉

m1←m1+1
=

∑
−→m∈N(N)

n1,...,np≥0

antm
〈
λ̂, τn, τ

m, τ1
〉

dilaton
=

equation

∑
−→m∈N(N)

n1,...,np≥0

antm
((

2g′ + (p+ k)
) 〈
λ̂, τn, τ

m, ...
〉)

where k :=
∑
i≥0

mi

=
(
2g′ + p

)
F +

∑
i≥0

∑
−→m∈N(N)

n1,...,np≥0

an
tm0
0

m0!
· · · tmii

(mi − 1)!
· · ·
〈
λ̂, τn, τ

m
〉

=
(
2g′ + p

)
F +

∑
i≥0

ti ∂tiF .

Proof of Lemma B. We �rst restrict ourselves to only three variables by setting f := F (x, y, z, z, z...)
in the algebra K [[x, y, z]]. By di�erentiating the latter de�nition, one gets the equalities

∂xf = ∂ F (x,y,z,z,z...)
∂x

= [∂1F ] (x, y, z, z, ...)

∂yf = ∂ F (x,y,z,z,z...)
∂y

= [∂2F ] (x, y, z, z, ...)

∂zf = ∂ F (x,y,z,z,z...)
∂z

=
∑
i≥3 [∂iF ] (x, y, z, z, ...)

.
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Therefore, evaluating the two equations along (t1, t2, ti≥3) = (x, y, z) yields{
∂xf = λf + y ∂xf + z ∂yf + z ∂zf
∂yf = µf + x ∂xf + y ∂yf + z ∂zf

,

which we rewrite as {
(1− y) ∂xf − z ∂yf − z ∂zf = λf
−x ∂xf + (1− y) ∂yf − z ∂zf = µf

.

Set g := f (0, y, z) in K [[y, z]]. Di�erentiating the latter de�nition and evaluating x ← 0 in the second
equation (with µ) yields

(1− y) ∂yg − z ∂zg = µg.

Let us seek two series
(
ỹ
z̃

)
in K [[s, y, z]] satisfying

{
∂sỹ = 1− ỹ
∂sz̃ = −z̃ , so that the evaluation of the above

equation along
(
y
z

)
←
(
ỹ
z̃

)
yields

µ g

(
ỹ

z̃

)
= ∂sỹ × [∂yg]

(
ỹ

z̃

)
+ ∂sz̃ × [∂zg]

(
ỹ

z̃

)
= ∂s g

(
ỹ

z̃

)
,

hence g
(
ỹ
z̃

)
is exponential in s. A solution is

(
ỹ
z̃

)
:=
(

1−e−s
z

1−y e
−s

)
in K

[[
s, z

1−y

]]
. Therefore, the series g

(
ỹ
z̃

)
in

K
[[
s, z

1−y

]]
equals G

(
z

1−y

)
eµs for some series G. Evaluating s ← 0 yields g

(
0
z

1−y

)
= G

(
z

1−y

)
. Then,

evaluating s← − ln (1− y) yields
(
ỹ
z̃

)
=
(
y
z

)
, whence

g = g

(
y

z

)
= g

(
ỹ

z̃

)
= G

(
z

1− y

)
eµ(− ln(1−y)) = g

(
0
z

1−y

)
1

(1− y)µ
.

We have therefore derived the equality

f (0, y, z) = f

(
0, 0,

z

1− y

)
1

(1− y)µ
.

Set h := f (x, z, z) in K [[x, z]]. Di�erentiating the de�nition of h and evaluating y ← z in the �rst
equation (with λ) yields

(1− z) ∂xh− z ∂zh = λh.

Like before, set
(
x̃
z̃

)
:=
(s+u(e−s−1)

ue−s

)
in K [[u, s]] so that

{
∂sx̃ = 1− z̃
∂sz̃ = −z̃ : from the equation ∂s h

(
x̃
z̃

)
= λh

(
x̃
z̃

)
,

one can deduce h
(
x̃
z̃

)
= H (u) eλs for some series H. Evaluating s← 0 yields h

(
0
u

)
= H (u), then evaluating

u← s yields h
(
se−s

se−s

)
= h

(
0
s

)
eλs. At last, evaluating s← Y yields

(
x̃
z̃

)
=
(
t
t

)
, whence

h

(
t

t

)
= h

(
x̃

z̃

)
= eλY h

(
0

Y

)
=

(
Y

t

)λ
f (0, Y, Y ) =

(
Y

t

)λ
1

(1− Y )µ
f

(
0, 0,

Y

1− Y

)
,

i.e., F (t, t, t, ...) =
Y λ

tλ
(1 + Z)µ F (0, 0, Z, Z, Z, ...) , Q.E.D..

4.4 Asymptotics of one-partition Hurwitz numbers

Theorem 5 (asymptotics of one-partition Hurwitz numbers in any genus). For any partition λ
and any integers g, n ≥ 0, one has the asymptotics

hgn (λ)

Tn!

n→∞∼ cge
nn

5
2
g′+p−1 where

(
c0
c1

)
=

(
1√
2π
1
48

)
and cg≥2 =

〈
τ3g′

2

〉
(3g′)!

1

Γ
(

5
2
g′
)

2
5
2
g′
. (96)

Proof. We already know from Corollory 2 the asymptotics for g ∈ {0, 1}. When g ≥ 2, combining
Corollary 3 with Claim 3 immediatly yields the asymptotics of all hgn (λ)'s:

hgn (λ)

Tn!

n→∞∼

〈
τ3g′+p
2 τp0

〉
(3g′ + p)!

C5g′+2p
en

n

√
n

5g′+2p
= Cstg (λ)× enn

5
2
g′+p−1.
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Let us proove that the constant Cstg (λ) :=

〈
τ

3g′+p
2 τ

p
0

〉
(3g′+p)! C5g′+2p is actually λ-free, as we already know in

genus 0 and 1 (recall Cst0 = 1√
2π

and Cst1 = 1
48
). Just like in the previous Examples, we use the string

and dilaton equations (Claim 5):〈
τ3g′+p
2 τp0

〉
(3g′ + p)!

string
=

(3g′ + p)

(3g′ + p)!

〈
τ3g′+p−1
2 τ1τ

p−1
0

〉
dilaton

=
(5g′ + 2 (p− 1))

(3g′ + p− 1)!

〈
τ3g′+p−1
2 τp−1

0

〉
= · · · = (5g′)

↑↑p

(3g′)!

〈
τ3g′

2

〉
.

Besides, recalling the de�nition of the constants Ck (Claim 3) and the identity Γ (x+ p) = x↑pΓ (x) yields
(set G := 5

2
g′)

1

C2G+2p
= Γ (G+ p) 2G+p = 2pG↑pΓ (G) 2G =

(2G)↑↑p

C2G
.

Multiplying both equalites leads to the conclusion.

We restate here Corollary 1, since it follows from the conjunction of Theorem 5 and of Theorem 1.

Corollary 1 (general asymptotics of Hurwiz numbers). For any partitions λ1, ..., λk and any
genus g ≥ 0, one has the following asymptotics for some constant cg:

hgn (λ1, ..., λk)

Tn!

n→∞∼ cg
en

n
n

5
2
g′nl(λ1)+···+l(λk). (97)

Proof. Set m1 :=
∑
m1 (λi) and p :=

∑
l (λi). Theorem 1 gives us the Z-equality

D3Hg (λ1, ..., λk)
Z
= D3+m1Hg

(
λ̊1 t λ̊2 t · · · t λ̊k

)
,

whence the asymptotics (notice l
(
λ̊
)

+m1 (λ) = l (λ) for any partition λ)

hgn (λ1, ..., λk)

Tn!

n→∞∼ nm1

hgn

(
λ̊1 t · · · t λ̊k

)
T gn
(
λ̊1 t · · · t λ̊k

)
!

Theorem 5
n→∞∼ nm1cge

nn
5
2
g′+(p−m1)−1 = cge

nn
5
2
g′+p−1.

