
Hypothetical Index Benefit Estimation on Column-oriented
Databases usingQuantiles

Clément Rouvroy
DIENS, ENS Paris
Paris, France

CCDS, Nanyang Technological University
Singapore, Singapore

rouvroy@phare.normalesup.org

Abstract
Columnar databases start to leverage indexes to enhance bottleneck
queries efficiency. To decide if an index may be useful or not in
row-oriented systems, a commonly used tool is a “What-If” API. It
returns an estimation of the benefit of an index without construct-
ing it, saving time and resources at the cost of possible mistakes in
the prediction. Moreover, to have a complete auto-tuning database,
recent researches leverage Machine Learning to have an automatic
database administrator that tunes the database configuration us-
ing workload knowledge and “What-If” calls. As column-oriented
databases are just starting to leverage indexes, there is yet no such
tool specifically designed for these systems. In this work, we pro-
pose three contributions: heuristics for segment-aware access paths
costs estimations in column-oriented databases, a hypothetical in-
dex benefit estimation designed for column-oriented databases (lim-
ited to hash indexes), and the use of quantile regression to trade-off
precision and risk.

Keywords
Database, Reinforcement Learning, Query optimization

1 Introduction
Index Selection. To compute solutions to a query, Relational Data-
base Management Systems (RDBMS) need to scan data from disk
before processing them. To accelerate these scans, one can use
alternative access to data with different properties (e.g. a differ-
ent sorting order, or a different data structure), called secondary
indexes. The most studied problem associated is Index Selection
Problem: given a set of queries and a budget, select the optimal in-
dex configuration. This problem is known to be NP-Complete [20],
hence it is mainly tackled by heuristics [8] or Machine-Learning
based methods [5, 25].

Known methods. Recent progress in index selection involves
Machine Learning [5, 13, 19]. Most methods rely on “What-If” API
calls [4] (an API that estimates the benefit of an index without
losing time constructing it), either to get a reward for their models
using hypothetical index estimation [13] or to get query plans for
hypothetical configuration [5]. However, What-If are known to
be imprecise due to their heuristics and use of biased cardinality
estimations, often assuming uniformity of distributions and ignor-
ing data skew [15]. Hence, new methods [25] traded What-If for
attention layer [29] to learn how the database reacts to changes,
which seems to better capture index interaction [22].

Column-oriented databases. Traditionally, secondary indexes
were used in row-oriented [27] databases, as column-oriented [3]

databases use different architectures that rely on compression and
immutable data structures efficient enough to trade-off indexes
for projections [1]. However, recent works on hybrid workload
databases [32] demonstrated that column-oriented database with
the addition of secondary hash index can be used to make a trade-
off between analytical and transactional workload. The first work
to add secondary hash index support to column-oriented databases
is Singlestore [21]. They use it to balance the worst query pattern
for column-oriented system, the point access (a query that returns
all columns of a single row).

Objective. Though What-If are less precise than trained Ma-
chine Learning model, and can take up to 90% of index selection
time [18], they are a commonly used, interpretable, and lightweight
tools that is still desirable to have for any RDBMS. To the best of our
knowledge, there is yet no column-oriented database that support
What-If API calls, hence our first objective is to build an API that
estimates the benefit of a hypothetical index for column-oriented
secondary hash index. Building this API implies giving heuristics
for the cost of column-oriented plan operation in database system,
which has not been done before. To test the reliability of our estima-
tor, we used it in different algorithms to select index in Singlestore.
In particular, we want to provide a solution that is:

• Extendable. As indexes are emerging in column-oriented
databases, we want to provide an architecture that can be
extended easily to capture new index types or operators
without having to train Machine Learning models from
zero.

• Risk-aware. As estimations are prone to errors, we want
to allow the DBA to trade-off opportunity and risk in the
benefit estimation.

To achieve these objectives, we propose a Quantile-based H-
ypothetical Index for Column-Store (QHICS). More precisely,
QHICS first encodes an index into two vectors:

• A benefit vector representing the difference in estimated
access path [24] cost in three metrics. We propose the
first access path estimation designed for column-oriented
databases. In particular, it is aware of segment skipping.

• A cost vector representing the cost of building LSM-based
index, also in three metrics.

Then, QHICS leverages quantile regression [10] twice to predict
creation cost and workload benefit. The use of cost and benefit
quantiles allows QHICS to mostly overestimate creation cost and
underestimate benefit. This usage of quantiles can be used to trade

Clément Rouvroy

off the minimization of prediction error and the number of overesti-
mation of benefits. To the best of our knowledge, this is the first time
a hypothetical index estimation is built for column-oriented database
systems, and the first time quantile regression is used for hypothetical
index estimation.

There is yet no method that satisfies all our objectives as there is
no hypothetical index estimation built for column-oriented systems.
There exists estimations that are agnostic to the architecture, hence
the orientation([25]), but they are based on transformers, failing
to be interpretable and easily extendable.

To test our model, we have implemented QHICS over SingleStore
(former MemSQL)1 to estimate benefit of secondary hash indexes.

In summary, our main contributions can be summarized as:

• Propose formulas to estimate access paths cost in column-
oriented databases.

• Leverage quantile regression to estimate index benefit with
a trade-off between estimation precision and number of
benefit overestimation

• Implement our model in Python to test its efficiency.

Our implementation (over a subset of SQL) demonstrated that:

• Quantiles allow to use a What-If with default parameters
to perform index comparison with satisfying results (81%
of ranking score on zero-shot).

• Once enough index has been created, one can automatically
tune the cost model for its database, getting much more
satisfying results: 92% ranking score, 34% average benefit
estimation error.

• Once a lot of data for a specific index has been accumulated,
one can fine tune a model for this index, getting almost
perfect results: 97% of ranking score, 9% average benefit
estimation error.

The rest of this work is organized as follows:

• section 2 introduces the background on column-oriented
databases and on index selection, providing key insights
about the architecture of these systems and their indexes.

• section 3 introduces the problems of Index Benefit Estima-
tion and Index Selection formally.

• section 4 presents an overview of QHICS, with its main
components. For a more in-depth presentation of QHICS,
section 5 presents which features we extract from the work-
load, section 6 presents howwe use these features to encode
an index into vectors, and section 7 presents how we asso-
ciate a metric to a vector.

• section 8 presents the index selection algorithms we use
and section 9 presents our result.

2 Background and related work
In this section we resume important advances in column-oriented
databases and index selection. We also motivate our research prob-
lematic.

1Open-source on GitHub at https://github.com/CRouvroy/QHICS

2.1 Column-oriented databases strength and
weakness

Column-oriented databases [3] are storing data on disk per columns
and not per rows, hence:

• the access to all values in one column is a sequential scan
(called column scan),

• the access to all values of one row needs one sequential
scan per column to find the needed row ID in each column.

2.1.1 Column-oriented analytical benefit. Columnar scans can ac-
celerate many query processing. fig. 1 contains an example where
one read 50% less data on disk in a column-oriented database
compared to row-oriented database. Moreover, column-oriented
databases can leverage three mechanisms to enhance query effi-
ciency:

• Per-column compression. In row-oriented databases, data
are compressed per tuples, limiting the possibilities. In
columnar, the database engine can use a different encoding
for each column [1]. This can dramatically reduce the size
of columns to read on disk, at the cost of extra CPU time
for decompression. Vertica [12] can divide by almost 15 the
size of certain columns.

• Segment skipping. Data are stored per columns, but ta-
bles are also horizontally split in different regions of config-
urable sizes (around 1,000,000 tuples), each region is called a
row segment, and each row segment contains one columnar
segment per column in the table. Apart from enabling to
store the same tables on different disks or clusters, this also
enable segment skipping. Each columnar segment stores
a metadata containing its minimum and maximum value,
hence given access to a column with a known range, one
can efficiently skip segments by checking if the range inter-
sects the segment’s metadata. An example of segment skip-
ping is given in fig. 2. This mechanism can have different
names but is implemented in most major column-oriented
databases [1, 9, 14, 23, 28].

• Projections. To accelerate queries that need a sorted order,
column-oriented systems allow maintaining duplicate of
some column subsets of a table, maintained in a precise
order. This can be seen as an ordered index, but this is a
whole physical copy of columns data hence is not as efficient
as a structure using references.

2.1.2 Column-oriented immutable architecture and consequences.
Most column-oriented systems are using an architecture where
segments are immutable to store data using an LSM tree [17], this
leverage two main properties:

• The background merger of LSM-tree is used to maintain
sorted runs that allow meaningful segment skipping [28].

• The first level of an LSM-Tree is stored in memory, and
higher levels are on disk. Insertions are firstly performed
in memory before being merged into higher levels, hence
the first cost paid for update is low [28].

However, they are still less optimal than row-oriented databases
for updates, as data newly written maybe merged once per level
of the LSM-tree and there is a background process consuming

https://github.com/CRouvroy/QHICS

Hypothetical Index Benefit Estimation on Column-oriented Databases usingQuantiles

EmpId SellId Amount

101 23 1200

102 12 950

102 7 1750

SELECT SUM(Amount) FROM SELLS

Figure 1: In row-oriented databases, one need to read every row
and project on Amount, reading EmpId and SellId for nothing. In
column-oriented database, one can ready only Amount, reading a
third of what a row-oriented database would have read.

Column A

[5,100]

[230,500]

[500,523]

Column B

[1,1]

[2,3]

[5,6]

SELECT * FROM T WHERE A <= 270 AND B = 2

Figure 2: In this query, the database only needs to open the sec-
ond columnar segment of each column. As the first segment of A
contains to the same rows as the one of B, and as the condition is
an AND, there can’t be any solution in the first columnar segment.

resources to merge levels (inducing an overhead logarithmic in the
number of segments).

