Polynômes ter (version chantier)

Marc SAGE

< 2015

Table des matières

1	Cosinus et rationnels	2
2	Ordres dans $GL_{2}\left(\mathbf{Z}\right)$	2
3	Similtude et équivalence	3
4	un équivalent	3
5	Chevalley Warning	4
6	Nombre de polynômes irréductibles (unitaires) dans un corps fini	4
7	Tout sev de M_n disjoint de GL_n est de codim $\geq n$	5
8	Une somme trigo	7
9	Trouver des racines	8
10	Un peu de cyclotomie	8
11	signe d'un somme de cosinus	8
12	Exo d'anneaux	8

1 Cosinus et rationnels

Trouver tous les rationnels $r \in \mathbf{Q}$ tels que $\cos r\pi$ soit rationnel.

Solution proposée.

On connaît des candidats : 1, $\frac{1}{2}$ ou $\frac{1}{3}$. En se rappelant que pour chaque entier $n \ge 1$ on a $\cos nr = T_n(\cos r)$ où T_n est un polynôme à coefficients entiers¹, on voit que chaque rationnel de dénominateur 1, 2 ou 3 convient. Nous allons voir ce que ce sont les seuls – une fois mis sous forme irréductible.

Cet exercice se traite beaucoup plus vite à l'aide des polynômes cyclotomiques. Étant donnée une fraction $\frac{a}{h}$ sous forme irréductible, les racines du polynôme $X^2 - 2\cos\left(2\pi\frac{a}{b}\right)X + 1$ sont des racines b-ièmes primitives de l'unité, donc ce polynômes doit diviser le b-ième polynôme cyclotomique Φ_b . Lorsque cos $(2\pi \frac{\pi}{h})$ est rationnel, cette divisibilité s'exprime dans $\mathbf{Q}[X]$ où Φ_b est irréductible, ce qui force l'égalité des polynômes, d'où l'égalité des degrés $\varphi(b) = 2$, ce qui conduit à $b \in \{1, 2, 3, 6\}$. On se ramène à a = 1 grâce à Bézout.

Variante : déterminer les rationnels r tels que $\tan{(\alpha \pi)}$ soit rationnels.

Ordres dans $GL_2(\mathbf{Z})$ $\mathbf{2}$

Quels sont les ordres (finis) possibles d'une matrice de $GL_2(\mathbf{Z})$? Exhiber des éléments ayant ces ordres.

Solution proposée.

Soit $A \in GL_2(\mathbf{Z})$ d'ordre fini ω . Son polynôme caractéristique $\chi_A \in \mathbf{Z}[X]$ s'écrit $X^2 - (\operatorname{tr} A)X + \operatorname{det} A$ et se scinde sur \mathbf{C} en $(X - \lambda)(X - \overline{\lambda})$. Puisque $A^{\omega} = 1$, la valeur propre λ est racine ω -ième de l'unité, ce qui s'écrit $\lambda = e^{2\pi i \frac{u}{\omega}}$ pour un $u \in \mathbf{Z}$. Alors la somme $\lambda + \overline{\lambda} = \operatorname{tr} A$ vaut un entier $2 \cos \frac{2u\pi}{\omega}$, ce qui montre que $\cos \left(\frac{2u}{\omega}\pi\right)$ est rationnel. D'après la question précédente, $\frac{2u}{\omega}$ est de la forme $v, \frac{v}{2}$ ou $\frac{v}{3}$ avec $v \in \mathbf{Z}$.

Tout ce qui suit n'est que discussion de cas. Quitte à restriendre le choix de u dans $[0, \omega[$, on pourra prendre

le quotient $\frac{2u}{\omega}$ dans [0,2[.

- 1. Cas $\frac{2u}{\omega} \in \mathbf{Z}$. Le quotient $\frac{2u}{\omega}$ est un entier de [0,2[, donc vaut 0 ou 1. S'il est nul, u vaut 0, i. e. $\lambda = 1$, donc Sp $A = \{1\}$; puisque A est diagonalisable (car annulé par $X^{\omega} - 1$), elle vaut l'identité. Le cas $u = \frac{\omega}{2}$ donne de même $\lambda = -1$ puis A = -1.
- 2. Cas $\frac{2u}{\omega} \in \frac{1}{2}\mathbf{Z}$. Le rapport $\frac{4u}{\omega}$ est un entier de]-2,2]. Le cas 0 venant d'être traité, u ne peut valoir que $\pm \frac{\omega}{4}$ ou $\frac{\omega}{2}$. Le cas médian $u = \frac{\omega}{2}$ équivaut à $\frac{2u}{\omega} = 1$, cas déjà traité. Les cas $u = \pm \frac{\omega}{4}$ donnent tous $\operatorname{deux} \operatorname{Sp} A = \{\pm i\}.$

Réciproquement, pour trouver une matrice A telle que $\chi_A = X^2 + 1$ (qui sera alors diagonalisable et d'ordre 4), on cherche à réaliser $\left\{ \begin{array}{cc} \operatorname{tr} A = 0 \\ \det A = 1 \end{array} \right.$, par exemple $\left(\begin{array}{cc} 1 & -1 \\ 2 & -1 \end{array} \right)$.

