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2"-isogenies in higher dimension

@ Previously: isogenies in higher dimension for number theory
@ [KNRR. 2021] used to compute modular forms in dimension 4 to study the Schotkky locus

@ “Fast”isogenies: a 3-isogeny over [Fgg in 70s!

@ Currently: used in cryptography

@ “Fast”=needs to compute a 2128-isogeny over a field Isz of 512 bitsin a few ms...

Cryptographic usage of 2™-isogenies in higher dimension:

@ Dimension 2: Festa, QFesta, Scallop-HD, Is-Cube
@ Dimension 2 or 4: SQISignHD, SQIFish, VRFs/VDFs, SétaHD

@ Dimension 8: 1SétaHD



2"-isogenies in higher dimension

[R. 2023]: faster formula for 2™-isogenies in the theta model

@ Optimised Sage implementation of 2" -isogenies in dimension 2 (with Dartois, Kunzweiler,
Maino, Pope)

o Indimension 1,a2692-isogeny over a field of 2360 bits: decomposition in 270 ms, images in 8 ms.

@ In dimension 2 (theta): decomposition in 490 ms, images in 25 ms

@ Richelot: decomposition in 4850 ms, image in 470 ms

@ Implementation in dimension 4 (Dartois): A 2128

= SQISign-HD verification in 850 ms

-isogeny over a field of 500 bits in 620 ms.

In FESTA, the bottleneck is now arithmetic in dimension 1 (torsion basis, pairings...)



Faster scalar multiplication on Kummer lines

Exploit the action of the theta group G(2(0g)) onI'(2(0g)) = (X, Z)

On a Montgomery model with a rational two torsion point T = (x : 1) # (0: 1):
Variable base scalar multiplication ladder P = (Xp : Zp) — L.Pin4M + 4S + 2m by bit.

@ Montgomery ladder: 5M + 4S + 11 for a normalised point P = (Xp : 1).

On a Theta Kummer surface, fixed base scalar multiplication ladder in 7M + 45 + 31 by bit.
Theta ladder: 10M + 9S + 6m1,.
Interesting for signatures (eg qDSA)



Faster pairings on Kummer lines

@ Isogeny based cryptography needs generic pairings
@ New pairing formula on the Montgomery model:

given x(P), x(Q), x(P + Q), ladder approach in 9V + 65 by bit
@ Faster than any generic Miller doubling formula | found

@ Special cases: £ = 2" or Q = P: 6M + 45 by bit
{ =2"and Q = P:3M + 2S by bit

@ Double and add variant (in the theta model):
Double = 6M + 55, Add=24M + 6S.

@ Timings in Sage for a 3363 pairing over a field of 2360 bits:

Sage’s Tate pairing computation: 0.13450s
Biextension Tate pairing computation: 0.02748s

Sage’s Weil pairing computation: 0.09782s
Biextension Weil pairing computation: 0.04764s



Biextensions

@ Introduced by Mumford, developed by Grothendieck in [SGA7, Exposés VI, VIII]
@ Grothendieck deals with biextensions BiIEXt(A, B; C) of abelian groups in an arbitrary topos

@ Object X — A x B with two partial group laws x1, %5 such thatforalla, b € A, B, (Xp, *1) is
an extension of A by C and (X,;, x5 ) an extension of B by C

@ Compatibility requirement:
forx,, b, = (a1,01), Xg, p, = (A2,b1), Xg, b, = (@1,02), Xa, p, = (a2, b7);

(xalrbl *1 xﬂZrbl) *2 (xﬂubz *1 xﬂzrbz) = (xﬂ1/b1 *2 xll1/h2) *1 (xﬂ2/b1 *2 xllzrhz)'

o BiExt(A, B; C) additive fibrant left exact in A, B, and additive cofibrant left exact in C.
e BiExt"(A, B; C) =~ Hom(A ® B, C)

L
e BiExt' (A, B;C) ~ Ext'(A ® B, C)

= Pairings!
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Biextension of elliptic curves and abelian varieties

@ For abelian schemes A, B, BiExt(A, B; G,,,) ~ BiRigidifiedTorsors(A, B; G,,) =~
Correspondances(A, B) ~ Hom(A, B) ~ Hom(B, A) (in the fppf topos)

@ Biextensions are used in [SGA7] to study orthogonality relations on the Néron models A, Aofan
abelian variety A and its dual A

@ In particular Grothendieck’s pairing on Néron component groups ﬂO(A ) X ﬂO(A ) - Q/Z
measures the obstruction of lifting the Poincaré biextensionon A x A to A x A