4.5 Computing the brackets
〈
τ 3k2
〉
and the Hurwitz constants cg

All Witten brackets can be encoded in a series

F (t0, t1, ...) :=
∑

g≥0,n≥1
(g,n) stable

∑
d1+···+dn=3g′+n

d1,...,dn≥0

〈τd1 , ..., τdn〉
td1 · · · tdn

n!
. (98)

A conjecture of Witten (see [5] and [6]), now proved by Kontsevitch, gives a di�erential equation satis�ed by
F which allows, together with the string and dilaton equations, to recursively compute all Witten brakets.
As an exemple, one can retrieve the value of 〈τ1〉 = 1

24
. Our interest in the theorem of Kontsevitch is

deriving a recursion formula for the numbers
〈
τ3g′

2

〉
appearing in the asymptotics of Hurwitz numbers,

which amounts to satisfying a Painevé I equation. Our proof is, in its ouline, similar to that in [9].

Theorem 6 (Kontsevitch). If one denotes ∂
∂td

by a subscript d, then one has

F0,1 =
1

2
F 2

0,0 +
1

12
F0,0,0,0. (99)

Corollary 5 (computing the brackets
〈
τ3k
2

〉
and the constants cg).
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1. De�ne (α−1, α0) :=
(
−1, 1

12

)
and αk

(5k)(5k+2)
:=
〈τ3k

2 〉
(3k)!

for any k ≥ 1. Then, the numbers αk satisfy the
recursion formula for any g ≥ 0:

αg =
25g2 − 1

12
αg′ +

1

2

p,q≥0∑
p+q=g′

αpαq. (100)

2. The function u (t) :=
∑
g≥0 cg

Γ( 5g−1
2 )

t
5g−1

2

satis�es the Painlevé I equation

u (t)2 +
1

6

d2u (t)

dt2
= 2t. (101)

Proof of Corollary 5. Let us �rst derive the Painlevé equation from the recursion formula. Once
noticed that, for any g ≥ 2, one has

cgΓ

(
5g − 1

2

)
2

5g−1
2 =

〈
τ3g′

2

〉
(3g′)!

5g−1
2

5g−3
2

Γ
(

5g−5
2

)
2

5g−1
2

Γ
(

5g−5
2

)
2

5g−5
2

= αg′ , (102)

which also holds when g ∈ {0, 1}, it then remains to show that the function u (t) =
∑
g≥0

αg′

(2t)
5g−1

2

satisi�es

the above equation:

1

6
u′′ + u2 =

1

6

∑
g≥0

αg′

2
5g−1

2 t
5g−5

2

(
−5g − 1

2

)(
−5g + 1

2

)
+
∑
k≥0

i,j≥0∑
i+j=k

αi′αj′

(2t)
5k−2

2

=

∑
g≥0

1

(2t)
5g+3

2

25g2 − 1

6
αg′

+ 2t+
∑
k≥1

1

(2t)
5k−2

2

i,j≥0∑
i+j=k

αi′αj′

= 2t+
∑
g≥0

2

(2t)
5k+3

2

(
25g2 − 1

12
αg′ +

1

2

i,j≥0∑
i+j=g+1

αi′αj′

)
.

To obtain the nullity of the brackets, use the recursion formula and rewrite the sum
∑i,j≥0
i+j=g+1 αi′αj′ as

−2αg +
∑p,q≥0
p+q=g−1 αpαq.

Let us now prove the recursion formula.

One wants the coe�cients
〈
τk2
〉
in F (t0, t1, ...) of the powers of t2. One therefore cancels all ti's with

i 6= 2 in Theorem 6:

F0,1 (0, 0, t, 0, 0, ...) =
1

2
F 2

0,0 (0, 0, t, 0, 0, ...) +
1

12
F0,0,0,0 (0, 0, t, 0, 0, ...) .

When applying to F a di�erential operator
∏
i 6=2

∂di

(∂ti)
di

before cancelling all ti 6=2's, the terms in F which yield

a non-zero contribution to
∏
i 6=2

∂di

(∂ti)
di
F are necessarily like

(∏
i6=2 t

di
i

)
t∗2 for some power ∗: after di�erenti-

ating, the ti6=2's disappear and leave a factor
∏
i 6=2 di! behind. Therefore, when looking at 1

2
F 2

0,0 (0, 0, t, 0, ...),
the n-tuples of di's which have a non-zero contribution are necessarily such that exactly two di's equal 0
and all others equal n− 2 (this implies n ≥ 2). Similarly, when looking at F0,0,0,0 (0, 0, t, 0, ...), the n-tuples
involved have four di's equal to 0 and all others equal to 2 (hence n ≥ 4). At last, the di's involved in
F0,1 (0, 0, t, 0, 0, ...) have one di equal to 0, one di equal to 1 and all other di's equal to 2 (hence n ≥ 2). One
can therefore begin to explicit the three series above. We shall use the values of some brackets that can be
computed thanks to the string and dilaton equation (see Lemma C below).

1. To start with, one has

F0,0 (0, 0, t, 0, ...) =

(g,n) stable∑
n≥1, g≥0

1

n!

〈
τ2
0 τ

n−2
2

〉
2!tn−2

two di's equal 0
all other equal 2∑
d1+···+dn=3g′+n

1.

The factor 2! comes from the di�erentiation of t20. The choice of the di's yield a binomial
(
n
2

)
, which

kills all terms where n = 1. The dimension condition states 2n − 2 = 3g′ + n, hence n = 3g + 1 (and
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g ≥ 1 since n ≥ 2). One therefore has

F0,0 (0, 0, t, 0, ...) =
∑

n=3g′+4, g≥1

tn−2

〈
τ2
0 τ

n−2
2

〉
(n− 2)!

=
∑
g≥1

〈
τ2
0 τ

n−2
2

〉
(n− 2)!

t3g
′+2

Lemma C
= t2

(2 · 2− 2)!!

24
+
∑
g≥2

〈
τ3g′

2

〉
(3g′)!

(
5g′
)↑↑2

t3g
′+2

= t2

 1

12
+
∑
g≥2

(
5g′
)↑↑2 〈τ3g′

2

〉
(3g′)!

t3g
′


= t2

∑
g≥1

αg′t
3g′ .

2. Similarly, when looking at F0,0,0,0 (0, 0, t, 0, ...), choosing the di's yields a binomial
(
n
4

)
(killing all

terms where n ≤ 3), the dimension condition becomes 2 (n− 4) = 3g′ + n, hence n = 3g + 5 = 3g′ + 8
and

F0,0,0,0 (0, 0, t, 0, ...) =

n=3g′+8∑
g≥0

1

n!

〈
τ4
0 τ

n−4
2

〉
4!tn−2

(
n

4

)
=

n=3g′+8∑
g≥0

〈
τ4
0 τ

n−4
2

〉
(n− 4)!

t3g
′+4.

Lemma C yields the �rst two terms

t× (4− 3)! (2 (4− 3)− 1)!! + t4 × (2 · 4− 2)!!

24
= t+ 2t4

as well as the coe�cients when g ≥ 2

〈
τ4
0 τ

n−4
2

〉
(n− 4)!

=

〈
τ3g′

2

〉
(3g′)!

(
5g′
)↑↑4

= αg′
(
5g′ + 4

) (
5g′ + 6

)
=
(
25g2 − 1

)
αg′ ,

(notice that, when g = 1, one obtains 24α0 = 2), whence

F0,0,0,0 (0, 0, t, 0, ...) = t+ t4
∑
g≥1

(
25g2 − 1

)
αg′t

3g′ .

3. Finally, the series F0,1 (0, 0, t, 0, ...) involves a factor n (n− 1) (disposing of all terms where n = 1)
while the dimension condition 2 (n− 2) + 1 = 3g′ + n yields n = 3g (and g ≥ 1), whence the equality

F0,1 (0, 0, t, 0, ...) =

n=3g∑
g≥1

1

n!