Le rapport $\frac{6u}{\omega}$ est un entier non nul de]-3,3] donc u ne peut valoir que $\pm \frac{\omega}{6}, \pm \frac{\omega}{3}$ ou $\frac{\omega}{2}$. 3. Cas $\frac{2u}{\omega} \in \frac{1}{3}\mathbf{Z}$. Le rappe Le cas $\frac{\omega}{2}$ a déjà été traité.

Les cas $u = \pm \frac{\omega}{3}$ donnent Sp $A = \{j, \overline{j}\}$. Pour avoir $\chi_A = X^2 + X + 1$, on regarde $\{ \text{tr } A = -1 \text{det } A = 1 \}$, ce qui est réalisé pour $\begin{pmatrix} 1 & -1 \\ 3 & -2 \end{pmatrix}$.

Les cas $u=\pm\frac{\omega}{6}$ donnent Sp $A=\left\{-j,-\overline{j}\right\}$, de polynôme caractéristique $\chi_A=X^2-X+1$ dont un représentant est $\begin{pmatrix} \ddot{2} & -1 \\ 3 & -1 \end{pmatrix}$.

$$(T_0, T_1) = (1, X)$$
 et $T_n = \frac{T_{n-1} + T_{n+1}}{2X}$.

¹Les polynômes de Tchebycheff T_n peuvent être définis par la récurrence

Conclusion: les ordres possibles sont (on donne un représentant pour chaque)

$$\begin{pmatrix} 1 & & 2 & & 3 & & 6 \\ 1 & & & & \begin{pmatrix} -1 & & \\ & 1 \end{pmatrix} & \begin{pmatrix} & -1 & \\ & & -1 \end{pmatrix} & \begin{pmatrix} & 1 & -1 \\ & 3 & -2 \end{pmatrix} & \begin{pmatrix} & 2 & -1 \\ & 3 & -1 \end{pmatrix} \; .$$

Remarque. Si l'on avait restreint la recherche aux ordres $\omega = p$ premiers, on pouvait aller beaucoup plus vite à l'aide des polynôme cyclotomiques Φ_n . En effet, le polynôme minimal μ_A divise le polynôme annulateur

$$X^{p} - 1 = \prod_{d|p} \Phi_{d} = \Phi_{1} \Phi_{p} = (X - 1) \Phi_{p},$$

donc (par irréductibilité de μ_A et Φ_p) égale X-1 ou Φ_p . Le premier cas donne de suite A=1. Dans le second, prendre les degrés donne $p-1=\varphi\left(p\right)\in\{1,2\}$, d'où $p\in\{2,3\}$.

3 Similtude et équivalence

Soit A et B deux matrices dans $M_n(K)$.

Montrer qu'elle sont semblables ssi X - A et X - B sont équivalentes dans $M_n(K[X])$.

Sens facile : si $A = PBP^{-1}$, alors $X - A = P(X - B)P^{-1}$.

Supposons P(X - A) = (X - B)Q. Une division euclidienne coefficient par coefficient donne

$$\begin{split} P &= \left(X - B \right) P_1 + R_1 \\ Q &= Q_1 \left(X - A \right) + S_1 \end{split} \quad \text{où } R_1, S_1 \in M_n \left(K \right). \end{split}$$

On calcule alors

$$(X - B) (P_1 - Q_1) (X - A) = \underbrace{(X - B) P_1}_{(P - R_1)} (X - A) - (X - B) \underbrace{Q_1 (X - A)}_{(P - R_1)}$$

$$= \underbrace{(P - R_1) (X - A) - (X - B) (Q - S_1)}_{(P - R_1)}$$

$$= -R_1 (X - A) - (X - B) (-S_1) \text{ par hypothèse}$$

$$= X (S_1 - R_1) + R_1 A - B S_1.$$

À droite le degré est ≤ 1 , à gauche il est ≥ 2 (si $P_1 \neq Q_1$), donc tout est nul : $P_1 = Q_1$, $S_1 = R_1$ et $R_1A = BR_1$. Montrons que R_1 est inversible. Une division euclidienne donne $P^{-1} = (X - A)P_2 + R_2$, d'où

$$1 = P(X - A)P_2 + PR_2$$

= $(X - B)QP_2 + (X - B)P_1R_2 + R_1R_2$
= $(X - B)(Q + P_1)P_2 + R_1R_2$.

