Une équation fonctionnelle arithmétique (IMO25 Pb3)

Marc SAGE

7 août 2025

Énoncé. On note \mathcal{F} l'ensemble des applications $f: \mathbf{N}^* \longrightarrow \mathbf{N}^*$ telles que

$$\forall \ \ ^{\blacksquare}_{\square} \in \mathbf{N}^*, \ \ f(\square)^{f(\blacksquare)} = \square^{\blacksquare} \bmod f(\blacksquare) \, . \qquad \textit{Déterminer} \ \ \max_{n \in \mathbf{N}^*} \frac{F(n)}{n} \, .$$

Après une résolution en trois cas, nous allons explicitement résolution fonctionnelle « appartenir à \mathcal{F} », ce qui rendra limpide l'exemple parachuté réalisant le maximum trouvé.

Notations, terminologie, rappels

- Soit $\underline{f \in \mathcal{F}}$, soient $\underline{a, b, i, n, p \in \mathbf{N}^*}$ tels que $\underline{i \text{ impair}}$ et $\underline{p \text{ premier}}$. Nous pourrons être amenés à quantifier universellement sur l'un de ces symboles.
- Les images par f seront notées avec des primes, e. g. n' := f(n). Quand cette dernière image vaut 1, 2. nous dirons que f tue n ou que n est tué (sous-entendu : par f).

Par exemple, remplacer dans l'hypothèse ■ par un tué ne nous apprend rien (1 divise chaque entier!), tandis que remplacer \square par un tué (et $\blacksquare \leftarrow a$) montre que $\underline{a'}$ divise le p. g. c. d. $\bigwedge_{\underline{t} \text{ tué}} (t^a - 1)$.

L'application valuation dyadique sera noté $v: v(n) := \max\{e \in \mathbb{N} \; ; \; 2^e \mid n\}$.

- 3.
- 4. Les modules des (non-)égalités modulaires seront précisés au-dessus d'un signe d'égalité (éventuellement barré), e. g. (tout ce qui suit est affirmé)

$$a^p \stackrel{p}{=} a$$
 (énoncé du petit théorème de Fermat) ou $i \stackrel{2}{\neq} 0$ ou encore $i^2 \stackrel{8}{=} 1$ ou plus généralement $i^{2^n \stackrel{2^{n+2}}{=} 1}$,

cette dernière égalité s'établissant aisément par récurrence via à la factorisation l

$$i^{2^{n+1}} - 1 = (i^{2^n} - 1)(i^{2^n} + 1).$$

Résolution

Remplacer dans l'hypothèse $\binom{\blacksquare}{\square}$ \leftarrow $\binom{a}{a}$ donne la divisibilité $a' \mid a^a$. En particulier² quand a = p, l'image p' doit être une puissance de p, donc ou bien vaut $p^0 = 1$ (cas où p est tué) ou bien est multiple de p.

Dans ce dernier cas, chaque égalité $\stackrel{p'}{=}$ pourra devenir une égalité $\stackrel{p}{=}$, ce qui permettra d'itérer le petit théorème de Fermat et d'utiliser l'égalité $n^{p'}\stackrel{p}{=}n$. En particulier, l'égalité $a^p\stackrel{p'}{=}a'^{p'}$ obtenue en remplaçant $\binom{p}{a}\leftarrow\binom{p}{a}$ devient $a^p \stackrel{p}{=} a'^{p'}$, çà
d $a \stackrel{p}{=} a'$, d'où le

lemme clef:
$$p' \neq 1 \Longrightarrow p \mid a' - a$$
.

Ce lemme va irriguer notre preuve et structurer les distinctions de cas à venir.

$$\frac{1}{r}$$
réécrire
$$\frac{i^{2^{n+1}}-1}{i^{2^n}-1}=2+\boxed{i^{2^n}-1} \text{ montrerait plus précisément que la suite } \left(v\left(i^{2^N}-1\right)\right)_{N\geq 1} \text{ est affine de raison 1}$$

² on peut également récolter l'égalité 1'=1 (ce qui permet par exemple de minorer le maximum cherché par $\max_{F \in \mathcal{F}} \frac{F(1)}{1} = 1$) mais elle nous sera inutile et découlera d'autres considérations : selon les cas, l'argument 1 jouera le même rôle que n'importe quel point fixe (cas 1), n'importe quel entier ≥ 1 (cas 2) ou n'importe quel impair (cas 3) – aucun rapport donc avec les premiers!