〈
τ0τ1τ

n−2
2

〉
tn−2n (n− 1) =

n=3g∑
g≥1

〈
τ0τ1τ

n−2
2

〉
(n− 2)!

t3g
′+1.

Lemma C provides the �rst term
1
12

(3−2)!
t and the following

(5g′)↑↑2
〈
τ

3g′
2

〉
(3g′)! t3g

′+1 = αg′t
3g′+1, hence

F0,1 (0, 0, t, 0, ...) = t
∑
g≥1

αg′t
3g′ .

Now, one can write down the equality binding the three series above:

t

12
+ t
∑
g≥2

αg′t
3g′ =

1

2

t2∑
g≥1

αg′t
3g′

2

+
t

12
+ t4

∑
g≥1

25g2 − 1

12
αg′t

3g′ .

Killing the t
12
, simplifying by t4, setting T := t3 and k := g′ yields

∑
k≥0

αk+1T
k =

1

2

∑
k≥0

αkT
k

2

+
∑
k≥0

25g2 − 1

12
αkT

k =
1

2

∑
k≥0

 ∑
p+q=k

αpαq

T k +
∑
k≥0

25g2 − 1

12
αkT

k,

whence the announced recursion formula.

Lemma C. For any stable (g, n) one has〈
τ0τ1τ

n−2
2

〉
(n− 2)!

=

 (5g′)↑↑2
〈
τ

3g′
2

〉
(3g′)! if g ≥ 2

1
12

if g = 1
(103)
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and, for any positive integer k,

〈
τk0 τ

n−k
2

〉
(3g′ + k)!

=


〈
τ

3g′
2

〉
(3g′)! (5g′)

↑↑k
if g ≥ 2

(2k−2)!!
24

if g = 1 (and k ≥ 1)
(2k − 7)!! if g = 0 (and k ≥ 3)

. (104)

Proof of Lemma C. All relations can be proved by using the string and dilaton equations (Claim 5).

1. Let us �rst look at
〈
τ0τ1τ

n−2
2

〉
. The dimension condition says (n− 2) 2 + 1 = 3g′ + n, hence

n = 3g′ + 3. When g ≥ 2, one has〈
τ0τ1τ

n−2
2

〉 dilaton
=

(
2g′ + n− 1

) 〈
τ0τ

n−2
2

〉
string

=
(
5g′ + 2

)
(n− 2)

〈
τ1τ

n−3
2

〉
dilaton

=
(
5g′ + 2

)
(n− 2)

(
5g′
) 〈
τ1τ

n−3
2

〉
.

When g = 1, do the same as above except the last use of the dilaton equation (which would be
meaningless) and recall 〈τ1〉 = 1

24
:〈

τ0τ1τ
n−2
2

〉
=
(
5g′ + 2

)
(n− 2)

〈
τ1τ

n−3
2

〉 n=3
= 2 · 1 · 〈τ1〉 .

2. Let us now look at
〈
τk0 τ

n−k
2

〉
. The dimension condition says (n− k) 2 = 3g′+n, hence n = 3g′+2k.

When g ≥ 2, one has〈
τk0 τ

n−k
2

〉
string

= (n− k)
〈
τk−1
0 τ1τ

n−k−1
2

〉
dilaton

= (n− k)
(
2g′ + n− 2

) 〈
τk−1
0 τn−k−1

2

〉
induction

=
on k

(
3g′ + k

)↓k (
5g′ + 2k − 2

)↓↓k 〈
τn−2k
2

〉
=

(
3g′ + k

)
!
(
5g′
)↑↑k 〈

τ3g′

2

〉
.

When g < 2, do the same as above until just before using the �rst meaningless equation. When g = 1,
this happens just before the last dilaton equation and yields (recall 〈τ1〉 = 1

24
):〈

τk0 τ
n−k
2

〉
g=1

= (0 + k)↓k (0 + 2k − 2)↓↓(k−1) 〈τ1τ0
2

〉
= k! (2k − 2)!! 〈τ1〉 .

When g = 0, one has to stop when one gets a τ0 to the power 3 (use both string and dilaton equations
k − 3 times), which concludes (recall

〈
τ3
0

〉
= 1):〈

τk0 τ
n−k
2

〉
g=0

= (−3 + k)↓(k−3) (−5 + 2k − 2)↓↓(k−3)
〈
τ3
0 τ

n−2k+2
2

〉
= (k − 3)! (2k − 7)!!

〈
τ3
0

〉
.

4.6 Linking the constants cg to the Bender-Gao-Richmond constants tg

In [1], it is recalled that the number of g-genused rooted maps with n edges is, when n grows to ∞,

asymptotically equivalent to tg12nn
5
2
g′ for some constants tg and that the asymptotics of many other

interesting families of maps behave like αtg (βn)
5
2
g′ γn for some constants α, β, γ depending on the considered

family. It is remarkable to �nd the same universal exponent 5
2
g′ as in the asymptotics of Hurwitz numbers.

It is also worth noticing that the constants tg can be very easily related to the contants cg thanks to the
following theorem.

Theorem 7. One has for any genus g ≥ 0 the equality

cg =
√

2
g−3

tg. (105)

Proof. We shall prove that a sequence closely related to tg satis�es the same recursion and has the same
initial value as the sequence (αg′) of the Corollary 5.

Recall from [1] the de�nition of tg in Theorem 1: de�ne u0 := 1
10

and for any g ≥ 1

ug := ug′ +

g′∑
i=1

(
1
5

)↑i ( 1
5

)↑(g−i)(
1
5

)↑g
(

4
5

)↑(i−1) ( 4
5

)↑(g−i−1)(
4
5

)↑g′ uiug−i; (106)

then, one has tg8
g′Γ
(

5g−1
2

)
=
(

25
12

)g ( 1
5

)↑g ( 4
5

)↑g′
ug for any g ≥ 0.
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If one de�nes vg :=
(

1
5

)↑g ( 4
5

)↑g′
ug for any g ≥ 0 and notices that(

1
5

)↑g ( 4
5

)↑g′(
1
5

)↑(g−1) ( 4
5

)↑(g′−1)
=

(
1

5
+ g − 1

)(
4

5
+ g′ − 1

)
=

5g − 4

5

5g − 6

5
=

25g′2 − 1

25
,

then the above recursion becomes vg = 25g′2−1
25

vg′ +
∑g′

i=1 vivg−i. Setting wg :=
(

25
12

)g
vg for any g ≥ 0

leads to wg = 25g′2−1
12

wg′ +
∑i,j>0
i+j=g wiwj . Setting xg := 2wg+1 for any g ≥ −1 leads to xg = 25g2−1

12
xg′ +

1
2

∑i,j>0
i+j=g+1 xi−1xj−1; since the previous sum can be rewritten

∑p,q≥0
p+q=g′ xpxq, one obtains the same recursion

for the sequence (xg′) as that de�ning (αg′). Once checked the initial values

x−1 = 2w0 = 2v0 = 2u01
1(

4
5
− 1
)↑1 = −10u0 = −1 = α−1,

one may identify the sequences xg′ = 2
(

25
12

)g ( 1
5

)↑g ( 4
5

)↑g′
ug = 2tg8

g′Γ
(

5g−1
2

)
and αg′ = cgΓ

(
5g−1

2

)
2

5g−1
2 ,

hence tg2
3g′+1 = cg2

5g−1
2 and the announced equality.

Examples. Recall in the values t0 = 2√
π
, t1 = 1

24
, t2 = 7

25335
√
π
, to be compared to those given in [9]

page 19:

c0 =
1√
2π

, c1 =
1

48
, c2 =

1√
2π

7

25335
. (107)

5 Reduction formula

We now carry out with the most technical part of the paper. We explicit the induction formula used in [7]
and derive Theorem 1.

5.1 The reduction formula

We �rst carry out an analysis of what becomes a constellation after merging its �rst two permutations. We
reproduce mostly what is explained in [7].

