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Introduction



Different notations for CQs

e A Conjunctive Query formally is q(x) : 3Z. A R;(¥), with
yCcxuz

e Enumerating solutions of g is printing one by one every
valuation of X that satisfies g without duplicates.

e We restrict to CQ with atoms of arity at most 2. Hence, we
see acyclic CQ as a DAG.
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Self-join

A CQ g has a self-join if it has two atoms that use the same
relational symbol.
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Queries without self-joins



A CQ g is in CD o Lin if we can enumerate its solutions on a
database D with constant delay after a linear time (on |D|)

preprocessing.



Theorem (Bagan, Durand, and Grandjean 2007)
A CQ without self-join is in CD o Lin <* acyclic free-connex.

An acyclic conjuctive query is free-connex < does not have a
free-path.
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*: Assuming sBMM and sHyperclique.



What happens with self-join ?
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g2
X1 —zZ X2 q, Easy
\ 5 X1 — X3 — X2
X3

e (a,b,c) € ¢4(D) = (a,b,c) € q2(D)
e Printing with constant duplicates is ok. (Carmeli and Segoufin
2022)

e Hence, we will enumerate g5 to gain information.



Example - building the Hash Table

q2
X1 —zZ— X2 q, Easy
\ : X1 — X3 — X2
X3
R
ai | b
a | b
an b3 H
G
bl 1
by | @
b3 | c3




Example - building the Hash Table

q2
X1 —zZ— X2 q, Easy
\ : X1 — X3 — X2
X3
R
ai | b
a | b
an b3 H
G
b1 1
by | @
b3 | c3




Example - building the Hash Table

gz
Xt —2z X q, Easy
\ | X1 — X3 — X2
X3
R
dl b1
22 | b (a1, b1, c1) € g3(D) N q2(D)
a | bs
G H
b1 1
b | @
bs | c3




Example - building the Hash Table

q2
X1 —zZ— X2 q, Easy
\ : X1 — X3 — X2
X3
R
a b
o | b (a1, b1, c1) € G4(D) N (D)
a | bs H
G a | a
b1 1
by | @
b3 | c3




Example - building the Hash Table
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\ : X1 — X3 — X2
X3
R
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bl 1
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Example - building the Hash Table

q2
X] — zZ X2 q, Easy
\ : X1 — X3 — X2
X3
R
a1 bl
5 | (a2, b2, ) € g5(D) N g2(D)s
a | bs H
G a | a
b | a
by | @
b3 | c3




Example - building the Hash Table

q2
X] — zZ X2 q, Easy
\ : X1 — X3 — X2
X3
R
a1 bl
5 | (a2, b2, ) € g5(D) N g2(D)s
a | bs H
G a | a
b | a
by | @
b3 | c3




Example - building the Hash Table

a2
X1 —zZ— X2 q, Easy
\ I X1 — X3 — X2
X3
R
a | b (a2, by, @) € gh(D) N ga(D)s
a | b u
ar | bz
G dl @i
bl C1 2 z
by | @
bs | c3




Example - building the Hash Table

q2
X1 —zZ— X2 q, Easy
\ : X1 — X3 — X2
X3
R
ai | b
a | b H
an b3 a a
G a | @
bl C1 as a3
by | @
b3 c3




Example - building the Hash Table
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q2
Xt —2z X q, Easy
\ 3 X1 — X3 — X2
X3

H
a1 C1
a | @
a | G

Using g5, we can enumerate some solutions of g, and build H that

contains all (a1, a2) solutions of the free-path.



Example - Using the Hash Table

a2

X — X
L ? For all (a,¢c) € H,

X3
R H
ar | b a1 | a
a | b2 | o Solutions in g2(D)

a> | b3 |



Example - Using the Hash Table

q2
X1 — Z > X2 For all (a,c) € H,
\ for all b €R(a, x3),
X3
R H
ar | b a1 | a
a | b2 | o Solutions in g2(D)
a> | b3 |



Example - Using the Hash Table

9 For all (a,c) € H,
X — X
toF ? for all b €R(a, x3),

output (a, b, ¢)

X3
R H
ar | b a1 | a
a | b2 | o Solutions in g2(D)
ay | b3 a | a3



Example - Using the Hash Table

9 For all (a,c) € H,
X — X
toF ? for all b €R(a, x3),

output (a, b, ¢)

X3
R H
ar | b a1 | a
a | b2 | o Solutions in g2(D)
ay | b3 a | a3



Example - Using the Hash Table

9 For all (a,c) € H,
X — X
toF ? for all b €R(a, x3),

output (a, b, ¢)