Supposons que f ne tue aucun premier. D'après le **lemme clef**, la différence a'-a est alors divisible 1. par chaque premier, i. e. est nulle, d'où l'égalité | f = Id |.

Alternative. Si l'on avait remplacé □ également par un premier, nous aurions alors seulement montré la fixité de chaque premier. Il suffirait pour conclure d'établir la multiplicativité (totale) de f, e. g. en partant des égalités

$$\operatorname{mod} p' : (ab)'^{p'} = (ab)^p = a^p b^p = a'^{p'} b'^{p'}$$
 et en les passant *modulo p* puis en faisant "varier" p .

2. L'idée (plus générale) derrière les égalités ci-dessus est d'utiliser l'hypothèse en gardant le même □; dans cet esprit, on obtiendrait pour chaque famille \mathcal{D} finie de \mathbf{N}^* l'égalité $\left(\prod_{d\in\mathcal{D}}d\right)^a\stackrel{a'}{=}\left(\prod_{d\in\mathcal{D}}d'\right)^{a'}$. En particulier, quand a vaut le produit $\prod_{\mathcal{D}}$ de gauche, le membre de gauche a^a s'annule, d'où le

(bonus utile)
$$a = \prod d \Longrightarrow a' \mid \left(\prod d'\right)^{a'}$$
.

Supposons à présent que 2 est tué. Si p n'est pas tué, le lemme clef donne l'absurde divisibilité p 2'-2=-1, laquelle impose la tuerie de chaque premier. Le **bonus utile** permet alors, avec l'existence des décompositions en facteurs premiers, de conclure à la constance f = 1

Supposons enfin que f tue au moins un premier autre que 2 et soit N l'un d'eux. Observer alors 3. grâce aux conditions $\begin{cases} N > 2 \\ N' = 1 \end{cases}$ la non-nullité de N' - N. Quand $p \neq 1$ nous obtenons (**lemme clef**) la divisibilité $p \mid N' - N \neq 0$ et, partant, la majoration $p \leq N - 1$, d'où par contraposée l'implication

$$p \ge N \Longrightarrow p$$
 tué.

L'image a' divise donc le p. g. c. d. $\bigwedge_{\pi \text{ premier } > N} (\pi^a - 1)$, ce qui a l'air fort contraignant. Que dire déja sans l'exposant a? Imposer $\left\{ \begin{array}{l} p \stackrel{a'}{=} -1 \\ p > N \end{array} \right.$ (possible par DIRICHLET³) montre que ce dernier p. g. c. d.

divise $p-1\stackrel{a'}{=}-2$, d'où $a'\mid 2$, ce qui est en effet contraignant. Avec l'exposant a, on s'en sort en imposant a=i impair, auquel cas l'égalité $(-1)^i=-1$ livre la même conclusion $i'\mid 2$; combinée à la divisibilité $i' \mid i^i$ par un impair, on obtient la tuerie

Notre stock d'entiers tués s'étant agrandi, nous pouvons affirmer la divisibilité (plus contraignante)

$$\underline{\underline{a'\mid D}} := \bigwedge_{\iota \in \mathbf{N} \text{ impair}} (\iota^a - 1).$$

Le p. g. c. d. de droite n'ayant aucun diviseur impair autre que 1 (chaque tel diviseur ι divise d'une part ι^a d'autre part $D \mid \iota^a - 1$), il est une puissance de 2, à savoir $\underline{\underline{D} = 2^{\min_{\iota \text{ im pair }} v(\iota^a - 1)}}$. Ensuite, les valuations $v(\iota^a - 1)$ sont données par les égalité⁴ et minoration suivantes quand l'argument a est pair⁵ :

$$v\left(i^{a}-1\right)-v\left(a\right)\overset{\text{``lifting the}}{\underset{exponent"}{=}}\underbrace{v\left(i^{2}-1\right)}_{\geq 3\text{ car }i^{2}\stackrel{\$}{=}1}-1\underset{\geq 2}{\underline{=}}\text{ avec \'egalit\'e ssi }\left\{\begin{array}{c}i^{2}\stackrel{2^{3}}{=}1\\ 2^{4}\\ i^{2}\neq 1\end{array}\right.,$$