@ Key point in the proof of Grothendieck’s semistable reduction theorem for abelian varieties

@ Intuitive idea of a biextension: the biextension Xf € BiExt(A, B; G,,,) associated to a morphism
f:A- Bcanbeseenasa decurryfication of f : A — B ~ Ext! (B,G,,)
@ The biextension Xf”encodes”the Weil-Cartier pairing ef

@ Biextensions have better functorial and deformation/degeneration properties than Cartier
duality

@ Seems like a nice theoretical tool, but too abstract to be well suited for algorithmic applications
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Pairings via biextensions

@ [SGA7]: the biextension arithmetic computes the Weil-Cartier and [Stange 2008] Tate pairings (up
to a sign)

@ [Stange 2008]: the arithmetic of the biextension associated to (Of) on an elliptic curve is given
by elliptic nets

@ [Lubicz-R. 2010, 2015]: explicit biextension arithmetic in the theta model associated to a totally
symmetric line bundle .C of level 71 in any dimension

@ Except we were not aware that our theta pairing algorithms were actually computing the biextension arithmetic at the time
we wrote our articles...Only recently realised this thanks to an email by Katerine Stange in May 2023 pointing out the

biextension interpretation of the Tate pairing as written out in her PhD!

@ This talk: explicit arithmetic of the biextension associated to 2(0g) on several models of Kummer
lines

@ Exponentiation on the biextension associated to a Montgomery model of the Kummer line is very
familiar...



The Tate and Weil pairings via biextensions
o Let X € BiExt(E, E; G,;,) be the biextension of associated to (0g)
o LetP € E[(%](IFq),Q (S E(IFq),y@ C IFq

o letgp o € X(IFq) be any element above (P, Q)

@ Since (P = O,gl*,lé is a constant Ap

*1,4
o Ifu € G, (Fy)andgp o = i~ gp o theng 1l = pAp
@ Theclassof Apin IF;/IF';’Q is the non reduced Tate pairing

I*Jfg_l = A;,q_l)/e is the reduced Tate pairing et ¢(P, Q).

It does not depends on the choice of gp o

o IfQ € E[1], g5 = Agi Well pairing: ey 4(P, Q) = Ap/Ag.

@ Pairings = exponentiations in the biextension
@ Can use all usual tricks: NAF, windows, ...

@ We will be working with the biextension associated to the divisor of level 2, D = 2(0f), hence compute the Tate and Weil
pairing associated to the polarisation ¢,

@ This is the square of the usual Tate and Weil pairings associated to the principal polarisation.
@ Thisis not a problem when € is odd, but we lose one bit of information when £ is even
@ Butin this case, we can use the action of the theta group G(2(0g)) to compute the usual Weil and Tate pairings



Biextensions in practice

X biextension associated to (Of)
An elementgp o € X above (P,Q) € E x Eisafunction g&p,0 € k(E) with divisor

(P) +(Q) = (P+ Q) — (Op)

All such functions differ by multiplication by a constant, so X is indeed a biextension of E x E by
Gy,

Mp,0 usual representative normalised at (Og) (via the uniformiserz = x/vy)

Group laws:

(§p,,0 *18p,0) R) = gp, o(R)gp, (R — Py)

R) = R R
(gp,Ql *ngIQZ)( ) gP,Ql( )gP,QZ( ) ngle(R)

The biextension is symmetric:gp, o *1 8p,,0 = 8Q,P, *2 8Q,P,
Thisimplies: ptp, p, (—P3) = pip, p,(=P1) = pip, p, (=P2).

DQ = (Q) — (O) is algebraically equivalent to 0, hence the theta group G(DQ) is an extension of E by G ,;:
1-G,, »G[Dg) »E-0

The first biextension law xq is the multiplication in G(DQ)

Givengy € G(Dgl),gz € G(DQZ),glgz € G(DQl + DQz)

Dg, +Dgq, = (Q1) + (Q2) —2(0g) ~ (Qq + Q5) — (0g), hence we have a canonical isomorphism
¢:G(Dg, +Dg,) = G(Dg, +0,) inducedby g, o,

(81,82) € G(Dgl) X G(DQZ) - $(8182) € G(DQ1+Q2) is the second biextension law 5.



