Feuille de TD n° 6 – Convergence des variables aléatoires

Exercice 1. Soit X_1 et X_2 deux variables aléatoires, et soit $X = \min\{X_1, X_2\}, Y = \max\{X_1, X_2\}.$

- a) Montrer que les événements $\{X > x\}$ et $\{X_1 < x\} \cap \{X_2 > x\}$ sont égaux pour tout réel x.
- b) Montrer un résultats analogue pour l'événement $\{Y \geq y\}$ avec y réel.
- c) Pour des réels x et y, exprimer la probabilité $\mathbb{P}(\{X > x\} \cap \{Y \ge y\})$ en fonction des fonctions de répartition F_1 et F_2 de X_1 et X_2 respectivement.
- d) En déduire les fonctions de répartition respectives de X et Y.

Exercice 2. Soit $(X_n)_n$ une suite de v.a.r. telles que

$$\mathbb{P}(X_n = 0) = 1 - \frac{1}{n}, \quad \mathbb{P}(X_n = 1) = \frac{1}{n}.$$

Montrer que $(X_n)_n$ tend vers 0 en probabilité.

Exercice 3. On considère une suite $(X_n)_{n\geq 1}$ de variables aléatoires réelles indépendantes et de même loi uniforme sur l'intervalle $[0,\theta]$, avec $\theta>0$. Pour tout $n\geq 1$, on pose $M_n=\max(X_1,\ldots,X_n)$.

- a) Pour $\varepsilon > 0$, calculer $\mathbb{P}(M_n < \theta \varepsilon)$.
- b) En déduire que M_n converge en probabilité vers θ quand $n \to +\infty$.

Exercice 4. * On veut montrer que si $X_n \stackrel{\mathbb{P}}{\to} X$ et $X_n \stackrel{\mathbb{P}}{\to} Y$ alors X = Y \mathbb{P} -p.s.

- a) Montrer que pour tout $\epsilon > 0$, $\mathbb{P}(|X Y| > \epsilon) = 0$.
- b) Montrer que

$$\{|X - Y| = 0\} = \bigcap_{n=1}^{\infty} \{|X - Y| \le \frac{1}{n}\}.$$

c) Conclure.

Exercice 5. * Soit X une variable aléatoire de loi uniforme sur [-1/2, 1/2], et pour tout entier n soit $X_n = (-1)^n X$. Montrer que X_n a la même loi que X mais que X_n ne converge pas en probabilité vers X.

Exercice 6. Soient $\{X_n\}_{n\geq 0}$ des variables aléatoires telles que pour tout entier naturel $n, X_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$ où $\mu_n \in \mathbb{R}$ et $\sigma_n^2 \in \mathbb{R}_+^*$. On suppose qu'il existe $\mu \in \mathbb{R}$ et $\sigma^2 \in \mathbb{R}_+^*$ tels que $\lim_{n \to +\infty} \mu_n = \mu$ et $\lim_{n \to +\infty} \sigma_n^2 = \sigma^2$. Montrer que X_n converge en loi vers X quand $n \to +\infty$ avec $X \sim \mathcal{N}(\mu, \sigma^2)$.

Exercice 7. Soit $(X_n)_{n\geq 1}$ une suite de v.a. telle que pour $n\geq 1$, X_n est de loi binomiale de paramètres n et p_n . On suppose qu'il existe $\lambda>0$ tel que $\lim_{n\to+\infty}np_n=\lambda$. Soit X une v.a. de Poisson de paramètre λ .

- a) Calculer les fonctions caractéristiques de X_n et de X.
- b) En déduire que X_n converge en loi vers X quand $n \to +\infty$.

Exercice 8. On lance un dé à 6 faces non truqué et pour $i \ge 1$, on appelle X_i la v.a. donnant le numéro obtenu au i-ème lancer.

- a) Déterminer la limite $\lim_{n \to +\infty} \frac{X_1 + \dots + X_n}{n}$.
- b) Quelle est la limite, quand $n \to +\infty$, de la proportion de faces paires obtenues en n lancers?

Exercice 9. Soit $(X_i)_{i\geq 1}$ une suite de v.a. indépendantes et identiquement distribuées suivant une loi normale $\mathcal{N}(0,1)$. Montrer que

$$\frac{X_1^2 + \dots + X_n^2}{n}$$

converge en probabilité vers 1 quand $n \to +\infty$.

Exercice 10. * On dispose de deux dés équilibrés : le premier a deux faces noires et quatre faces rouges, le second a deux faces rouges et quatre noires. On choisit un dé au hasard, avec même probabilité 1/2 de choisir l'un ou l'autre, puis on effectue une suite infinie de lancers indépendants avec ce dé. Pour tout $n \ge 1$, on définit

$$X_n = \begin{cases} 1 & \text{si le } n\text{-ème lancer donne une face noire} \\ 0 & \text{sinon.} \end{cases}$$

- a) Montrer que les variables aléatoires $(X_n)_n$ ont même loi, de moyenne 1/2. Sont-elles indépendantes?
- b) Montrer que l'on n'a pas

$$\lim_{n \to +\infty} \mathbb{P}\left(\left| \frac{X_1 + \dots + X_n}{n} - \frac{1}{2} \right| > \varepsilon \right) = 0.$$

Exercice 11. Soit $\{X_n\}_{n\geq 1}$ une suite de variables aléatoires i.i.d de loi de Poisson $\mathcal{P}(1)$. Pour tout entier naturel non nul n on pose $S_n = \sum_{k=1}^n X_k$.

- a) Déterminer la limite en loi de $\left\{\frac{S_n-n}{\sqrt{n}}\right\}_{n\geq 1}$.
- b) Montrer que S_n suit une loi de Poisson $\mathcal{P}(n)$.
- c) En déduire que la fonction de répartition F_n de $\frac{S_n-n}{\sqrt{n}}$ est telle que

$$F_n(0) = e^{-n} \sum_{k=0}^n \frac{n^k}{k!}.$$

d) En déduire que

$$e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} \xrightarrow[n \to +\infty]{} \frac{1}{2}.$$