As a solution, most Hybrid Transactional and Analytical Systems
(HTAP) are pairing column-oriented components (to handle OLAP)
and row-oriented components (to handle OLTP) to have databases
capable of handling both kind of workloads [32].

2.1.3 Column-oriented point access flaws. All optimizations pre-
sented explain why column-oriented databases are mainly used in
data warehouses, where the workload is analytical (OLAP) [11].
Analytical workloads require many aggregate functions over a sub-
set of columns, hence there are few queries that ask for a precise
element. However, when such a point access query appears, most
column-oriented systems are less efficient than row-oriented sys-
tems because once the needed row ID has been computed, the
column-oriented database need to search for this value in every
column.

2.1.4 Seekable encoding. To mitigate bottleneck queries, Single-
Store [21] restricted the encoding techniques to a subset that can
are seekable: to access a precise row ID in a column, they can
leverage seekable encoding to decompress only a small portion of
data around the needed row ID to access its value, removing the
need of reading every value until the desired row ID is reached.

This optimization is powerful enough for SingleStore to run HTAP
workloads without on-disk row-oriented storage.

2.2 Indexing in column-oriented databases
Column-oriented databases may benefit from indexes since the
addition of seekable encoding, SingleStore [21] is the first system
to leverage secondary hash index for column-oriented databases
by allowing the DBA to create secondary Hash Index.

They use an index structure that has two components:
• An inverted index per segments, mapping from value to

the list of offsets inside the segment corresponding to this
value. This can be paired with the seekable encoding to
efficiently retrieves row IDs with a precise value inside a
column.

• A global index which is an LSM-based hash table that maps
a hash value to a list of segment ID paired with the offset
in the inverted index where offsets inside the segment are
stored.

This structure also support multi-columns index. When the user
wants to create an index over a vector of columns ®𝐶 , an index of one
column is created over each column in ®𝐶 , and then another global
index (but no new inverted index) is created. This global index
takes the hash of a vector of values (one value from each column
in ®𝐶) and returns a list of length | ®𝐶 |, where each element in the list
contains the segment and offset for each indexed column. For every
combination of values across the columns in ®𝐶 , the global index
allows retrieval of, for each column, the segment and the offset in
the inverted index where the row offsets for those values are stored.
This structure optimizes the search for tuples matching a specific
combination of values across multiple columns, while avoiding
redundant inverted indexes for every possible value combination.
As a drawback, the multi-column global index can not be leverage
for prefix of ®𝐶 compared to some existing index structures.

This architecture allows efficient update. At the level 0 of the
global index (in memory) there is one hash table per segment, and a
background process merges hash tables together on the run. When
a segment gets added it is merged with others in the background,
and when a segment is deleted, it is suppressed the next time it is
merged.

Recent system [26] proposed to use an ordered LSM-based data
structure to replace the hash-based global index. This allows sec-
ondary ordered index in column-oriented databases, however it is
still in production hence this work limits itself to secondary hash
index. Our heuristics for access pathes should still apply for or-
dered indexes, but one need to think about adding ordering to the
encoding.

As modern analytical databases [23] and modern hybrid databas-
es [9, 21] are using column-oriented storage, and as this storage is
starting to leverage indexes, we want to work towards automatic
column-oriented index tuning. The first step, we think, is the cre-
ation of a hypothetical index estimation and a demonstration of its
capacities in different algorithms to select indexes.

2.3 Quantile Regression & Linear Programming
For (𝑛, 𝑝) ∈ N2, let X ∈ R𝑛×𝑝 be a matrix of 𝑛 inputs and 𝑦 ∈ R𝑛 be
the objective vector. The usual regression task in Machine Learning,

Clément Rouvroy

called Linear Regression, asks to find a vector ®𝜃 ∗ ∈ R𝑚 such that
∥𝑦 − X ®𝜃 ∗∥22 = min𝜃 ∈R𝑚 ∥𝑦 − X ®𝜃 ∥22. It is well-known that one can
use ®𝜃 ∗ =

(
X𝑇X

)−1 X𝑇𝑦 as a solution. This should minimize the
average error of the benefit estimation.

However, the error weight is the same for overestimation and
underestimation, though one might prefer to punish more over-
estimation than underestimation: missing an opportunity is more
acceptable than recommending a bad index. Hence, we want to put
more weights on overestimation errors than underestimation errors.
For this, given a quantile 𝑞 ∈]0; 1[, we leverage quantile regres-
sion [10], which learns to estimate the 𝑞-th quantile by minimizing∑𝑛

𝑖=1 𝜌𝑞 (𝑦𝑖 − X𝑖
®𝜃), where

𝜌𝑞 (𝑟𝑖) =
{
𝑞𝑟𝑖 if 𝑟𝑖 ≥ 0
(𝑞 − 1)𝑟𝑖 if 𝑟𝑖 < 0

is a function that give (in absolute value) a weight 𝑞 to underesti-
mation and 1 − 𝑞 to overestimation.

There exists many methods to solve Quantile Regression prob-
lems, however in our model we want our learned coefficients to
represent system times, which should be positive. Hence, we need
to find the best solution to Quantile Regression under the constraint
that learned parameters are positive. For this we leverage Linear
Programming.

2.4 Related Work
There is no hypothetical index estimator for column-oriented sys-
tem yet, however there are decades of study on hypothetical index
benefit estimation. In this part we review why different methods do
not fully fit our problematic and what key takeaway we can take
from them.

2.4.1 What-If. What-If [4] uses database statistics to estimate the
benefit of a (hypothetical) index on a given workload. They are
mostly based on heuristics and are known to be vulnerable to data
skews and wrong cardinality estimations [15]. A common way
of building a What-If is to estimate the difference in query plan
execution time between a plan with the hypothetical index included
in the configuration, and a plan without the index. This implies
giving heuristics to estimate access path cost [24]. All works on
heuristics for access path selection are designed for traditional
database architecture (B+-tree) and not for LSM-based databases.
The only work giving an approximation for columnar scans is
TiDB [9], however their heuristics do not capture segment skipping
hence is not sufficient for this work. Moreover, no existing work
provides a way to estimate the number of segments needed to open
to answer a query, though it would be desirable to estimate the cost
of a columnar scan.

2.4.2 Index Benefit Estimation. What-If is an API used to estimate
the benefit of index using statistics, but there are other ways to
estimate the benefit of an index. Some works leverage Machine
Learning methods [30], with different degrees of transferability, i.e.
up to which points we can transfer the algorithm to estimate index
on different architectures. Though Machine Learning methods are
showing better results, we want to keep a heuristics-based method
to estimate the index benefit as there is a lack ofWhat-If for column-
oriented databases and this is the first step to have one. Moreover,

Machine Learning methods need to be re-trained when changing
architectures, and may lack of interpretability or extendability.

2.4.3 Index Selection using benefit estimation. Reinforcement Learn-
ing is used to learn to select indexes on a fixed workload by using
What-If estimation as a reward and one-hot encoding of already
built index as an input [13]. The goal of this method is to better cap-
ture index interaction [22] by using the agent to explore different
interaction between indexes. Once the agent is trained, it is used to
recommend index and really build the index.

3 Problem
3.1 Definitions
We start by presenting key definitions and notations used through
this work. Then, we present our research problem statement.

AnalyticalWorkload. An analytical workloadW = {𝑞1, . . . 𝑞𝑛}
with 𝑛 ∈ N is a set of 𝑛 queries on one or multiple tables in a
relational database, such that no query are creating, deleting, or
updating data. A query is a string following the rules of one SQL
language.

Secondary index. According to the architecture presented in sec-
tion 2.2, we define a secondary index as a secondary hash index that
uses two components, one inverted index per segments and a global
hash table mapping values to a list of segments associated with
their offset. A secondary index can be on one or multiple columns,
but this work restricts indexed fields to integer and decimal fields.

Index Configuration. An index configuration 𝑐𝑖 is a set of
secondary indexes.

Index Candidates. Index candidates C = {𝑐1, . . . , 𝑐𝑘 } if a set of
𝑘 possible index configurations.

Definition 3.1 (Index Benefits). Given an index configuration 𝑐𝑖
and a query 𝑞 𝑗 , the index benefits of 𝑐𝑖 on 𝑞 𝑗 is defined as the query
cost reductions induced by the materialization of 𝑐𝑖 , It is formulated
as:

𝑐𝑟𝑖, 𝑗 :=Cost(𝑞 𝑗 | ∅) − Cost(𝑞 𝑗 | 𝑐𝑖) (1)

where Cost is the execution cost of a query under a given con-
figuration and ∅ is the configuration with no secondary index.

One may also estimate the benefit of adding a configuration to
an existing one, this is:

Definition 3.2 (Index Benefits over a configuration). Given an index
configuration 𝑐𝑖 , query 𝑞 𝑗 , and a configuration 𝑐 , the index benefits
of 𝑐𝑖 on 𝑞 𝑗 over 𝑐 is defined as:

𝑐𝑟𝑖, 𝑗 |𝑐 :=Cost(𝑞 𝑗 | 𝑐) − Cost(𝑞 𝑗 | 𝑐𝑖 ∪ 𝑐) (2)

3.2 Problem statement
The goal of a hypothetical index estimator is to return a value
that can be used to know if an index may be created or not. Some
What-If returns a value that has no unit and should be used to
compare different index possibilities, in this work we decided to
return a value that should be as closed as possible from the real
benefit in milliseconds. Hence, our goal will be to estimate the
reduction in cost between executing the workload with and without
a given index in the configuration. Formally, this gives the following
problem definition:

Hypothetical Index Benefit Estimation on Column-oriented Databases usingQuantiles

Index Benefit Estimation. Given an analytical workloadW
and a configuration 𝑐 , Index Benefit Estimation asks to estimate
the benefit on W of a configuration 𝑐𝑖 when there is already a
configuration 𝑐 . This is estimating

∑
𝑞 𝑗 ∈W 𝑐𝑟𝑖, 𝑗 |𝑐 .

