
Index Estimation on column-oriented database

Supervised by SHI Jiachen, CONG Gao

Clément Rouvroy

September 9, 2025

ENS-PSL (Paris,France), NTU (Singapore, Singapore)



Background and motivation



Why column-oriented storage

• Traditional models store information row by row on disk.

Not

optimized to read one column.

• Column-oriented models store information column by column

on disk.

Optimize to read one column.

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

Hence, column-oriented databases are used mostly in analytical

workloads (finance, e-commerce, data analysis, ...).

1



Why column-oriented storage

• Traditional models store information row by row on disk.

Not

optimized to read one column.

• Column-oriented models store information column by column

on disk.

Optimize to read one column.

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

SELECT SUM(Amount) FROM Sell

Hence, column-oriented databases are used mostly in analytical

workloads (finance, e-commerce, data analysis, ...).

1



Why column-oriented storage

• Traditional models store information row by row on disk.

Not

optimized to read one column.

• Column-oriented models store information column by column

on disk.

Optimize to read one column.

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

SELECT SUM(Amount) FROM Sell

Hence, column-oriented databases are used mostly in analytical

workloads (finance, e-commerce, data analysis, ...).

1



Why column-oriented storage

• Traditional models store information row by row on disk.

Not

optimized to read one column.

• Column-oriented models store information column by column

on disk.

Optimize to read one column.

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

SELECT SUM(Amount) FROM Sell

Hence, column-oriented databases are used mostly in analytical

workloads (finance, e-commerce, data analysis, ...).

1



Why column-oriented storage

• Traditional models store information row by row on disk.

Not

optimized to read one column.

• Column-oriented models store information column by column

on disk.

Optimize to read one column.

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

SELECT SUM(Amount) FROM Sell

Hence, column-oriented databases are used mostly in analytical

workloads (finance, e-commerce, data analysis, ...).

1



Why column-oriented storage

• Traditional models store information row by row on disk. Not

optimized to read one column.

• Column-oriented models store information column by column

on disk.

Optimize to read one column.

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

SELECT SUM(Amount) FROM Sell

Hence, column-oriented databases are used mostly in analytical

workloads (finance, e-commerce, data analysis, ...).

1



Why column-oriented storage

• Traditional models store information row by row on disk. Not

optimized to read one column.

• Column-oriented models store information column by column

on disk.

Optimize to read one column.

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

SELECT SUM(Amount) FROM Sell

Hence, column-oriented databases are used mostly in analytical

workloads (finance, e-commerce, data analysis, ...).

1



Why column-oriented storage

• Traditional models store information row by row on disk. Not

optimized to read one column.

• Column-oriented models store information column by column

on disk.

Optimize to read one column.

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

SELECT SUM(Amount) FROM Sell

Hence, column-oriented databases are used mostly in analytical

workloads (finance, e-commerce, data analysis, ...).

1



Why column-oriented storage

• Traditional models store information row by row on disk. Not

optimized to read one column.

• Column-oriented models store information column by column

on disk. Optimize to read one column.

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

SELECT SUM(Amount) FROM Sell

Hence, column-oriented databases are used mostly in analytical

workloads (finance, e-commerce, data analysis, ...).

1



Why column-oriented storage

• Traditional models store information row by row on disk. Not

optimized to read one column.

• Column-oriented models store information column by column

on disk. Optimize to read one column.

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

SELECT SUM(Amount) FROM Sell

Hence, column-oriented databases are used mostly in analytical

workloads (finance, e-commerce, data analysis, ...).

1



An inefficient query on column-oriented

Worst patterns for columnar systems are point accesses. For

example:

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

seekseek seek

SELECT * FROM Sells WHERE SellId = 7

1. Read SellId columns to find the value 7. Remember Row id

3

2. Read EmpId and keep row 3 value.

3. Read Amount and keep row 3 value.

2



An inefficient query on column-oriented

Worst patterns for columnar systems are point accesses. For

example:

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

seek

seek seek

SELECT * FROM Sells WHERE SellId = 7

1. Read SellId columns to find the value 7. Remember Row id

3

2. Read EmpId and keep row 3 value.

3. Read Amount and keep row 3 value.

2



An inefficient query on column-oriented

Worst patterns for columnar systems are point accesses. For

example:

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

seek

seek

seek

SELECT * FROM Sells WHERE SellId = 7

1. Read SellId columns to find the value 7. Remember Row id

3

2. Read EmpId and keep row 3 value.

3. Read Amount and keep row 3 value.

2



An inefficient query on column-oriented

Worst patterns for columnar systems are point accesses. For

example:

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

seekseek

seek

SELECT * FROM Sells WHERE SellId = 7

1. Read SellId columns to find the value 7. Remember Row id

3

2. Read EmpId and keep row 3 value.

3. Read Amount and keep row 3 value.
2



Hash index and seekable columns in MemSQL

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

Index

SELECT * FROM Sells WHERE SellId = 7

1. Use Hash Index on SellId to find row ids with value 7.

2. Access EmpId directly on each saved row ids using seekable

encoding.

3. Access Amount directly on each saved row ids using seekable

encoding.

How to know if we should build an index ?

3



Hash index and seekable columns in MemSQL

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

Index

SELECT * FROM Sells WHERE SellId = 7

1. Use Hash Index on SellId to find row ids with value 7.

2. Access EmpId directly on each saved row ids using seekable

encoding.

3. Access Amount directly on each saved row ids using seekable

encoding.

How to know if we should build an index ?

3



Hash index and seekable columns in MemSQL

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

Index

SELECT * FROM Sells WHERE SellId = 7

1. Use Hash Index on SellId to find row ids with value 7.

2. Access EmpId directly on each saved row ids using seekable

encoding.

3. Access Amount directly on each saved row ids using seekable

encoding.

How to know if we should build an index ?

3



Hash index and seekable columns in MemSQL

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

Index

SELECT * FROM Sells WHERE SellId = 7

1. Use Hash Index on SellId to find row ids with value 7.

2. Access EmpId directly on each saved row ids using seekable

encoding.

3. Access Amount directly on each saved row ids using seekable

encoding.

How to know if we should build an index ?

3



Hash index and seekable columns in MemSQL

Emp Id Sell Id Amount

101 23 1200

102 12 950

102 7 1750

Index

SELECT * FROM Sells WHERE SellId = 7

1. Use Hash Index on SellId to find row ids with value 7.

2. Access EmpId directly on each saved row ids using seekable

encoding.

3. Access Amount directly on each saved row ids using seekable

encoding.

How to know if we should build an index ? 3



What-If Hypothetical Index Estimation

DBA

Add ORDERS.O CUSTKEY? Benefit (R)

What-If

DB Engine

Workload Database

SQL Statistics

abstraction

4



Problem Statement

Problem: On a column-oriented database. Given an analytical

workload W = {q1, . . . , qw} and a configuration c = {I1, . . . , Ik},

• Build an hypothetical index estimator that estimates the

benefit of c ∪ Ik+1 over c on W.

As this is the first work for column-oriented database, we want to

provide a foundation that is: heuristics-based, extendable and

tunable.

5



Problem Statement

Problem: On a column-oriented database. Given an analytical

workload W = {q1, . . . , qw} and a configuration c = {I1, . . . , Ik},

• Build an hypothetical index estimator that estimates the

benefit of c ∪ Ik+1 over c on W.

As this is the first work for column-oriented database, we want to

provide a foundation that is: heuristics-based, extendable and

tunable.

5



Problem Statement

Problem: On a column-oriented database. Given an analytical

workload W = {q1, . . . , qw} and a configuration c = {I1, . . . , Ik},

• Build an hypothetical index estimator that estimates the

benefit of c ∪ Ik+1 over c on W.

As this is the first work for column-oriented database, we want to

provide a foundation that is: heuristics-based, extendable and

tunable.

