Enumeration of solutions of Conjunctive Queries with self-joins

Projet de recherche encadré M1. Supervised by Luc Segoufin, Nofar Carmeli and David Carral.

Clément Rouvroy January 27, 2025

Introduction

Different notations for CQs

- A Conjunctive Query formally is $q(\vec{x}) : \exists \vec{z} . \bigwedge R_i(\vec{y})$, with $\vec{y} \subseteq \vec{x} \cup \vec{z}$
- Enumerating solutions of q is printing one by one every valuation of x that satisfies q without duplicates.
- We restrict to CQ with atoms of arity at most 2. Hence, we see acyclic CQ as a DAG.

Self-join

A CQ q has a self-join if it has two atoms that use the same relational symbol.



Queries without self-joins

CD o Lin

A CQ q is in CD \circ Lin if we can enumerate its solutions on a database D with constant delay after a linear time (on |D|) preprocessing.

Result

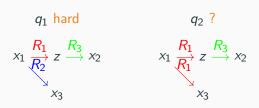
Theorem (Bagan, Durand, and Grandjean 2007) A CQ without self-join is in $CD \circ Lin \Leftrightarrow * acyclic free-connex$.

An acyclic conjuctive query is free-connex \Leftrightarrow does not have a free-path.

*: Assuming sBMM and sHyperclique.

What happens with self-join?

Example (L3)

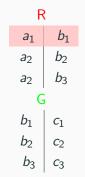


Example (L3)

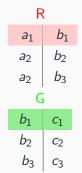
- $(a, b, c) \in q_2'(D) \Rightarrow (a, b, c) \in q_2(D)$
- Printing with constant duplicates is ok. (Carmeli and Segoufin 2022)
- Hence, we will enumerate q_2' to gain information.

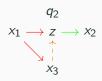


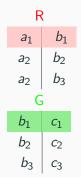
$$q_2'$$
 Easy $x_1 \longrightarrow x_3 \longrightarrow x_2$



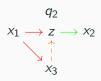




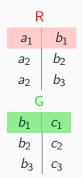




$$(a_1,b_1,c_1)\in q_2'(D)\cap q_2(D)$$
 H

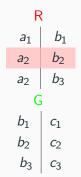


$$q_2'$$
 Easy $x_1 \longrightarrow x_3 \longrightarrow x_2$

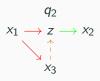


$$(a_1,b_1,c_1)\in q_2'(D)\cap q_2(D)$$
 H
 $a_1\mid c_1$

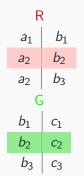
$$q_2'$$
 Easy $x_1 \rightarrow x_3 \rightarrow x_2$



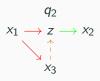
$$H$$
 $a_1 \mid c_1$



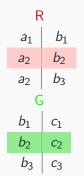
$$q_2'$$
 Easy $x_1 \longrightarrow x_3 \longrightarrow x_2$



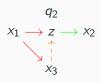
$$(a_2,b_2,c_2)\in q_2'(D)\cap q_2(D)$$
s
 H
 $a_1 \mid c_1$

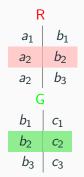


$$q_2'$$
 Easy $x_1 \longrightarrow x_3 \longrightarrow x_2$



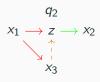
$$(a_2,b_2,c_2)\in q_2'(D)\cap q_2(D)$$
s
 H
 $a_1 \mid c_1$

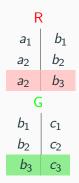




$$(a_2,b_2,c_2)\in q_2'(D)\cap q_2(D)$$
s
$$H$$

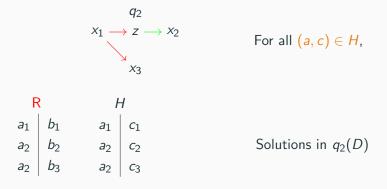
$$\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$$

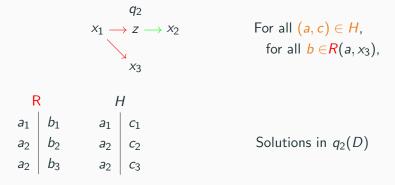


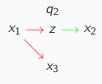


$$\begin{array}{c|c}
H \\
a_1 & c_1 \\
a_2 & c_2 \\
a_2 & c_3
\end{array}$$

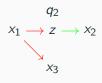
Using q'_2 , we can enumerate some solutions of q_2 and build H that contains all (a_1, a_2) solutions of the free-path.