Prenant les degré, ne reste à droite que $R_1R_2=1$, ce qui conclut.

4 un équivalent

équi ve de $\left[\left(1+X+X^2\right)^n\right]_n$? il vaut $\int_0^\pi \left(1+2\cos\right)^n$ (eq intégrale des coeffe) puis le résultat $\frac{3^{n+\frac{1}{2}}}{2\sqrt{\pi n}}$

5 Chevalley Warning

Soit $q = p^{\alpha} \ (\alpha \ge 1)$ et $P \in \mathbf{F}_q [X_0, ..., X_n]$ de degré $1 \le d \le n$ sans terme constant.

Montrer que P admet un zéro non trivial.

Généraliser : si une famille (P_i) de $F_q[X_0,...,X_n]$ est telle que $\sum \deg P_i \leq n$, alors il y a un zéro commun à tous les P_i .

Rq : pour $x \in \mathbf{F}_q^{n+1}$, on a $P(x)^{q-1} = 0$ ou 1, donc $\sum_x \left[1 - P(x)^{q-1}\right] = |Z(P)|$.

Lemme 1 : pour $k \ge 1$, on a $\sum_{\lambda \in \mathbf{F}_q} \lambda^k = \left\{ \begin{array}{l} -1 \ \text{si} \ q-1 \mid k \\ 0 \ \text{si} \ q-1 \mid /k \end{array} \right.$ (prendre les série géné, cf. feuille arithmétique). En corollaire : pour $0 \le k < q-1$, cette somme est nulle (traiter le cas k=0 à part).

Lemme 2 : si $Q \in \mathbf{F}_q[X_0,...,X_n]$ est de degré $\leq n(q-1)$, alors $\sum_{x \in \mathbf{F}_q^{n+1}} Q(x) = 0$.

Raisonnons sur un monôme $Q(x) = x_0^{\alpha_0} \cdots x_n^{\alpha_n}$ de degré $\leq \deg Q$. On a $\sum_x Q(x) = \left(\sum_{x_0} x_0^{\alpha_0}\right) \cdots \left(\sum_{x_n} x_n^{\alpha_n}\right)$. L'un des α_i est < q-1, sinon le degré de Q est $\sum \alpha_i \geq nq > n \, (q-1)$ car $n \geq 1$, d'où la nullité de la somme $\sum_{x_i} x_i^{\alpha_i}$ correspondante.

Conclusion : on écrit $\sum_{x} \left[1 - P\left(x\right)^{q-1}\right] = 0 - \sum_{x} P\left(x\right)^{q-1}$ avec $\deg P^{q-1} \leq n\left(q-1\right)$, donc $|Z\left(P\right)|$ est nul modulo q. Comme 0 est déjà zéro, $|Z\left(P\right)|$ est $\geq q$, CQFD.

Pour la généralisation, on part de l'identité $\sum_{x}\prod_{i}\left(1-P_{i}\left(x\right)^{q-1}\right)=\left|\bigcap Z\left(P_{i}\right)\right|$ et on raisonne pareil.

6 Nombre de polynômes irréductibles (unitaires) dans un corps fini

Soit $q:=p^{\alpha}$ où p est premier et $\alpha\geq 1$ un entier. Montrer que le nombre I_q^n de polynômes irréductibles unitaires de degré n sur \mathbf{F}_q vaut

$$I_q^n = \frac{1}{n} \sum_{d,l=1}^{n} \mu(d) q^d$$

et en donner un équivalent à n fixé.

Solution proposée.

On veut $nI_q^n = \sum_{dd'=n} \mu(d) q^d$. Par la formule d'inversion de Möbius, il suffit de montrer que $q^n = \sum_{d|n} dI_n^d$ pour chaque $n \ge 1$. Pour cela, il suffit de montrer que $X^{q^n} - X$ est le produit de tous les polynômes irréductibles unitaires de degré divisant n (prendre alors le degré)

Nous proposons deux méthodes.

Soit P irréductible unitaire de degré $d \mid n$. Soit ξ une racine de P dans un corps de rupture $\mathbf{F}_q(\xi)$. L'extension $\mathbf{F}_q \hookrightarrow \mathbf{F}_q(\xi)$ est de degré deg P = d, d'où $|\mathbf{F}_q(\xi)| = |\mathbf{F}_q|^d = q^d$ et $\xi^{q^d} = \xi$ (c'est Lagrange au groupe K^* pour K corps). Par itération, $\xi^{q^{kd}} = \xi$ pour chaque $k \ge 1$, en particulier pour $k = \frac{n}{d}$, d'où $\xi^{q^n} = \xi$, ce qui montre que $X^{q^n} - X$ est un polynôme annulateur de ξ , donc multiple de P, CQFD.