Once we are able to estimate the benefit of an index, we want to
take decision based on this estimation. The main decision process
we study is the index selection, this is trying to estimate the best
indexes to create over some constraints (constructing time, space
taken, number of indexes materialized, CPU pressure, ...). This can
be formalized as:

Index Selection. Given an analytical workloadW, index candi-
dates 𝐶 , and some budget 𝐵, Index Selection asks to select the index
configurations that maximizes the index benefit while satisfying
the budget.

In this work, we present QHICS as an algorithm to tackle Index
Benefit Estimation for column-oriented databases, and we use it
in different known index selection algorithms to test its efficiency.
As this is the first time the problem is studied for column-oriented
database system, we have no other tools to compare it to, though
we will compare it to schema-agnostic machine learning tools in
the future.

4 QHICS overview
The hypothetical index benefit estimator presented in this work,
named QHICS, is composed of three components:

• The Feature extractor takes a workload and extracts mean-
ingful information. These features will be used to encode
vectors. QHICS extracts each scan operations along with
its filters, and also captures highly selective joins. It can be
extended to capture more informations, but for hash index
(which are the only secondary index structure available yet),
we have found these features to be sufficient (for reasons
detailled in section 5.1).

• The Index encoder can encode an index into two vectors,
one for the benefit on the workload and one for the creation
cost. Each vector is composed of three dimensions, the
estimated Disk IO usage, the estimated CPU usage, and the
estimated memory usage.We decided to use index encoding
because each system has different components speed, hence
we want to leverage regression to learn how each metrics
impact the total benefit. This can be seen as a way of finding
constants representing the time per cpu operation, disk
operation, and memory operation.

• The Cost model takes an encoded benefit (resp. cost) vec-
tor and multiply it by a vector of parameters ®𝜃𝑏𝑒𝑛𝑒𝑓 (resp.
®𝜃𝑐𝑜𝑠𝑡) to get the estimated benefit (resp. cost). This vector

is of dimension three and is tuned using positive quantile
regressions on a dataset of encoded indices along with their
real benefit (resp. creation cost). Quantiles of QHICS can
be changed at any moment at the cost of solving a linear
programming problem on the training dataset.

One can see how these different components communicate to-
gether in fig. 3. For a precise description of each component, sec-
tion 5 explains why and how we extract the features we have found
to be relevant, section 6 explains how we encode an index into two

Workload

Feature Extractor(1)

On workload change

DBFeatures

Index Encoder Cost Model

(2) (3)

Benefit

At each estimation

Quantiles Historical
data

Figure 3: (1) represents the feature extractor, which is called once
per workload change. It communicates with the databases to get
statistics, schema information and physical plans. (2) represents
the encoder, it uses the features extracted before and database
statistics to represent the index into a vector of fixed dimension. (3)
represents the tuned cost model, it uses two quantiles to have a risk
and benefit trade-off, it is tuned using positive quantile regression
over historical data. The cost model can be re-tuned with one call
to QHICS, but it will not change automatically except if quantiles
change.

vectors given the analysed workload, and section 7 explains the
cost model and how we tune parameters.

The learned parameters are representing the cost per unit of
processing disk, CPU, and memory, hence it needs to be fine-tuned
per databases and hardwares. However, section 9 demonstrates that
the ranking score (comparing two vectors to estimate the most
beneficial) is great even in zero-shot.

5 Column-oriented feature extraction
The first major component needed for an hypothetical index es-
timator is a tool to transform a query, represented by a string,
to data structures we can use to encode an index. We call features
these data structures instances and the goal of this section is to
explain how we decided to extract relevant features to estimate
column-oriented index benefit.

The entry of QHICS workload analysis is a physical query plan
for each query, which we get by calling EXPLAINs to the database.
Hence, the work of pushing down and optimizing predicates is
let to the database. In the following subsections we explain how
we compute our features given a physical query plan. We explain
why we capture SCAN and JOIN operations in section 5.1, explain
how we encode a scan in section 5.2, explain how we estimate the
number of segments to open in section 5.3, and explain which joins
are interesting and what we keep from them in section 5.4.

Clément Rouvroy

5.1 Relevant operations
A query plan is composed of many operations that all impact
the query execution time: data accesses, grouping operations, dis-
tributed computations operations (gather, partition), filters, aggre-
gators, etc. An example of query plan is given in fig. 4. Depending
on the considered index types, different operations became relevant:

• Hash indexes allow to accelerate some bottleneck queries by
providing direct access to precise values. This mostly speed
up scan operations, but can also speed up some special
joins.

• Ordered indexes can be leverage to speed up scans, but also
for partitioning, gathering or grouping operations.

This work focuses on hash index, because no system supports
ordered secondary index in column-oriented databases ([26] is not
yet implemented), hence the main operations we need to look at
are scans and joins.

5.2 Scan feature extraction
A scan operation on column C of table T with predicate p, denoted
𝜎p (T.C) asks to get all values of T.C corresponding to rows where
p is valid. This is the only operation that may read its data from the
main memory.

Given a scan operation, we need metrics that are relevant to the
possible benefits of an hash index. As accesses are per columns, we
need to measure for each column if it is accessed during the query,
and if so, with which features (predicates, ordering, . . .).

The scanning system is different in column-oriented databases
compared to row-oriented ones. The main difference being that
accesses are now per columns and not per rows. Hence, we will
capture metrics in a dictionary that maps (table, column) tuples
to a list of scan features.

When there is no index to leverage, the database engine needs to
scan relevant rows on every needed columns. A column is needed
if it is in the predicate, or it is the one we project resulting row
IDs on. However, note that once one has identified needed row IDs
by processing the predicate, accessing projected columns value is
not different if you have a hash index or not: in both case you can
either leverage seekable hash or just read all needed segments if
needed rows are dense in the segments. Hence, we need to capture
metrics on columns used in the scan predicate, as this is where
indexes can increase query processing. In this work, a predicate is
either:

• A condition operator (leaf), in this work we have imple-
mented =, RANGE, <, >, <=, >=.

• A logical operator (node), in this work we have imple-
mented OR, AND, NOT.

We make the following assumptions on the query processing:

• Before accessing data, the database first uses the predicate
to compute segments needed to be open, i.e. we assume
that the database leverages segment skipping.

• When no index is available for a column, the database fully
read segments not skipped once, if it needs a value again,
it reads it from memory.

• In a query plan, the same column can be accessed using
different strategies (index scan or columnar scan) in differ-
ent scans. However, within a single scan, only one access
method is used per column.

• The database is clever and always choose the optimal access
path for each column. In particular, it can leverage indexes
for some columns and columnar scans for others.

Looking at assumptions made for the accesses, we will capture
estimations of:

• The number of unique values filtered by each condition
operators along with the cardinality. This will be used to
estimate the cost of hash index scan.

• The number of segments that can not be skipped. This will
be used to estimate the cost of columnar scan.

• The compressed and decompressed sizes of each needed
column. This will be used for both estimations.

Getting exact values for each of these features would be time-
consuming, to get cardinality and number of distinct values esti-
mations, we rely on existing works on row-oriented databases [6].
However, there is no work that provides an estimation of the needed
number of segments to answer a query, hence we propose our ap-
proximation in the following section.

5.3 Estimating needed segments
Segment skipping (see section 2.1.1) allows to skip some block of
data (containing around 1,000,000 tuples) based on the predicates of
access. Existing works that estimate the cost of a columnar scan [9]
make the assumption that all segments need to be open to scan a
column, though an efficient systems can optimize the number of
segments needed to open: according to [28], given a column 𝐶 and
a value 𝑣 ∈ Dom(𝐷) if the system maintains 𝑅 sorted runs (group
of segments without min-max intersections) and that at most 𝑘
segments have for interval exactly [𝑣, 𝑣], the system only needs to
open 𝑅 + 𝑘 segments to find all necessary rows. Hence, a system
that have an efficient merger reducing 𝑅 and 𝑘 can optimize the
number of segments to open, significantly reducing the complexity
of the columnar scan.

As column-oriented databases can have petabytes of data (and
then a lot of segments), we don’t want to compute the exact number
of segments for each query. We will get some information for each
column, and derive formula for all predicates using these samples.

Definition 5.1 (Hit factor). We define the hit factor (ℎ factor) of
a query as the minimum percentage of segments that need to be
open to process its answers.

5.3.1 Column hit factor. Given a column T.C in the database, we
define its hit factor, ℎT.C, has the average on 𝑘 ∈ Dom(𝑇 .𝐶) of the
probability that a segment of T.C needs to be open to solve the
query SELECT * FROM T WHERE C = k. As this value depends on the
optimizations of the used database, we get this value by sampling
on each column, approximating the real mean by an empirical one.

5.3.2 Condition operator hit factor. Given a column T.C in the
database, and an operator 𝑜 , to estimate the probability that a given
segment need to be open, we first get 𝑜 estimated number of distinct
values 𝑘 and the hit factor of T.C,ℎT.C. To get the number of distinct
values, one can rely on existing methods for row-oriented databases,

Hypothetical Index Benefit Estimation on Column-oriented Databases usingQuantiles

such as HyperLogLog [7]. Now, the hit factor of 𝑜 , denoted ℎT.C (𝑜),
is estimated to 1− (1 − ℎT.C)𝑘 . To understand this estimation, given
a value 𝑣 ∈ Dom(T.C), it is clear that the probability that the segment
will not be open by searching for it will approximately be 1 − ℎT.C.
Given a set of 𝑘 distinct values of Dom(T.C), the probability that
the segment will not be open by searching for all 𝑘 values can be
estimated to (1 − ℎT.C)𝑘 . Finally, the average probability that the
segment will need to be open to search for 𝑘 different values can
then be estimated to 1 − (1 − ℎT.C)𝑘 .