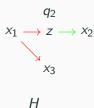




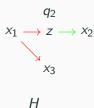
For all
$$(a, c) \in H$$
,
for all $b \in R(a, x_3)$,
output (a, b, c)



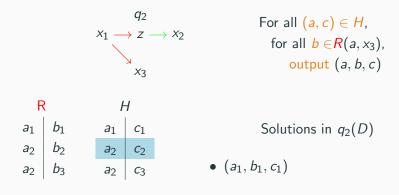
For all
$$(a, c) \in H$$
,
for all $b \in R(a, x_3)$,
output (a, b, c)

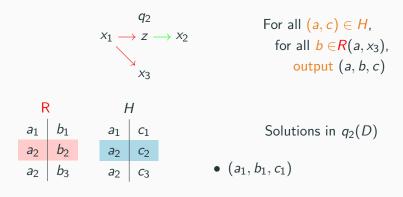


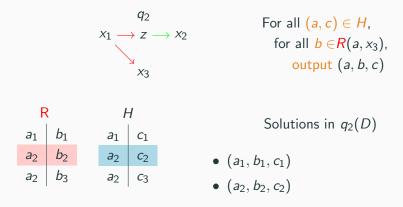
For all
$$(a, c) \in H$$
,
for all $b \in R(a, x_3)$,
output (a, b, c)



For all
$$(a, c) \in H$$
,
for all $b \in R(a, x_3)$,
output (a, b, c)







$$\begin{array}{c}
q_2 \\
x_1 \longrightarrow z \longrightarrow x_2 \\
& \\
x_3
\end{array}$$

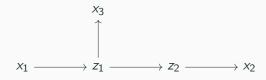
For all
$$(a, c) \in H$$
,
for all $b \in R(a, x_3)$,
output (a, b, c)

$$\begin{array}{c|ccccc}
R & & H \\
a_1 & b_1 & & a_1 & c_1 \\
a_2 & b_2 & & a_2 & c_2 \\
a_2 & b_3 & & a_2 & c_3
\end{array}$$

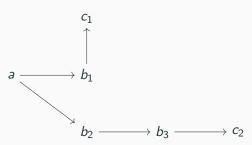
- (a_1, b_1, c_1)
- (a_2, b_2, c_2)
- (a_2, b_3, c_2)
- (a_2, b_2, c_3)
- (a_2, b_3, c_3)

Studying CD ∘ Lin for CQs with self-join: Tractability

Multiple Hash-Tables ?

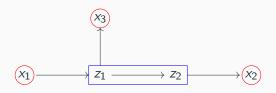


Given H_1 that gives (x_1, x_3) and H_2 that gives (x_1, x_2) , we know no way to solve q: how to know if the z_1 are the same ?



Free-tree

We define free-tree to capture intersection of free-pathes.

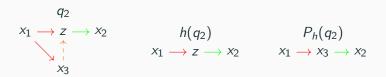


The only hard part of an acyclic CQs with self-join is its free-trees.

Theorem (Fully-patched enumeration, L3 Internship) If you have an H for each free-trees of a CQ, you can enumerate the CQ.

Preimage: a way to get hash-tables

 $P_h(q)$ has the body of h(q). A variable in $P_h(q)$ is free if it is the image of at least one free variable in q_2 .

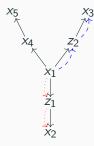


Lemma (Prehomomorphism lemma, L3 Internship) Each solution of $P_h(q)$ gives a unique solution of q to print. So we can use the solutions of a preimage in a $CD \circ Lin$ algorithm.

If a preimage gives us the value of a free-tree, we say that it patches the free-tree.