X3
R H
ar | b a1 | a
a | b2 | o Solutions in g2(D)
ay | b3 a | a3



Example - Using the Hash Table

9 For all (a,c) € H,
X — X
toF ? for all b €R(a, x3),

output (a, b, ¢)

X3
R H
ar | b a1 | a
a | b2 | o Solutions in g2(D)
ay | b3 a | a3



Example - Using the Hash Table

= For all (a,c) € H,
X1 — Z —> X2

\ for all b €R(a, x3),

output (a, b, ¢)

X3
R H
a1 | b a | a Solutions in g2(D)
ar | b a | o
a2 | b3 a | o (a1, b1, c1)



Example - Using the Hash Table

= For all (a,c) € H,
X1 — Z —> X2

\ for all b €R(a, x3),

output (a, b, ¢)

X3
R H
a1 | b a | a Solutions in g2(D)
ar | b a | o
a2 | b3 a | o (a1, b1, c1)



Example - Using the Hash Table

&z For all (a,c) € H,
X1 —Z— X2

\ for all b €R(a, x3),

output (a, b, ¢)

X3
R H
Solutions in g2(D)
al b1 al C1
3 | b 2| @ e (a1, b1, 1)
ar b3 dn c3

L (327 b27 C2)



Example - Using the Hash Table

9 For all (a,c) € H,
X — X
1<‘Z ? for all b €R(a, x3),
X3 output (a, b, c)
Solutions in g2(D)
R H
e (a1, b1, c1)
ar | b a1 | a
ar b2 an (o)) e (327 b27 C2)
ay | b3 2 | o (a2, b3, )
o (az, b, c3)
e (a2, b3,c3)



Studying CD o Lin for CQs with
self-join: Tractability




Multiple Hash-Tables ?

X3

|

X1 4 22 X2

Given H; that gives (x1,x3) and H, that gives (x1, x2), we know no
way to solve g: how to know if the z; are the same ?
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Free-tree

We define free-tree to capture intersection of free-pathes.

&) 12 z| &)

The only hard part of an acyclic CQs with self-join is its free-trees.

Theorem (Fully-patched enumeration, L3 Internship)
If you have an H for each free-trees of a CQ, you can enumerate

the CQ.




Preimage: a way to get hash-tables

Ph(q) has the body of h(qg). A variable in Py(q) is free if it is the
image of at least one free variable in g5.

qz
XX —zZ— X h(q2) Ph(q2)
\; Xl — Z — X2 X1 — X3 — X2
X3

Lemma (Prehomomorphism lemma, L3 Internship)
Each solution of Py(q) gives a unique solution of q to print. So

we can use the solutions of a preimage in a CD o Lin algorithm.

If a preimage gives us the value of a free-tree, we say that it

patches the free-tree.
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Patching with deactivated preimage

This semester, we have found this example:
X5 X3

11



Patching with deactivated preimage

This semester, we have found this example:

Po(ar):  xs Pilg): %
X5 /{13 22" . 14/
K><4 2 XI/L Xl/
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Patching with deactivated preimage

This semester, we have found this example:

Ph(ql) : )7€3 P,-(ql) : 15
X5 /ﬁ; iz/ 14/
/\X4 Z2/l Xl/L XI/L
,\Xlz‘/A l l

4 I I
l X5 X2

There is no free-connex

preimages...
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Patching with deactivated preimage

This semester, we have found this example:

Ph(ql) : §3 P,-(ql) : 15

’ s
- -

"~ X4~

N A
X5 X3 / /

“F 4 ;
; i i

Xi X:
71 b 2
3}L2 There is no free-connex

preimages, but we don’t

need the hard part in them
!
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Patching with deactivated preimage

This semester, we have found this example:

Pr(aqr) : /)’{23 Pi(q1) : /),«(5
22’// X4’/

7N N
X5 X3 / /
N F
@ il |
NV - s

] ]

Xi 79
% 5 X5 7>
B}E There is no free-connex

preimages, but there is
free-connex deactivated
preimages.
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Patching with deactivated preimage

This semester, we have found this example:

Pr(aqr) : /)’{23 Pi(q1) : /),«(5
22’// X4’/

/’1 /’ﬁ
. . W4 A
A\ J il il

X4 22
N\ i) i
X~ l l
i X5 X5 2
4|
i There is no free-connex
X2

preimages. Use Pp(q1) to
patch the first free-tree,
and Pi(q1) to patch the

second free-tree. 11



Tractability condition

Theorem (Tractability condition: 1st semester)
A CQ g with self-joins is in CD o Lin if there is a set of easy

deactivated preimages that can be used to patch all free-trees of
q. (recursive algorithm)