Let (σ, ρ, σ3, σ4, ..., σk) be a constellation and de�ne π := σρ. One gets k − 1 permutations π, σ3, ..., σk
whose product is the identity, but one generally loses the transitivity condition. Set N for the number of
orbits of our new group 〈π, σ3, ..., σk〉, denote Ω any of the orbits and write σΩ

i for the permutation σi
induced on Ω. One thus obtains N constellations

(
πΩ, σΩ

3 , ..., σ
Ω
k

)
whose degrees are the |Ω|'s.

We haven't labelled the orbits because they are a priori indistinguishable, which will account for the
appearing of a symmetry factor 1

N !
in the reduction formula.

Notice than the number N of orbits is bounded whatever the chosen constellation. This is trivial when
Sσ ∪ Sρ is empty (since one has then σ = Id and N = 1) and let us explain why, when Sσ ∪ Sρ is non

empty, every orbit must intersect it (hence N ≤
∣∣∣̊λ∣∣∣ + |̊µ|): if the group 〈σρ, σ3, ..., σk〉 stabilised an orbit

disjoint from Sσ ∪ Sρ, then so would the group 〈σ, ρ, σ3, ..., σk〉 since σ and ρ acts trivially out of Sσ ∪ Sρ,
but the latter group is by assumption transitive, so the mentionned orbit must equal all [1, n], consequently

intersecting Sσ ∪ Sρ, which is a contradiction. As a result, one always has N ≤
∣∣∣̊λ∣∣∣+ |̊µ|+ 1

The genera gΩ's satisfy the Riemann-Hurwitz relation 2nΩ + 2gΩ′ = r
(
πΩ
)

+
∑k
i=3 r

(
σΩ
i

)
. By summing

up these relations and recalling that of our �rst constellation, one gets

2n+ 2
∑

gΩ′ =
∑

r
(
πΩ
)

+

k∑
i=3

∑
Ω

r
(
σΩ
i

)
∑
i≥2

r (σi)− 2g′ + 2
∑

gΩ′ = r (π) +

k∑
i=3

r (σi)

∑
gΩ′ = g′ − r (λ) + r (µ)− r (π)

2
. (108)

As a consequence (the fraction is non-negative), the familly
(
gΩ
)
of such genera is bounded whatever the

chosen constellation: gΩ′ ≤
∑
ω g

ω′ ≤ g′.
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Furthermore, since Sπ ⊂ Sσ ∪ Sρ, one can consider the type ν of π|Sσ∪Sρ as a partition of an integer
smaller than |Sσ ∪ Sρ| ≤ |λ|+ |µ|. Let us be more precise and set νΩ for the type of the permutation π|Sσ∪Sρ
induced of Ω: the νΩ's are all non empty (unless Sσ ∪ Sρ = ∅, namely unless λ̊ = µ̊ = ∅) and their sizes
always sum up to that of |ν|. Then π|Sσ∪Sρ has m1

(
νΩ
)
�xed points in Ω and the knowledge of these �xed

points for all Ω's allows one to rebuild Sσ ∪ Sρ (add for any Ω these m1

(
νΩ
)
points to the support of πΩ).

One can therefore assign to a constellation (σ, ρ, σ3, σ4, ..., σk) the following data:

1. an integer N ≤
∣∣∣̊λ∣∣∣+ |̊µ|+ 1;

2. a set partition O = {Ω}Ω∈O of the underlying set into N orbits;

3. a family
(
gΩ
)

Ω∈O of genera (all ≤ g) satisfying the relation
∑

Ω g
Ω′ = g′ − r(σ)+r(ρ)−r(σρ)

2
;

4. a family
(
νΩ
)
of partitions whose size is |ν| ≤ |λ|+ |µ|;

5. some families
(
λΩ

3

)
, ...,

(
λΩ
k

)
of partitions such that ∀i, type (σi) =

⊔Ω λΩ
i .

By collecting constellations according to these datas, one obtains the formula used by Zvonkine in [7]

to prove that, with the only exception of empty partitions in genus 1, all series Hg
(−→
λ
)
lie in the algebra

A. However, this formula was not given explicitely: since we want to precisely compute the Z-degree of

Hg
(−→
λ
)
, we will carry out its making explicit. The reduction formula thus obtained relies only on a family(

f
−→ν
λ,µ

)
of integers that we will de�ne just after stating the reduction formula.

Theorem 8 (reduction formula). Let g ≥ 0 be a genus and
−→
λ = (λ, µ, λ3, λ4, ..., λk) be k partitions.

One has the following ( k-)induction formula

Hg (λ, µ, λ3, ..., λk
)

=
∑
−→ν ,−→g

f
−→ν
λ,µ

N !

∑
−→
λ3,...,

−→
λk

N∏
j=1

Hgj
(
νj , λj3, ..., λ

j
k

)
(109)

where one sums overs

1. integers N ≥ 1 smaller or equal to
∣∣∣̊λ∣∣∣+ |̊µ|+ 1;

2. N-tuples

(−→ν
−→g

)
such that g′ =

r(λ)+r(µ)−r(−→ν )
2

+
∑
gj′ (all νj's being non-empty unless λ̊ = µ̊ = ∅);

3. for any i = 3, ..., k families of partitions
(
λ1
i , ..., λ

N
i

)
whose concatenation λ1

i t · · · t λNi is λi (when
k = 2, one sums (not over nothing but) over the empty list).

It is easy to adapt the oncoming proof to derive the following reduction formula:

Hg (λ, µ, λ3, ..., λk
)

=
∑
−→ν ,−→g

f
−→ν
λ,µ

N !

∑
−→
λ3,...,

−→
λk

N∏
j=1

Hgj
(
νj , λj3, ..., λ

j
k

)
. (110)

De�nition 3 (the numbers f
−→ν
λ,µ). Let N be a positive integer and set N + 2 partitions λ, µ,−→ν . For

any j, consider Ωj a
∣∣νj∣∣-sized set and πj a νj-typed permutation in SΩj . Set Ω :=

⊔
Ωj and π :=

∏
πj.

De�ne f
−→ν
λ,µ as the number of factorisations in SΩ of the permutation π in a product σρ satisfying the three

conditions:

1. the types of σ and ρ are respectively λ and µ;

2. the supports of σ and ρ cover all Ω, namely Fixσ ∩ Fixρ = ∅;
3. (junction condition) for any j 6= j′, there is a �nite sequence j = j0, ..., jL = j′ such that, for any

p = 1, ..., L, there is a cycle of σ or ρ which intersects both orbits Ωjp−1 and Ωjp .

Remarks on the numbers f
−→ν
λ,µ.

The �rst condition shows that f
−→ν
λ,µ does not depend of the parts equal to 1 in λ or µ:

f
−→ν
λ,µ = f

−→ν
λ̊,µ̊.

The second condition shows that, whenever there exists such a factorisation, then |−→ν | = |Ω| = |Sσ ∪ Sρ|
is smaller than |Sσ|+ |Sρ| =

∣∣∣̊λ∣∣∣+ |̊µ|. In other words, one has the implication

f
−→ν
λ,µ > 0 =⇒ |−→ν | ≤

∣∣∣̊λ∣∣∣+ |̊µ| .

24



When −→ν is made only with one partition, the junction condition vanishes.

When, moreover ν is the concatenation of λ and µ, the above inequality |−→ν | ≤
∣∣∣̊λ∣∣∣+ |̊µ| implies both λ and

µ to be reduced and the supports to be disjoint. Then, choosing a factorisation amounts to choosing for any

k ≥ 2 which k-lengthed cycles of π will appear in σ. Therefore, one has f λ̊tµ̊λ,µ =
∏
k≥2

(
mk (λ) +mk (µ)

mk (λ)

)
,

which can be rewritten in a more convient way (for future application) as

f λ̊tµ̊λ,µ

m1 (λ)! m1 (µ)!