 $i.~e.~ssi~i\stackrel{16}{=}\pm3$ ou ±5 , ce qui est réalisé e.~g. quand i=3. Il en résulte les implications

$$a \text{ pair} \Longrightarrow \underline{\underline{D = 2^{2+v(a)}}} = 4 \cdot 2^{v(a)} \underline{\mid 4a}.$$

³ le théorème utilisé est souvent dit de la progression arithmétique

⁴cas particulier du théorème dit *LTE* (pour *Lifting The Exponent*); en guise de preuve expresse, l'imparité quand b est impair de $\frac{i^{2^n}b-1}{i^{2^n}-1} = \sum_{0 \le \bigstar < b} i^{2^n \bigstar}$ permet de se ramener au cas $a=2^n$, lequel est traité dans les rappels

 $^{^{5}}$ lorsque a est impair, son image 1 divise n'importe quoi et l'information $a' \mid D$ est vide; plus essentiellement, le LTE ne s'applique **pas** et le calcul de $\underline{D}=\underline{2}$ (laissé à la curiosité de la lectrice) ne tombe pas dans le cadre obtenu quand a est pair

La divisibilité $a' \mid 4a$ restant valide pour a impair, on peut majorer $\max_{\mathbf{N}^*} \frac{f}{\mathrm{Id}} \leq 4$. Or l'application χ tuant chaque impair, quadruplant 4 et valant 2 sur chaque autre pair va réaliser ce maximum, d'où⁶

la conclusion de notre énoncé :
$$\boxed{ \frac{F \in \mathcal{F}}{\max\limits_{n \in \mathbf{N}^*} \frac{F(n)}{n} = 4 } }$$

(oui, l'application χ est parachutée et, oui, les vérifications suivantes sont complètement ad hoc : toute surprise devrait néanmoins être dissipée par les lumières de nos parties finales "à rebours").

Ultime bureaucratie. Continuons à noter avec des primes les images par l'application χ . L'égalité $b'^{a'} \stackrel{a'}{=} b^a$ est alors triviale pour a impair. Quand a = 2, cette égalité $b'^{\text{pair}} \stackrel{2}{=} b^2$ se reformule $b' \stackrel{2}{=} b$ et traduit l'identité de parité entre un argument et son image – identité vérifiée. Supposons enfin a=4: quand b est pair, les deux membres de l'égalité $b'^{16} \stackrel{16}{=} b^4$ sont multiples de 2^4 , donc nuls, ce qui la valide; finalement, quand b est impair, le rappel $b^{2^n} \stackrel{2^{n+2}}{=} 1$ s'applique pour n=2 et donne $b^4 \stackrel{16}{=} b'^{16}$, ce qui conclut.

Complément sur les résidus modulaires (autre preuve de $D \mid 4a$). Une alternative pour obtenir la divisibilité $D \mid 4a$ sans expliciter le p. g. c. d. D (et donc sans LTE) est d'invoquer des connaissances au sujet des racines n-ièmes modulo des puissances de 2. En effet, si DIRICHLET ne peut plus nous aider pour exploiter la divisibilité $a' \mid \bigwedge \iota^a - 1$ (on avait extrait quand a était impair une racine a-ième de -1 modulo a'), on

peut tâcher d'en garder l'idée et de regarder à quelle condition -1 admet quand a est pair une racine a-ième modulo une puissance de 2 (à savoir a'). Or un article de 2022 traite précisément de ces questions⁷.

Nous imposerons a pair pour la suite de ce paragraphe. Nous avons alors le

Théorème : Supposons
$$n \geq 3$$
. L'équation $r^a \stackrel{2^n}{=} i$ admet alors une solution (en $r \in \mathbb{N}$) ssi $i \stackrel{2^n \wedge 4a}{=} 1$.

Appliquons. Nous avons déjà vu que le p. g. c. d. D est une puissance de 2 et l'on peut donc imposer $D=2^n$, l'égalité $i^a \stackrel{8}{=} 1$ permettant de minorer $n \geq 3$. Imposons alors $i = 1 + D \wedge 4a$ (qui est bien impair par parité de D) et soit $r \in \mathbb{N}$ tel que $r^a \stackrel{2^n}{=} i$. Cette dernière égalité passe $modulo\ 2$ et donne $r^a \stackrel{2}{=} i$, çàd $r \stackrel{2}{=} 1$, imparité qui montre que D divise $r^a - 1 \stackrel{D}{=} i - 1 = D \wedge 4a$, d'où la conclusion $D \mid 4a$.