Soit P diviseur irréductible unitaire de $X^{q^n} - X$ de degré d. On sait que $X^{q^n} - X = \prod_{\lambda \in \mathbf{F}_{q^n}} (X - \lambda)$, donc P a une racine ξ dans \mathbf{F}_{q^n} , d'où une extension $\mathbf{F}_q(\xi) \hookrightarrow \mathbf{F}_{q^n}$. Or, $|\mathbf{F}_q(\xi)| = q^{\deg P} = q^d$, d'où une extension $\mathbf{F}_{q^d} \hookrightarrow \mathbf{F}_{q^n}$, ce qui force $d \mid n$, CQFD.

Enfin, $X^{q^n} - X$ n'ademet aucun facteur irréductible multiple, sinon il aurait une racine multiple dans \mathbf{F}_{q^n} , donc annulerait sa dérivée -1, ce qui est absurde.

Posons $\zeta_q(s) := \sum \frac{1}{|P|^s}$ où $|P| := q^{\deg P}$, la somme portant sur tous les polynômes unitaires de $\mathbf{F}_q[X]$. En sommant selon le degré de P, on obtient $\sum_{d \geq 0} q^d \frac{1}{q^{ds}}$ qui converge pour $\operatorname{Re} s > 1$ vers $\frac{1}{1 - \frac{1}{q^{s-1}}}$. Comme pour la série harmonique, on a un produit Eulierien

$$\sum \frac{1}{|P|^s} = \prod_{\substack{P \text{ unitaire} \\ \text{irréductible}}} \frac{1}{1 - \frac{1}{|P|^s}} = \prod_{d \ge 1} \frac{1}{\left(1 - \frac{1}{q^{ds}}\right)^{I_q^d}}.$$

Posant $u := q^{-s}$ (on a les eq Re s > 1 ssi |u| < 1), on en déduit

$$\frac{1}{1-qu}=\zeta_{q}\left(s\right)=\prod_{d>1}\frac{1}{\left(1-u^{d}\right)^{I_{q}^{d}}},$$

d'où en prenant la dérivée logarithmique et en multipliant par \boldsymbol{u}

$$\frac{qu}{1-qu} = \sum_{d\geq 1} \frac{dI_q^d u^d}{1-u^d}$$

$$\sum_{n\geq 1} q^n u^n = \sum_{d,\delta\geq 1} dI_q^d u^{d\delta} = \sum_{n\geq 1} \left(\sum_{dd'=1} dI_q^d\right) u^n.$$

Pour l'équivalent, on ne regarde que le dernier terme $\frac{q^n}{n}$: en effet, le reste est négligeable :

$$\sum_{dd' < n} \mu\left(d\right)q^{d'} \le \sum_{d'=1}^{\left\lfloor \frac{n}{2}\right\rfloor} q^{d'} = \frac{q^{\left\lfloor \frac{n}{2}\right\rfloor+1} - q}{q-1} \le \frac{q^{\frac{n}{2}}}{q-1} = o\left(q^n\right).$$

7 Tout sev de M_n disjoint de GL_n est de codim $\geq n$

Soit $n \geq 1$ un entier.

On montre que le polynôme $T^n + X$ de k(X)[T] est irréductible et on utilise ce résultat pour montrer qu'un sev de M_n disjoint de GL_n est de dimension $\leq n^2 - n$.

Lemme.

- 1. Montrer que $T^n + X$ est irréductible dans k[X][T].
- 2. On définit le contenu d'un polynôme $A = \sum a_i T^i$ de k[X][T] par

$$c(A) := \operatorname{pgcd} \{a_i\}$$
.

 $Si\ c(A) = 1 = c(B)$, montrer que c(AB) = 1.

3. Conclure.

Théorème.

Soit V un sev de M_n disjoint de GL_n .

- 1. Montrer qu'il suffit d'exhiber une sous-algèbre de $M_n(K)$ de dimension n qui est un corps.
- 2. Soit P un polynôme irréductible de degré n. Conclure en considérant l'algèbre engendrée par la matrice compagnon de P.
- 3. Conclure lorsque K est fini.
- 4. Conclure lorsque K est de la forme k(X) où k est un corps infini.
- 5. Conclure.

Solution proposée (lemme).