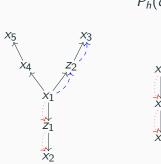
Patching with deactivated preimage

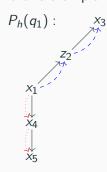
This semester, we have found this example:

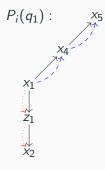


Patching with deactivated preimage

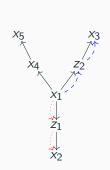
This semester, we have found this example:

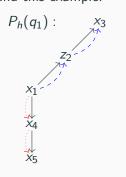


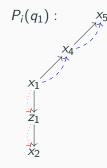




This semester, we have found this example:



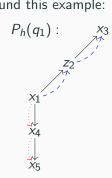




There is no free-connex preimages...

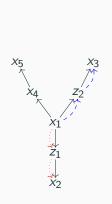
This semester, we have found this example:

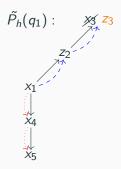


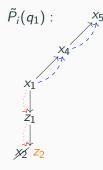


There is no free-connex preimages, but we don't need the hard part in them!

This semester, we have found this example:

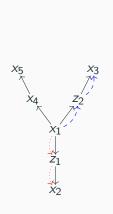


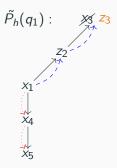


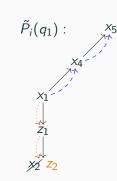


There is no free-connex preimages, but there is free-connex deactivated preimages.

This semester, we have found this example:







There is no free-connex preimages. Use $\tilde{P}_h(q_1)$ to patch the first free-tree, and $\tilde{P}_i(q_1)$ to patch the second free-tree.

Tractability condition

Theorem (Tractability condition: 1st semester) A CQ q with self-joins is in $CD \circ Lin$ if there is a set of easy deactivated preimages that can be used to patch all free-trees of q. (recursive algorithm)



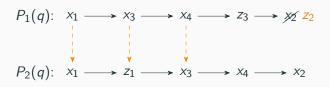
Tractability condition

Theorem (Tractability condition: 1st semester)A CQ q with self-joins is in CD o Lin if there is a set of easy deactivated preimages that can be used to patch all free-trees of q. (recursive algorithm)



Tractability condition

Theorem (Tractability condition: 1st semester) A CQ q with self-joins is in $CD \circ Lin$ if there is a set of easy deactivated preimages that can be used to patch all free-trees of q. (recursive algorithm)



Then use $P_2(q)$ to patch q.

Hardness

VUTD-Hardness: hypothesis

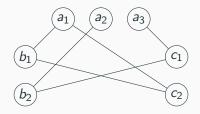


Figure 1: Find a triangle in this unbalanced tripartite graph

Let G be an unbalanced tripartite graph $|V_a|=n$, $V_b=O(n^{\alpha})$, $V_c=O(n^{\alpha})$, with $\alpha\in[0;1]$. We can not find a triangle in it in $O(n^{1+\alpha})$.

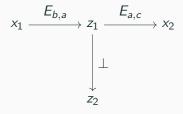


Figure 2: $q(x_1, x_2)$. Atoms labelled with their tagged meaning.

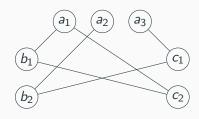


Figure 3: Find a triangle in this unbalanced tripartite graph

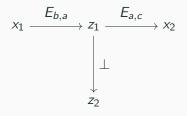


Figure 2: $q(x_1, x_2)$. Atoms labelled with their tagged meaning.

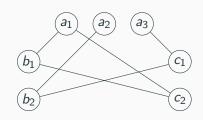


Figure 3: Find a triangle in this unbalanced tripartite graph

- $\mathsf{Dom}(D) = \{ \langle x_1; v \rangle \mid v \in V_b \} \cup \{ \langle z_1; v \rangle \mid v \in V_a \} \cup \{ \langle x_2; v \rangle \mid v \in V_c \} \cup \{ \langle z_2; \bot \rangle \}$, we tag the database.
- $\forall (v_b, v_a) \in E_{b,a}.R(\langle x_1; v_b \rangle, \langle z_1; v_a \rangle)$
- $\forall (v_a, v_c) \in E_{a,c}.R(\langle z_1; v_a \rangle, \langle x_2; v_c \rangle)$
- $\forall v_a \in V_a.R(\langle z_1; v_a \rangle, \langle z_2; \bot \rangle)$

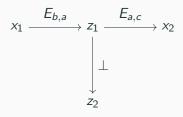


Figure 2: $q(x_1, x_2)$. Atoms labelled with their tagged meaning.