5.3.3 Logical operator hit factor. Now that we have a way to es-
timate the hit factor of each condition operators, to be able to
estimate the hit factor of a predicate we need to give estimations
for logical operators. For this we use the F-algebra from [24]. This
algebra estimates the selectivity for logical operators in a B+-tree
row-oriented database:

• And. For a logical operator 𝑝𝑎∧𝑝𝑏 , where 𝑝𝑎 and 𝑝𝑏 are two
predicates over the same table 𝑇 , we estimate the hit factor
of the AND to ℎ𝑇 (𝑝𝑎 ∧ 𝑝𝑏):=ℎ𝑇 (𝑝𝑎) × ℎ𝑇 (𝑝𝑏). The intuition
is that we compute the intersection of segments, hence
approximately the product of the percentages.

• Or. For a logical operator 𝑝𝑎 ∨ 𝑝𝑏 , where 𝑝𝑎 and 𝑝𝑏 are two
predicates over the same table 𝑇 , we estimate the hit factor
of the OR toℎ𝑇 (𝑝𝑎∨𝑝𝑏):=ℎ𝑇 (𝑝𝑎)+ℎ𝑇 (𝑝𝑏)−ℎ𝑇 (𝑝𝑎)×ℎ𝑇 (𝑝𝑏).
The intuition is that we compute the union by summing
the probability and removing the intersection (which was
counted twice).

• Not. For a logical operator ¬𝑝𝑎 , where 𝑝𝑎 is a predicate
over a table 𝑇 , we estimate the hit factor of the NOT to
ℎ𝑇 (¬𝑝𝑎):=1 − ℎ𝑇 (𝑝𝑎), as a segment is open by a NOT if and
only if it was not open in the input.

Using these approximations, we can now use sampling to get the
column hit factor for each columns, and then derive the estimation
of hit factor for any predicates at a low cost.

5.4 Highly Selective Joins
Hash indexes can be used to accelerate scans, but they can also be
leveraged for special joins. Consider a join 𝑆1 ⊲⊳𝑝 𝑆2 where 𝑆1 (resp.
𝑆2) is a scan operation on 𝑇1 (resp. the result of another join or a
scan on another table), and 𝑝 is the join predicate. If:

(1) The join predicate is sargable for hash indexes. In our imple-
mentation, this is using only composed of equality condi-
tions and ∧ logical operators. This can be extended depend-
ing on how the target database system is implemented.

(2) The optimizer performs the join using a hash join, where
the hash table is built over 𝑆2.

(3) The number of distinct values stored inside the hash table
is low (this is lower than an optimizer threshold).

then the join may be accelerated by an hash index over 𝑇1, on
the columns used in 𝑝 . Here is how we assume the query optimizer
to take a decision (it is the decision process of SingleStore [2]):

(1) Compute result of 𝑆2 and build the hash tables over needed
columns.

(2) If the NDV is sufficiently small, for each unique values ®𝑣 ,
get all lines of 𝑇1 with values ®𝑣 , and keep those that pass
the filter of 𝑆1.

(3) If the NDV is not small enough, perform a normal hash
join.

To estimate efficiently the number of distinct values, one can
either rely on optimizer’s estimates if available, or implement the
method of its choice, there is plenty, from heuristics to language
models [31]. To detect highly selective joins, QHICS uses a fixed
threshold that can be configured. For each highly selective joins,
we store cardinality of 𝑆2 and 𝑆1, along with number of distinct
values estimation of 𝑆2.

6 Encoding an index
Given a workload W, we can now get a map of scans and a list of
joins, with needed metrics. In this section we explain how, given
a configuration 𝑐 of already materialized indexes, we estimate the
benefit and the cost of a new index 𝐼 .

Section 6.1 explains the idea behind encoding the difference
directly along with the encoding dimensions, section 6.2 explains
how we encode scans on unary index, section 6.3 explains how
we extend our scan encoding to multi-column index, section 6.4
explains how we encode joins, and section 6.5 explains how we
encode the cost of an index.

6.1 Encoding meaning
Usual works in row-oriented databases use two costs to estimate
a plan execution time: the CPU costs and the number of pages
needed to be open. This can be seen as a CPU cost and a disk IO
cost. However, column-oriented databases rely a lot on memory,
and data on disk are compressed where they are not on memory,
hence we propose to add an estimation of the memory usage to the
encoding, leading to a vector of three dimensions, estimated disk
IO, estimated CPU usage, and estimated memory usage.

Traditional What-If takes an index, creates two physical plans
(one without and one with index), and returns the difference in
estimated cost of each plan. But cost estimations are known to be
imprecise, hence we sum two imprecise metrics, leading to possibly
more errors. We propose to directly encode the difference into one
vector, and to learn to predict the benefit using this encoding vector.

Hence, we encode an index benefit into a three dimensions vector
representing the estimated disk IO, CPU, and memory resources
difference between without and with the new index. For the cost,
we will simply estimate the resources needed to create it (as without
index there is nothing to create).

Before moving to our encoding, we define some key notations:
• 𝑆comp (resp. 𝑆decomp) represents the total compressed (resp.

decompressed) size of a column.
• 𝑐𝑑𝑖𝑠𝑘 (resp. 𝑐𝑐𝑝𝑢 , 𝑐𝑚𝑒𝑚) represents the estimated disk (resp.

CPU, memory) usage.
• 𝑁𝑠𝑒𝑔 represents the number of segments of a table (all colum-

ns in a table have the same number of segments).
• 𝑁 represents the number of tuples in a table,
• 𝑆𝑜 𝑓 𝑓 𝑠𝑒𝑡 represents the size of an offset on disk (it is approx-

imately ⌈log2 (𝑁 /𝑁𝑠𝑒𝑔)⌉ + 1).
• 𝑛𝑑𝑣 (®𝐶) represents the number of distinct values of ®𝐶 in the

database.
• 𝑛𝑑𝑣𝑟𝑒𝑠 (®𝐶) represents the number of distinct values of ®𝐶 that

are in the resulting tuples of a query.

Clément Rouvroy

• 𝑓𝑜𝑝 (resp. 𝑓𝑑𝑒𝑐) represents the CPU time needed to do one
operation (resp. decompress one value).

As we are working with an already materialized configuration,
we need to know which indexes are already materialized. We say
that an index is already present in a configuration 𝑐 if it is either in
𝑐 , or is on one column and this column is part of a multi-column
index in 𝑐 (see section 2.2 for the second condition).

6.2 One column Scan benefit encoding
Suppose that 𝐼 =𝑇 .𝐶 . If it is already present in 𝑐 we simply encode
its benefit to ®0. Otherwise, as discussed in 5.2, we only look at the
conditions that concern the column T.C. The other accesses are
taken in consideration in the scan hit factor approximation.

6.2.1 Encoding of a scan without index. Without index, the data-
base needs to open every matched segments, hence it is read-
ing ℎ percentage of data. We model the disk IO of one scan as
𝑐𝑑𝑖𝑠𝑘 :=ℎ × 𝑆comp (𝑇 .𝐶), as it needs to read the compressed data of
all segments that need to be open. The memory used estimation is
𝑐𝑚𝑒𝑚 :=ℎ × 𝑆decomp (𝑇 .𝐶), as data read from disk need to be stored
decompressed on memory. Finally, the CPU is used twice: it needs
to scan data and check for each value if it needs to keep it, costing
𝑐1𝑐𝑝𝑢 :=𝑁𝑇 × ℎ × (𝑓𝑐𝑜𝑙𝑠𝑐𝑎𝑛 + 𝑓𝑜𝑝), and it needs to decompress data,
costing 𝑐2𝑐𝑝𝑢 :=𝑆comp (𝑇 .𝐶) × ℎ × 𝑓𝑑𝑒𝑐 . We define 𝐸∅ as a function
that takes an index and a scan, and return the vector composed of
⟨𝑐𝑑𝑖𝑠𝑘 ; 𝑐1𝑐𝑝𝑢 + 𝑐2𝑐𝑝𝑢 ; 𝑐𝑚𝑒𝑚⟩.

6.2.2 Encoding of a scan with index. With index, the database can
read only needed lines thanks to seekable encoding, however some
implementation might multiply the number of lines to read by a
seek factor 𝑠𝑓 ≥ 1 (some compression might require more than
one value to decompress one precise tuple). Though in general we
scan less tuples, there is still some queries (either not selective or
selective but returning almost only whole segments) that will lose
more times with a hash index compared to without. Moreover, the
time to scan one value is longer with a hash index because the scan
is not continuous anymore. For these reasons, if a scan has a bigger
metric in one of three dimensions of encoding compared to the
scan without index, the encoding with index fallback to the one
without index.

A scan with index requires first to read the index, and then to
read needed data. We assume that:

• Inverted indexes are on disk, but a fixed ratio 𝑟𝑚𝑒𝑡𝑎 is cached
in memory,

• The global index is read in memory,
• The database does not recheck that rows have the value we

are searching for (we trust the index).
Given a scan over𝑇 .𝐶 , we will encode the cost of each conditions

over 𝑇 .𝐶 , as hash index can only verify them one by one. Given
one condition, let 𝑛𝑑𝑣𝑟𝑒𝑠 be the number of distinct values of 𝑇 .𝐶 in
resulting rows (one can rely on traditional estimations to get this
value [6]).