5



Hypothetical Index Benefit

Estimation - Overview



QHICS benefit model

Quantile Hypothetical Index for Column-oriented Storage

Index

BenefitEncoder

CostEncoder

θ⃗b

−θ⃗c Cost

Benefit

Learned parameters Workload dependent

6



QHICS benefit model

Quantile Hypothetical Index for Column-oriented Storage

Index

BenefitEncoder

CostEncoder

θ⃗b

−θ⃗c Cost

Benefit

Learned parameters Workload dependent

1. Workload Analysis

6



QHICS benefit model

Quantile Hypothetical Index for Column-oriented Storage

Index

BenefitEncoder

CostEncoder

θ⃗b

−θ⃗c Cost

Benefit

Learned parameters Workload dependent

2. Index Encoding

6



QHICS benefit model

Quantile Hypothetical Index for Column-oriented Storage

Index

BenefitEncoder

CostEncoder

θ⃗b

−θ⃗c Cost

Benefit

Learned parameters Workload dependent

3. Linear Programming

6



Workload Analysis



Workload Analysis

Given a query plan, analyze it and return objects that can be used

to estimate the benefit of an index.

7



What can be accelerated ?

Hash index are used to accelerate predicate checking (e.g.

equality).

Hence, we estimate the difference of resource consumptions in

access paths with and without new index.

8



What can be accelerated ?

Hash index are used to accelerate predicate checking (e.g.

equality).

Hence, we estimate the difference of resource consumptions in

access paths with and without new index.
8



Scan without index

Each column is cut in segments, each columnar segment stores

min/max metadata.

This is used to skip data.

A

[5,450]

[3,500]

[291,299]

B

[3,3]

[1,5]

[3,8]

SELECT * FROM T WHERE A <= 270 AND B = 2

You only need to open the second segment of each column.

To estimate the scan cost, we need an estimation of the hit factor.

9



Scan without index

Each column is cut in segments, each columnar segment stores

min/max metadata.This is used to skip data.

A

[5,450]

[3,500]

[291,299]

B

[3,3]

[1,5]

[3,8]

SELECT * FROM T WHERE A <= 270 AND B = 2

You only need to open the second segment of each column.

To estimate the scan cost, we need an estimation of the hit factor.

9



Scan without index

Each column is cut in segments, each columnar segment stores

min/max metadata.This is used to skip data.

A

[5,450]

[3,500]

[291,299]

B

[3,3]

[1,5]

[3,8]

SELECT * FROM T WHERE A <= 270 AND B = 2

You only need to open the second segment of each column.

To estimate the scan cost, we need an estimation of the hit factor.

9



Scan without index

Each column is cut in segments, each columnar segment stores

min/max metadata.This is used to skip data.

A

[5,450]

[3,500]

[291,299]

B

[3,3]

[1,5]

[3,8]

SELECT * FROM T WHERE A <= 270 AND B = 2

You only need to open the second segment of each column.

To estimate the scan cost, we need an estimation of the hit factor.

9



Hit Factor Approximation

Let hC (v) for v ∈ Dom(C ) be the percentage of segments needed

to get all rows with value v .

Let h(C ) be the hit factor of C, defined as Ev∈Dom(C) (hC (v)).

The hit factor of a condition operator that filters k unique values is

defined as 1− (1− h(C ))k .

Now we can use F-algebra:

• For two predicates p1, p2, h(p1 ∧ p2) = h(p1)× h(p2)

• For two predicates p1, p2,

h(p1 ∨ p2) = h(p1) + h(p2)− h(p1)× h(p2)

• For a predicate p1, h(¬p1) = 1− h(p1).

10



Hit Factor Approximation

Let hC (v) for v ∈ Dom(C ) be the percentage of segments needed

to get all rows with value v .

Let h(C ) be the hit factor of C, defined as Ev∈Dom(C) (hC (v)).

The hit factor of a condition operator that filters k unique values is

defined as 1− (1− h(C ))k .

Now we can use F-algebra:

• For two predicates p1, p2, h(p1 ∧ p2) = h(p1)× h(p2)

• For two predicates p1, p2,

h(p1 ∨ p2) = h(p1) + h(p2)− h(p1)× h(p2)

• For a predicate p1, h(¬p1) = 1− h(p1).

10



Hit Factor Approximation

Let hC (v) for v ∈ Dom(C ) be the percentage of segments needed

to get all rows with value v .

Let h(C ) be the hit factor of C, defined as Ev∈Dom(C) (hC (v)).

The hit factor of a condition operator that filters k unique values is

defined as 1− (1− h(C ))k .

