
Enumerating answers of acyclic conjunctive queries
with self-joins (Report)

Clément Rouvroy
ENS Paris

rouvroy@phare.normalesup.org

May 2, 2025

Abstract

This work studies the enumeration of answers to conjunctive queries. Re-
search on this topic typically focuses on conjunctive queries without self-joins.
We want to work towards a dichotomy that allows us to know if a conjunctive
query with self-joins can be enumerated with optimal time guarantees: lin-
ear time before the first answer and constant delay between answers. In this
work, we have found a sufficient and necessary conditions. However, we have
examples that we can not classify and can lead to new work on the subject.

DISCLAIMER: This report is yet to be polished. It is composed of the work
I’ve made during summer 2024 at INRIA, supervised by Nofar Carmeli and David
Carral, and during the first semester 2024-2025 at ENS supervised by Luc Segoufin.

1 Introduction

Querying data efficiently is one of the main topics of database theory. One of the
most common ways of storing data is relational databases. For example, you can
have a database that represents a hospital’s patients’ files, treatments, surgeries,
and rooms. You can then query this database to get all the rooms of the patients
who have surgery in the next 24 hours to be sure not to feed them.

Many query languages exist, and many are expressive but may be too hard to
study. Hence, researchers often focus on a language called conjunctive queries which
is powerful enough to express many queries and simple enough to be studied and to
have some meaningful results.

Queries can have a number of results that is polynomial in the size of the input
database, hence we need to define what is an efficient query evaluation algorithm. If
we compute all results and then return all of them at once we cannot hope for a linear
time algorithm, hence we prefer to print the answers one by one and to measure the
delay between two prints. The best we can hope for is to begin with a linear time
computation (required to read the input) and then enumerate the answers with a
constant delay between them. This defines the complexity class CD ◦ Lin.

We have a dichotomy to decide whether a conjunctive query without self-join is
in CD ◦Lin [1]. From this dichotomy, we know that the two main difficulties in the

1

Clément Rouvroy

enumeration of a conjunctive query are cyclicity and projections. For conjunctive
queries with self-joins, we know that this dichotomy does not extend if the query is
cyclic [6]. That is, if a conjunctive query with self-joins is cyclic, it is not always
hard. We have found that the dichotomy does not extend to acyclic queries with
projections either. Hence, we want to make progress toward a dichotomy to decide
whether acyclic conjunctive queries with self-join are in CD ◦ Lin.

In this work, we focus on conjunctive queries with self-joins that only have
atoms of arity at most 2. This choice allows us to have a clear definition of the
structure whose presence might make the query hard, called a free-tree. We would
like to remove those structures and replace each of them with only one atom without
projections (of arity possibly more than 2), and we define patching as a way of doing
so. Using this idea of patching we find a sufficient condition. We have found two
necessary conditions, however, we also build queries that are not captured by any
of our conditions (neither sufficient nor necessary).

2 Preliminaries

A relational schema is a set of relation names with an arity for each of them. In this
work, we will always assume implicitly the existence of a relational schema σ. A
database D is a finite relational structure consisting of σ, a finite domain Dom(D),
and for each relational symbol R of σ of arity r, a subset RD of Dom(D)r. If y⃗ ∈ RD,
then R(y⃗) is called a fact of D. If y⃗ is a vector of variables and R is a relation name
of arity |y⃗|, then R(y⃗) is called an atom.

A conjunctive query (CQ) is an expression of the form q(x⃗)← ∃z⃗.ψ(x⃗, z⃗) where
ψ is called the body of the query and is a conjunction of atoms using variables in
x⃗, z⃗, i.e. ψ(x⃗, z⃗) =

∧k
i=1Ri(y⃗i). If q(x⃗) has for body ψ, we often write Ri(y⃗i) ∈ q

which means that Ri(y⃗i) is in the conjunction that defines ψ. The variables in x⃗
(resp. z⃗) are free (resp. quantified). In a CQ, all free variables should appear in at
least one atom. We use Vars(q) to denote x⃗, z⃗ and Free(q) to denote x⃗. Often we
see these vectors as a set and write x ∈ x⃗ which means ∃i.x⃗i = x. A query q is said
to be full (resp. boolean) if z⃗ = ∅ (resp. x⃗ = ∅). From now on, we will always use
x1, x2, x3, . . . for free variables and z1, z2, z3, . . . for quantified variables.

An assignment for a query q over a database D is a function µ : Vars(q) →
dom(D) s.t. for every R(y⃗) ∈ q, R(µ(y⃗)) is a fact of D. A solution to a CQ q
is a µ : Free(q) → D such that there exists an assignment µ′ for q over D s.t.
µ′|Free(q) = µ. The evaluation of a CQ q over a database D, denoted q(D) consists
of returning all solutions of q over D. The enumeration of a CQ q over D consists
of printing all solutions in q(D) one by one without repetition.

A homomorphism from q(x⃗) to q′(x⃗′) is a function h : Vars(q) → Vars(q′) such
that for all atoms R(y⃗i) ∈ q, there exists an atom R(y⃗i

′) ∈ q′ with h(y⃗i) = y⃗i
′.

Let h : Vars(q) → Vars(q), if h is a homomorphism from q to q, then it is an
endomorphism.

Queries have an associated hypergraph. This hypergraph has the variables for
vertices and for each atom R(x⃗) there is a hyperedge of set {y ∈ Vars(q) | y ∈ x⃗}.
We color hyperedges with one color for each atom. Hyperedges of similar colors
mean that they are using the same relation symbol.

2

Clément Rouvroy

x1 x2

z1 z2

Figure 1: q(x1, x2)← ∃z1, z2.R(x1, z1), R(z1, z2), T (x1, x2, z1, z2)

See Fig. 1 for an example of a hypergraph associated to a query. Note that in
this representation we lose the order in the atom. We only use this representation
when we are speaking of cyclicity. When we want to draw queries to find solutions
to them, we do not use this representation but an oriented hypergraph, just as in
Fig. 4. A CQ is acyclic if its associated hypergraph is α-acyclic, otherwise it is
cyclic. A CQ q is free-connex if its hypergraph is α-acyclic when we add to it a
hyperedge that contains all free variables.

A path in a hypergraph is a finite sequence of vertices u1, . . . , uk such that for
each 1 ≤ i ≤ k − 1, ui and ui+1 are neighbors. Two vertices (u, v) are neighbours if
there exists a hyperedge h such that {u; v} ⊆ h. A free-path in a CQ q is a chordless
path in the hypergraph of the query that only uses quantified variables except for
the endpoints that are free, i.e. (x1, z1, . . . , zn, x2) with n ≥ 1. A CQ has a self-join
if it has two atoms that use the same relational symbol.

We are using the RAM model for all computations and complexity results. When
we study problems on a query we can either look at their complexities regarding q
and D (combined complexity) or only D (data complexity): all this work is placed in
data complexity. We have q ∈ Enum(f, g) if there is an algorithm that enumerates
all solutions of q with an O(g(|D|)) delay after an O(f(|D|)) time precomputation.
Note that Enum is a complexity class that takes in consideration the number of
solutions, but not just by asking a total running time of O(f(|input|)+g(|solution|)),
it also implies that we start by using O(f(|input|)) time, and then we will print every
O(g(|input|)). That is a better complexity class because in the case where g = o(f),
we can only do smaller computations between answers once we have started to
enumerate. Hence, Enum is more suitable if we look at complexity because we can
classify problems that may take time to have a first answer but then print the other
with a smaller delay.

For example, q ∈ Enum(Linear,Constant), also written q ∈ CD ◦ Lin, with

Linear :

{
N→ N
n 7→ n

and Constant :

{
N→ N
n 7→ 1

means that we are able for any

database D, after an O(|D|) computation, to enumerates all the solutions of q(D)
with an O(1) delay between each answer and without repeting of solutions.

A common linear pre-computation is the removal of dangling tuples (atoms that
are not used in any solutions). This can be done in linear time on acyclic queries
according to [2].