1. Supposons que $T^n + X$ se factorise en un produit $\sum_{i=0}^p a_i T^i \sum_{j=0}^q b_j T^j$ où les a_i, b_j sont dans k[X]. Il vient en développant

$$T^{n} + X = a_{0}b_{0} + (a_{0}b_{1} + a_{1}b_{0})T + (a_{0}b_{2} + a_{1}b_{1} + a_{2}b_{0})T^{2} + \dots + a_{p}b_{q}T^{p+q}.$$

Quitte à diviser par $\frac{a_0b_0}{X}=1$ en répartissant le a_0 dans $\sum_{i=0}^p a_i T^i$ et le $\frac{b_0}{X}$ dans $\sum_{j=0}^q b_j T^j$, on peut supposer $(a_0,b_0)=(1,X)$. Le terme en T nous dit alors que b_1 est muliple de X, puis le terme en T^2 que b_2 aussi... ainsi de suite jusqu'au coefficient $a_0b_q+\cdots+a_qb_0$ de T^q qui nous donne $X\mid b_q$. Il en résulte que X diviser $\sum_{j=0}^q b_j T^j$, donc T^n+X , d'où en spécialisant X en 0 l'égalité $T^n=0$, ce qui est impossible.

- 2. Par l'absurde, supposons que P soit un diviseur irréductible de tous les coefficients de AB. En explicitant $A = \sum a_i X^i$ et $B = \sum b_i X^i$, on peut considérer un plus petit entier $\alpha \leq \deg A$ tel que P ne divise pas a_{α} (il existe sinon P diviserait c(A) = 1) et de même $\beta \leq \deg B$ minimal pour la propriété $P \mid b_{\beta}$. Le coefficient en $T^{\alpha+\beta}$ de AB s'écrit alors $a_{\alpha}b_{\beta} + \sum_{i+j=\alpha+\beta}^{i<\alpha} a_i b_j$, donc vaut $a_{\alpha}b_{\beta}$ modulo P, donc ce dernier divise $a_{\alpha}b_{\beta}$; comme il est irréductible, il divise a_{α} ou b_{β} , contredisant les définitions de α et β .
- 3. Supposons à présent $T^n+X=AB$ avec A,B à coefficients dans K=k(X). Factorisant par un ppcm des dénominateurs (en X) des coefficients de A, puis par un pgcd des numérateurs restants, et en simplifiant éventuellement la fraction factorisée, on peut écrire $A=\frac{a}{\alpha}A^*$ où a et α sont premiers entre eux et où A est un polynôme à coefficients dans k[X] tel que c(A)=1. On écrit de même $B=\frac{b}{\beta}B^*$. On a donc $\alpha\beta(T^n+X)=abA^*B^*$. Prenant le contenu, il vient

$$\alpha\beta = \alpha\beta \cdot c\left(T^n + X\right) = c\left[\alpha\beta\left(T^n + X\right)\right] = c\left[abA^*B^*\right] = ab \cdot c\left(A^*B^*\right) \stackrel{\text{question}}{=} ab.$$

On retombe ainsi sur une factorisation $T^n + X = A^*B^*$ dans k[X][T] et la première question conclut.

Solution proposée (théorème).

1. Soit A une telle algèbre. Les éléments non nuls de cette algèbre étant inversibles, aucun d'eux ne peut se trouver dans V, de sorte que $V \cap A = \{0\}$. En prenant les dimensions, on trouve

$$\dim V = \dim (V + A) - \dim A \le n^2 - \dim A = n^2 - n, CQFD.$$

2. Notons C la matrice compagnon de P. À l'aide d'une division euclidienne par P (lequel annule C), on voit que l'algèbre $K[C] = \text{Vect}\{1, C, C^2, ..., C^{n-1}\}$ est de dimension $\leq n$. Par ailleurs, en notant $(e_0, ..., e_{n-1})$ la base canonique de K^n , on lit dans la k-ième colonne de C la relation $C^k e_0 = e_k$ pour chaque k < n; par conséquent, partant d'une relation de liaison $\sum_{0 \leq k < n} \lambda_k C^k = 0$, évaluer en e_0 donne $\sum_{0 \leq k < n} \lambda_k e_k = 0$, d'où $\overrightarrow{\lambda} = 0$. Finalement, l'algèbre K[C] est de dimension n et il suffit (d'après la question précédente) de montrer qu'elle est un corps.

Soit A(C) non nul dedans avec $A \in K_{n-1}[X]$. Puisque P est irréductible et $A \neq 0$ (sinon A(C) = 0), les polynômes A et P sont premiers entre eux, d'où par Bézout une écriture AU + PV = 1; évaluer en C donne A(C)U(C) = 1, d'où le caractère inversible de A(C), CQFD.