Now we can use F-algebra:

• For two predicates p1, p2, h(p1 ∧ p2) = h(p1)× h(p2)

• For two predicates p1, p2,

h(p1 ∨ p2) = h(p1) + h(p2)− h(p1)× h(p2)

• For a predicate p1, h(¬p1) = 1− h(p1).

10



Scan processing

We compute a map

table 7→ list

Per Scan︷ ︸︸ ︷ Per operator︷ ︸︸ ︷
(col 7→ list(Scan)), h



Let the query σC1=17∨C2<=35(A) ▷◁C σC3=90(B):

• A → [(C1 → [= 17];C2 → [≤ 35]) , 0.3]

• B → [(C3 → [= 90]) , 0.1]

It is sufficient to estimate benefit as:

• Without index one needs the hit factor of each column.

• With index one needs estimation of metrics on each condition.

We also capture Highly Selective Joins (example in appendix).

11



Scan processing

We compute a map

table 7→ list

Per Scan︷ ︸︸ ︷ Per operator︷ ︸︸ ︷
(col 7→ list(Scan)), h


Let the query σC1=17∨C2<=35(A) ▷◁C σC3=90(B):

• A → [(C1 → [= 17];C2 → [≤ 35]) , 0.3]

• B → [(C3 → [= 90]) , 0.1]

It is sufficient to estimate benefit as:

• Without index one needs the hit factor of each column.

• With index one needs estimation of metrics on each condition.

We also capture Highly Selective Joins (example in appendix).

11



Scan processing

We compute a map

table 7→ list

Per Scan︷ ︸︸ ︷ Per operator︷ ︸︸ ︷
(col 7→ list(Scan)), h


Let the query σC1=17∨C2<=35(A) ▷◁C σC3=90(B):

• A → [(C1 → [= 17];C2 → [≤ 35]) , 0.3]

• B → [(C3 → [= 90]) , 0.1]

It is sufficient to estimate benefit as:

• Without index one needs the hit factor of each column.

• With index one needs estimation of metrics on each condition.

We also capture Highly Selective Joins (example in appendix).

11



Scan processing

We compute a map

table 7→ list

Per Scan︷ ︸︸ ︷ Per operator︷ ︸︸ ︷
(col 7→ list(Scan)), h


Let the query σC1=17∨C2<=35(A) ▷◁C σC3=90(B):

• A → [(C1 → [= 17];C2 → [≤ 35]) , 0.3]

• B → [(C3 → [= 90]) , 0.1]

It is sufficient to estimate benefit as:

• Without index one needs the hit factor of each column.

• With index one needs estimation of metrics on each condition.

We also capture Highly Selective Joins (example in appendix).

11



Scan processing

We compute a map

table 7→ list

Per Scan︷ ︸︸ ︷ Per operator︷ ︸︸ ︷
(col 7→ list(Scan)), h


Let the query σC1=17∨C2<=35(A) ▷◁C σC3=90(B):

• A → [(C1 → [= 17];C2 → [≤ 35]) , 0.3]

• B → [(C3 → [= 90]) , 0.1]

It is sufficient to estimate benefit as:

• Without index one needs the hit factor of each column.

• With index one needs estimation of metrics on each condition.

We also capture Highly Selective Joins (example in appendix).
11



Index Encoding



Hybrid LSM index format

• For each segment, an inverted index (a dict) is built mapping

from column values to offset.

1

2

1

1: 2:

2

4

4

2: 4:

• A global index (LSM-based hash tables) is built to map from

value to a list of inverted index positions. Here, 2 maps to

[seg:1,offset:2; seg:2, offset:0]

12



Hybrid LSM index format

• For each segment, an inverted index (a dict) is built mapping

from column values to offset.

1

2

1

1: 2:

2

4

4

2: 4:

• A global index (LSM-based hash tables) is built to map from

value to a list of inverted index positions. Here, 2 maps to

[seg:1,offset:2; seg:2, offset:0]

12



Hybrid LSM index format

• For each segment, an inverted index (a dict) is built mapping

from column values to offset.