Lemma 2.1 (Cheater’s lemma [6]). Let q be a CQ. There is an equivalence between:

• q is in CD ◦ Lin

• There is an algorithm that enumerates all solutions of q with constant delay,

3

Clément Rouvroy

q1 x1 z x2 q2 x1 z x2

x3 x3

R1

R2

R3 R1

R1

R3

Figure 2: (R) An easy acyclic not free-connex CQ with self-join, and (L) its associ-
ated join-free CQ

except a constant number of times where the delay is linear. This algorithm
can print with duplicates, but there is a constant c such that no solutions is
outputed more than c times.

We will often use three complexity hypotheses:

• sBMM: Given two boolean matrices A,B represented by the list of their non-
zero entries, one can not compute AB in O(m) with m being the number of 1
in the matrices A, B and AB.

• sHyperclique: For all k ≥ 3, it is not possible to determine the existence of
a k-hyperclique in a (k − 1)-uniform hypergraph with m hyperedges in time
O(m).

• VUTD: for any α ∈]0; 1], given a tripartie graph V1, V2, V3 such that |V1| =
n,|V2| = |V3| = O(nα), one can not detect if there is a triangle in V1, V2, V3 in
time O(n1+α).

Theorem 2.2 ([1], [4]). Assuming sBMM and sHyperclique we have that a CQ
without self-join is in CD ◦ Lin if and only if it is acyclic free-connex.

This work will focus on a classification for the class CD ◦ Lin for acyclic query
with self-joins. Hence, in this work, a query is easy, if it is in this class and hard
otherwise.

3 Proving easiness

3.1 An easy non-free-connex CQ

Query q2 of Fig. 2 is an example that shows that self-joins affect the known di-
chotomy for conjunctive queries without self-joins. We can see that q1 is hard using
Theorem 2.2 because it has no self-join and is acyclic but not free-connex. However,
q2 has a self-join, so we can not come to the same conclusion. We have that:

Lemma 3.1. q2 has a free-path, but it is in CD ◦ Lin.

Proof. Consider the query q′2(x1, x2, x3) ← R(x1, x3), R(x3, x2) that is the same as
q2 but z has been replaced by x3. One can verify easily that those claims hold:

• q′2 is in CD ◦ Lin, thanks to proposition 3 of [5].

• For any solutions (a1, a2, a3) ∈ q′2(D), (a1, a2, a3) ∈ q2(D).

4

Clément Rouvroy

x3z5

x1 z1 z2 x2 x5

z6

z7 x6

z3z4 x4

Figure 3: Example of a query with two free-trees. Remember that xi are free and
zi are quantified.

• For any (a1, a2) solution of the free-path x1, z, x2 in q2, there exists a′ such
that (a1, a

′, a2) is a solution to q′2(D).

Combining all these claims, one can derive an algorithm that starts by doing
the linear pre-computations to enumerate q′2, then enumerate it with a constant
delay. For each answer (a1, a2, a3) of q′2(D), the algorithm keep in memory (a1, a2)
and prints (a1, a2, a3) (hence it prints with constant delay). Once the algorithm has
finished to enumerate q′2(D), it enumerates all the (a1, a2) that it kept in memory
and for all R(a1, a3) ∈ D, it prints (a1, a2, a3) ∈ q2(D). The whole algorithm and
proof can be found in appendix Lemma .1.

According to Lemma 3.1, q2 is an acyclic not free-connex CQ with self-join that
is in CD ◦ Lin.

3.2 What is hard in a query with self-join ?

According to Theorem 2.2, an acylic conjunctive query without self-join can only
be hard because it has a free-path. Lemma 3.1 demonstrates that free-path can be
overcome for queries with self-joins. Hence, we need a new hard structure to study:
we have found free-trees, that are motivated by Proposition 3.8.

Let q and q′ be two CQs, q′ is a subquery of q if all atoms of q′ are in q. Let
q′ be a subquery of q, q′ is maximal for some property P if it is maximal for the
inclusion of atoms over all subquery of q that satisfies P .

Definition 3.2 (Binary-atoms). A CQ is binary-atoms if every atom in it is of
arity ≤ 2.

Definition 3.3 (Free-tree). Let q be an acyclic CQ, a free-tree is a subquery of q
obtained in such a way:

• Take S, a maximal set of connected quantified variables.

• If there are at least two free variables that are connected to S, then it is associ-
ated with a free-tree which is the maximal subquery of q that uses only variables
in S and free variables connected to S by an atom.

One can find two examples of free-trees on Fig. 3. The main intuition behind free-
trees is that two free-trees T1 ̸= T2 of a CQ q do not share any quantified variables

5

Clément Rouvroy

compared to a free-path. Hence, if we have all the informations needed to enumerate
the free-trees of a query q, it might be easier to concatenate all these informations
into an algorithm. This intuition can be formalized into Proposition 3.8, that will
need some definitions.

Definition 3.4 (Query restricted to a subquery). Let q be a conjunctive query, and
q′ a subquery of q. q|q′ denotes the query q where every variables are quantified,
except those free in q′.

Lemma 3.5 (Extension of restricted solution). Let q be an acyclic conjunctive
query, and q′ be the restriction of q to T a free-tree. If dangling tuples have been
removed of the database, then for each solution µ′ of q′, one can find in O(1) time
a solution µ of q such that µ|Free(q′) = µ′.

Proof Sketch. Let dT : Vars(q) → N denotes the distance from a variable v to
T in the hypergraph associated to q. One can proof by induction P (n): “If all
variables with dT (v) < n has received a value in µ, then all variables with dT
equals n can receive a value in O(1) by looking at the only neighbors they have
in {v ∈ Vars(Q) | dT (v) < n}.”, where the unicity of the neighbor comes from the
acylicity of q. This induction holds because dangling tuples are removed from the
database, hence if we have a partial solution it can always be completed to a full
solution of q.

Corollary 3.6 (Enumeration of restricted solution). Let q be an acyclic conjunctive
query, and q′ be the restriction of q to T a free-tree. If dangling tuples have been
removed of the database and one can enumerate q′ in CD ◦ Lin, then it can be done
before an algorithm that enumerates q in CD◦Lin without changing its complexity.

Proof. One can enumerate q′ in CD◦Lin and print a unique solution of q every time
using Lemma 3.5. We conclude using Cheater’s Lemma 2.1.

This corollary motivates the following definition, which will be useful when we will
have one algorithm per free-tree :

Definition 3.7 (CD ◦ Linq). Let q, q′ be two conjunctive queries. We say that
q′ ∈ CD ◦ Linq if there is an algorithm in CD ◦ Lin that enumerates all solutions
of q′ but sometimes enumerate some solutions of q (it resets the delay and also is
without duplicates).

Looking at Corollary 3.6, one could use algorithms to enumerate the free-trees solu-
tions and store them before printing all solutions of the original query. This is the
idea of the following proof.

Proposition 3.8 (Tracting query from free-trees). Let q be a binary-atom, acyclic,
conjunctive queries with self-joins that has free-trees T1, . . . , Tk. If q|T1

, . . . , q|Tk
are

in CD ◦ Linq, then q is in CD ◦ Lin.

Proof. Let T1, . . . , Tk be the free-trees of q and let A1, . . . , Ak be the algorithms that
enumerates q|T1

, . . . , q|Tk
in CD ◦ Linq.