Working with biextensions: the function representation

: ! +ax+b
@ Werepresent gp g as the function ¢ PQ _ ¥

UpiQ E=Y
Also keep track of (P, Q)

°
o Computegp, o *1 8p,02andgp 0, *2 §p,q, INk(E)

@ Reducing modulo the equation of E, we get a representative of gp ., 0, and gp, 4p, 0
°

°

Polynomial time

Not very efficient



Working with biextensions: the evaluation representation
@ Since we keep track of (P, Q), 8p,q is completely determined up to a constant ¢ & G,,, sowe
only need to keep track of ¢

@ FixapointR € E and represent gp o via (P, Q,gP,Q(R))
(Use a uniformiser if R is in the support Ong,Q)

o Example: R = O, represent gp o via (P, Q, ¢) where gp 5 = cpip o

&p,,p, (R=Q)
@ (Q,Pq,cq) %5 (Q,P5,cr) = ciep—2——
Q/ 1,617 72 Q/ 2,62 12 gP1'P2<R)

° gézlg = gQ,P(R)Efg,P((R — Q) — (R)), where divfg,p =P — ({P) — (€ —1)(0p)
@ The biextension exponentiation gives Miller’s algorithm

= Geometric interpretation of Miller's group law

@ We recover the Weil and Tate pairings (up to a sign)

@ Can change the evaluation point R on the fly

@ Variant (using the symmetry):
(Q,P1,¢1) 2 (Q, Py, 03) = c16apip, p, (—Q) = c162pp, o(—P3)
o Miller's addition: f,, 11 p(=Q) = fi, p(=Q) rp,p(=Q) = fr, p(=Q) pip,o (—mP).



Working with biextensions: isomorphisms of line bundles

o Let L = O(D) be the line bundle associated to D = (0g), Lp := TpL
o Afunction gp  is the same as an isomorphism @p o : Lp o ® L = Lp ® L

@ Two isomorphisms @p, o, Pp, o give an isomorphism
Pp,,Q *1 Pry0 = PpryQ @ Tp, Pry t Lpy+pyvg ® L = Lp yp, ® Lo

@ Algebraic Riemann relations:if P,Q,R,S € E,P + Q + R+ S = 2T,
PP=T-P,Q =T-Q,RR=T-R,S =T — S, we have a canonical isomorphism:
£P®£Q®£R®:£/S :QCP/@oCQ:@gCR:@oCS:
@ Proof: Fix any isomorphism ¢ : Lp ® Ly = Lgr ® L/, by the symmetry of .L this induces an isomorphism

Lpr ® Lo = L ® L, and the tensor product gives the required canonical isomorphism; it does not depends on ¢.

Examples: we have canonical isomorphisms:
0 Lpioir®Lp® Lo ® Lr = L& Lyr ® Lpig ® Lp, ¢ (cubical torsor structure)
0 Lp,g®Lp_g®LOL =L 8 L& Lp® Lp (differential additions)



Working with biextensions: cubical torsor structure

o If Lis aline bundle algebraically equivalent to 0, it has a squared structure.

o If Lis an arbitrary line bundle, TpL ® L~ Lis algebraically equivalent to 0, hence has a squared
structure.
This is enough to define the Weil and Tate pairing.

@ This squared structure is induced by a cubical structure on the Neron-Severri class A (L) of L.
Biextension associated to JL = cubical structure on A(L).

o Litself has a cubical structure [Breen 1983, Moret-Bailly 1985]

@ Idea: directly use this cubical torsor structure to derive efficient formulas for the biextension
arithmetic

@ This provides a refinement on the biextension arithmetic which gives faster self pairing formula



Working with biextensions: trivialisations of line bundles

@ We want to represent a biextension element as an isomorphism
Dpo: Lprog®L=Lp® Lo

@ Fixa local trivialisation at a point R of Lp, o, Lp, Lo, L

o This induces a local trivialisation of Lp, o ® L ® L' ® L' at R, hencea global trivialisation
(since it is trivial), hence an isomorphism q)p,Q

@ In practice take R = O and fix a local trivialisation of Lat P + Q, P, Q, 0

@ “Trivialisation representation”

@ Redundant: changing the trivialisations by Ap, Ap, Ao, Ag does not change @p  iff
)LPQ/\O = AP/\Q

@ Biextension arithmetic: given trivialisations of Lat 0, Q, Py, P; + Q, P», P, + Q inducing the
biextension elements ®p. o, Pp, o

@ we fix an arbitrary trivialisation of L at Py + P,

@ the cubical torsor structure induces a canonical trivialisation at Py + P> + Q
@ wegetanisomorphism @p . p, o Lp 1p,40 ® L = Lp 1pr ® Lo
Q Pp,ip,0=Pp0*2 Pr,0