1

2

1

1: 2:

2

4

4

2: 4:

• A global index (LSM-based hash tables) is built to map from

value to a list of inverted index positions. Here, 2 maps to

[seg:1,offset:2; seg:2, offset:0]

12



Encoding creation

We encode an index into a vector (disk IO, CPU, MEM).

• Reading compressed

data and writing

inverted index on

disk.

• Using CPU to

decompress and hash

each value.

• Storing uncompressed

data in memory.

13



Encoding creation

We encode an index into a vector (disk IO, CPU, MEM).

• Reading compressed

data and writing

inverted index on

disk.

• Using CPU to

decompress and hash

each value.

• Storing uncompressed

data in memory.

13



Encoding creation

We encode an index into a vector (disk IO, CPU, MEM).

• Reading compressed

data and writing

inverted index on

disk.

• Using CPU to

decompress and hash

each value.

• Storing uncompressed

data in memory.

13



Encoding benefit

To encode the benefit, we encode the access pathes and joins

difference. Let C be the columns in the new index that are not

already indexed.

With Index

For each scan operation

concerning C :

• Read the global hash index

• Open inverted indexes.

• Open matching values.

Without Index

For each scan concerning C :

• Read h percentage of

column data.

• Check each value.

14



Encoding benefit

To encode the benefit, we encode the access pathes and joins

difference. Let C be the columns in the new index that are not

already indexed.

With Index

For each scan operation

concerning C :

• Read the global hash index

• Open inverted indexes.

• Open matching values.

Without Index

For each scan concerning C :

• Read h percentage of

column data.

• Check each value.

14



Encoding benefit

To encode the benefit, we encode the access pathes and joins

difference. Let C be the columns in the new index that are not

already indexed.

With Index

For each scan operation

concerning C :

• Read the global hash index

• Open inverted indexes.

• Open matching values.

Without Index

For each scan concerning C :

• Read h percentage of

column data.

• Check each value.

14



Encoding benefit

To encode the benefit, we encode the access pathes and joins

difference. Let C be the columns in the new index that are not

already indexed.

With Index

For each scan operation

concerning C :

• Read the global hash index

• Open inverted indexes.

• Open matching values.

Without Index

For each scan concerning C :

• Read h percentage of

column data.

• Check each value.

14



Encoding benefit

To encode the benefit, we encode the access pathes and joins

difference. Let C be the columns in the new index that are not

already indexed.

With Index

For each scan operation

concerning C :

• Read the global hash index

• Open inverted indexes.

• Open matching values.

Without Index

For each scan concerning C :

• Read h percentage of

column data.

• Check each value.

14



Encoding benefit

To encode the benefit, we encode the access pathes and joins

difference. Let C be the columns in the new index that are not

already indexed.

With Index

For each scan operation

concerning C :

• Read the global hash index

• Open inverted indexes.

• Open matching values.

Without Index

For each scan concerning C :

• Read h percentage of

column data.

• Check each value.

14



Encoding benefit

To encode the benefit, we encode the access pathes and joins

difference. Let C be the columns in the new index that are not

already indexed.

With Index

For each scan operation

concerning C :

• Read the global hash index

• Open inverted indexes.

• Open matching values.

Without Index

For each scan concerning C :

• Read h percentage of

column data.

• Check each value.

14



Encoding benefit

To encode the benefit, we encode the access pathes and joins

difference. Let C be the columns in the new index that are not

already indexed.

With Index

For each scan operation

concerning C :

• Read the global hash index

• Open inverted indexes.

• Open matching values.

Without Index

For each scan concerning C :

• Read h percentage of

column data.

• Check each value.

14



Tuning QHICS



From Encodings to Execution Time

What we have: Resource vectors for cost and benefit.

e⃗cost = (cdisk , ccpu, cmem) — e⃗benefit = (∆cdisk ,∆ccpu,∆cmem)

What we want: A model to predict execution time.

• We use a linear model with a learned weight vector θ⃗.

Time ≈ e⃗ · θ⃗

We learn two separate vectors for our two objectives:

• Creation Cost Time ≈ e⃗cost · θ⃗c
• Query Benefit Time ≈ e⃗benefit · θ⃗b

How to learn the optimal weights θ⃗c and θ⃗b?