One can execute A1, . . . ,Ak to build k fresh relation names RT1 , . . . , RTk
of arity

|Free(T1)|, . . . , |Free(Tk)| and fill them with facts that are exactly the solutions of

6

Clément Rouvroy

Algorithm 1 Enumerate(q,D)

1: Removing dangling tuples of D
2: RT1 , . . . , RTk

← Atoms for T1, . . . , Tk using A1, . . . ,A1

3: q′ ← copy of q
4: for 1 ≤ i ≤ k do
5: for R(y⃗) ∈ Ti do
6: Remove R(y⃗) from q′

7: end for
8: Add RTi(Free(Ti)) to q′

9: end for
10: Do precomputation for enumerating q′

11: Enumerate q′

T1, . . . , Tk that can be extended to a solution of q. This can be done with respect
to CD ◦ Lin because we apply k = O(1) times a CD ◦ Lin algorithm according to
Corollary 3.6 (this algorithm will have at most 2k duplicates of solution of q). From
the correctness of this construction, q has the same solutions as the query q′ that is
the same as q, but where we removed every atom of the free-trees to replace them
with RT1 , . . . , RTk

.
This CQ q′ is acyclic: if it has a cycle v1, . . . , vk that uses edges e1, . . . , ek, at

least one edge corresponds to an RTi (otherwise the cycle is in q), but we can replace
this edge by many atoms that were initially in Ti. Using this process we build a
cycle for q which is supposed to be acyclic, by contradiction q′ is acyclic.

q′ is also free-connex: no free-path can use an RTi as an edge because they are
only on free variables, hence if it has a free-path, q has the same free-path, but then
it is part of a free-tree and has been removed to be part of an RTi . Hence, q′ is
acyclic free-connex and so is in CD ◦ Lin according to Theorem 2.2. Then we can
use Algorithm 1 to enumerate q.

Algorithm 1 is sound assuming that RTi has been built correctly,but Ai are
supposed to be sound and complete. We need to prove that Algorithm 1 is complete.
Suppose that the algorithm misses a solution µ of q, then it can only be because
there is at least one i such that µ|Ti

is not in RTi , but this is a solution of Ti that
can be extended to a solution of q and, by hypothesis, Ai is complete, then it should
be in RTi . Hence, the algorithm is complete.

For time complexity, there are three parts:

• On line 1, the algorithm takes O(|D|) time to remove the dangling tuples
according to [2].

• On line 2, the algorithm does k calls to algorithms that are constant delay.
Combining a constant number of constant delay algorithms is still a constant
delay algorithm, so this first step is a constant delay algorithm as k = O(q) =
O(1).

• The for loop of lines 3 to 8 iterates through k = O(1) free-trees and for each
i it iterates through each atom of Ti (O(1)) to do an O(1) time computation,

7

Clément Rouvroy

it finally does an O(1) time computation, hence we have O(|q|2 + |q|) = O(1)
time for this whole loop. The pre-computation to enumerate q is linear for
|D| and the number of solutions printed until there (because we have added
atoms to the database) according to [3]. The enumeration is with O(1) delay
according to [3]. Hence, the three last steps witness a constant delay algorithm
for q that will enumerate all solutions of q over D.

Finally, using cheater’s Lemma 2.1, we have a CD ◦ Lin algorithm for q.

Corollary 3.9 (Enumeration with built relations). In the proposition Proposi-
tion 3.8, one can replace having algorithms A1, . . . , Ak by having direct access to
R1, . . . , Rk, built in the proof.

Note that this proposition may not extend to free-pathes, in section 4 we have
an open-example where all free-pathes are easy to enumerate but we don’t know if
q is easy. On example Fig. 2, q2 has one free-tree (x1, z, x2) that is its only free-tree.
The query q′2 defined in the proof of Lemma 3.1 allows to enumerate q|(x1,z,x2) and
so q2 was easy. This proposition motivates the search for a way to enumerate the
solutions of q|T , our solutions is presented in the next subsection.

3.3 Preimages and patching

Given a conjunctive query q, we need a set of queries to try to enumerate the
differents qT , motivated by Proposition 3.8. In this section we present the set that
we have found to be the most interesting, especially thanks to Lemma 3.11.

Definition 3.10 (Preimage query). Consider some endomorphism h for a CQ q.
Then, let Ph(q) be the CQ that has:

• An atom R(h(x⃗)) for every atom R(x⃗) in q

• Free variables {y ∈ Vars(h(q)) | ∃x ∈ Free(q).h(x) = y}.

If we enumerate solutions of a preimage of a CQ q, for each of them we can print
a unique solution to q, which is useful to have a CD ◦ Lin algorithm as we will have
no repetition in the solutions.

Lemma 3.11 (Prehomomorphism lemma). Let q be a binary-atom acyclic CQ. Let
h be an endomorphism of q, if µh is a solution to Ph(q), then µh ◦ h is a solution to
q. Moreover, if µ1h ̸= µ2h, then µ1h ◦ h ̸= µ2h ◦ h.

Proof. Let µh be a solution of Ph(q), it is associated to ηh an assignment of Ph(q)
such that ηh|Free(Ph(q))

= µh. Let x be a free variable of q, by definition of a preimage
we have h(x) ∈ Free(Ph(q)), so (ηh ◦ h)|Free(q) is a solution of q and it is a solution
that only uses ηh over h(Free(q)) = Free(Ph(q)), hence µh ◦ h is a solution to q.

Moreover, let y ∈ Free(Ph(q)). As y is free in Ph(q), there exists x ∈ Free(q)
such that h(x) = y, hence (µh ◦ h)(x) = µh(y), i.e. the value of y propagate to the
solution of q. Then, for two different solutions of Ph(q), there is at least one y that
has a different value in each solution, hence the solution associated is different.

8

Clément Rouvroy

This lemma is useful because we are looking for CD ◦ Lin enumeration and
thanks to this theorem, we can only loop on solution vectors of preimages. We will
use preimage query to patch free-trees, however sometimes a preimage can contain
too much information to patch a free-tree (as will be seen in Fig. 5, a bit after).
Hence, we need a way to remove some non-essential information of a preimage query,
as we only need the part corresponding to the free-tree:

Definition 3.12 (Deactivated query). Let q be a CQ. A deactivated query q′ of q
is a query with the same body as q but with Free(q′) ⊆ Free(q).

We need to be prudent with deactivated query because the motivation of preim-
age query was Lemma 3.11. Fortunately, the following lemma can be composed with
Lemma 3.11 to have the same benefits:

Lemma 3.13 (Deativated preimage query). Let q be an acyclic CQ. Let h be an
endomorphism of q, let p := Ph(q) and let p̃ be a deactivation of p. Then every
solution µ̃ of p̃ can be extended in O(1) to a solution µ of p if dangling tuples have
been removed. Moreover, if µ̃1 ̸= µ̃2, then µ1 ̸= µ2.

Proof Sketch. Suppose that µ̃ corresponds to x1, . . . , xk and that we have deactivate
xk+1, . . . , xp. For each i ∈ J1; p−kK, one can search for a j such that the distance in
the join-tree between xj and xi is minimal, then one can do a DFS from the entry
µ̃(xj) of xj to one entry of xi in the join-tree. This gives a solution µ of p.

If µ̃1 ̸= µ̃2, as extended solutions µ1 and µ2 verify µ̃1 = µ1 and µ̃2 = µ2 on
Jx1;xkK ̸= ∅ , µ1 ̸= µ2.

Definition 3.14 (Patched free-tree). Let q be a binary-atom acyclic CQ. Let q1, q2
be two preimages of q and let T2 be a free-tree of q2. T2 is patched by q1 if q1 has a
subquery T1 such that:

1. There is a homomorphism h from q1 to q2 such that h|T1
is an isomorphism

from T1 to T2

2. Every free variables of T2 is the image of a free variable of T1.

3. q1 is in CD ◦ Linq, or q1 has a deactivated query q′1 that does not change the
free variables of T1 that is in CD ◦ Linq.

We will often say that a deactivated preimage q′1 is patching q2, which means that
there exists a preimage q1 that uses q′1 to patch q2. Motivated by Proposition 3.8,
we will prove the following property:

Proposition 3.15 (Patched by a preimage). Let q be an acyclic binary-atom CQ
that has two preimages q1 and q2. Let q̃1 a deactivation of q1 that is in CD◦Linq. If
q2 has a free-tree T2 patched by q̃1, then one can save q|T2

(D) before doing a CD◦Lin
algorithm for q and still have a CD ◦ Lin algorithm for q.

Proof. We can enumerate q̃1 to get all solutions of the subquery T1 of q̃1 used to
patch q2. While enumerating T1(D), as every free variable of T2 is the image of at
least one free variable in T1, we will go through each solution of T2. We can add all
these solutions to D under a fresh relation name. This strategy gives Algorithm 2.