We first need to estimate the size of an inverted index, for this
we propose 𝑆𝑖𝑣 (𝑇 .𝐶):=𝑁𝑇 × 𝑆𝑜 𝑓 𝑓 𝑠𝑒𝑡 . We also need to estimate the
size of global index that we need to read. Assuming that each level
of the global index compress 𝑘 hash tables into one, the height
of the LSM-tree is approximately log𝑘 (𝑁𝑠𝑒𝑔 (𝑇)) ([28]). At each

level we need to read the offset of the hash table to read for each
distinct values, consuming 𝑆1

𝑔𝑙𝑜𝑏𝑎𝑙
:= log𝑘 (𝑁𝑠𝑒𝑔 (𝑇))×𝑛𝑑𝑣𝑟𝑒𝑠×𝑆𝑜 𝑓 𝑓 𝑠𝑒𝑡 .

Then, one need to read one offset per segment that contains the
searched value, if ℎ is the hit factor of the condition, this gives
𝑆2
𝑔𝑙𝑜𝑏𝑎𝑙

:=𝑛𝑑𝑣𝑟𝑒𝑠 × 𝑁𝑠𝑒𝑔 (𝑇) × ℎ × 𝑆𝑜 𝑓 𝑓 𝑠𝑒𝑡 .
The disk will be used to read the inverted index, using 𝑐1

𝑑𝑖𝑠𝑘
:=(1−

𝑟𝑚𝑒𝑡𝑎)𝑆𝑖𝑣 , and to read needed data: 𝑐2𝑑𝑖𝑠𝑘 :=𝑠𝑓
𝑁𝑟𝑒𝑠

𝑁 (𝑇) ×𝑆comp (𝑇 .𝐶). The
memory will be used to read the global index, costing 𝑐1𝑚𝑒𝑚 :=𝑆𝑔𝑙𝑜𝑏𝑎𝑙 ,
to read cached inverted index, costing 𝑐2𝑚𝑒𝑚 :=𝑟𝑚𝑒𝑡𝑎 × 𝑆𝑖𝑣 , and to
store decompressed read data, costing 𝑐3𝑚𝑒𝑚 :=

𝑁𝑟𝑒𝑠

𝑁 (𝑇) × 𝑆decomp (𝑇 .𝐶).
The CPU is used twice, it needs to probe the hash index for each
unique, costing 𝑐1𝑐𝑝𝑢 :=𝑛𝑑𝑣𝑟𝑒𝑠 × log𝑘 (𝑁𝑠𝑒𝑔 (𝑇)) × 𝑓𝑜𝑝 , and it needs to
decompress data, costing 𝑐2𝑐𝑝𝑢 :=𝑆comp (𝑇 .𝐶) × 𝑁𝑟𝑒𝑠

𝑁 (𝑇) × 𝑓𝑑𝑒𝑐 .
At the end, the encoding of the scan with index is the sum over

all conditions of the encoding of the condition. However, if this sum
is higher than the cost without an index of the scan, we fall back
to the case without index. We define 𝐸𝐼 as a function that takes an
index and a scan, and return the vector composed of the sum over
each conditions of ⟨𝑐1

𝑑𝑖𝑠𝑘
+ 𝑐2

𝑑𝑖𝑠𝑘
; 𝑐1𝑐𝑝𝑢 + 𝑐2𝑐𝑝𝑢 ; 𝑐1𝑚𝑒𝑚 + 𝑐2𝑚𝑒𝑚 + 𝑐3𝑚𝑒𝑚⟩

(or the fallback). The fig. 4 represents a scan encoding.

6.3 Multi-column indexes scan
We consider that multi-column hash indexes over ®𝐶 are composed
of an index on each column in ®𝐶 , and a multi-column global hash
index exactly on ®𝐶 . This is the architecture used in [21]. The multi-
column global hash index does not require any inverted index apart
from the individual ones (see section 2.2 for architecture).

The benefit of a multi-column index is estimated as the sum of
all benefits over one column (if one column is already materialized
it will bring ®0), to which we add the estimated benefit of the multi-
column hash index.

A scan can leverage a multi-column hash index if and only if it
contains only equality predicates and each column in ®𝐶 appears
exactly once inside the condition. If multi-column hash index can
be leveraged, we model the whole scan as only one index access
(for one column index it is one per condition) where:

• The cardinality is estimated to be the minimum of each
column access cardinality (it is an upper bound of the real
cardinality).

• The number of distinct values is 1 (there is exactly one tuple
of ®𝐶 that matches the equality condition).

• The hit factor is the hit factor of the scan.

6.4 Join benefit encoding
Given a high selective joins between a scan on 𝑇 filtered with
predicate 𝑝 and a join tree (or a scan) 𝐽 that can benefit from an
index on 𝑇 . ®𝐶 , we estimate the difference between 1) scanning all
values of 𝑇 while filtering and then probing the hash table built
on 𝐽 , and 2) using the hash table on 𝐽 to query the index over 𝑇 . ®𝐶 ,
filtering all matched rows. As we are encoding joins as a difference,
we do not estimate the cost of to process the join 𝐽 and of building
the hash table over it.

6.4.1 Estimating join without index. We simply estimate the cost
of the join without index to be the sum of scanning the table𝑇 with

Hypothetical Index Benefit Estimation on Column-oriented Databases usingQuantiles

Hash Join 𝑗1 𝑇 .𝐶1 =𝑇 ′ .𝐶′
1

Filter
𝐶1 = 42 ∨𝐶2 ≤ 24

Filter
𝐶′
3 = 1

Scan
𝑇

Scan
𝑇 ′

1. Example physical plan

𝑇 → [𝐶1 → [= 42];𝐶2 → [≤ 24];ℎ = 0.15]

𝑇 ′ →
[
𝐶 ′
1 → [= 42];𝐶 ′

3 → [= 1];ℎ = 0.001
]

Join opportunities: [(𝑇 .𝐶1, 𝑗1)]

2. Workload Analysis

𝐸∅ (= 42,𝑇 .𝐶1) − 𝐸𝐼 (= 42,𝑇 .𝐶1)
+

𝐸∅ (𝑗1,𝑇 .𝐶1) − 𝐸𝐼 (𝑗1,𝑇 .𝐶1)
=

⟨𝑐𝑑𝑖𝑠𝑘 ; 𝑐𝑐𝑝𝑢 ; 𝑐𝑚𝑒𝑚⟩

3. Index encoding

Figure 4: Example of index encoding for a given query. Given a query (see part 1), it is analyzed into two kinds of features: a scan map and a
join opportunities list (see part 2). To estimate the benefit of the index 𝑇 .𝐶1, QHICS gets every related features and sum the delta encoding
(see part 3).

predicate 𝑝 without index, and of probing the hash table over 𝐽
using matched lines. The first point is evaluated directly using the
scan formula, for the second one, we use 𝑐𝑐𝑝𝑢 :=𝑁𝑟𝑒𝑠 (𝑇) × 𝑓𝑜𝑝 , where
𝑁𝑟𝑒𝑠 (𝑇) is the number of tuples of 𝑇 that are valid for predicate 𝑝 .

6.4.2 Estimating join with index. For each value in the hash table
over 𝐽 , we will seek the hash index to read some data, we will then
need to filter each resulting tuples according to the predicate on 𝑇 .
For the first part, let 𝑟 :=𝑛𝑑𝑣𝑟𝑒𝑠 (𝐽 . ®𝐶)/𝑛𝑑𝑣 (𝐽 . ®𝐶) be an approximation
of the ratio of tuples of 𝑇 that we will match. We model the first
part as a scan with index where the cardinality is 𝑟 × 𝑁 (𝑇 . ®𝐶), and
the number of unique values is 𝑟 × 𝑛𝑑𝑣 (𝑇 . ®𝐶). Then we consider
the cost for probing the hash table, this is 𝑐1𝑐𝑝𝑢 :=𝑛𝑑𝑣𝑟𝑒𝑠 (𝐽 , ®𝐶) × 𝑓𝑜𝑝
and the time to filter each resulting lines of 𝑇 to be sure it is valid:
𝑐2𝑐𝑝𝑢 :=𝑟 × 𝑁 (𝑇) × 𝑓𝑜𝑝 .

6.5 Creation cost encoding
Estimating the benefit of an index is important to know which
will increase the more our workload speed. However, some indexes
might bring a lot, but they can also cost a lot to create. In this subsec-
tion we explain how we encode index creation into a vector. As we
are doing hypothetical index benefit estimation, we only estimate
the cost to pay at the creation, and we do not take in consideration
the maintenance cost. This cost can be taken in consideration in
index selection methods.

6.5.1 Cost of creating an index on one column. Let𝑇 .𝐶 be an index
that we would like to create over a configuration 𝑐 . If𝑇 .𝐶 is already
present in 𝑐 , it will cost nothing hence its encoding is ®0. Otherwise,
we will need to read the whole compressed data of 𝑇 .𝐶 on disk,
leading to 𝑐1

𝑑𝑖𝑠𝑘
:=𝑆comp (𝑇 .𝐶). We will also need to write on disk

the inverted index, that we already have estimated to 𝑐2
𝑑𝑖𝑠𝑘

:=𝑁𝑇 ×
𝑆𝑜 𝑓 𝑓 𝑠𝑒𝑡 . We need to store in memory the decompressed data of
𝑇 .𝐶 , costing 𝑐𝑚𝑒𝑚 :=𝑆decomp (𝑇 .𝐶). Finally, the CPU is used three
times, it needs to decompress data: 𝑐1𝑐𝑝𝑢 :=𝑆comp (𝑇 .𝐶) × 𝑓𝑑𝑒𝑐 , to hash

every unique values: 𝑐2𝑐𝑝𝑢 :=𝑛𝑑𝑣 (𝑇 .𝐶) × 𝑓𝑜𝑝 , and to add each offset
to the inverted index: 𝑐2𝑐𝑝𝑢 :=𝑁 (𝑇) × 𝑓𝑜𝑝 . The resulting encoding is
⟨𝑐1
𝑑𝑖𝑠𝑘

+ 𝑐2
𝑑𝑖𝑠𝑘

; 𝑐1𝑐𝑝𝑢 + 𝑐2𝑐𝑝𝑢 + 𝑐3𝑐𝑝𝑢 ; 𝑐𝑚𝑒𝑚⟩.