λ̊ t µ̊
λµ

= 1. (111)

Examples.
Add a empty partition at the beginning of the list of partitions. The corresponding σ is the identity,

hence σρ = ρ and ν = µ̊. The junction condition then implies all cycles to be in the same orbit, hence
N = 1. The genus relation then becomes −→g = (g). Since the above formula becomes f µ̊∅,µ = 1, the reduction
formula states

Hg (∅, µ, λ3, ..., λk) = Hg (µ̊, λ3, ..., λk)

which we know to be true since Hg
(
µ,
−→
λ
)

= Hg
(
µ̊,
−→
λ
)
and since removing the bar above µ̊ amounts to

appplying

(
D − (|̊µ| −m1 (µ̊))

m1 (µ̊)

)
= 1.

Add now the partition (1p). Again, the corresponding σ equals Id, hence ν = µ̊, N = 1, −→g = (g) and
f µ̊(1p),µ = 1, so that the reduction formula says

Hg
(

(1p), µ, λ3, ..., λk
)

= Hg (µ̊, λ3, ..., λk) .

This was obvious anyway since (1p) and ∅ have the same reduction.
Let us now compute H0 ((2) , (2)). This example is detailed in topological terms in [7] pages 34-35.

Merging two transpositions yields either a commuting product of transpositions (hence N = 1, −→ν = ((2, 2))
and g1 = g = 0), either a 3-cycle (hence N = 1, −→v = ((3)) and g1 = g − 1+1−2

2
= 0), or the identity

permutation (hence two cases: N = 2 and −→ν = ((1) , (1)), or N = 1 and −→ν = ((1, 1))). But the genus
condition yields in the last case −2 ≤ g1′ (+g2′) = g′− 1+1−0

2
= −2, which forces N = 2 and

(
g1, g2

)
= (0, 0).

The sum in Theorem 8 will therefore have three terms. It is moreover easy to compute the numbers
f

((2,2))

(2),(2) = 2 , f
((3))

(2),(2) = 3 and f
((1),(1))

(2),(2) = 1. Since the partition (2) has no �xed point, one can remove the
top bars in Theorem 8:

H0 ((2) , (2)) = H0
(

(2), (2)
)

= 2H0 (2, 2) + 3H0 (3) +
1

2!
H0 (1)2

= 2(2, 2)H0
p=2
a=4

+ 3(3)H0
p=1
a=3

+
1

2

(
(1)H0

p=1
a=1

)2

= 2

(
1

2!

2222

2!2!

)
Y 4

4
+ 3

(
33

3!

)
1

3

(
Y 3

3
− Y 4

4

)
+

1

2

(
12

1!

(
Y − Y 2

2

))2

= Y 4 +
9

2

(
Y 3

3
− Y 4

4

)
+

(
Y 2

2
− Y 3

2
+
Y 4

8

)
= Y 3 +

Y 2

2
.

But we already know from formula (51) that

Hg ((2) , (2)) =
[
2D + 2g′ − r (2)

]
H0 ((2)) = [2D − 3] (2)H0

p=1
a=2

=
22

2!

(
2H0

p=2
a=2
− 3H0

p=1
a=2

)
= 2

(
Y 2 − 3

2

(
Y 2

2
− Y 3

3

))
= Y 3 +

Y 2

2
.

Proof of Theorem 8. Two lemmas will naturally be needed at some moments. They are given at the
end of the proofs.

The number hgn
(
λ, µ, λ3, ..., λk

)
enumerates (up to a factor 1

n!
and some binomials) the constellations

(σ, ρ, σ3, ..., σk, τ1, ..., τT ) of degree n, genus g and type
(
λ, µ, λ3, ..., λk, 2, ..., 2

)
. We will rely on the anal-

ysis presented at the beginning of this section. After setting π := σρ, one obtains N constellations(
πΩ, σΩ

3 , ..., σ
Ω
k , τ

Ω
1 , ..., τ

Ω
TΩ

)
on the orbits Ω, where the τΩ

i 's are transpositions with
∑Ω TΩ = T . Notice

that two transpositions τΩ
i and τΩ′

i′ commute if they lie in di�erents orbits Ω 6= Ω′. Therefore, when going
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backwards to reform the constellation , one will be allowed to interlace the N blocks of transpositions without

changing the product σρ, hence

(
T

(TΩ)

)
possible choices.

We now evaluate hgn
(
λ, µ, λ3, ..., λk

)
by enumerating (up to a factor 1

n!
) the ordered pairs formed on the

one hand of a constellation (σ, ρ, σ3, ..., σk, τ1, ..., τT ) of degree n, genus g and type
(
λ, µ, λ3, ..., λk, 2, ..., 2

)
,

on the other hand for any i ≥ 3 of a part of m1 (λi) points in [1, n].
Start by choosing the constellation according to the data given in the analysis above.
For this, choose a number of orbits N ≥ 1, then the orbits Ω, then the types

(
νΩ
)
, then the types

(
λΩ
i

)
(for all i = 3, ..., k), then the genera

(
gΩ
)
. One obtains so far the following operator (which is a �nite sum)∑

N≥1

∑
set partition O of
{1,...,n} in N orbits

∑
(νΩ)

Ω∈O∑|νΩ|≤|λ|+|µ|

∑
∀i=3,...,k,∑|λΩ

i |=|λi|

∑
∑
gΩ′≤g′

∀Ω, gΩ≥0

.

Choose then for any Ω a constellation
(
πΩ, σΩ

3 , ..., σ
Ω
k , τ

Ω
1 , ..., τ

Ω
TΩ

)
on the set Ω of genus gΩ and type(

νΩ, λΩ
3 , ..., λ

Ω
k , 2, ..., 2

)
as well as m1

(
νΩ
)
points �xed by πΩ, which adds an operator

∏
Ω

|Ω|! hg
Ω

|Ω|

(
νΩ, λΩ

3 , ..., λ
Ω
k , 2, ..., 2

)(|Ω| − (∣∣νΩ
∣∣−m1

(
νΩ
))

m1 (νΩ)

)
=
∏
Ω

|Ω|! hg
Ω

|Ω|

(
νΩ, λΩ

3 , ..., λ
Ω
k

)
It remains to choose a factorisation of π :=

∏
πΩ in a product σρ satisfying the three following conditions:

1. σ and ρ have respective types λ and µ;

2. the union Sσ ∪ Sρ equals Sπ union the preceedingly-chosen points;

3. the group 〈σ, ρ, σ3, ..., σk, τ1, ..., τT 〉 acts transitively.

Lemma D shows that the third condition amounts to a junction condition on the orbits Ω by the
cycles of σ or ρ; Lemma E then shows that the number f

−→ν
λ,µ of such factorisations does not depend of neither

n, g, the orbits Ω, the permutations πΩ, nor the chosen points.
One will eventually not forget the choices of the transpositions.
Once chosen the constellation, the choice (with �xed i) of the m1 (λi) =

∑
Ω m1

(
λΩ
i

)
points in [1, n] =⊔

Ω amounts to choosing for any Ω some points in Ω in number m1

(
λΩ
i

)
, hence for all Ω a factor

k∏
i=3

(
nΩ −

(∣∣λΩ
i

∣∣−m1

(
λΩ
i

))
m1 (λΩ

i )

)
.

Finally, one deduces from everything above that hgn
(
λ, µ, λ3, ..., λk

)
equals the following sum (for sake

of lightness, the conditions on the "indexes" have been removed)

1

n!

∑
sets {Ω} of orbits, families

(gΩ), (vΩ), (λΩ
3 ), ..., (λΩ

k )

[∏
Ω

|Ω|!hg
Ω

|Ω|

(
νΩ, λΩ

3 , ..., λ
Ω
k

)]
f
−→ν
λ,µ

(
T

(TΩ)

)
i=3,...,k∏

Ω

(
|Ω| −

(∣∣λΩ
i

∣∣−m1

(
λΩ
i

))
m1 (λΩ

i )

)
.