9

Clément Rouvroy

Algorithm 2 Edit(q, q1, q2, T2, T1, D)

1: RT1 ← ∅
2: Do pre-computations for Aq̃1(D)
3: for a⃗ ∈ Aq̃1(D) do
4: if a⃗ is a solution from q then
5: print a⃗ and get to next loop iteration.
6: end if
7: print a solution to q using Lemma 3.11 and Lemma 3.13
8: b⃗← solution of T1 associated to a⃗
9: if b⃗ gives a solution to T2 then

10: c⃗← solution of T2 associated to b⃗
11: if RT1(c⃗) /∈ D then
12: RT2 .add(c⃗)
13: end if
14: end if
15: end for
16: return RT1

This algorithm is sound: we will iterate through each solution in q̃1(D) (because
it is in CD ◦ Linq). Then, the variable b⃗ will go through all values of T1 that were
part of a solution of q̃1, and c⃗ will go through all solutions to T2 that is the image
of a solution of T1 that can be extended to a solution of q̃1: To get c⃗ just use
the isomorphism between T1 and T2, we have access to all needed values because by
definition of deactivation, we do not deactivate variables used to patch free variables.

This algorithm is complete: let µ2 be a solution of q2, it is the image of a solution
µ̃1 of q̃1, hence µ̃1↾T1

will have for image µ2↾T2
.

For time complexity, we take initialize an empty list (O(1)), and then we do line
3. Line 3 will use a CD ◦ Linq algorithm, hence the body of the loop of line 3 will
alway print either directly a solution of q and wait for the next iteration, or the
image of a solution of q associated to q̃1.

Then the for-loop of line 3 is iterated with O(1) delay (and a constant time with
a linear delay) and the body of the loop consists only of O(1) operations because to
get solutions of T1 (resp. T2) given a solution of q̃1 (resp. T1) you only need to take
some values in the given solution which is of length O(|q|) = O(1).

Hence, the algorithm will iterate through each solution of q̃1, print a unique so-
lution of q each time (unique according to Lemma 3.11 combined with Lemma 3.13)
except a constant number of times, and will edit D in the same time.

At the end, the algorithm does a constant number of linear computations, prints
solutions of q with constant delay after this linear pre-processing, and end return
the edited RT1 .

Consider the query q and two of its preimages as in Fig. 4. One can use Pi(q) to
patch Ph(q) and then can use Ph(q) to patch q. Here there is no use of deactivation,
however, sometimes it is needed, as depicted in Fig. 5. The proof that the CQ in
Fig. 5 is in CD ◦ Lin is in Lemma .2.

10

Clément Rouvroy

q : x1 z1 z2 x2 x3

Ph(q) : x1 z1 x3 x2

Pi(q) x1 x2 x3

i

h

i

Figure 4: A query and two of its preimages. Remember that xi are free and zi are
quantified.

x5 x3

x4 z2

x1

z1

x2

Figure 5: An easy query that needs deactivation. Dashed, dotted, and plain arrows
denote three different relation symbols for atoms.

3.4 Sufficient condition based on preimage and free-trees

Now that we have Proposition 3.8 and Proposition 3.15, we would like to combine
them to use preimages of a query to enumerate it with respect to CD ◦ Lin.

Definition 3.16 (Fully-patched query). Let q be a binary-atom acyclic CQ, q is
fully-patched if every free-tree of q has been patched.

Theorem 3.17 (Patching sufficient condition). Let q be a binary-atom acyclic CQ.
If q is fully-patched, then q ∈ CD ◦ Lin.

Proof. Let p be a preimage of q, and we denote Ψ(p) the set of all deactivated
preimages sets that fully-patch p. Let φ a function from the deactivated preimages
of q to N such that for p a deactivated preimage of q,

φ(p) =

0 if p is acyclic free-connex
minS∈Ψ(p)(maxp′∈Sφ(p′)) + 1 if it is fully-patched
−∞ otherwise

11

Clément Rouvroy

One can prove by induction over N that P (n): “For all k ≤ n, each deactivated
preimage p such that 0 ≤ φ(p) ≤ n has a CD ◦Linq algorithm” is true (proof of this
property is in appendix Lemma .3). Once we know that P holds, if q is fully-patched
then φ(q) < +∞, then q has a CD ◦ Linq algorithm, i.e. q is in CD ◦ Lin.

4 Proving hardness

To prove the hardness of CQs we need to make lower-bound assumptions. We
will use two assumptions in this work, each comes with its necessary conditions
that capture different cases. However, we still have open cases that need a clever
approach, as we will see in the last part of this section.

4.1 BMM-Hard

The BMM hypothesis states that we cannot have an algorithm that, given two
boolean n × n matrices A and B, return A × B in O(n2) time. We will use the
tagging technique presented in [5] to encode boolean matrix multiplication in many
queries with self-join, this is the same idea as in [1] but this time for query with
self-joins.

Definition 4.1 (Free variable disabled by R). Let q be an acyclic conjunctive query
with atoms of arity at most 2. Let R be a relational symbol of arity one used in an
atom of q and let F be a free-path of q. We say that x ∈ Free(q)\Vars(F) is disabled
by R on F if:

• ∀y ∈ Vars(F).R(y) /∈ q,

• R(x) ∈ q.

Let D(R,F) be the set of variables disabled by R on F .

The idea is that a variable disabled by R will not give spurious solutions because
we can build a database where R = {⊥}. As R does not appear on the free-path, it
is not a problem to fix it to be {⊥}.

Definition 4.2 (Unmapped to a free-path). Let q be a CQ, and let F be a free-path.
Let y /∈ Vars(F) be a variable of q, it is unmapped to F if ∀h ∈ Endo(q), h(y) /∈
Vars(F).

A variable y of q is unmapped to a free-path F if y is never mapped to it through
any homomorphism.

Definition 4.3 (BMM-Hard). Let q be an acyclic CQ. It is BMM-Hard if q ∈
CD ◦ Lin breaks the BMM hypothesis.

Before giving and proving the condition, we need one lemma:

Lemma 4.4. Let q be an acyclic binary-atom CQ that we want to enumerate over
D. Let q′ and D′ be the query and the database resulting from a tagging technique
on q over D. Then, for every solution µ of q′(D′), the tagging map induced by µ is
an automorphism of q.

12

Clément Rouvroy

q1 : x1 z1 z2 x2

q2 : x1 z1 z2 x2

x3

M1 = M2

M1 =

⊥

M2

Figure 6: Two examples of BMM-hard queries. Dashed arrows are atoms of another
relational symbol. Label on edges indicates the role in encoding BMM of the edge
(through tagging technique).

x1 z x3

x2

Figure 7: A CQ that is VUTD-Hard but not BMM-Hard

Proposition 4.5. Let q be an acyclic conjunctive query with an atom of arity at
most 2. If there exists a free-path F such that ∀x /∈ Vars(F), ∃R.x ∈ D(R,F) or x
is unmapped to F , q is BMM-Hard.

Proof Sketch. Let M1 and M2 be two boolean matrices. Let F := x1, z1, . . . , zn, x2,
the idea is to encode the product on F and to ensure that all other free variables
can only be ⊥ in all solutions. This can be done because free variables outside
of the free-path are either in a D(R,F), hence they can be set to ⊥, or they are
unmapped on F . If x is unmapped of F and receives a value tagged by a variable
in F , then there is a homomorphism of q that maps x to a variable in F according
to Lemma 4.4: impossible. The full proof is available in Proposition .4.

Proposition 4.5 allows to capture a lot of CQs. For an example of application
one can look at the two queries in Fig. 6, the meaning of each atom is printed on
the edges (the meaning is what we intend it to encode in the tagging technique).

4.2 VUTD-Hard

The Vertex Unbalanced Triangle Detection is, for any α ∈ [0; 1], given a tripartie
graph V1, V2, V3 such that |V2| = n,|V1| = |V3| = O(nα), to detect if there is a
triangle in it. The hypothesis is that it cannot be done in O(n1+α) time.

Definition 4.6 (VUTD-Hard). Let q be an acyclic CQ. It is VUTD-Hard if q ∈
CD ◦ Lin breaks the VUTD hypothesis.