- 3. Il suffit d'exhiber un polynôme irréductible de degré n arbitraire. Or, $\mathbf{F}_{q^n}^*$ est cyclique, d'où $\mathbf{F}_q[\alpha] = \mathbf{F}_{q^n}^* \cup \{0\} = \mathbf{F}_{q^n}$, de sorte que α est algébrique de degré n sur \mathbf{F}_q , donc de poly min répondant à la quesion.
- 4. Il suffit d'exhiber un polynôme irréductible de degré arbitraire : on nous donne $T^n + X$ pour chaque $n \ge 1$.
- 5. On peut toujours plonger un corps K dans le corps des fractions K(X). Pour conclure, il suffit donc de montrer que, pour $d \geq 0$ donné, la propriété « être un sev de M_n de dimension d disjoint de GL_n » est invariante par extension des scalaires (sur un corps déjà infini).

Soit $V \subset M_n(K)$ un tel sev et $K \hookrightarrow L$ une extension de corps. Pour obtenir un L-sev de $M_n(L)$, il faut remplacer V par $LV := \operatorname{Vect} \{\lambda v\}_{v \in V}^{\lambda \in L}$. Pour conserver la dimension, on observe qu'une K-base $(v_1, ..., v_d)$ de V est aussi une L-base² de LV, d'où $\dim_L LV = \dim_K V$. Par ailleurs, le polynôme det $\left(\sum_{i=1}^d X_i v_i\right)$ est nul sur K^d par hypothèse sur V, donc est le polynôme nul (car K est infini), donc s'annule sur L^d , de sorte qu'aucune matrice de LV n'est inversible, ce qui conclut.

Un autre argument, spécifique à l'extension $K \hookrightarrow K(X)$ avec K infini est le suivant. Soit $\sum F_i v_i \in \text{Vect } K(X) V$ dans $GL_n(K(X))$, mettons $\sum F_i v_i \times (G_{k,l}) = 1$. Il suffit d'évaluer pour obtenir un élément de V dans $GL_n(K)$, contradiction. Puisque K est infini, on peut choisir un point autre que les pôles des F_i et des $G_{k,l}$, ce qui conclut.

$$\operatorname{Vect}_{I}\left\{ v_{1},...,v_{d}\right\} =LV.$$

Il reste à montrer la L-liberté des v_i . Considérons une K-base (e_j) de L. Une relation de L-liaison $\sum \lambda_i v_i = 0$ se réécrit

$$0 = \sum_i \sum_j \lambda^i_j e_j v_i = \sum_j e_j \left(\sum_i \lambda^i_j v_i
ight)$$

où les λ^i_j sont dans K. Par K-liberté des e_j , on a $\sum_i \lambda^i_j v_i = 0$ pour tout j, d'où par K-liberté des v_i la nullité de tous des λ^i_j , donc des λ_i . COFD.

²Il est clair que

Remarque. L'irréductibilité de $T^n + X$ est un cas particulier du critère d'Eisenstein suivant : si $P = a_n X^n + \cdots + a_1 X + a_0$ est un polyôme à coefficients dans un anneau intègre A, si $\mathfrak p$ est un idéal premier de A contenant $a_0, a_1, ..., a_{n-1}$ mais pas a_n et tel que a_0 ne s'écrit pas comme produit de deux éléments de $\mathfrak p$, alors P est irréductible en tant que polynôme à coefficients dans le corps des fractions de A. Voir le cours d'algèbre de D. Perrin pour plus de détails³.

8 Une somme trigo

EXO DUR : fixons $l \notin \frac{n}{2}Z$. Calculer $S = \sum_{\substack{k \pm l \neq 0 \pmod{n}}} \frac{1}{\sin\left(\frac{k+l}{n}\pi\right)\sin\left(\frac{k-l}{n}\pi\right)}$. DEM : On linéairise $\sin\left(\frac{k+l}{n}\pi\right)\sin\left(\frac{k-l}{n}\pi\right) = \frac{1}{2}\left(\cos\theta - \cos\frac{2k\pi}{n}\right)$ où $\theta := \frac{2\pi l}{n}$, d'où

$$S = \sum_{\substack{0 \le k < n \\ k \ne l, n-l}} \frac{2}{\cos \theta - \cos \frac{2k\pi}{n}}$$

On reconnait $\sum_{P(\lambda)=0} \frac{1}{(\cos \theta) - \lambda} = \frac{P'}{P}(\cos \theta)$ où $P = \prod_{\substack{0 \le k < n \\ k \ne 0, n-l}} \left(X - \cos \frac{2k\pi}{n}\right) = \frac{\cos(n \cos X) - 1}{(X - \cos \theta)^2}$ (cos nx - 1est

polynôme en $\cos x$ s'annulant en $x=\theta$ et dont la dériéve s'annule aussi (car $\sin \theta \neq 0$) en $x=\theta$, donc θ racine double, donc $\frac{\cos(n \cos X)-1}{(X-\cos\theta)^2}$ est bien le polynôme P). Notons DL la dérivée log. Alors

$$\frac{P'}{P}(\cos x) = \frac{P'(\cos x)(-\sin x)}{P(\cos)(-\sin x)} = \frac{1}{-\sin x} \frac{\frac{\partial}{\partial x} P(\cos x)}{P(\cos)} = \frac{1}{-\sin x} DL(P(\cos x))$$

$$= \frac{1}{-\sin x} \left(DL(\cos(nx) - 1) - 2DL(\cos x - \cos \theta) \right)$$

$$= \frac{1}{-\sin x} \left(\frac{-n\sin nx}{\cos(nx) - 1} - 2\frac{-\sin x}{\cos x - \cos \theta} \right)$$