Remonter le courant. Prenons le temps de bien voir en quoi la condition $a' \mid D$ de notre cas 3 captait l'information restant de l'appartenance $f \in \mathcal{F}$: devions-nous chercher ailleurs? le pouvions-nous seulement? Cela nous permettra in fine d'expliciter l'ensemble \mathcal{F} et d'éclairer les vérifications bureaucratiques ci-dessus⁸. Soit $F: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ dont on continue à noter les images avec des primes. Supposons $F \neq \mathrm{Id}$ et $F \neq 1$.

Soit
$$\underline{P \geq 2 \text{ pair}}$$
. Montrons alors l'équivalence $F \in \mathcal{F} \Longleftrightarrow \left\{ \begin{array}{c} i' = 1 \\ 2 \mid P' \mid 2^P \\ P' \mid \bigwedge_{\iota \text{ impair}} \iota^P - 1 \end{array} \right.$

Reprenons notre cas 3 à l'affirmation $\underline{a'\mid D}$: il nous reste à établir les divisibilités $2\stackrel{?}{\mid}P'\stackrel{?}{\mid}2^P$. \implies

Tout d'abord, puisque 2 n'est pas tué⁹, le **lemme clef** fournit la divisibilité $2 \mid a' - a$, donc l'image a'a même parité que a, d'où $2 \mid P'$

Ensuite, l'image a' est une puissance de a' car divise une telle puissance – le p. g. c. d. a' est une puissance de a' car divise une telle puissance – le p. g. c. d. a'preuve (plus directe) en footnote¹⁰. Sanity check¹¹: quand a = i, on a bien $i' = 2^0$.

 $^{^6}$ conjointement à l'égalité $\max_{\mathbf{N}^*} \frac{f}{\mathrm{Id}} = 1$ des deux premiers cas (i. e. quand $f = \mathrm{Id}$ ou f = 1)

Ferucio Laurențiu ȚIPLEA, Efficient Generation of Roots of Power Residues Modulo Powers of Two, pdf disponible sur https://www.mdpi.com/2227-7390/10/6/908

⁸ la lectrice est invitée à repérer dans ce qui suit où – et sous quelle forme – chacune de ces vérifications apparaît

 $^{^9}$ l'hypothèse est lointaine... mais structure génériquement la disjonction des cas 2 et 3

 $^{^{10}}$ Supposons $a=2^ni$ et appliquons le **bonus utile** (cf. cas 2) : l'image a' divise le produit $\left(2^{i''}i'\right)^{a'}$. Or chaque facteur 2' est une puissance de 2 (en tant qu'image du premier 2) et le dernier facteur i est tué (en tant qu'impair), donc a' divise une puissance de 2, a fortiori EST une puissance de 2.

¹¹ce sanity check est en fait nécessaire au sens de la réciproque suivante : si chaque image est une puissance de 2, l'image i' en est alors une, qui plus est impaire (vu l'égalité $i' \stackrel{2}{=} i$), çàd vaut $2^0 = 1$, donc chaque impair est tué

Soient enfin $d \in \mathbf{N}$ tels que $\binom{a'}{b'} = \binom{2^{\ell}}{2^m}$, la condition $m \ge 1$ équivalant à la parité de b. Nous allons majorer $\underline{\ell \le a}$, ce qui conclura à $\boxed{P' \mid 2^P}$ (remplacer $a \leftarrow P$).

Nous voulons la divisibilité $2^{\ell} \stackrel{?}{|} 2^a$, i. e. la nullité mod a' de $2^a \stackrel{a'}{=} 2'^{a'}$: montrons plus généralement celle de $b'^{a'} = 2^{ma'}$ (il suffira d'y remplacera $b \leftarrow 2$). Vu les minorations $\begin{cases} m \geq 1 \\ a' = 2^{\ell} > \ell \end{cases}$, l'exposant ma' majore 1ℓ , d'où $2^{\ell} \mid 2^{ma'}$, ce qu'il fallait démontrer.