13

Clément Rouvroy

x1

qk :
... z1 z2 x0

xk

Figure 8: An in-between family of CQs

Some hard CQs do not seem to be BMM-Hard but are VUTD-Hard, an example
is given in Fig. 7 (and the proof that it is hard is the core of this subsection).

Proposition 4.7. Let q be an acyclic binary-atom CQ. If there is a quantified
variable z on a free-path that is not the image of a free-variable in any body-
homomorphism of q, then q is VUTD-hard.

Proof Sketch. Let q be an acyclic binary-atom CQ. Let ζ a quantified variable that
is the image of no free variable of q for any automorphism of q, i.e. ∀h : q → q,∀x ∈
Free(q), h(x) ̸= ζ.

Let T be the free-tree associated to ζ (it exists because there is a free-path). Fix
x1 − ...− ζ − ...− x2 one free-path in T that goes through ζ.

The idea is to do an encoding that will tag elements of V2 only with ζ. Hence,
if another free variable receives a value of V2, from Lemma 4.4, there is a homo-
morphism of q that maps a free variable to ζ: impossible. The complete proof and
encoding is available on Proposition .5

In Fig. 7, the quantified variable z is the image of no free variable and then the
query is not in CD ◦ Lin according to Proposition 4.7.

4.3 Clique-based hardness

The two previous hardness techniques allow to classify many queries, but some
queries seems not be classifiable using only those two. An example is (L) Fig. 8 for
k = 2, BMM-hardness may not apply because we can not isolate a free-path, and
VUTD-hardness may not work because x0 can be mapped to z1 and x1 (or x2) can
be mapped to z2.

To tackle the family of Fig. 8, we will work with k-clique, but this will work only
for k ≤ 3. From [7], we know that:

Theorem 4.8. Let k = 3l + i ((k, i) ∈ N × {0, 1, 2}), and ω is the optimal bound
for matrix multiplication (2 ≤ ω < 2.38). Let G be a graph with n nodes, we can
check if G has a k-clique in O(nωl+i).

In particular, for k = 5 the bound is O(nω+2) so if we manage to solve the
5-clique problem in O(n4) using that a query q is in CD ◦ Lin, it is likely that
q /∈ CD ◦ Lin. More generally, we do the following hypotheses:

14

Clément Rouvroy

Definition 4.9 (k-clique hypothesis for k ≤ 5). Let k ∈ {1, 2, 3, 4, 5}, there is no
algorithm that detects a k-clique in O(nk−1).

This is suitable for this lemma:

Lemma 4.10. The k-star query is a query like q(x1, . . . , xk)← R1(x1, z) . . . , Rk(xk, z)
.Let n = |dom(D)|.Assuming k-clique hypothesis for k ≤ 5, no algorithm can answer
q(D) for q a k-star query in O(|Dom(D)|k) for k ≤ 4.

Proof. Let k ≤ 4, let q be the k-star query. Suppose that there is an algorithm
A(q,D) that returns q(D) in O(|Dom(D)|k) for any D. Let G = (V,E) be a graph
of size n. Set Dom(D) = V and R = E. For every solution (a1, . . . , ak) ∈ q(D)
one can check that ∀(i, j) ∈ J1; kK2.i ̸= j ⇒ (ai, aj) ∈ E holds in O(k2) = O(1).
Hence we have a O(|Dom(D)|k) = O(nk) algorithm to detect a (k + 1)-clique:
impossible.

Now, we can reduce k-star queries to some queries depicted in Fig. 8:

Lemma 4.11. For k ≤ 3, qk depicted in Fig. 8 is hard.

Proof. Consider a k + 1-star q and a database D. Construct D′ that has only one
relation R that contains:

• ∀R1(u, v).R(⟨x1, u⟩, ⟨z1, v⟩) and R(⟨z2, v⟩, ⟨z1, v⟩),

• ∀i ∈ J2; kK.∀Ri(u, v).R(⟨xi, u⟩, ⟨z1, v⟩)

• ∀Rk+1(u, v).R(⟨z2, v⟩, ⟨x0, u⟩)

A solution over this construction is a solution to the original query iff the tagging
map is the identity on the free variable, and checking this is O(1) time. We have
O(nk+1) solutions (as can be verified with a case distinction) so we can do the
filtering for each solution to check if there is at least one k-star solution.

From Lemma 4.11, we know that the queries in Fig. 8 are hard for k ≤ 3, but
we do not know for larger k yet. The only result we have yet is when the degree of
the database satisfies some properties (see appendix, Proposition .11).

4.4 The need for lower-bound based on the delay

In all previous examples, we never really used enumeration as a structure that gives
answers with a delay to prove hardness, we only use enumeration with a short delay
to get all the answers to a query and then use the fact that we have all the answers
to come to a problem. The section motivates the use of a (still to be determined)
new hypothesis based on the delay and not the total time.

Consider the query q1 depicted in Fig. 9 and q2 the same query but without x3.
We don’t know if q1 is easy or hard, but we know that q2 is BMM-Hard.

Lemma 4.12. Let D be a database. We can answer q1(D) in O(|Dom(D)|3).

15

Clément Rouvroy

x1 z1 z2 x2

x3

Figure 9: Motivating example. Formally, a CQ can not have a free variable that
has no atom that uses it, but as we are dealing with self-joins, we can just add one
unary atom to every variable with a fresh relation symbol that we fill with the active
domain.

Algorithm 3 Enumerate(q1, D)
1: Build the join-tree associated to q1(D)
2: Solve (← x1 → .→ x2)(D) using BMM in O(nω), let L be all the results.
3: S ← ∅
4: for (a, b) ∈ L do
5: for c ∈ Dom(D) do
6: if R(b, c) ∈ D then S.insert((a, c))
7: end if
8: end for
9: end for

10: return S

Proof. Consider Algorithm 3. From the join-tree one can build two |Dom(D)| ×
|Dom(D)| matrices that represent the first and the second arrow. Put a 0 in (i, j)
if there is no R(i, j) and 1 otherwise. The product of these two matrices will give
exactly

{
(a, c) ∈ Dom(D)2 | ∃b ∈ Dom(D).a→ b→ c

}
. This is what line 2 is doing,

this process takes the time for the creation of the two matrices, O(|Dom(D)|2), and
the time to compute the product, O(|Dom(D)|ω). The sum of these steps fits in
O(|Dom(D)|)3 time.

Then the loop iterates throughO(|Dom(D)|2) elements and then through |Dom(D)|
elements to perform a O(1) time operation (as we have constructed a matrix that
indicates if R(i, j) ∈ D for all (i, j) ∈ Dom(D)2 it is easy to check if R(b, c) ∈ D).

Hence a hardness proof that enumerates q1 and stores all solutions, and then
uses that it has all the solutions need to be clever enough to have strictly less than
O(n3) total solutions. Otherwise, we need a contradiction that uses the fact that we
enumerate the solutions with a constant delay. A problem that may (or may not)
be easier is the following:

Definition 4.13 (Dom-linear enumeration). We say that a CQ q is in DomLin ◦
Lin if there is an algorithm that, after a pre-computation that takes O(|D|) times,
enumerate all the solutions of q in O(|Dom(D)|).

This problem is related to CD◦Lin enumeration because of the following lemma:

Lemma 4.14 (Link between CD ◦ Lin and DomLin ◦ Lin). q1 ∈ CD ◦ Lin ⇔ q2 ∈
DomLin ◦ Lin.

16

Clément Rouvroy

Proof Sketch. q1 is q2 but with an extra free variable that allows us to repeat ev-
ery solution of q2 at maximum O(|Dom(D)|) times. We can use this fact in both
directions to build a reduction. The complete proof is available in Lemma .6

5 Conclusion

In this work, we defined free-trees as a structure that captures the difficulty in
conjunctive queries with self-joins. We defined patching as a tool to express how
self-joins affect this difficulty. This definition allowed us to find a first sufficient
condition to decide if a CQ with self-joins is in CD ◦ Lin.