On a deux formes indéterminées. Levons la première : notant $X := x - \theta$

$$\sin nx = \sin nx - \sin n\theta = nX + o(X^{2})$$

$$\cos nx - 1 = \frac{-n^{2}}{2}X^{2} + o(X^{3}), \text{ d'où}$$

$$\frac{-n\sin nx}{\cos(nx) - 1} = \frac{n^{2}X + o(X^{2})}{\frac{n^{2}}{2}X^{2} + o(X^{3})} = \frac{2}{X}\frac{1 + o(X)}{1 + o(X)} = \frac{2}{X} + o(1).$$

La seconde donne

$$\frac{-2\sin x}{\cos x - \cos \theta} = 2\frac{-\sin \theta + o(1)}{-X\sin \theta - X^2 \frac{\cos \theta}{2} + o(X^2)} = \frac{2}{X} \frac{1 + o(1)}{1 + X \frac{\cos \theta}{2\sin \theta} + o(X)}$$
$$= \frac{2}{X} \left(1 - X \frac{\cos \theta}{2\sin \theta} + o(X) \right) = \frac{2}{X} - \frac{\cos \theta}{\sin \theta} + o(1).$$

Ainsi, on peut conclure

$$\frac{P'}{P}\left(\cos x\right) = \frac{1}{-\sin x} \left(\frac{2}{X} + o\left(1\right) - \left(\frac{2}{X} - \frac{\cos \theta}{\sin \theta} + o\left(1\right)\right)\right) \longrightarrow -\frac{\cos \theta}{\sin^2 \theta}$$

et la somme cherhcéer est le double $-\frac{2\cos\theta}{\sin^2\theta}$

PB signe?????

$$\Phi_p := 1 + X + X^2 + \dots + X^p$$

est irréductible : appliquer le critère d'Eisenstein à $\Phi_p(X+1)$.

³ Par exemple, $X^2 - 7X + 14$ vérifie les conditions pour l'idéal premier (7) de l'anneau intègre **Z**, donc est irréductible sur $\mathbf{Q}[X]$ (on le savait : il est de degré ≤ 3 et n'a pas de racines sur \mathbf{Q}). Autre exemple : pour tout p premier, le polynôme cyclotomique

9 Trouver des racines

Soit un polynôme réel $X^n + nX^{n-1} + \cdots$ dont les racines vérifient $\sum \lambda_i^{6584720} = n$. TRouver les autres coeff. dem : $\frac{\sum |\lambda_i|^{380}}{n} = 1 = \left|\frac{\sum \lambda_i}{n}\right|^{27090} \le \left(\frac{\sum |\lambda_i|}{n}\right)^{730}$, donc égal partout ; comme $\sum \lambda_i = -n$, tous les λ_i sont -1, d'où $P = (X+1)^n$.

10 Un peu de cyclotomie

On fixe $n \ge 1$ un entier. Dans les trois premières questions, a désigne un entier relatif et p un premier.

- 1. On note ω l'ordre de a modulo p. Montrer que $p \mid \Phi_{\omega}(a)$.
- 2. On suppose $p \mid n$. Montrer que $p \mid \Phi_n(a)$ ssi a est d'ordre n dans \mathbf{F}_n^* .
- 3. Montrer que \mathbf{F}_p^* possède un élément d'ordre n ssi p=1 [n].
- 4. En déduire qu'il y a une infinité de premiers = 1 [n].

Solution proposée.

- 1. Par définition de ω , le premier p divise $a^{\omega} 1 = \prod_{d|\omega} \Phi_d(a)$, donc p divise un certain $\Phi_{d_0}(a)$, d'où la nullité du produit $\prod_{d|d_0} \Phi_d(a) = a^{d_0} 1$, d'où par minimalité de ω l'égalité $d_0 = \omega$, CQFD.
- 2. Le sens \Leftarrow découle de la question 1.