The �rst sum can be rewritten as a sum over (unordered) sets of -tuples
(
Ω, gΩ, νΩ, λΩ

3 , ..., λ
Ω
k

)
or over sets of

pairs
(
Ω, uΩ

)
where uΩ stands short for the -tuple

(
gΩ, νΩ, λΩ

3 , ..., λ
Ω
k

)
. Since the conditions on the Ω's and

on the uΩ's are invariant under permutation and because they ensure the
(
Ω, uΩ

)
to be distinct, summing

on sets
{(

Ω, uΩ
)}

Ω
satisfying theses conditions amounts to 1

N !
times summing on families

((
Ωj , uj

))
j=1,...,N

satisfying the same conditions. Clustering then the orbits according to their cardinalities allows one to
describe the operator

∑
sets {Ω} of orbits, families

(gΩ), (vΩ), (λΩ
3 ), ..., (λΩ

k )

=
1

N !

−→g , −→v∑
−→
λ3, ...,

−→
λk

∑
families

−→
Ω

=
1

N !

−→g , −→v∑
−→
λ3, ...,

−→
λk

∑
n1+···nN=n

(
n

n1, ..., nN

) ∑
families

−→
Ω such that

∀j=1,...,N, |Ωj |=nj

.

After integrating the binomials in the hg
Ω

|Ω|'s and clustering the orbits according to the family
(
n1, ..., nN

)
of their cardinalities, the number hgn

(
λ, µ, λ3, ..., λk

)
becomes

1

n!

−→g , −→v∑
−→
λ3, ...,

−→
λk

1

N !

∑
n1+···nN=n

(
n

n1, ..., nN

)[
N∏
j=1

nj ! hg
j

nj

(
νj , λj3, ..., λ

j
k

)]
f
−→ν
λ,µ

(
T

T 1, ..., TN

)
.
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After multiplying by tn

Tn!
, simplifying both multinomials and sharing out the powers of tn =

∏
tn
j

, one gets

the equality (write Tnj for T
j)

hgn
(
λ, µ, λ3, ..., λk

) tn
Tn!

=

−→g , −→v∑
−→
λ3, ...,

−→
λk

fνλ,µ
N !

∑
n1+···+nN=n

[∏
j

hg
j

nj

(
νj , λj3, ..., λ

j
k

) tn
j

Tnj !

]
.

Summing on the n ≥ 1, one obtains by multidistributing

Hg (λ, µ, λ3, ..., λk
)

=

−→g , −→v∑
−→
λ3, ...,

−→
λk

fνλ,µ
N !

∏
j

Hgj
(
νj , λ3, ..., λk

)
, Q. E. D..

We now state and prove the two lemmas that were needed in our proof.

Lemma D. Let N ≥ 1 be an integer and Ω1, ...,ΩN mutually disjoint sets. Set Ω :=
⊔

Ωj. For any
j ∈ [1, N ], let πj a permutation of Ωj and Gj a transitive subgroup of SΩj . Assume the (disjoint) product∏
πj = σρ being factorised in SΩ. Then the group

〈
σ, ρ,G1, ..., GN

〉
acts transitively on Ω if and only if,

for any j 6= j′ in [1, N ], there is a �nite sequence j = j0, ..., jL = j′ such that, for any p = 1, ..., L, there is
a cycle of σ or ρ which intersects both orbits Ωjp−1 and Ωjp .

Lemma E. Set N ≥ 1 an integer and let λ, µ,−→ν be N + 2 partitions. For any choice of

1. an integer n ≥ |−→ν |;
2. a composition

(
n1, ..., nN

)
of n such as nj ≥

∣∣νj∣∣ for any j;
3. a nj-sized part Ωj ⊂ {1, ..., n} for any j such as all Ωj's are mutually disjoint;

4. a νj-typed permutation πj ∈ SΩj for any j;

5. a πj-�xed part F j ⊂ Ωj of size m1

(
νj
)
for any j,

the number of factorisations in Sn of π :=
∏
πj in a product σρ satisfying the junction condition and

both equalities type (σ, ρ) =
(
λ, µ

)
and Sσ ∪ Sρ = Sπ t

⊔
F j always equals f

−→ν
λ,µ.

Proof of lemma D.
⇐= Let x, x′ two points in Ω. Denote by ω, ω′ and G,G′ the corresponding orbits and subgroups.

If x and x′ lie in the same orbit, the transitivity of G concludes. If there is a cycle or σ or ρ which intersects

both ω and ω′, say in two points (y, y′) ∈ ω × ω′, then we have the following action x
G7−→ x′

σ or ρ7−→ y′
G′7−→ x′

of the subgroup
〈
σ, ρ,G1, ..., GN

〉
, hence the result by following the cycles of the sequence j0, ..., jL.

=⇒ Set any j 6= j′ and take a pair (x, x′) of points in Ωj × Ωj
′
. We have a permutation of〈

σ, ρ,G1, ..., GN
〉
which sends x to x′. Write that permutation ∗a∗b∗c∗· · · z∗ where all ∗'s are in

〈
G1, ..., GN

〉
and where letters a, b, c, ..., z each denote a element of 〈σ〉 or 〈ρ〉. Since the ∗ can't make points get out of a
given orbit Ωj , only permutations a, b, c, ..., z can, whence the sought cycle sequence.

Proof of lemma E.
Let us �rst �x n and the nj 's and set

−→
Ω ,−→π ,

−→
F and

−→
Ω′,
−→
π′ ,
−→
F ′ as above. Since πj and πj′ have same type,

there is a bijection ϕ exchanging their non-�xed cycles for any j. Since F j and F j′ have same size and are
πj-�xes, one can complete ϕ so as to exchange them for any j. Finally, since the orbits Ωj and Ω′j have
same size, one can complete ϕ in a permutation of all {1, ..., n}, which yields, by conjugation, a bijection

between the factorisations associated with
(−→

Ω ,−→π ,
−→
F
)
and those associated with

(−→
Ω′,
−→
π′ ,
−→
F ′
)
.

Let us �x now any
(−→

Ω ,−→π ,
−→
F
)
as above. Set F :=

⊔
F j and Ω :=

⊔
Ωj . The condition Sσ ∪ Sρ =

Sπ t F ⊂ Ω ensures that σ and ρ �x every point outside of Ω, so that all three permutations σ, ρ, π lie in
SΩ (and therefore all conditions happen in Ω). Therefore, one has a trivial bijection between: on the one

hand, the factorisations associated with
(−→

Ω ,−→π ,
−→
F
)
and the given composition −→n ; on the other hand, the

factorisations associated with
(−→

Ω ,−→π ,
−→
F
)
and the same but reduced composition −→n =

(∣∣νj∣∣). One could

also see everything in S∞ with the corresponding trivial bijections.
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5.2 Proof of the main theorem

We restate Theorem 1: for any partitions λ1, ..., λk and any genus g ≥ 0, one has the following Z-equality
in the algebra AZ for M large enough:

DMHg (λ1, ..., λk)
Z
= DM+m1(λi)+···+m1(λk)Hg

(
λ̊1 t λ̊2 t · · · t λ̊k

)
. (112)

For the wondering reader, the exponent M is a trick to get rid of the exceptional cases. It is indeed a
useful trick we frequently make use of and that therefore requires some details.

The D-trick.
As a �rst example, the information about the Z-degree in Corollary 3 can be stated without the stability

condition by the simple equality degZ D
3Hg (λ) = 5g + 2p + 1 (one just has to check the four exceptional

cases).
Let us prove the following generalisation for any M ≥ 0: if the series DMHg (λ) lies in AZ , then it has

degree
degZ D

MHg (λ) = 2M + 5g′ + 2p. (113)

Indeed, setting S := Hg (λ), one can write on the one hand D3
(
DMS

)
= 2 ·3 + degZ D

MS and on the other

hand DM
(
D3S

)
= 2M + 5g′ + 2p+ 6; equalling both members leads to the conclusion.