We have also come to necessary conditions that catch many queries, and we have
raised two kinds of CQs that are not classified with our conditions and that could
lead to new work on the topic.

References

[1] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunc-
tive queries and constant delay enumeration. In Jacques Duparc and Thomas A.
Henzinger, editors, Computer Science Logic, pages 208–222, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[2] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the
desirability of acyclic database schemes. J. ACM, 30(3):479–513, July 1983.

[3] Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. Constant delay
enumeration for conjunctive queries: a tutorial. ACM SIGLOG News, 7(1):4–33,
feb 2020.

[4] Johann Brault-Baron. De la pertinence de l’énumération : complexité en logiques
propositionnelle et du premier ordre. Theses, Université de Caen, April 2013.

[5] Nofar Carmeli and Luc Segoufin. Conjunctive queries with self-joins, towards a
fine-grained complexity analysis, 2022.

[6] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole
Schweikardt. Answering (unions of) conjunctive queries using random access
and random-order enumeration, 2019.

[7] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph
problem. Commentationes Mathematicae Universitatis Carolinae, 26(2):415–
419, 1985.

17

Clément Rouvroy

Algorithm 4 Enumerate(D) for Lemma 3.1
1: q′ is the query q′(x1, x2, x3)← R(x1, x2), R(x2, x3).
2: Do pre-computations for q′

3: G← an empty hash-table that given a value a can iterate all b such that R(a, b)
is in D.

4: H ← ∅ an hash-table
5: for (a, b, c) ∈ q′(D) do
6: if c /∈ H[a] then
7: H[a]← c :: H[a]
8: end if
9: print (a, b, c)

10: end for
11: for a ∈ H do
12: for c ∈ H[a] do
13: for b ∈ G[a] do
14: print (a, b, c)
15: end for
16: end for
17: end for

Annexe 1: Proving Easiness

Lemma .1. Algorithm 4 is complete, correct, and respects the constraint for q2 to
be in CD ◦ Lin.

Proof. For completeness, let (a1, a2, a3) ∈ q2(D). Then there exists az ∈ Dom(D)
such that {R(a1, az), R(az, a2)} ⊆ D. Hence (a1, az, a2) ∈ q′(D), and by complete-
ness of the enumeration of an acyclic full CQ, (a1, az, a2) will be enumerated on line
5 of Algorithm 4 and a2 ∈ H[a1]. Now, by the completeness of the construction of
G, when (a1, a2) will be enumerated on line 11,12, a3 will be enumerated on line 13,
this sequence will print (a1, a2, a3).

For correctness, let (a1, a2, a3) printed by the algorithm. By construction, we
have a1 ∈ H, a2 ∈ H[a1] and a3 ∈ G[a1]. By correctness of the enumeration of an
acyclic full CQ, there exists az such that (a1, az, a2) ∈ q′(D). And by correctness of
the construction of G, R(a1, a3) ∈ D, hence (a1, a2, a3) is indeed in q(D).

For the time restriction, lines 1 to 4 are pre-computations. Line 1 is O(1) time,
line 2 is linear because of Theorem 2.2. Line 3 also is linear, one can read all
atoms in the database and fill G accordingly (a way of seeing it is the enumeration
of the acyclic full CQ q(x1, x2) : R(x1, x2) which, after a linear pre-computation,
enumerate with constant delay the solutions and there is exactly O(|D|) solutions).
Then we enumerate with constant delay in lines 5 to 10: for each loop, we do one
print and the body of the loop is O(1) time. Note that there is no duplicate in this
part of the algorithm because a 3-uplet (a, b, c) is enumerated at most once. Finally,
the last loop chains (11-17) enumerates with constant delay and no repetition, but
there may be repetitions with the solutions printed on line 9. As each solution is
printed exactly once on line 14, each solution is printed at most twice and then the
conditions of Lemma 2.1 are satisfied: q2 ∈ CD ◦ Lin.

18

Clément Rouvroy

Algorithm 5 Enumerate(q,D)
1: Remove dangling tuples on D
2: Solve the query that is like q where every variable is quantified except x1 and

call the set of solutions S.
3: HG, HR ← ∅, ∅
4: for a1 ∈ S do
5: a2 ← A value for x2 such that there exists a z1 such that the (a1, z1, a2) is

an assignment to the bottom free-tree.
6: a5 ← A value for x5 such that there exists z2 such that (a1, z2, a5) is an

assignment to the right free-tree.
7: for a3, a4 ∈ (x4 ← x3 ← a1)(D) do
8: print a1, a2, a3, a4, a5
9: if (a1, a3, a4) is a green path then

10: HG[a1]← (a4)
11: end if
12: if (a1, a3, a4) is a red path then
13: HR[a1]← (a4)
14: end if
15: end for
16: end for
17: for a1 ∈ S do
18: for a3, a4 s.t. a1 → a3 → a4 do
19: for a2 ∈ HR[a1] do
20: for a5 ∈ HG[a1] do
21: print (a1, a2, a3, a4, a5)
22: end for
23: end for
24: end for
25: end for

Lemma .2. The CQ in Fig. 5 is in CD ◦ Lin.

Proof. The proof is an application of theorem Theorem 3.17. If one wants to see
an algorithm, he is in Algorithm 5, but it will not be used here. Consider the two
deacatived preimages P̃h(q1) and P̃i(q1) of Section 5. h is the homomorphism that
maps (x4, x5) to (z1, x2) and i is the homomorphism that maps (x4, x5) to (z2, x3).
If we do not deactivate the preimages, we still have free-trees in the preimages and
we can not patch them. But with the deactivation depicted, both queries are easy
to enumerate. Moreover, P̃h(q1) is patching the free-tree (x1, z1, x2) and P̃i(q1) is
patch the free-tree (x1, z2, x3).

Hence, q1 is fully-patched, hence q1 ∈ CD ◦ Lin according to Theorem 3.17.

Lemma .3 (Patching sufficient condition - Induction). The induction holds of
Patching sufficient condition holds.

19

Clément Rouvroy

z3 x5

z2 x4

P̃h(q1) : x1 P̃i(q1) : x1

x4 z1

x5 z2

Figure 10: Two deactivated preimage of q.

Proof. For n = 0 there are only acyclic free-connex queries, which are in CD ◦ Lin
so they satisfy the property.

Let n ≥ 0 and suppose that P (n) is true, let’s prove that P (n+ 1) is true. Let
p be patched by p1, . . . , pk such that maxp′∈{p1,...,pk}φ(p

′) + 1 = φ(p). As p1, . . . , pk
fully patch p, we have that φ(p) ≤ φ(pi) for all i ∈ [|1; k|], hence we have CD ◦ Linq

algorithms A1, . . . ,Ak for them. We can apply Proposition 3.15 to p1, . . . , pk to have
access to RT1 , . . . , RTk

, with k = O(1) CD ◦ Linq algorithms, hence in a CD ◦ Linq

algorithm. Using these relations we can apply Corollary 3.9 to have a CD ◦ Linq

algorithm for p. Combining these k + 1 CD ◦ Linq algorithm, we have that p ∈
CD ◦ Linq.

We conclude from recursion principle.

Annexe 2: Proving hardness

BMM-Hard

Proposition .4. Let q be an acyclic conjunctive query with an atom of arity at
most 2. If there exists a free-path F such that ∀x /∈ Vars(F), ∃R.x ∈ D(R,F) or x
is unmapped to F , q is BMM-Hard.

Proof. Let M1 and M2 be two boolean matrices. Let F := x1, z1, . . . , zn, x2, we do
the following reduction:

• ∀(i, k) ∈M1 s.t. M1[i][k] = 1.

– ∀R(x1, z1) ∈ q.R(⟨i;x1⟩, ⟨k; z1⟩),
– ∀p < n.∀R(zp, zp+1) ∈ q.R(⟨i; pi⟩, ⟨i+ 1; zp+1⟩),
– ∀R(x1) ∈ F.R(⟨i;x1⟩),
– ∀R(zp) ∈ F.R(⟨i; zp⟩),
– ∀R(y, zp) ∈ q\F.R(⟨⊥; y⟩, ⟨k; zp⟩). Same for R(zp, y),

20

Clément Rouvroy

– ∀R(y, x1) ∈ q\F.R(⟨⊥;x1⟩, ⟨k; zp⟩). Same for R(zp, x).