X1 Z1 22 Z3 X2

X3 —> X4
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Tractability condition

Theorem (Tractability condition: 1st semester)
A CQ q with self-joins is in CD o Lin if there is a set of easy

deactivated preimages that can be used to patch all free-trees of
q. (recursive algorithm)

Pi(q): x X3 X4 z3 X2

Px(q): x1 zy X3 X4 X2

12



Tractability condition

Theorem (Tractability condition: 1st semester)
A CQ g with self-joins is in CD o Lin if there is a set of easy

deactivated preimages that can be used to patch all free-trees of
q. (recursive algorithm)

Pi(q): x X3 X4 3 — X5 7

Px(q): xi 21 X3 X4 X0
Then use P»(q) to patch g.

12



Hardness




VUTD-Hardness: hypothesis

() (=) @)
e

1@

Figure 1: Find a triangle in this unbalanced tripartite graph

&) &)

Let G be an unbalanced tripartite graph | V.| = n, V,, = O(n"),
Ve = O(n®), with a € [0; 1]. We can not find a triangle in it in
O(n't®).



VUTD-Hardness: Example of encoding

2 & e

I_
(&)

Figure 2: q(x1,x). Atoms Figure 3: Find a triangle in this
labelled with their tagged unbalanced tripartite graph
meaning.

14



VUTD-Hardness: Example of encoding

i Eb,a 2 Ea,c X e @ @
. CORNDC
N

= () @)

Figure 2: g(x1,x). Atoms Figure 3: Find a triangle in this
labelled with their tagged unbalanced tripartite graph
meaning.

e Dom(D) ={(x1;v) |ve VptU{(z1;v)|veV,}U
{{(x2;v) | v € V.} U{(z2; L)}, we tag the database.
o V(vp,Va) € Epa.R({(x1; Vi), (z1; Va))
o V(va, ve) € Esc.R((z1; va), (x5 ve))
o Vv, € Vo.R((z1; va), (z2; L)) "



VUTD-Hardness: Example of encoding

X Eb,a 2 Ea,c X e @ @
. CORNDC
7=

2 ()

Figure 2: g(x1,x). Atoms Figure 3: Find a triangle in this
labelled with their tagged unbalanced tripartite graph
meaning.
o (x1;a2) — (z1; b2) — (x2;c1). In O(1), check if
(a2,c1) € Epc
o (x1;a1) = (z1; b1) — (x2; c2). In O(1), check if
(a1, ¢2) € Epc
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VUTD-Hardness: Example of encoding

. @&e

& & 1@

Figure 2: g(x1,x). Atoms Figure 3: Find a triangle in this
labelled with their tagged unbalanced tripartite graph
meaning.

If g € CD o Lin, we can know in O(n?") if there is a triangle or
not.

14



VUTD-Hard: Condition

Theorem (VUTD-Hardness, 1st Semester)
(3F.3z € F.Yh € Endo(q).Vx € Free(q).h(x) # z) = q ¢

CDo Lin
Z4
=S Eb,a Ea,c ‘ =
X1 Z1 Vi) Z3 X2
! ! /
X 'y F b 7
X3 X4

Figure 4: An hard query because of F and z. Note that z, is not part

of the free-path hence you can not encode VUTD with it. 15



Raised open-questions




k-Clique based hardness

X1
\
9k - : z1 Z X0
/

Xk

One can find a clique of size k + 1 in O(n*) by enumerating gy_1.

Theorem (Nesetfil and Poljak 1985)
Let k =31+ ((I,i) e Nx {0,1,2}), and w is the optimal

bound for matrix multiplication (2 < w < 2.38). Let G be a

graph with n nodes, we can check if G has a k-clique in
O(anJri)'

From this, g1,..., g3 are not in CD o Lin. What about k > 47 .



An easy to solve, yet unknown to enumerate query

X1 21 22 X2

X3

For any D, using matrix multiplication in O(|Dom(D)|*), one can
solve g(D) in O(|Dom(D)|? + |Dom(D)|* + |Dom(D)3)
= O(|Dom(D)|)3.

e if it is easy, we need to extend our sufficient condition.

e if it is hard, how to show that it is hard ?

17



Conclusion

In this work we have:

Introduced preimages, free-trees.

Found a sufficient condition.

Found two necessary conditions.

Found open-cases that could lead to new enumeration
techniques.

(not in the slide) Built a link between CD o Lin and
DomLin o Lin.

18
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