Let us now prove the following equivalences for any series S lying in A:

S ∈ AZ ⇐⇒ ∀M ≥ 0, degZ D
MS ≥ 2M ⇐⇒ ∃M ≥ 0, degZ D

MS ≥ 2M . (114)

The arrows =⇒ are trivial (see claim on the powers of Z) and one even has a strict inequality. Conversely,
if S is a polynomial P (Y ), then DS = P ′ (Y )Z has Z-degree ≤ 1 and hence DMS = DM−1DS has degree
≤ 1 + 2 (M − 1).

Finally, let us prove the following corollary of Theorem 1.

Corollary 6 (which series Hg lie in AZ). For any non-empty partitions λ1, ..., λk, λ, µ:

1. Hg (λ1, ..., λk) always lies in AZ when k ≥ 3.

2. Hg (λ, µ) does not lie in AZ if and only if g = 0 and if both λ and µ have one part.

3. Hg (λ) does not lie in AZ if and only if

(
g

l (λ)

)
∈

{(
0

0

)
,

(
0

1

)
,

(
0

2

)
,

(
1

0

)}
.

Proof. Take the Z-degree in the given Z-equality and use Theorem 4:

degDMHg (λ1, ..., λk) = 2M + 2
∑

m1 (λi) +
(

5g′ + 2
∑

l
(
λ̊i
))

= 2M + 5g′ + 2
∑

l (λi) .

Since all lengths are ≥ 1, the above degree is ≥ 2M when k ≥ 3. When k = 2, the above degree is < 2M if
and only if g = 0 and l (λi) = 1 for i = 1, 2. When k = 1, one retrieves the already-known exceptional cases
of Theorem 4.

We now proceed with the proof of Theorem 1.
To derive the wanted Z-equality from Theorem 8, one has to analyse the contribution in Z of each

product
∏
Hgj , which invites us to carry out an induction on the number k of partitions. We will require

an inequality (Lemma F) which we state (and prove) at the end of the proof.
We will thus prove the following reduction Z-formula:

Hg (λ, µ, λ3, ..., λk
) Z

= f λ̊tµ̊λ,µ H
g
(
λ̊ t µ̊, λ3, ..., λk

)
. (115)

Notice it already stands as a plain equality when λ̊ = µ̊ = ∅, the reason for which we will leave that case
aside below. From then on, it will be easy to conclude. To remove the bars on top of λ and µ, one has to

multiply by the binomials

(
D − (|λ| −m1 (λ))

m1 (λ)

)(
D − (|λ| −m1 (λ))

m1 (λ)

)
; since D strictly increases degZ , one

can multiply instead by Dm1(λ)+m1(µ)

m1(λ)! m1(µ)!
and still gets a Z-equality:

Hg (λ, µ, λ3, ..., λk)
Z
=

Dm1(λ)+m1(µ)

m1 (λ)! m1 (µ)!
f λ̊tµ̊λ,µ H

g
(
λ̊ t µ̊, λ3, ..., λk

)
.
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To get from H to H, divide both sides by λµλ3· · ·λk. Then remember Formula 111 and use the induction
hypothesis:

Hg (λ, µ, λ3, ..., λk)
Z
= Dm1(λ)+m1(µ)Hg

(
λ̊ t µ̊, λ3, ..., λk

)
Z
= Dm1(λ)+m1(µ)D0+m1(λ3)+···+m1(λk)Hg

(
λ̊ t µ̊ t λ̊3 t · · · t λ̊k

)
, Q.E.D..

The case k = 1 is an immediate corollary of Corollary 3. Because of the number of exceptional cases,
the case k = 2 will be the longest to deal with, the case k = 3 much similar and much easier, and greater
k's will be straightforward. We start with k ≥ 4 to get used to the idea, then k = 3 and �nally k = 2, the
induction hypothesis allowing to use the corresponding parts of Corollary 6 above.

k ≥ 4. Theorem 8 implies

Hg (λ, µ, λ3, ..., λk
)

=
∑
−→ν ,−→g

f
−→ν
λ,µ

∑
−→
λ3,...,

−→
λk

∏
j

Hgj
(
νj , λj3, ..., λ

j
k

)

where every factor Hgj
(
νj , λj3, ..., λ

j
k

)
lies in AZ by the Corollary 6 (remind all νj 's to be non empty since

we left aside the case λ̊ = µ̊ = ∅). The product
∏
Hgj

(
νj , λj3, ..., λ

j
k

)
has therefore Z-degree

∑
j

5gj′ + 2

l (νj)+
∑
i≥3

l
(
λji

)
= 5g′ − 5

rλ + rµ
2

+
5

2
(|−→ν | − l (−→v )) + 2l (−→ν ) + 2

∑
i≥3

l (λi)

= 2
∑
i≥3

l (λi) + 5g′ − 5

2
(rλ + rµ) +

5 |ν| − l (ν)

2
.

Everything is constant except 5|ν|−l(ν)
2

. Lemma F then shows that the above quantity is maximal if and

only if ν = λ̊t µ̊; since this implies N = 1 and −→g = (g), we can deduce that the term
∏
j H

gj
(
νj , λj3, ..., λ

j
k

)
of maximal Z-degree in the sum Hg

(
λ, µ, λ3, ..., λk

)
is precisely Hg

(
λ̊ t µ̊, λ3, ..., λk

)
, which yields the

announced Z-reduction formula.

k = 3. We go along the same idea. Fix a genus g ≥ 0 and three partitions λ, µ, ξ. Let p := l (ν) + l (ξ)
and pj de�ned alike for all j. Theorem 8 then implies for any integer M ≥ 0

DMHg (λ, µ, ξ) =
∑

−→ν ,−→g ,
−→
ξ ,
−→
M

f
−→ν
λ,µ

(
M−→
M

)∏
j

DMj

Hgj
(
νj , ξj

)

where the sum over
−→
M is taken over the N -tuples of non-negative integers M j which sum up to M . By the

induction hypothesis for k = 2, the term DMHg
(
λ̊ t µ̊, ξ

)
lies in AZ for M large enough. Fix such an M .

We then show that all other terms have Z-degree smaller than the latter.

By Corollary 6 for two partitions, a factorDMj

Hgj
(
νj , ξj

)
will belong toQ [Y ] if and only if

(
gj , pj ,M j

)
=

(0, 2, 0); multiplying by such an element will decrease the Z-degree (strictly if and only if its (Y -)coe�cients
sum up to zero). As for the other factors, the D-trick combined with Corollary 6 for two partitions

shows that their Z-degree is 5gj′ + 2pj + 2M j . The product
∏
j D

Mj

Hgj
(
νj
)
has therefore Z-degree

≤
∑
Z 5gj′ + 2pj + 2M j where the index Z means that DMj

Hgj
(
νj
)
lies in AZ (we will index "no Z"

otherwise).
Set e := #

{
j;
(
gj , pj ,M j

)
= (0, 2, 0)

}
for the number of (exceptional) factors with no Z. The three

previous Z-sums can be linked to the same sums without restriction:∑
Z

gj′ =
∑
no Z

1 +
∑
j

gj′ = e+ g′ − rλ + rµ − r−→ν
2

,

∑
Z

pj = (l (−→ν )− e) + (l (ξ)− e) = l (−→ν ) + l (ξ)− 2e,∑
Z

M j = M .
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One can thus derive the majoration

degZ
∏
j

DMj

Hgj
(
νj , ξj

)
≤ 5

∑
Z

gj′ + 2
∑
Z

pj + 2
∑
M

M j

= 5e+ 5g′ − 5

2
(rλ + rµ) +

5 |−→ν | − 5l (−→ν )

2
+2l (−→ν ) + 2l (ξ)− 4e+ 2M

= 2M + 5g′ − 5

2
(rλ + rµ) + l (ξ) +

5 |ν| − l (ν)

2
+ e.