Partant de $p \mid \Phi_n(a)$, il vient de même $a^n = 1$ dans \mathbf{F}_p^* , d'où $\omega \mid n$; si la divisibilité était stricte, les polynômes Φ_n et Φ_ω seraient distincts et a serait alors racine multiple de $X^n - 1 = \Phi_n \Phi_\omega \cdots$ dans $\mathbf{F}_p[X]$, ce qui est impossible vu que $X^n - 1$ est premier avec sa dérivée (c'est là qu'intervient l'hypothèse $p \mid n$).

- 3. On a les implications p=1 $[n] \implies n \mid p-1=|F_p^*|$ cyclique \implies il y a sg d'ordre $n \implies \exists a$ d'ordre n. Réciproquement, a d'ordre $n \implies n \mid p-1$ (PTF) $\iff p=1$ [n].
- 4. Soient par l'absurde $p_1, ..., p_r$ les premiers = 1 [n]. On forme l'entier $N := np_1 \cdots p_r$. Pour a assez grand, $\Phi_N(a)$ est grand en valeur absolue donc admet un diviseur premier p, qui doit être = 1 [N], a fortiori = 1 [n], donc p est l'un des p_i , d'où $p_i = 0$ [N] et contradiction.

11 signe d'un somme de cosinus

```
signe de \sum a_i \cos \pi r_i où a_i \in \mathbf{Z} et r_i \in \mathbf{Q}?

on écrit r_i = \frac{2n_i}{d} avec le même dénom, d'où \cos \pi r_i = \cos \left(n_i \frac{2\pi}{d}\right) = T_{n_i} \left(\cos \left(\frac{2\pi}{d}\right)\right).

On calcule ensuite le poly min \mu de \cos \left(\frac{2\pi}{d}\right) l'aide des \Phi_d.

Puis \sum a_i T_{n_i} = Q\mu + R
```

12 Exo d'anneaux

Soit A anneau unitaire. Soit deux élemtn non nilpotents de somme 1 dont le produit, commutatif, est nilpotent Mq qu'il y a un idempotent non trivial. Que se passe si l'un des élément est nilpotent?

on écrit a + b = 1 avec $0 = (ab)^n = (a^2 - a)^n$. Si n = 1, a fonctionne (a est autre que 0 ou 1 sinon a ou b est nul). Supposdonc $n \ge 2$.

on cherche cet idempotent à partir de a: le calcul annelé étant les polynoomeàà coefficients dnas Z, on cherche un i := P(a) telque P(a)(P(a) - 1) = 0.

Ce sera le cas si P(a) contient du a^n et P(a) - 1 du $(a - 1)^n$. Ce sera réalisé si $P = X^nQ$ et $P - 1 = (X - 1)^n R$, d'où $(X + 1)^n Q(X + 1) = P(X + 1) = X^n R(*) + 1$.

Sythèse : On prend donc Q tq $\left(X+1\right)^{n}Q=O\left(X^{n}\right)$ et on pose $P=X^{n}Q\left(X-1\right)$.

Pour éviter les cas trivaiux i=0 ou 1, on montre que i-a est nilpotent. Il suffit de mq a(a-1) le divise, donc de mq X et X-1 divisent P-X. Or $P-X=O(X^n)-X$ mutiple de X, et $P-X=1+O(X-1)^n+1$ mutple de X, CQFD.

Si a est nilmpotent, on a un ceg. Dans $A = K[X]/X^2$ les lément X et 1 - X véirie les conditions sauf que X est nilpotent, mais il n'y pas d'idempotent non trivial (si $(aX + b)^2 = aX + b$, alors 2ab = a et $b^2 = b$, d'où b = 1ou0 et a = 0)

Soit $f,g \in A$ engendrant pour idéal tout A. Alors le morphisme $A\left[\frac{1}{f}\right] \times A\left[\frac{1}{g}\right] \longrightarrow A\left[\frac{1}{fg}\right]$ est de noyau A. Appliquons à f+g=1 et fg nilmpotent. Alors $A\left[\frac{1}{fg}\right]$ est nul, donc $A\simeq A\left[\frac{1}{f}\right] \times A\left[\frac{1}{g}\right]$ ets décomposable, d'où $\lambda:=(1,0)$ idempotent non trivial.

Montrons que $\lambda - a$ est nilpotent. Pour cela, il suffit de voir que l'image de $\lambda - a$ dans $A\left[\frac{1}{a}\right]$ (resp. $A\left[\frac{1}{1-a}\right]$) est nilpotente.

En effet, dans $A\left[\frac{1}{a}\right]$, $\lambda - a$ devient 1 - a qui est nilpotent si et seulement si a(1-a) l'est vu que a est inversible (dans $A\left[\frac{1}{a}\right]$!); de même, dans $A\left[\frac{1}{1-a}\right]$ $\lambda - a$ devient 0 - a qui est nilpotent si et seulement si (1-a)(-a) l'est vu que 1 - a est inversible.