Supposons réciproquement $\begin{cases} \begin{array}{c|c} i'=1 \\ 2 \mid P' \mid 2^P \\ P' \mid \bigwedge_{\iota \text{ impair}} \iota^P - 1 \end{array} \text{. L'égalité } b'^{a'} \stackrel{a'}{=} b^a \text{ est alors triviale pour } a \text{ impair} \end{cases}$

(1 divise chaque entier!) et vérifiée quand b est pair grâce au travail du paragraphe précédent (la tuerie des impairs permet bien de mettre a' et b' sous forme de puissances de 2, la parité de b entraîne la nullité $b'^{a'} \stackrel{a'}{=} 0$ et, avec la condition $a' \mid 2^a$, la nullité $b^a = \left(\frac{b}{2}2\right)^a \stackrel{a'}{=} 0$). L'affirmer pour chaques $a, b \in \mathbb{N}^*$ revient donc à l'affirmer pour chaque a pair et chaque b impair, affirmation équivalant précisément à l'hypothèse $P' \mid \bigwedge_{\iota \text{ impair}} \iota^P - 1$, d'où la conclusion $F \in \mathcal{F}$.

À la source. Incorporons enfin l'explicitation $\bigwedge_{\iota \text{ impair}} \iota^P - 1 = 2^{2+v(P)}$ dans l'équivalence sus-établie. Imposons $P = 2^n i$ pour alléger. La conjonction $\left\{ \begin{array}{l} P' \mid 2^{2+n} \\ P' \mid 2^P \end{array} \right\}$ se traduit alors par $P' \mid 2^{\min\{P,2+n\}}$, le minimum en exposant valant $\left\{ \begin{array}{l} 2 & \text{si } P = 2 \\ 2+n & \text{sinon} \end{array} \right\}$. Par conséquent, les divisibilités $2 \mid P' \mid 2^{\min\{P,2+n\}}$ équivalent resp. $\left\{ \begin{array}{l} \text{quand } P = 2 & \text{à} \quad 2 \mid P' \mid 2^P, \quad i. \ e. \ \text{à} \ 2' \in \{2,4\} \\ \text{quand } P > 2 & \text{à} \quad \exists e \in [1,2+n], \ P' = 2^e \end{array} \right\}$.

Conclusion. Nous pouvons conclure enfin à la description de $\mathcal{F}\setminus\{\mathrm{Id},1\}$:

 \Leftarrow

$$F \in \mathcal{F} \Longleftrightarrow \begin{cases} 2' \in \{4, 8\} \\ \forall A \text{ impair, } A' = 1 \\ \forall B \text{ pair } \neq 2, \exists e \in \mathbf{N}, \end{cases} \begin{cases} B' = 2^e \\ 1 \le e \le 2 + v(B) \end{cases}$$
 (ou $F = \text{Id ou } F = 1$).

Construire un élément de \mathcal{F} , vu comme la suite de ses images (1', 2', 3'...), revient donc – outre la suite constante (1, 1, 1, ...) et la suite identité (1, 2, 3, ...) – à choisir une image dans chacune des colonnes suivantes¹³:

Le maximum 4 annoncé sera alors atteint ss'il y a au moins une puissance de 2 (autre que 2^0 ou 2^1) pour laquelle l'exposant e choisi ci-dessus est maximal (cas d'égalité dans les divisibilités $a' \mid 4 \cdot 2^{v(a)} \mid 4a$), i. e. si l'on choisit au moins une image encadrée : $\boxed{16}$, $\boxed{32}$, $\boxed{64}$...

pour la route : comment reconstruire ainsi l'application χ parachutée ?

dérouler par exemple les implications $\begin{cases} P=2 \Longrightarrow n+2=1+2=3 > P \\ \text{et } i>1 \Longrightarrow 2^n i>2^n 2=2^{n+1} \ge (n+1)+1=n+2 \\ \text{et } n\ge 2 \Longrightarrow 2^n=2 \cdot 2^{n-1} \ge 2\left((n-1)+1\right)=n+n\ge n+2 \end{cases}$

¹³ Voici un algorithme engendrant ces colonnes et mettant au jour ses symétries. Étape 1 : écrire 1. Soit ensuite $n \ge 1$ tel que l'étape n a été effectuée. Étape n+1 : rajouter à droite la colonne $(2^E)_{1\le E\le n+2}$, puis recopier à droite de cette dernière ce qui était à sa gauche (on peut aussi le réfléchir par rapport à cette colonne). Étape finale : élaguer le 8 de la première colonne (2,4,8).