• ∀(k, j) ∈M2 s.t. M2[k][j] = 1.

– ∀R(zn, x2) ∈ q.R(⟨k; zn; ⟩, ⟨j;x2⟩),
– ∀R(x2) ∈ q.R(⟨k;x2⟩),
– ∀R(x2, y) ∈ q\F.R(⟨k;x2⟩, ⟨⊥; y⟩). Same for R(y, x2).

• ∀R(y1, y2) ∈ q\F.R(⟨⊥; y1⟩, ⟨⊥; y2⟩).

• ∀R(y1) ∈ q\F.R(⟨⊥; y1⟩).

Let’s count the number of total solutions (counting spurious ones). A free-
variable has two possibilities:

• It is part of the free-path and it can be any value of D, i.e. O(|dom(D)|)
possible solutions.

• It is not in the free-path, hence either:

– there exists R ∈ q such that x ∈ D(R,F). But then x can only be evalu-
ated to ⟨⊥;x′⟩ with x′ ∈ D(R, f) using the last case of our construction.
That is O(|D(R, f)|) = O(1) possibilities.

– x is unmapped to F . If it receives a value tagged with a variable of the
free-path, then there is a morphism from x to this variable (Lemma 4.4),
impossible. Hence all its values are tagged with variables not in the
free-path, by construction this is only ⟨⊥; y⟩, i.e. O(|q|) = O(1).

Hence, there is at most O(|dom(D)|2 × | ∪y/∈F {⟨⊥, y⟩}||Free(q)|−2) = O(|dom(D)|2).
But |dom(D)| = O(n) hence this is O(n2) possible solutions.

Now if we have (i, j) such that (M1 ×M2)[i][j] = 1, there exists a k such that
M1[i][k] =M2[k][j] = 1 and we have a solution of the free-path that witnesses this.

Hence, we can enumerate q on the tagged database and get all the 1s of M1×M2.
This can be done in O(n2) time because we can check if a solution of q is a valid 1
of M1 ×M2 in O(1) time by checking that x1 is tagged x1 and x2 is tagged x2.

VUTD-Hard

Proposition .5. Let q be an acyclic binary-atom CQ. If there is a quantified variable
z on a free-path that is not the image of a free-variable in any body-homomorphism
of q, then q is VUTD-hard.

Proof. Let q be an acyclic binary-atom CQ. Let ζ a quantified variable that is the
image of no free variable of q for any automorphism of q, i.e. ∀h : q → q,∀x, h(x) ̸= z.

Let T be the free-tree associated to ζ (it exists because there is a free-path). Fix
x1 − ...− ζ − ...− x2 one free-path in T that goes through ζ.

We split the xs of T as follows:

• x ∈ X1 if in the only path from x to x2 x needs to go through ζ.

• x ∈ X3 if not.

21

Clément Rouvroy

In the same way we define Z1 and Z3 for zs. Now we will encode VUTD on the
free-tree as this:

1. ∀v ∈ V1,∀(z1, z2) ∈ Z2
1 . if R(z1, z2) ∈ q (resp. R(z2, z1) ∈ q), we add

R(⟨z1; v⟩, ⟨z2; v⟩) (resp. R(⟨z2; v⟩, ⟨z1; v⟩)),

2. ∀v ∈ V3,∀(z1, z2) ∈ Z2
3 . if R(z1, z2) ∈ q (resp. R(z2, z1) ∈ q), we add

R(⟨z1; v⟩, ⟨z2; v⟩) (resp. R(⟨z2; v⟩, ⟨z1; v⟩)),

3. ∀v ∈ V1,∀x ∈ X1, ∀z ∈ Z1. if R((x, z)) ∈ q (resp. R((z, x)) ∈ q), we add
R(⟨x; v⟩, ⟨z; v⟩) (resp. R(⟨z; v⟩, ⟨x; v⟩)),

4. ∀v ∈ V3,∀x ∈ X3, ∀z ∈ Z3. if R((x, z)) ∈ q (resp. R((z, x)) ∈ q), we add
R(⟨x; v⟩, ⟨z; v⟩) (resp. R(⟨z; v⟩, ⟨x; v⟩)),

5. ∀(u, v) ∈ E1,2, ∀y ∈ X1 ∪ Z1. if R((y, ζ)) ∈ q (resp. R((ζ, y)) ∈ q), we add
R(⟨y;u⟩, ⟨ζ; v⟩) (resp. R(⟨ζ; v⟩, ⟨y;u⟩)),

6. ∀(u, v) ∈ E2,3, ∀y ∈ X3 ∪ Z3. if R((y, ζ)) ∈ q (resp. R((ζ, y)) ∈ q), we add
R(⟨y; v⟩, ⟨ζ;u⟩) (resp. R(⟨ζ;u⟩, ⟨y; v⟩)),

7. ∀u ∈ V1, ∀y1 ∈ X1 ∪ Z1,∀y2 /∈ T . if R(y1, y2) ∈ q (resp. R(y2, y1) ∈ q) then
we add R(⟨y2;u⟩, ⟨y1;⊥⟩) (resp. R(⟨y1;⊥⟩, ⟨y2;u⟩)),

8. ∀u ∈ V3, ∀y1 ∈ X3 ∪ Z3,∀y2 /∈ T . if R(y1, y2) ∈ q (resp. R(y2, y1) ∈ q) then
we add R(⟨y2;u⟩, ⟨y1;⊥⟩) (resp. R(⟨y1;⊥⟩, ⟨y2;u⟩)),

9. ∀y1, y2 /∈ T. If R(y1, y2) ∈ q, R(⟨y1;⊥⟩, ⟨y2;⊥⟩).

10. ∀v2 ∈ V2.∀y /∈ T. IfR(y, ζ) ∈ q (resp. R(ζ, y) ∈ q), then we addR(⟨y;⊥⟩, ⟨ζ; v2⟩)
(resp. R(⟨ζ; v2⟩, ⟨y;⊥⟩)).

This construction gives an algorithm to detect a triangle:

• Enumerate all solutions of the query and for each:

– Check if the tagging is the identity on the free variables, if so check if
the value given to x1 and x2 are connected in E1,3, if it is then we have
detected a triangle, if not continue.

Let (v1, v2, v3) ∈ V1 × V2 × V3 be a triangle in G. We know that there is a path
(x1 → z11 → . . .→ zk1 → ζ → z13 → . . .→→ zp3x2) ∈ q. From:

• Item 3., R(⟨x1; v1⟩, ⟨z1; v1⟩) (or the opposite direction, or both of them) will
be in D for all z1 ∈ Z1,

• Item 1., we know that there will be a path of R(⟨zi1; v1⟩, ⟨z
i+1
1 ; v1⟩) (or the

opposite direction, or both of them) in the database.

• Item 5., there is R(⟨zi1; v1⟩, ⟨ζ; v2⟩) in the database (or the opposite direction,
or both of them).

• Item 6., there is R(⟨ζ; v2⟩, ⟨z13 ; v3⟩) in the database (or the opposite direction,
or both of them).

22

Clément Rouvroy

• Item 2., we know that there will be a path of R(⟨zi3; v3⟩, ⟨z
i+1
3 ; v3⟩) (or the

opposite direction, or both of them) in the database.

• Item 4., R(⟨x3; v3⟩, ⟨zp3 ; v3⟩) (or the opposite direction, or both of them) will
be in D.

So the path is well-encoded (we will see after that we don’t have to check how
many spurious answers we have because the total number of answers is limited).
However, we need to be sure that the given path can be completed in a whole
solution of q. One can see that:

• Variables in Z1 are connected to either, a variable in X1, ζ, other variables
in Z1, variables outside of the tree, but can not be connected to variables in
Z3 or X3 (otherwise there is a cycle). The possible connections are handled
respectively by Item 3., Item 1., Item 5., Item 7.. In particular, Item 7. force
variables outside of T to be ⊥.