6.5.2 Cost of creating an index on multiple columns. Let 𝑇 . ®𝐶 be an
index that we would like to create over a configuration 𝑐 . For every
column 𝐶 ∈ ®𝐶 :

• If 𝐶 is not present in 𝑐 , we add its creation encoding to the
cost of 𝑇 . ®𝐶 .

• If 𝐶 is present in 𝑐 , we only add the size of its global hash
index to the memory estimation of the encoding, because
we don’t have to recreate the whole index again, but we
need to read its global hash index to create themulti-column
one.

Our estimated encoding can be obtained by summing the encod-
ing of all columns.

7 Cost Model
Using our encoding, we are able to transform a string representing
an index to a vector of three dimensions capturing essential features
and metrics to quantify the index benefit. In this part, we explain
how we associate a cost and a benefit to a vector.

7.1 Positive Quantile Regression
As discussed in section 2.3, we leverage Quantile Regression to tune
our parameters. More precisely, given a quantile for benefit (resp.
for cost) 𝑞𝑔 ∈]0; 1[(resp. 𝑞𝑐 ∈]0; 1[), we tune a vector ®𝜃𝑏 ∈ R3 (resp.
®𝜃𝑐 ∈ R3) on a training dataset.
There are many tools that can be used to tune parameters, how-

ever each dimension represents a system resources consumption
difference, and negative parameters are not relevant here. Though
it can give better solutions, it is fundamentally impossible to have a
system that uses a negative time to process a unit of storage. Hence,

Clément Rouvroy

we want to solve quantile regression with a positive constraint on ®𝜃 .
For this, we model the problem using Linear Programming. Given a
matrix of 𝑛 inputs X ∈ R𝑛×3 and objectives (benefit or cost) 𝑦 ∈ R𝑛 ,
if we seek to optimize ®𝜃 over quantile 𝑞 (whether it is a benefit or a
cost), we get a ®𝜃 that is part of a solution of:

min
®𝜃, ®𝑢, ®𝑣

𝑛∑︁
𝑖=1

[𝑞𝑢𝑖 + (1 − 𝑞) 𝑣𝑖]

s.t. 𝑦𝑖 − X𝑖
®𝜃 = 𝑢𝑖 − 𝑣𝑖 ∀𝑖

𝜃 𝑗 ≥ 0 ∀𝑗
𝑢𝑖 ≥ 0, 𝑣𝑖 ≥ 0 ∀𝑖

It is clear that it gives a solution to quantile regression from the
definition of 𝜌𝑞 given in section 2.3: ®𝑢 is used to model the positive
𝑟𝑖 and ®𝑣 to model the negative 𝑟𝑖 . The constraint of positivity over ®𝜃
implies that we are returning the best solution that has non-negative
parameters.

7.2 Implementation
The quantiles can be changed online at the cost of resolving this
linear programming problem, which is fast.

A model is trained over all dataset values, however if enough
values are available for a table, a model is trained on this table, same
goes for every possible indexes. One can configure the minimum
number of points to fit a model on a subpart of training data. The
more fine-grained model there is, the more precise predictions are.

8 Index selection algorithms
One can now estimate the benefit on an hash index in column-
oriented databases using QHICS. We want to use this estimation to
select index for a workload. In what follows, we will present two
methods to select index in column-oriented databases: greedy and
Reinforcement Learning.

8.1 Greedy algorithm
Since the earliest usage of What-If utilities in [4], greedy are used
to select index. Given a configuration 𝑐 and a list of possible new
indexes 𝐼1, . . . , 𝐼𝑘 , greedy selects the one that has the most estimated
benefit using What-If calls.

We have implemented this algorithm using QHICS to select index
in a column-oriented database.

8.2 Reinforcement Learning algorithm
8.2.1 Known method. The first method is efficient for fast strategy
and can recommend the best choice for one index, but when we
want to create multiple indexes, we need to take in consideration
Index Interaction [22]. As a solution, [13] proposed to leverage a
Deep Q-Network Reinforcement Learning agent [16] to learn to
recommend index on an offline workload. The state is a one-hot
encoding of index already created, and the action is selecting one
index to create. The reward used is the What-If estimation of the
created index benefit. This model has a fast training because the
reward is the What-If estimated benefit and not the real benefit,
but one needs to train one model per choices which can take a long
time.

8.2.2 Quantile-aware agent. Due to time restriction, we did not
have the time to implement Reinforcement Learning algorithm
hence we let this to a future work. However, we propose a new
model that we would like to test in the future: a Reinforcement
Learning agent that can tune quantiles. This model would need
one (long) training but could be re-used while the historical data
does not shift from training one. Given a set of possible indexes
{𝐼1, . . . , 𝐼𝑘 } and quantiles ®𝑞, we propose to model index selection
problem given a maximum number of indexes to choose from 𝑛 ∈ N
has:

• State. For 1 ≤ 𝑖 ≤ 𝑘 , let ®𝑒𝑖 ∈ R2 be the estimations of
QHICS of vector 𝐼𝑖 . The state is the concatenation of all ®𝑒𝑖 ,
padded with ®0 to get a vector of size 𝑛 × 2, to which we
concatenate ®𝑞. Hence, the agent is aware of the estimations
of QHICS among with the quantiles used.

• Actions. Agent can either do nothing (ending the episode),
increase/decrease one of the quantile by a fixed ratio, or
recommend an index.

• Reward. If the agent recommend an index the reward is the
real benefit, except if the constraint is broken in which case
it is an important penalty. If the agent does not recommend
an index the reward is 0 and the episode is stop. If the agent
changes quantile the reward is 0 (or a little penalty if one
wants to limit the number of computations).

This simple model could reflect interesting trade-off permitted
by quantiles, and is let to future work.

9 Implementation & result
To study the performance of QHICS, we propose four tasks that
are increasing in difficulty and can correspond to different levels of
confidence in the hypothetical index estimations:

• The ranking score: the first task that we want is to com-
pare indexes to return the one with the maximum estima-
tion (some What-If even returns a benefit that has no unit
and is just used for comparison). Hence, the first metric
that we will get is the ranking score. If 𝐵∗ is the real benefit
and 𝐵̂ the predicted ones, the ranking score is:

𝑟𝑠 (𝐵∗, 𝐵̂):= 2
𝑛(𝑛 − 1)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝛿 (𝐵∗
𝑖
≤𝐵∗

𝑗
)==(𝐵̂𝑖 ≤𝐵̂ 𝑗)

This ranking is useful to recommend the index with the
most benefit, though it can not be used in algorithm that
needs a precise balance of benefit and cost. This is the first
level of hypothetical index that we accept.

• The underestimation score: once one starts to have some
information but not enough to get precise estimations, it
might want to be able to do some recommendations without
too much risk. For this we define the underestimation score
has the percentage of underestimations with a quantile 0.1,
along with the average percentage of overestimation when
there is one.

• The benefit error: once one has gathered enough data
points from runtime, it may want to have an estimation
that can be used to get an estimation in seconds of the real
increase of efficiency, hence we look at is the average error
in benefit estimation (in percentage).

Hypothetical Index Benefit Estimation on Column-oriented Databases usingQuantiles

• The budget recommendation error: Selecting the best
index is hard but only requires to estimate the gain. An
important feature of a What-If is to estimate the creation
cost of an index. For example, in online index recommen-
dation or offline with budget, it is important to be able to
distinguish indexes that are bringing more benefit than
they cost from others. If 𝐵∗ is the real benefit and 𝐵̂ the
predicted ones, and if 𝐶∗ is the real creation cost and 𝐶 is
the predicted ones, we define the budget recommendation
error as a tuple containing the percentage of overestimation
and:

𝑏𝑟𝑠 :=
1
𝑛

𝑛∑︁
𝑖=1

𝛿 (𝐵∗
𝑖
−𝐶∗

𝑖
≥0)==(𝐵𝑖−𝐶𝑖 ≥0)

As hypothetical index estimationmay be leveraged with a budget
on the creation time, we will also compute the same scores for the
difference between benefit and creation cost, that we call effective
benefit. We can accept to have imprecise difference, but we want
the ranking and underestimation score to be as high as possible.

We will evaluate the precision of QHICS for each of these tasks
in three scenarios:

(1) A QHICS well-tuned, with a cost model tuned for each
index to recommend (on TPC-H).

(2) A QHICS tuned with the same amount of data but with
only one model for all indexes, simulating a situation where
QHICS was already running and recommended some in-
dexes but not enough to fine-tune (on TPC-H).

(3) A QHICS tuned over a different schema (TPC-H) and tested
on one where it has no data (TPC-DS).

9.1 Configuration and Workload
We have implemented QHICS in Python communicating with a Sin-
gleStore cluster running with 16 CPUs AMD Ryzen Threadripper
PRO 5965WX 24-Cores and 12GB of ram per node. When a GPU
is needed, we use a RTX A5000. The results are over two schemas:
TPC-H with scale factor 5, and TPC-DS with scale factor 5. As we
have only implemented a toy QHICS, it can not analyze all queries
in the TPC benchmarks, hence we have limited our experimenta-
tion to workload composed of point-access queries, multi-column
conditions scans, and join queries with up to 2 joins. There is no
grouping or ordering operations. We have tuned QHICS with 500
points for 27 possible indexes on TPC-H schema, up to 2 columns=
per index. TPC-DS is used for the third scenario.

9.2 One model per index result
In this subsection, we consider a QHICS that has enough data to
leverage one cost model per index to estimate. This scenario can
happen if either the database maintained a history before launching
QHICS, or if QHICS has already recommended many indexes. Note
that if only some index have enough data to have a regression on
them, QHICS can use a general model for indexes without enough
data and a precise model for those that have enough (the threshold
of minimum data to tune is configurable).

