
Enumeration of solutions of Conjunctive

Queries with self-joins
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Introduction



Different notations for CQs

• A Conjunctive Query formally is q(x⃗) : ∃z⃗ .
∧

Ri (y⃗), with

y⃗ ⊆ x⃗ ∪ z⃗

• Enumerating solutions of q is printing one by one every

valuation of x⃗ that satisfies q without duplicates.

• We restrict to CQ with atoms of arity at most 2. Hence, we

see acyclic CQ as a DAG.

x1 z

x2

R2

R1

∃z .R1(x1, x2),R2(x1, z)
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Self-join

A CQ q has a self-join if it has two atoms that use the same

relational symbol.

x1 z

x2

R2

R1

x1 z

x2

R1

R1
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Queries without self-joins



CD ◦ Lin

A CQ q is in CD ◦ Lin if we can enumerate its solutions on a

database D with constant delay after a linear time (on |D|)
preprocessing.
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Result

Theorem (Bagan, Durand, and Grandjean 2007)
A CQ without self-join is in CD ◦ Lin ⇔∗ acyclic free-connex.

An acyclic conjuctive query is free-connex ⇔ does not have a

free-path.

x1 z x2

x5 x6

x1 z x7

x3 x4

*: Assuming sBMM and sHyperclique.
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What happens with self-join ?



Example (L3)

x1 z x2

x3

R1

R2

R3

q1 hard

x1 z x2

x3

R1

R1

R3

q2 ?
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Example (L3)

x1 z x2

x3

q2

x1 x3 x2

q′2 Easy

• (a, b, c) ∈ q′2(D) ⇒ (a, b, c) ∈ q2(D)

• Printing with constant duplicates is ok. (Carmeli and Segoufin

2022)

• Hence, we will enumerate q′2 to gain information.
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Example - building the Hash Table

x1 z x2

x3

q2

x1 x3 x2

q′2 Easy

R

a1 b1

a2 b2

a2 b3

G

b1 c1

b2 c2

b3 c3

H

Using q′2, we can enumerate some solutions of q2 and build H that

contains all (a1, a2) solutions of the free-path.
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Example - Using the Hash Table

x1 z x2

x3

q2

For all (a, c) ∈ H,

R

a1 b1

a2 b2

a2 b3

H

a1 c1

a2 c2

a2 c3

Solutions in q2(D)
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Studying CD ◦ Lin for CQs with

self-join: Tractability



Multiple Hash-Tables ?

x1 z1 z2 x2

x3

Given H1 that gives (x1, x3) and H2 that gives (x1, x2), we know no

way to solve q: how to know if the z1 are the same ?

a b1

b2 b3

c1

c2
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Free-tree

We define free-tree to capture intersection of free-pathes.

x1 z1 z2 x2

x3

The only hard part of an acyclic CQs with self-join is its free-trees.

Theorem (Fully-patched enumeration, L3 Internship)
If you have an H for each free-trees of a CQ, you can enumerate

the CQ.
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Preimage: a way to get hash-tables

Ph(q) has the body of h(q). A variable in Ph(q) is free if it is the

image of at least one free variable in q2.

x1 z x2

x3

q2

x1 z x2

h(q2)
x1 x3 x2

Ph(q2)

Lemma (Prehomomorphism lemma, L3 Internship)
Each solution of Ph(q) gives a unique solution of q to print. So

we can use the solutions of a preimage in a CD ◦ Lin algorithm.

If a preimage gives us the value of a free-tree, we say that it

patches the free-tree.
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Patching with deactivated preimage

This semester, we have found this example:

x5 x3

x4 z2

x1

z1

x2
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Patching with deactivated preimage
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x5 x3
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z2

x1

x4

x5

Pi (q1) : x5

x4

x1

z1
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Patching with deactivated preimage

This semester, we have found this example:

x5 x3

x4 z2

x1

z1

x2

Ph(q1) : x3

z2

x1

x4

x5

Pi (q1) : x5

x4

x1

z1

x2

There is no free-connex

preimages, but we don’t

need the hard part in them

!
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Patching with deactivated preimage

This semester, we have found this example:

x5 x3

x4 z2

x1

z1

x2

P̃h(q1) : ��x3 z3

z2

x1

x4

x5

P̃i (q1) : x5

x4

x1

z1

��x2 z2

There is no free-connex

preimages, but there is

free-connex deactivated

preimages.
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Patching with deactivated preimage