• Variables in X1 are connected to either, a variable in X1, ζ, a variable in Z1,
or variables outside. Using the same rules as for z1, we can come to the same
conclusion.

• The same goes for Z3 and X3 using Item 8..

• If ζ is connected to a variable in Z1 ∪ Z3 ∪ X1 ∪ X3 it is already ok thanks
to the previous point. If ζ is connected to a variable outside of the tree, then
with Item 10. one can see that y can be set to ⊥.

• Finally, if two variables outside of tree are connected together, they can both
receive ⊥ according to Item 9..

This query has only O(nkα) solutions with k = |free variables|: every elements
of the database is of the form ⟨variable; value⟩. The only elements of the database
that contain a value from V2 are tagged with the variable ζ. Suppose that a free
variable x has more than O(nα) different values in all the solutions. Then it receives
some value from V2, i.e. there exists a valuation µ of q such that the tagging map
sends x to ζ. This is impossible because we would have an automorphism that sends
x to ζ using (4.4).

Hence for α < 1
k we could find a triangle in O(n1+α) if q ∈ CD ◦ Lin.

Lemma .6 (Link between CD ◦ Lin and DomLin ◦ Lin). q1 ∈ CD ◦ Lin ⇔ q2 ∈
DomLin ◦ Lin.

Proof. q1 is q2 but with an extra free variable that allows us to repeat every solution
of q2 at maximum O(|Dom(D)|) times. We can use this fact in both directions to
build a reduction. More formally:

For ⇒, consider Algorithm 6. P starts to be enumerated after a linear pre-
computation (because the hypothesis is that q1 ∈ DomLin ◦ Lin), hence we start to
enumerate on the second loop after a linear pre-computation. Moreover, the second
loop is printing with O(1) delay, but we need to be sure that there are not too
many duplicates. There exists a constant c such that every c|Dom(D)|, P is edited

23

Clément Rouvroy

Algorithm 6 Enumerate(q1, q2, D)
1: P ← ∅
2: Do in parallel these two for-loops:
3: for (a, b) ∈ q1(D) do P.append((a, b))
4: end for
5: for (a, b) ∈ P do
6: while P hasn’t changed do
7: for c ∈ D do
8: output (a, b, c)
9: end for

10: end while
11: end for

Algorithm 7 Enumerate(q1, q2, D)
1: P ← ∅
2: H ← ∅
3: c← 0
4: for (a, b, c) ∈ q2(D) do
5: if (a, b) /∈ H then
6: H.append((a, b))
7: P.append((a, b))
8: end if
9: c← c+ 1

10: if c ≥ c2n then
11: Print P.pop()
12: c← 0
13: end if
14: end for
15: while P is not empty do
16: Print P.pop()
17: end while

(because q1 ∈ DomLin ◦ Lin), hence P changes each c|Dom(D)| and for a given
(a, b) ∈ P , each solution (a, b, c) associated is printed at most O(c|Dom(D)|) (the
constant depends of the way we are dealing with parallelism). It just needs some
fine-tuning to be sure that q1 doesn’t output two solutions without giving the hand
to the second loop (but it can be forced easily with some boolean) and to be sure
that the share of work is not such that we do a lot of second-lop and only a few on
the first-loop (otherwise we would print too much).

For⇐, consider Algorithm 7, the constant c2 is such that the delay to enumerate
q2 is bounded by b2. From the definition of c2, P will never be empty in the loop
(each solution (a, b) is featured n times, one for all possible c) and we print solutions
of q2 with respect to DomLin ◦ Lin.

24

Clément Rouvroy

Algorithm 8 Enumerate(q3, D)

1: M ← ∅
2: for R(x1, z) ∈ D do
3: for R(x2, z) ∈ D do
4: for R(x3, z) ∈ D do
5: for R(z2, z) ∈ D do
6: Print (x1, x2, x3, z)
7: M ←M@(x1, x2, x3, z2)
8: end for
9: end for

10: end for
11: end for
12: for (x1, x2, x3, z2) ∈M do
13: for R(z2, x4) ∈ D do
14: Print x1, x2, x3, x4
15: end for
16: end for

Database with O(1) high degrees element

Definition .7 (Degree of an element). Let D be a database over the domain dom(D)
with atom of arity at most 2. The in-degree (resp. out-degree) of an element a ∈
dom(D) is d−(a) = |{R(., a) ∈ D}| (resp. d+(a) = |{R(a, .) ∈ D}|).

Definition .8 (Number of high degree elements). Let D be a database over the
domain dom(D) with arity at most 2. The number of high in-degree (resp. out-
degree) elements in D, denoted ∆− (resp. ∆+), is ∆− = |{a ∈ D | d−(a) ̸= O(1)}|
(resp. ∆+ = |{a ∈ D | d+(a) ̸= O(1)}|). Here O(1) is compared to |D|.

For example, if D is a clique, ∆− = ∆+ = O(|dom(D)|). If it is bipartite, then
∆− = ∆+ = O(1). The following result, Proposition .11, might seem useless but
here we only ask the in-degree, or the out-degree, to be low, not both of them, hence
we can still encode some problems that need a lot of edges.

Lemma .9. If ∆−(D) = O(1), then there is a CD ◦ Lin algorithm that enumerates
q on D.

Proof. Consider Algorithm 8. Completeness and soundness are left to the reader
(nothing hard in it). For the complexity, one can note that:

• Loop of line 3 to 5 are each going to at most O(1) elements because z except
a constant number of times where it is O(n).

• Line 6 is printing a solution every O(1) time, and each solution is duplicated
exactly the number of times R(z2, z) appears in D, which is O(1) except for a
constant number of solutions where it is at most linear.

25

Clément Rouvroy

Algorithm 9 Enumerate(q3, D)

1: M ← ∅
2: for R(z2, x4) ∈ D do
3: for R(z2, z1) ∈ D do
4: Print z2, z2, z2, x4
5: M ←M@(z1, x4)
6: end for
7: end for
8: for (z1, x4) ∈M do
9: for R(x1, z1), . . . , R(x3, z1) ∈ D do

10: Print x1, x2, x3, x4
11: end for
12: end for

These two points make that the first chain of loop is respecting CD ◦ Lin (ac-
cording to Cheater’s Lemma 2.1). Then, the second loop prints every solution of the
query with a O(1) delay and any (x1, x2, x3, x4) is printed at most d−(x4), which
is O(1), except for a constant number of x4 where it is at most linear, hence this
respects the condition of the cheater’s Lemma 2.1.

The algorithm depicts that q3 ∈ CD ◦ Lin when the database satisfies ∆−(D) =
O(1).

Lemma .10. If ∆+(D) = O(1), then there is a CD◦Lin algorithm that enumerates
q on D.

Proof. Consider Algorithm 9. Completeness and soundness are left to the reader
(nothing hard in it). For the complexity, one can note that:

• For every z2, there is only a constant number of z1, except for a constant
number of z2 where there is at most a linear number of z1, hence the first
chain of loop is respecting the conditions of cheater’s Lemma 2.1.

• On the second chain of for-loop, each z1 gives a constant number of x4 except
a constant number of z1 which gives at most a linear number of x4, hence each
solution is duplicated a constant number of times, except a constant number
of solutions which is printed at most a linear number of times. Hence, this
loop too satisfies the conditions of cheater’s Lemma 2.1

Hence, if ∆+(D) = O(1), the enumeration of q3 is in CD ◦ Lin.

Proposition .11. If min(∆−(D),∆+(D)) = O(1), then there is a CD ◦ Lin algo-
rithm that enumerates q3 on D.

Proof. Direct from Lemma .9 and Lemma .10.

All the algorithms presented in this subsection can be scaled easily to any mem-
ber of the family Fig. 8.

26

	Introduction
	Preliminaries
	Proving easiness
	An easy non-free-connex CQ
	What is hard in a query with self-join ?
	Preimages and patching
	Sufficient condition based on preimage and free-trees

	Proving hardness
	BMM-Hard
	VUTD-Hard
	Clique-based hardness
	The need for lower-bound based on the delay

	Conclusion