One can see the benefit estimation plot in fig. 5. The ranking
score using the 0.5 quantile is really high (97%). The underestimation
error on this run is perfect with zero overestimation for quantile 0.1.

The benefit error is only of 9% in average, with a maximum of 51%.
Finally, the budget recommendation error for quantiles (0.1, 0.9)
is the best with 91% of underestimation, and 100% of difference
positivity correct estimation. One can see the benefit - creation cost
estimation plot in fig. 6.

9.3 One general model result
In this part, we consider a QHICS that has enough data to tune a
general model over all possible indexes, but that has not enough
points to have a cost model for each index.

One can see the results in fig. 7. The ranking score is still nice
with over 92% with quantile 0.5. With quantile 0.1 there is 96%
of underestimation and an average overestimation of 8% when
one appears. Estimation error however are more present, with an
average error of 34% and amaximum error of 48%, though this is still
acceptable compared to other heuristics-based What-If. Finally, the
budget recommendation error for quantiles (0.1, 0.9) is the best with
no overestimation, there is only 67% of difference positivity correct
estimation. However, as all errors are missed opportunities and
wrong opportunity, we find this acceptable, hence a general model
is, we think, enough to be leveraged in index recommendation
with budget. One can see the benefit - creation cost estimation plot
in fig. 8.

9.4 Default model result (zero-shot)
In this part, we consider a QHICS that has parameters tuned on
TPC-H schemas, and that is used to estimate indexes on TPC-DS
schemas.

Results can be seen in fig. 9. The ranking score is 81% which is
acceptable, especially as there is no training data involved in this
score. However, the recommendation is more risky with 58% of
overestimation, even with 0.1 quantile used on the training dataset.
The average estimation error is of 138%, hence it is clear that one
should not use the default value, apart for ranking.

This result is logical as here this is a zero-shot model and the
time per operation depends on the database schema (the more data
there is, the more the background merger needs to work), hence
having a precise estimation depends on the distance between the
default parameters conditions and the actual condition.

9.5 Greedy Index Selection
According to previous subsections, we can estimate with an accept-
able precision best indexes. To confirm this we have implemented
greedy index selection using QHICS benefits.

One can see the results in fig. 10. Though it does not tell more
than already showed in previous subsections, it motivates future
works in index selections for column-oriented with a reduction of
almost 30% of workload processing time.

9.6 QHICS Result
Looking at the presented results, we think that QHICS, thanks to
the integration of quantiles, can be deployed in a progressive way.

On a database with no historical data, one should use QHICS
with default parameters to compare indexes and create index based
on this ranking, though it can not have a valid estimation of the

Clément Rouvroy

Figure 5: Precision of QHICS when estimating index with an important amount of historical data. The bottom of a box is the 0.1 quantile,
the top 0.5 quantile, and middle line 0.3 quantile.

Figure 6: Precision of QHICS when estimating the difference between index benefit and creation cost, with an important amount of historical
data. The bottom of a box corresponds to (0.1, 0.9) quantiles, the top (0.5, 0.5) quantiles, and middle line (0.3, 0.7) quantiles.

Figure 7: Precision of QHICS when estimating index with one model covering all indexes. The bottom of a box is the 0.1 quantile, the top 0.5
quantile, and middle line 0.3 quantile.

Hypothetical Index Benefit Estimation on Column-oriented Databases usingQuantiles

Figure 8: Precision of QHICS when estimating the difference between index benefit and creation cost, with an important amount of historical
data. The bottom of a box corresponds to (0.1, 0.9) quantiles, the top (0.5, 0.5) quantiles, and middle line (0.3, 0.7) quantiles.

Figure 9: Precision of QHICS when estimating index with one model that is using the default parameters (not related to the database
schema). The bottom of a box is the 0.1 quantile, the top 0.5 quantile, and middle line 0.3 quantile.

Figure 10: Greedy Index Selection using QHICS benefit estimation.

real benefit, it can use the lowest possible quantiles to reduce the
overestimation amplitude.

Once some indexes have been created, one can switch to a general
model tuned for its database, using quantiles (0.5, 0.5) if it needs a
precise estimation, or lower risk combination (such as (0.1, 0.9)) to
minimize the risk in the decision.

On a database with a lot of historical data, one can tune QHICS
per indexes and then have precise recommendations regardless of
the quantiles.

10 Conclusion and limitations
In this work, we provide a first step towards column-oriented data-
base automatic tuning. We propose heuristics for access paths cost
estimations, especially providing a way to efficiently get an estima-
tion of the number of segments that are needed to answer a given
query. Though index architectures might change and depend on

Clément Rouvroy

1 db_wrapper = DbWrapper(...)
2 db_utilities = DbUtilities(db_wrapper)
3

4 whatif = Qhics(db_wrapper,db_utilities)

Listing 1: Creating a QHICS instance

the database, we propose foundations that future work could build
upon to enhance or adapt to new architectures.

Moreover, we propose to leverage (positive) quantile regression
to trade off the precision of the estimation and the number of
overestimation, allowing to use our hypothetical index benefit for
ranking even if it is using the default parameters.

Even though results of our experiments are satisfying, our imple-
mentation has been limited to a subset of SQL, and to hash indexes
only, we look toward both extending it to support more index types
(once systems capable of having more secondary index types will
be developed) and comparing it to orientation-agnostic methods.

Acknowledgements
I want to thank PhD. SHI Jiachen and Prof. CONG Gao for provid-
ing the research direction along with precious helps and reviews
throughout the research process. I also want to thanks ENS-PSL
for funding this internship, and NTU CCDS and Computation In-
telligence Lab for giving me access to the resources needed to test
QHICS.

A Appendix: How to use QHICS
This appendix provides a tiny example of using QHICS to recom-
mend indexes. The full code is available on GitHub (either the skele-
ton to extend to any system on the main branch, or the working
example on Singlestore in the singlestore branch). In this appendix,
we take the example of a E-commerce website under the TPC-H
workload.

A.1 Creating a QHICS instance
To create a QHICS instance, you will need to connect your code to
your database using two objects, and then create the instance. You
can see an example in listing 1.

A.2 Configuring QHICS
Once QHICS is connected, it can not immediatly recommend in-
dexes. You will need to set the workload to use (which can be
derived using other tools), and then create the encoder along with
the parameters for the cost model. You can do it easily using the
syntax in listing 2. If the fit parameter is set to True, the parame-
ters of the cost model are tuned using historical data, otherwise it
will use default parameters.

QHICS can also estimate indexes regarding an existing index
configuration, the syntax for editing the configuration is presented
in listing 3

1 known_workload = [
2 "SELECT c_nationkey FROM CUSTOMER WHERE c_acctbal > 150",
3 "SELECT o_orderstatus, o_totalprice, o_shippriority FROM

ORDERS WHERE o_orderdate >= '2004-02-04'",↩→

4 "SELECT l_shipinstruct FROM LINEITEM WHERE L_ORDERKEY =

190209"↩→

5]
6 whatif.set_workload(known_workload)
7

8 whatif.create_encoder()
9 whatif.create_cost_model(fit=True)

Listing 2: Getting QHICS ready

1 # Erasing previous configuration
2 # and writing the new one
3 existing_indexes =

[Index("LINEITEM",["l_orderkey"],["int"],"Hash")]↩→

4 whatif.set_configuration(existing_indexes)
5

6 # Adding new indexes
7 # For some sale in France the site
8 # has created a special index.
9 new_indexes =

[Index("CUSTOMER",["C_NATIONKEY"],["int"],"Hash")]↩→

10 whatif.add_to_configuration(new_indexes)
11

12 # Removing indexes
13 # Now that the sales are over, the site can
14 # remove the special index to save resources.
15 whatif.remove_from_configuration(new_indexes)

Listing 3: Changing index configuration

1 candidate1 = Index("LINEITEM",["L_QUANTITY"],["decimal"])
2 candidate2 = Index("LINEITEM",["L_LINENUMBER"],["integer"])
3 whatif.estimate_benefit(candidate1)
4 whatif.estimate_benefit(candidate2)

Listing 4: Recommending using QHICS

A.3 Comparing indexes
Now that QHICS is operational, you can use it to estimate hypo-
thetical indexes. The syntax can be seen in listing 4, note that it
will always estimate regarding the workload and configuration in
memory.

A.4 Online workload editing
QHICS supports adding (resp. removing) queries from the workload
without re-analyzing the whole workload, an example is given
in listing 5

References
[1] 2018. C-Store: A Column-Oriented DBMS (1 ed.). Association for Computing

Machinery, 491–518. doi:10.1145/3226595.3226638

https://doi.org/10.1145/3226595.3226638

Hypothetical Index Benefit Estimation on Column-oriented Databases usingQuantiles

1 # Some sales are happening in France,
2 # there is new queries related to it:
3 new_queries = [
4 "SELECT n_regionkey FROM NATION WHERE n_name = 'France'",
5 "SELECT c_nationkey FROM CUSTOMER WHERE c_nationkey = 5",
6 "SELECT O_ORDERKEY FROM ORDERS JOIN CUSTOMER ON

c_nationkey = 5 AND O_CUSTKEY = C_CUSTKEY"↩→

7]
8 whatif.add_to_workload(new_queries)
9

10 # Now that the sales are over,
11 # these queries are not index relevant anymore.
12 whatif.remove_from_workload(new_queries)

Listing 5: Online workload edition

[2] 2025. Highly Selective Joins · SingleStore Helios Documentation. https://docs.
singlestore.com/cloud/create-a-database/columnstore/highly-selective-joins/

[3] Daniel J. Abadi, Peter A. Boncz, and Stavros Harizopoulos. 2009. Column-
Oriented Database Systems. Proceedings of the VLDB Endowment 2, 2 (Aug.
2009), 1664–1665. doi:10.14778/1687553.1687625

[4] Surajit Chaudhuri and Vivek Narasayya. [n. d.]. AutoAdmin “What-if Index
Analysis Utility. ([n. d.]).