This semester, we have found this example:

x5 x3

x4 z2

x1

z1

x2

P̃h(q1) : ��x3 z3

z2

x1

x4

x5

P̃i (q1) : x5

x4

x1

z1

��x2 z2

There is no free-connex

preimages. Use P̃h(q1) to

patch the first free-tree,

and P̃i (q1) to patch the

second free-tree. 11



Tractability condition

Theorem (Tractability condition: 1st semester)
A CQ q with self-joins is in CD ◦ Lin if there is a set of easy

deactivated preimages that can be used to patch all free-trees of

q. (recursive algorithm)

x1 z1 z2 z3 x2

x3 x4
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Tractability condition

Theorem (Tractability condition: 1st semester)
A CQ q with self-joins is in CD ◦ Lin if there is a set of easy

deactivated preimages that can be used to patch all free-trees of

q. (recursive algorithm)

P1(q): x1 x3 x4 z3 ��x2 z2

P2(q): x1 z1 x3 x4 x2

Then use P2(q) to patch q.
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Hardness



VUTD-Hardness: hypothesis

a1 a2 a3

b1

b2

c1

c2

Figure 1: Find a triangle in this unbalanced tripartite graph

Let G be an unbalanced tripartite graph |Va| = n, Vb = O(nα),

Vc = O(nα), with α ∈ [0; 1]. We can not find a triangle in it in

O(n1+α).
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VUTD-Hardness: Example of encoding

x1 z1 x2

z2

Eb,a Ea,c

⊥

Figure 2: q(x1, x2). Atoms

labelled with their tagged

meaning.

a1 a2 a3

b1

b2

c1

c2

Figure 3: Find a triangle in this

unbalanced tripartite graph
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• Dom(D) = {⟨x1; v⟩ | v ∈ Vb} ∪ {⟨z1; v⟩ | v ∈ Va} ∪
{⟨x2; v⟩ | v ∈ Vc} ∪ {⟨z2;⊥⟩}, we tag the database.

• ∀(vb, va) ∈ Eb,a.R(⟨x1; vb⟩, ⟨z1; va⟩)
• ∀(va, vc) ∈ Ea,c .R(⟨z1; va⟩, ⟨x2; vc⟩)
• ∀va ∈ Va.R(⟨z1; va⟩, ⟨z2;⊥⟩) 14
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labelled with their tagged

meaning.

a1 a2 a3

b1

b2

c1

c2

Figure 3: Find a triangle in this

unbalanced tripartite graph

• ⟨x1; a2⟩ → ⟨z1; b2⟩ → ⟨x2; c1⟩. In O(1), check if

(a2, c1) ∈ Eb,c .

• ⟨x1; a1⟩ → ⟨z1; b1⟩ → ⟨x2; c2⟩. In O(1), check if

(a1, c2) ∈ Eb,c .
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VUTD-Hardness: Example of encoding

x1 z1 x2

z2

Eb,a Ea,c

⊥

Figure 2: q(x1, x2). Atoms

labelled with their tagged

meaning.

a1 a2 a3

b1

b2

c1

c2

Figure 3: Find a triangle in this

unbalanced tripartite graph

If q ∈ CD ◦ Lin, we can know in O(n2α) if there is a triangle or

not.
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VUTD-Hard: Condition

Theorem (VUTD-Hardness, 1st Semester)
(∃F .∃z ∈ F .∀h ∈ Endo(q).∀x ∈ Free(q).h(x) ̸= z) ⇒ q /∈
CD ◦ Lin

x1 z1 z2 z3 x2

x3 x4

z4

F

=

=

Eb,a Ea,c =

=

=

h1 h2

Figure 4: An hard query because of F and z2. Note that z4 is not part

of the free-path hence you can not encode VUTD with it. 15



Raised open-questions



k-Clique based hardness

x1

qk : z1 z2 x0

xk

...

One can find a clique of size k + 1 in O(nk) by enumerating qk−1.

Theorem (Nešeťril and Poljak 1985)
Let k = 3l + i ((l , i) ∈ N× {0, 1, 2}), and ω is the optimal

bound for matrix multiplication (2 ≤ ω < 2.38). Let G be a

graph with n nodes, we can check if G has a k-clique in

O(nωl+i ).

From this, q1, . . . , q3 are not in CD ◦ Lin. What about k ≥ 4?
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An easy to solve, yet unknown to enumerate query

x1 z1 z2 x2

x3

For any D, using matrix multiplication in O(|Dom(D)|ω), one can

solve q(D) in O(|Dom(D)|2 + |Dom(D)|ω + |Dom(D)|3)
⇒ O(|Dom(D)|)3.

• if it is easy, we need to extend our sufficient condition.

• if it is hard, how to show that it is hard ?
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Conclusion

In this work we have:

• Introduced preimages, free-trees.

• Found a sufficient condition.

• Found two necessary conditions.

• Found open-cases that could lead to new enumeration

techniques.

• (not in the slide) Built a link between CD ◦ Lin and

DomLin ◦ Lin.
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