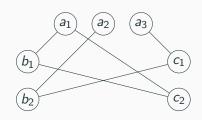


Figure 3: Find a triangle in this unbalanced tripartite graph

- $\langle x_1; a_2 \rangle \rightarrow \langle z_1; b_2 \rangle \rightarrow \langle x_2; c_1 \rangle$. In O(1), check if $(a_2, c_1) \in E_{b,c}$.
- $\langle x_1; a_1 \rangle \to \langle z_1; b_1 \rangle \to \langle x_2; c_2 \rangle$. In O(1), check if $(a_1, c_2) \in E_{b,c}$.

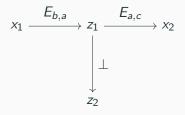


Figure 2: $q(x_1, x_2)$. Atoms labelled with their tagged meaning.

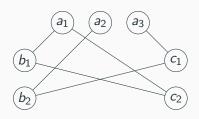


Figure 3: Find a triangle in this unbalanced tripartite graph

If $q \in CD \circ Lin$, we can know in $O(n^{2\alpha})$ if there is a triangle or not.

VUTD-Hard: Condition

Theorem (VUTD-Hardness, 1st Semester)
$$(\exists F.\exists z \in F. \forall h \in Endo(q). \forall x \in Free(q). h(x) \neq z) \Rightarrow q \notin CD \circ Lin$$

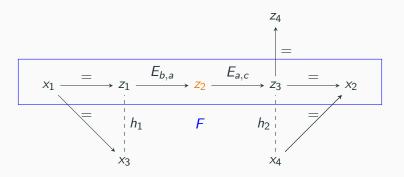
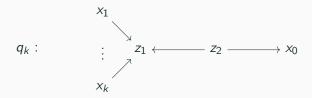


Figure 4: An hard query because of F and z_2 . Note that z_4 is not part of the free-path hence you can not encode VUTD with it.

Raised open-questions

k-Clique based hardness



One can find a clique of size k + 1 in $O(n^k)$ by enumerating q_{k-1} .

Theorem (Nešetřil and Poljak 1985)

Let k = 3l + i ((l, i) $\in \mathbb{N} \times \{0, 1, 2\}$), and ω is the optimal bound for matrix multiplication ($2 \le \omega < 2.38$). Let G be a graph with n nodes, we can check if G has a k-clique in $O(n^{\omega l + i})$.

From this, q_1, \ldots, q_3 are not in CD \circ Lin. What about $k \geq 4$?

An easy to solve, yet unknown to enumerate query

For any D, using matrix multiplication in $O(|\mathsf{Dom}(D)|^{\omega})$, one can solve q(D) in $O(|\mathsf{Dom}(D)|^2 + |\mathsf{Dom}(D)|^{\omega} + |\mathsf{Dom}(D)|^3)$ $\Rightarrow O(|\mathsf{Dom}(D)|)^3$.

- if it is easy, we need to extend our sufficient condition.
- if it is hard, how to show that it is hard?

Conclusion

In this work we have:

- Introduced preimages, free-trees.
- Found a sufficient condition.
- Found two necessary conditions.
- Found open-cases that could lead to new enumeration techniques.
- (not in the slide) Built a link between CD ∘ Lin and DomLin ∘ Lin.

Bibliography

- Bagan, Guillaume, Arnaud Durand, and Etienne Grandjean (2007). "On Acyclic Conjunctive Queries and Constant Delay Enumeration". In: Computer Science Logic. Ed. by Jacques Duparc and Thomas A. Henzinger. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 208–222. ISBN: 978-3-540-74915-8.
- Carmeli, Nofar and Luc Segoufin (2022). Conjunctive Queries With Self-Joins, Towards a Fine-Grained Complexity Analysis. arXiv: 2206.04988 [cs.DB]. URL: https://arxiv.org/abs/2206.04988.
- Nešetřil, Jaroslav and Svatopluk Poljak (1985). "On the complexity of the subgraph problem". eng. In:

 Commentationes Mathematicae Universitatis Carolinae 26.2,
 pp. 415–419. URL: http://eudml.org/doc/17394.