[5] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations. In Proceedings of the 2019 International Conference on
Management of Data. ACM, Amsterdam Netherlands, 1241–1258. doi:10.1145/
3299869.3324957

[6] Bailu Ding, Vivek Narasayya, and Surajit Chaudhuri. 2024. Extensible Query
Optimizers in Practice. Foundations and Trends® in Databases 14, 3-4 (2024),
186–402. doi:10.1561/1900000077

[7] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-
perLogLog: The Analysis of a near-Optimal Cardinality Estimation Algorithm.
Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol.
AH,..., Proceedings (Jan. 2007). doi:10.46298/dmtcs.3545

[8] H. Gupta, V. Harinarayan, A. Rajaraman, and J.D. Ullman. 1997. Index Selection
for OLAP. In Proceedings 13th International Conference on Data Engineering. IEEE
Comput. Soc. Press, Birmingham, UK, 208–219. doi:10.1109/ICDE.1997.581755

[9] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun
Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas
Cameron, Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-based HTAP Database.
Proceedings of the VLDB Endowment 13, 12 (Aug. 2020), 3072–3084. doi:10.14778/
3415478.3415535

[10] Roger Koenker and Kevin F Hallock. [n. d.]. QUANTILE REGRESSION AN
INTRODUCTION. ([n. d.]).

[11] Petr Kurapov and Areg Melik-Adamyan. 2023. Analytical Queries: A Compre-
hensive Survey. arXiv:2311.15730 [cs] doi:10.48550/arXiv.2311.15730

[12] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-store 7
Years Later. Proceedings of the VLDB Endowment 5, 12 (Aug. 2012), 1790–1801.
doi:10.14778/2367502.2367518

[13] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep
Reinforcement Learning. In Proceedings of the 29th ACM International Conference
on Information &KnowledgeManagement. ACM, Virtual Event Ireland, 2105–2108.
doi:10.1145/3340531.3412106

[14] Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L. Price,
Srikumar Rangarajan, Aleksandras Surna, and Qingqing Zhou. 2011. SQL
Server Column Store Indexes. In Proceedings of the 2011 ACM SIGMOD Inter-
national Conference on Management of Data. ACM, Athens Greece, 1177–1184.
doi:10.1145/1989323.1989448

[15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proceedings
of the VLDB Endowment 9, 3 (Nov. 2015), 204–215. doi:10.14778/2850583.2850594

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. arXiv:1312.5602 [cs] doi:10.48550/arXiv.1312.5602

[17] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
Log-Structured Merge-Tree (LSM-tree). Acta Informatica 33, 4 (June 1996), 351–
385. doi:10.1007/s002360050048

[18] Stratos Papadomanolakis, Debabrata Dash, and Anastasia Ailamaki. [n. d.]. Effi-
cient Use of the Query Optimizer for Automated Physical Design. ([n. d.]).

[19] R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata
Borovica-Gajic. 2023. No DBA? No Regret! Multi-Armed Bandits for Index
Tuning of Analytical and HTAP Workloads With Provable Guarantees. IEEE
Transactions on Knowledge and Data Engineering 35, 12 (Dec. 2023), 12855–12872.
doi:10.1109/TKDE.2023.3271664

[20] Gregory Piatetsky-Shapiro. 1983. The Optimal Selection of Secondary Indices Is
NP-complete. ACM SIGMOD Record 13, 2 (Jan. 1983), 72–75. doi:10.1145/984523.
984530

[21] Adam Prout, Szu-PoWang, Joseph Victor, Zhou Sun, Yongzhu Li, Jack Chen, Evan
Bergeron, Eric Hanson, Robert Walzer, Rodrigo Gomes, and Nikita Shamgunov.
2022. Cloud-Native Transactions and Analytics in SingleStore. In Proceedings of
the 2022 International Conference on Management of Data. ACM, Philadelphia PA
USA, 2340–2352. doi:10.1145/3514221.3526055

[22] Karl Schnaitter, Neoklis Polyzotis, and Lise Getoor. [n. d.]. Index Interactions in
Physical Design Tuning: Modeling, Analysis, and Applications. ([n. d.]).

[23] Robert Schulze, Tom Schreiber, Ilya Yatsishin, Ryadh Dahimene, and Alexey
Milovidov. 2024. ClickHouse - Lightning Fast Analytics for Everyone. Proceedings
of the VLDB Endowment 17, 12 (Aug. 2024), 3731–3744. doi:10.14778/3685800.
3685802

[24] P Griffiths Selinger, M M Astrahan, D D Chamberlin, R A Lorie, and T G Price.
[n. d.]. Access Path Selection in a Relational Database Management System.
([n. d.]).

[25] Jiachen Shi, Gao Cong, and Xiao-Li Li. 2022. Learned Index Benefits: Machine
Learning Based Index Performance Estimation. Proceedings of the VLDB Endow-
ment 15, 13 (Sept. 2022), 3950–3962. doi:10.14778/3565838.3565848

[26] Jiachen Shi, Jingyi Yang, Gao Cong, and Xiaoli Li. 2025. NEXT: A New Secondary
Index Framework for LSM-based Data Storage. Proceedings of the ACM on
Management of Data 3, 3 (June 2025), 1–25. doi:10.1145/3725330

[27] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. 2011. Database System
Concepts (6th ed ed.). McGraw-Hill, New York, NY.

[28] Alex Skidanov, Anders J. Papito, and Adam Prout. 2016. A Column Store Engine
for Real-Time Streaming Analytics. In 2016 IEEE 32nd International Conference
on Data Engineering (ICDE). IEEE, Helsinki, Finland, 1287–1297. doi:10.1109/
ICDE.2016.7498332

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need. arXiv:1706.03762 [cs] doi:10.48550/arXiv.1706.03762

[30] Yang Wu, Xuanhe Zhou, Yong Zhang, and Guoliang Li. 2024. Automatic Index
Tuning: A Survey. IEEE Transactions on Knowledge and Data Engineering 36, 12
(Dec. 2024), 7657–7676. doi:10.1109/TKDE.2024.3422006

[31] Xianghong Xu, Xiao He, Tieying Zhang, Lei Zhang, Rui Shi, and Jianjun
Chen. 2025. PLM4NDV: Minimizing Data Access for Number of Distinct
Values Estimation with Pre-trained Language Models. arXiv:2504.00608 [cs]
doi:10.1145/3725336

[32] Chao Zhang, Guoliang Li, Jintao Zhang, Xinning Zhang, and Jianhua Feng.
2024. HTAP Databases: A Survey. IEEE Transactions on Knowledge and Data
Engineering 36, 11 (Nov. 2024), 6410–6429. arXiv:2404.15670 [cs] doi:10.1109/
TKDE.2024.3389693

https://docs.singlestore.com/cloud/create-a-database/columnstore/highly-selective-joins/
https://docs.singlestore.com/cloud/create-a-database/columnstore/highly-selective-joins/
https://doi.org/10.14778/1687553.1687625
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1145/3299869.3324957
https://doi.org/10.1561/1900000077
https://doi.org/10.46298/dmtcs.3545
https://doi.org/10.1109/ICDE.1997.581755
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.14778/3415478.3415535
https://arxiv.org/abs/2311.15730
https://doi.org/10.48550/arXiv.2311.15730
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.1145/3340531.3412106
https://doi.org/10.1145/1989323.1989448
https://doi.org/10.14778/2850583.2850594
https://arxiv.org/abs/1312.5602
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1007/s002360050048
https://doi.org/10.1109/TKDE.2023.3271664
https://doi.org/10.1145/984523.984530
https://doi.org/10.1145/984523.984530
https://doi.org/10.1145/3514221.3526055
https://doi.org/10.14778/3685800.3685802
https://doi.org/10.14778/3685800.3685802
https://doi.org/10.14778/3565838.3565848
https://doi.org/10.1145/3725330
https://doi.org/10.1109/ICDE.2016.7498332
https://doi.org/10.1109/ICDE.2016.7498332
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1109/TKDE.2024.3422006
https://arxiv.org/abs/2504.00608
https://doi.org/10.1145/3725336
https://arxiv.org/abs/2404.15670
https://doi.org/10.1109/TKDE.2024.3389693
https://doi.org/10.1109/TKDE.2024.3389693

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Column-oriented databases strength and weakness
	2.2 Indexing in column-oriented databases
	2.3 Quantile Regression & Linear Programming
	2.4 Related Work

	3 Problem
	3.1 Definitions
	3.2 Problem statement

	4 QHICS overview
	5 Column-oriented feature extraction
	5.1 Relevant operations
	5.2 Scan feature extraction
	5.3 Estimating needed segments
	5.4 Highly Selective Joins

	6 Encoding an index
	6.1 Encoding meaning
	6.2 One column Scan benefit encoding
	6.3 Multi-column indexes scan
	6.4 Join benefit encoding
	6.5 Creation cost encoding

	7 Cost Model
	7.1 Positive Quantile Regression
	7.2 Implementation

	8 Index selection algorithms
	8.1 Greedy algorithm
	8.2 Reinforcement Learning algorithm

	9 Implementation & result
	9.1 Configuration and Workload
	9.2 One model per index result
	9.3 One general model result
	9.4 Default model result (zero-shot)
	9.5 Greedy Index Selection
	9.6 QHICS Result

	10 Conclusion and limitations
	Acknowledgements
	A Appendix: How to use QHICS
	A.1 Creating a QHICS instance
	A.2 Configuring QHICS
	A.3 Comparing indexes
	A.4 Online workload editing

	References