15



From Encodings to Execution Time

What we have: Resource vectors for cost and benefit.

e⃗cost = (cdisk , ccpu, cmem) — e⃗benefit = (∆cdisk ,∆ccpu,∆cmem)

What we want: A model to predict execution time.

• We use a linear model with a learned weight vector θ⃗.

Time ≈ e⃗ · θ⃗

We learn two separate vectors for our two objectives:

• Creation Cost Time ≈ e⃗cost · θ⃗c
• Query Benefit Time ≈ e⃗benefit · θ⃗b

How to learn the optimal weights θ⃗c and θ⃗b?

15



From Encodings to Execution Time

What we have: Resource vectors for cost and benefit.

e⃗cost = (cdisk , ccpu, cmem) — e⃗benefit = (∆cdisk ,∆ccpu,∆cmem)

What we want: A model to predict execution time.

• We use a linear model with a learned weight vector θ⃗.

Time ≈ e⃗ · θ⃗

We learn two separate vectors for our two objectives:

• Creation Cost Time ≈ e⃗cost · θ⃗c
• Query Benefit Time ≈ e⃗benefit · θ⃗b

How to learn the optimal weights θ⃗c and θ⃗b?

15



From Encodings to Execution Time

What we have: Resource vectors for cost and benefit.

e⃗cost = (cdisk , ccpu, cmem) — e⃗benefit = (∆cdisk ,∆ccpu,∆cmem)

What we want: A model to predict execution time.

• We use a linear model with a learned weight vector θ⃗.

Time ≈ e⃗ · θ⃗

We learn two separate vectors for our two objectives:

• Creation Cost Time ≈ e⃗cost · θ⃗c
• Query Benefit Time ≈ e⃗benefit · θ⃗b

How to learn the optimal weights θ⃗c and θ⃗b?

15



What is optimal ?

We can minimize average error. Overestimation can reduce

database performance.

We want to trade-off prediction precision

and overestimations.

We propose to use Quantile Regression. It minimizes a loss where

overestimation has weight q − 1 and underestimation weight q.

We restrict θ⃗ to positive values ⇒ Linear Programming.

16



What is optimal ?

We can minimize average error. Overestimation can reduce

database performance. We want to trade-off prediction precision

and overestimations.

We propose to use Quantile Regression. It minimizes a loss where

overestimation has weight q − 1 and underestimation weight q.

We restrict θ⃗ to positive values ⇒ Linear Programming.

16



What is optimal ?

We can minimize average error. Overestimation can reduce

database performance. We want to trade-off prediction precision

and overestimations.

We propose to use Quantile Regression. It minimizes a loss where

overestimation has weight q − 1 and underestimation weight q.

We restrict θ⃗ to positive values ⇒ Linear Programming.

16



What is optimal ?

We can minimize average error. Overestimation can reduce

database performance. We want to trade-off prediction precision

and overestimations.

We propose to use Quantile Regression. It minimizes a loss where

overestimation has weight q − 1 and underestimation weight q.

We restrict θ⃗ to positive values ⇒ Linear Programming.

16



What is optimal ?

We can minimize average error. Overestimation can reduce

database performance. We want to trade-off prediction precision

and overestimations.

We propose to use Quantile Regression. It minimizes a loss where

overestimation has weight q − 1 and underestimation weight q.

We restrict θ⃗ to positive values ⇒ Linear Programming.

16



Results



Context

We have implemented a toy QHICS to recommend indexes on

Singlestore. It is limited to:

• =,<=,>=,<,>,RANGE condition predicates.

• AND,OR,NOT logical predicates.

• No grouping or ordering operators.

We use workloads over schema of TPC-H, using custom queries

containing:

• Point accesses,

• Random multi-column conditions queries.

• Queries with up to 2 joins.

We also used another schema (TPC-DS) to test transferability.

17



Context

We have implemented a toy QHICS to recommend indexes on

Singlestore. It is limited to:

• =,<=,>=,<,>,RANGE condition predicates.

• AND,OR,NOT logical predicates.

• No grouping or ordering operators.

We use workloads over schema of TPC-H, using custom queries

containing:

• Point accesses,

• Random multi-column conditions queries.