As above, everything is constant except 5|ν|−l(ν)
2

+ e; since there is (thanks to the trick of applying D) at
least one M j ≥ 1, one has e ≤ N − 1 ≤ 3 (N − 1) and Lemma F still holds: the maximal-Z-degreed term∏
j D

Mj

Hgj
(
νj , ξj

)
in the sum DMHg

(
λ, µ, ξ

)
is precisely DMHg

(
λ̊ t µ̊, ξ

)
. One then concludes exactly

the same way as in the case k = 4.

k = 2.
The proof goes as above. Fix g ≥ 0 any genus and λ, µ two partitions. Theorem 8 implies for any M ≥ 0

DMHg (λ, µ) =
∑
−→ν ,−→g ,

−→
M

f
−→ν
λ,µ

(
M−→
M

)∏
j

DMj

Hgj
(
νj
)
.

By Corollary 6, a factor DMj

Hgj
(
νj
)
will belong to Q [Y ] if and only if

 gj

pj

M j

 =

 0
1
1

,
 0

1
0

 or 0
2
0

. For the other factors, we have already stated their degrees were 5gj′ + 2pj + 2M j . The product

∏
j D

Mj

Hgj
(
νj
)
has therefore Z-degree ≤

∑
Z 5gj′+ 2pj + 2M j . Now link the Z-sums to the (no Z)-sums:

∑
Z

gj′ =
∑
no Z

1 +
∑

gj′ = #

j;
 gj

pj

M j

 =

 0
1
1

 ,

 0
1
0

 or

 0
2
0

+ g′ − rλ + rµ − rν
2

,

∑
Z

pj = l (ν)−#

j;
gj = 0
pj = 1

M j = 0 or 1

− 2#

j;
gj = 0
pj = 2
M j = 0

 ,

∑
Z

M j = M −#

j;
gj = 0
pj = 1
M j = 1

 .

One can thus derive the majoration

degZ
∏
j

DMj

Hgj
(
νj
)
≤ 5

∑
Z

gj′ + 2
∑
Z

pj + 2
∑
M

M j

= 2M + 5g′ − 5

2
(rλ + rµ) +

5

2
(|ν| − l (ν)) + 2l (ν)

+5#

j;
 gj

pj

M j

 =

 0
1
1

 ,

 0
1
0

 or

 0
2
0

− 4#

j;
gj = 0
pj = 2
M j = 0


−2#

j;
gj = 0
pj = 1

M j = 0 or 1

− 2#

j;
gj = 0
pj = 1
M j = 1


= 2M + 5g′ − 5

2
(rλ + rµ) +

5 |ν| − l (ν)

2

+#

j;
gj = 0
pj = 1
M j = 1

+ 3#

j;
gj = 0
pj = 1
M j = 0

+

j;
gj = 0
pj = 2
M j = 0

 .

The three sets whose cardinalities are involved being mutually disjoint, the corresponding sum is ≤ N
and one can even remplace N by N − 1 if there is at least one M j ≥ 2, which can be realised by choosing

M ≥ 2
(∣∣∣̊λ∣∣∣+ |̊µ|+ 1

)
≥ 2N . Therefore, one can still apply Lemma F and conclude, which �nishes the proof

of the Theorem 1.
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Lemma F. Let λ, µ be two partitions and σ, ρ two permutations in S∞ of type
(
λ, µ

)
. Denote by ν the

partition of σρ induced on Sσ ∪ Sρ. Cluster the cycles of ν into N orbits such that the junction condition
is satis�ed. Then the quantity 5|ν|−l(ν)

2
+3 (N − 1) is maximal if and only if σ and ρ have disjoint supports.

(And, in that case, one has N = 1.)

Remarks. To get the intuition of it, make the intersection of the supports Sσ and Sρ growing one by
one from the empty set (the announced equality case): when a point is added to Sσ ∩Sρ, the size decreases
quicker than the length thanks to the factor 5. (Of course, that intution does not explain why the factor 5
su�ces to kill the annoying term 3 (N − 1).)

Proof. Call a cycle of σ or ρ to be interlaced if it intersects another cycle of σ or ρ (and two such
cycles will be called interlaced with each other). Set c for the number of interlaced cycles and c′ for the
number of cycles (included �xed cycles) of the product σρ induced on the interlaced cycles (of σ and ρ).

A crucial remark is the following: for the junction condition to be satis�ed, every cycle of ν must lie in
the same orbit as an interlaced cycle, hence the inequality N ≤ c′.

If one sets k := |Sσ ∩ Sρ| for the number of contact points of the supports, one can write |ν| =
∣∣∣̊λ∣∣∣+ |̊µ| − k

l (ν) = l
(
λ̊
)

+ l (µ̊)− c+ c′
,

hence the quantity to be majorised

Q :=
5 (−k)− (c′ − c)

2
+ 3 (N − 1) . (116)

When Sσ ∩ Sρ = ∅, all variables c, c′, k,N − 1 equal 0 and so does Q. One has therefore to show Q < 0,
namely −2Q ≥ 1, for any other ν than λ̊ t µ̊. By the crucial remark, it su�ces to show the same inequality

5k + c′ − c− 2 (3N − 3)
?

≥ 1 with some N 's been replaced by the same number of c′'s: so as to kill the c′ in

the inequality, we remplace one N out of six, which lead us to muse over the inequality 5 (k + 1−N)
?

≥ c.
We are going to show by induction on |Sσ|+ |Sρ| the stronger inequality

2 (k −N + 1)
?

≥ c. (117)

When σ = ρ = Id, then all three quantitites c, k,N − 1 equal 0, hence the inequality (even though ν
equals λ̊ t µ̊).

Assume now
∣∣∣̊λ∣∣∣+ |̊µ| > 0. Because on the assumption ν 6= λ̊t µ̊ one has k ≥ 1: take one contact point x

in Sσ ∩ Sρ, set y := σ (x) and τ := (x, y) the transposition exchanging these points. Finally, write σ = τσ∗
where σ∗ := τσ �xes x and therefore sati�es |σ∗| < |σ|. Thus, one obtains the cycle decomposition of σρ
by multiplying that of σ∗ρ by the transposition τ on the left (and conversely). Denote by a ∗-subscript
the quantities c∗, k∗, N∗ associated to the product of σ∗ and ρ; notice that N∗ is not well-de�ned and can
be chosen arbitrarily as long as the junction condition is satis�ed. For such an N∗, one has the induction
hypothesis

c∗ ≤ 2 (k∗ −N∗ + 1) .

What we want is to dispose of the ∗'s.
Since x is �xed by σ∗, it disappears from the contact points, hence k∗ < k. Besides, σ∗ loses at most

one interlaced cycle (it can only be the σ-orbit of x) and ρ loses at most two interlaced cycles (those maybe
interlaced with τ), hence c∗ ≥ c− 3. But the case c∗ = c− 3 implies the σ-orbit of x to be a transposition
interlaced with two ρ-cycles, each of which not being interlaced with another σ-cycle; since σ and ρ play
symmetric roles (set y := ρ (x) instead of σ (x)), one can avoid this case and hence assume c∗ ≥ c− 2.

Let us look at what happens to the cycles of σρ when composing (on the left) by τ . If a (σρ-)cycle γ is
split in two cycles, cluster them in the same orbit as that of γ (hence N∗ = N). If two cycles are joined,
either both cycles were in the same orbit (then, do not change the orbits, hence N∗ = N) or they were
in distinct orbits (then, merge these orbits and do not change the others, hence N∗ = N − 1). Whenever
N∗ = N , one can conclude by writing

c ≤ c∗ + 2 ≤ 2 (k∗ −N∗ + 1) + 2 ≤ 2 ((k − 1)−N + 1) + 2 = 2 (k −N + 1) , Q. E. D..

We can consequently assume N∗ = N − 1 and hence τ joining two σρ-cycles, which goes the same as saying
x and y not to lie in the same σρ-orbit. But that implies both σ- and ρ-orbits of x to remain interlaced
for σ∗ and ρ (if not, iterate σρ in a not-interlaced orbit to join x and y), hence c∗ = c and the induction
hypothesis yields

c = c∗ ≤ 2 (k∗ −N∗ + 1) ≤ 2 ((k − 1)− (N − 1) + 1) = 2 (k −N + 1) , Q. E. D..
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