• Queries with up to 2 joins.

We also used another schema (TPC-DS) to test transferability.

17



Context

We have implemented a toy QHICS to recommend indexes on

Singlestore. It is limited to:

• =,<=,>=,<,>,RANGE condition predicates.

• AND,OR,NOT logical predicates.

• No grouping or ordering operators.

We use workloads over schema of TPC-H, using custom queries

containing:

• Point accesses,

• Random multi-column conditions queries.

• Queries with up to 2 joins.

We also used another schema (TPC-DS) to test transferability.

17



Results

Configuration Average error Ranking Underestimation

Lot 9% 97% 91%

Few 34% 92% 96%

None Don’t 81% Don’t

Table 1: Range of QHICS depending on the number of points

Quantile allows to mitigate the needs of a huge starting dataset,

and to fine tune over time.

18



Results

Configuration Average error Ranking Underestimation

Lot 9% 97% 91%

Few 34% 92% 96%

None Don’t 81% Don’t

Table 1: Range of QHICS depending on the number of points

Quantile allows to mitigate the needs of a huge starting dataset,

and to fine tune over time.

18



Conclusion

In this work we have proposed:

• Heuristics for the number of segments needed for a query.

• Hypothetical Index estimation for column-oriented storage.

• The first use of Quantile Regression for risk-gain trade-off in

WhatIf. Demonstrating that quantiles can be used to give

early estimations while the system is being tuned on runtime

information.

19



Appendix



Highly selective joins

Card=100,000

NDV(C)

= 10,000

A

(unfiltered)

Card=10,000

NDV(C)

= 50

B

(filtered)

▷◁
C

Once hash table on B is built:

• Without index, filter all A and probe H for each remaining

tuples.

• With index, probe A 50 times and filter matched tuples.

QHICS captures this in its JOIN processing algorithm.

19



Highly selective joins

Card=100,000

NDV(C)

= 10,000

A

(unfiltered)

Card=10,000

NDV(C)

= 50

B

(filtered)

▷◁
C

Once hash table on B is built:

• Without index, filter all A and probe H for each remaining

tuples.

• With index, probe A 50 times and filter matched tuples.

QHICS captures this in its JOIN processing algorithm.

19



Highly selective joins

Card=100,000

NDV(C)

= 10,000

A

(unfiltered)

Card=10,000

NDV(C)

= 50

B

(filtered)

▷◁
C

Once hash table on B is built:

• Without index, filter all A and probe H for each remaining

tuples.

• With index, probe A 50 times and filter matched tuples.

QHICS captures this in its JOIN processing algorithm.

19



Highly selective joins

Card=100,000

NDV(C)

= 10,000

A

(unfiltered)

Card=10,000

NDV(C)

= 50

B

(filtered)

▷◁
C

Once hash table on B is built:

• Without index, filter all A and probe H for each remaining

tuples.

• With index, probe A 50 times and filter matched tuples.

QHICS captures this in its JOIN processing algorithm.

19



Visual example

19



Syntax of QHICS - creatung an instance

1 db_wrapper = DbWrapper(...)

2 db_utilities = DbUtilities(db_wrapper)

3

4 whatif = Qhics(db_wrapper,db_utilities)

19



Syntax of QHICS - Workload

1 known_workload = [

2 "SELECT c_nationkey FROM CUSTOMER WHERE c_acctbal >

150",↪→

3 "SELECT o_orderstatus, o_totalprice, o_shippriority

FROM ORDERS WHERE o_orderdate >= '2004-02-04'",↪→

4 "SELECT l_shipinstruct FROM LINEITEM WHERE L_ORDERKEY

= 190209"↪→

5 ]

6 whatif.set_workload(known_workload)

7

8 whatif.create_encoder()

9 whatif.create_cost_model(fit=True)

19



Syntax of QHICS - Configuration

1

2 new_indexes =

[Index("CUSTOMER",["C_NATIONKEY"],["int"],"Hash")]↪→

3 whatif.add_to_configuration(new_indexes)

4 whatif.remove_from_configuration(new_indexes)

19



Syntax of QHICS - Estimating

1

2 candidate1 = Index("LINEITEM",["L_QUANTITY"],["decimal"])

3 candidate2 =

Index("LINEITEM",["L_LINENUMBER"],["integer"])↪→

4 whatif.estimate_benefit(candidate1)

5 whatif.estimate_benefit(candidate2)

19



Positive Quantile Regression

We only accept positive coefficient for quantile regression, as we

are modeling system costs. Hence, we need to write it as a Linear

Programming problem:

min
θ⃗, u⃗, v⃗

n∑
i=1

[q ui + (1− q) vi ]

s.t. yi − Xi θ⃗ = ui − vi ∀i
θj ≥ 0 ∀j
ui ≥ 0, vi ≥ 0 ∀i

19



Appendix - Heuristics



Notations

• Scomp(T .C ) is the compressed size of the column.

• Suncomp(T .C ) is the uncompressed size of the column.

• NT is the number of tuples of the table.

• fop is the time needed for one op.

• h is the hit factor.

• Soffset is the size of an offset in an inverted index.

• Nres is the number of resulting rows of a query.

• ndv(T .C ) is the number of distinct values of the column.

19



Creation Encoding

• cdisk :=Scompressed + seg× SIV

• ccpu:=Scompressed × cdecompress + (Ntuple + ndv)× cop

• cmem:=Suncompressed

• For multi-column indexes we sum uni-column costs.

19



Creation Encoding

• cdisk :=Scompressed + seg× SIV

• ccpu:=Scompressed × cdecompress + (Ntuple + ndv)× cop

• cmem:=Suncompressed

• For multi-column indexes we sum uni-column costs.

19



Creation Encoding

• cdisk :=Scompressed + seg× SIV

• ccpu:=Scompressed × cdecompress + (Ntuple + ndv)× cop

• cmem:=Suncompressed

• For multi-column indexes we sum uni-column costs.

19



Creation Encoding

• cdisk :=Scompressed + seg× SIV

• ccpu:=Scompressed × cdecompress + (Ntuple + ndv)× cop

• cmem:=Suncompressed

• For multi-column indexes we sum uni-column costs.

19



Gain encoding (Without Index)

For an index over T .C . If a scan reads h percentage of segments:

• Read cdisk :=h × Scomp(T .C ) on the disk.

• Store cmemh × Suncomp(T .C ) uncompressed data on the

memory.

• Scan and check value using c1cpu:=NT × h × (fcolscan + fop).

• Uncompress data using c2cpu:=Scomp(T .C )× h × fdec

19



Gain encoding (With Index) (1/3)

Assumptions:

• Inverted index are on disk, but a portion rmeta is cached in

memory,

• The global index is read in memory but this can be changed

easily with a fixed parameter,

• The database does not reverify that values have the one we

are searching for (we trust the index).

• Leveraging seekable encoding adds a sf seek factor to data

needed.

19



Gain encoding (With Index) (2/3)

For an index over T .C , for each condition over T .C .

• The Inverted Index is estimated to Siv :=N × Soffset .

• At each level of the Global Index, we need to read each

needed offsets: S1
global := logk(Nseg (T ))× ndv(T )× Soffset

• We need to read one offset per segments that contains the

searched value: S2
global :=ndv(T )× Nseg (T )× h × Soffset

19



Gain encoding (With Index) (3/3)

For an index over T .C , for each equality condition over T .C .

• Read inverted index using the disk c1disk :=(1− rmeta)Siv

• Read the remaining inverted index part using memory

c1mem:=rmeta × Siv

• Read the global index using memory c2mem:=Sglobal

• Read needed data using the disk c2disk :=sf
Nres
N(T ) × Scomp(T .C )

• Store all read data on memory c3mem:=
Nres
N(T ) × Suncomp(T .C )

• Use the CPU to probe hash index

c1cpu:=ndv× logk(Nseg (T ))× fop

• Use the CPU to decompress results

c2cpu:=Scomp(T .C )× Nres
N(T ) × fdec

19


	Background and motivation
	Hypothetical Index Benefit Estimation - Overview
	Workload Analysis
	Index Encoding
	Tuning QHICS
	Results
	Appendix
	Appendix - Heuristics