Working with biextensions: affine lifts

@ We now work with D = 2(0g), L = O(D),I'(D) = (X, Z)

@ GivenP = (Xp : Zp), alocal trivialisation of L at P is the same as an affine lift P = (Xp, Zp) of
P

o Abiextension element gp , is then determined by affine lifts 0, P, Q, P+ Q

@ Biextension group law: from 0, 3, P;, P5, P; + Q, P, + Q, compute P; + P, take an arbitrary
lift P; + P, and compute the canonical lift P; 4+ P, 4+ Q induced by the cubical torsor structure

® ¢p,,0 *18Pp,,Q is determined by 0,0,P; + Py, P; + P, + Q.
@ Double and add algorithm for the exponentiation: from f), ﬁ, Q, PTQ, compute @IV), EPTQ.

@ IfD = (0g), I'(D) = (Z), atrivialisation of L = O(D) at P is the same as fixing a value Z, (P)
(Slight annoyance: Z4(0g) = 0...)

@ Keeping track of these values through the cubical torsor structure we recover elliptic nets

@ Our representation can thus be seen as a generalisation of elliptic nets from level 1 to level 2

"On a Kummer line, knowing Py, P», Py + Q, P, + Q is enough to recover Py + P,.



Doubling and differential additions with affine lifts

@ Doubling on the biextension: from 0, B, O, P + Q, compute 2P, 2P + Q.

@ On aKummer line, 2P is computed by a doubling and 2P + Q by a differential addition
DiffAdd(P + Q, P, Q)

@ We just need an affine version of doublings and differential additions:

2P = Double(P),2P + Q = DiffAdd(P + Q, P, D).
. . . . . . . *q,—1
@ This extends to ?Iﬁiref,tla,ljddlt,l(irl on th’e_\tiiextenﬂz given giQ,gple,gpl,Qgp;Q
represented by 0, Q, Py, P», Py — P»,P1 + Q, Py + Q,P1 — P5 + Q, we can compute
Pi + Py, Py + Py + Qrepresenting gp, . p, 0 = §p,,0 *1 §P,,Q Via two affine differential
additions:
Py + P, = DiffAdd(P;, P;, P, — P,),
P; + P; + Q = DiffAdd(P; + Q,P5,P; = P5 + Q).
@ Affine doublings and differential additions allow to compute an affine ladder:
P,Q,P+Q)~ (P, tP + Q)
@ This computes the biextension exponentiation gI*Jl’Q@.
@ Projectively, this is just the ladder3 Montgomery algorithm (P, Q, P + Q) — (¢P,{P + Q)



Affine doublings and differential additions in the Montgomery model
o E: By2 = x(x% + Ax + 1) a Montgomery curve

@ Amazing fact?: the usual doubling and differential addition formulae in the Montgomery model
already compute the biextension law:

o Double((Xp,Zp)) = (R-S, T (S + 2F2T) with
R == (Xp + Zp)2,S == (Xp - Zp)z,T - R - S = 4XPZP

e DiffAdd((Xp, Zp), (Xo,Zq), (Xp_g, Zp_@)) = (U + V)?/Xp_q, (U = V)?/Zp_g),
with U = (Xp — Zp)(Xg — Zg), V = (Xp — Zp)(Xg — Zp)

= The usual Montgomery ladder ladder3 already computes exponentiations in the biextension

Ladder approach to the Tate and Weil pairing:
@ startwith0 = (1,0), P = (Xp, Zp), Q = (X0, Zg), P+ Q = (Xp10, Zp4+Q)
@ Compute {P = (A1,0), 8P + Q = (1, X, A7)
@ The non reduced Tate pairing is et ¢ (P, Q) = Ay /A4

@ No special cases (no intermediates zeros or poles)

@ Requires Xp, X, Xp1Q- If we only have xp, X, work over IFq[t]/((t — xp+Q) (t— xp_Q)) to
compute the symmetrised pairings

@ Self pairings: simply do a standard ladder P — (P

2The unicity of the biextension implies that any “natural” arithmetic laws on the Kummer line is already the biextension law




Application to pairing based cryptography

° E/]Fq pairing friendly curve, embedding degree k
o P € Gy = E[tI(F,),Q € G, = E[t][7, — 4]
@ Operationsin IFqk: M=multiplication, S=square, M:IFq X ]Fqk multiplication

> Miller double: 2M+2S+5M

» Miller addition: 2M+2S+5M

» Variant [BMLL 2010]: double: 1M+2S+3M, addition: 1M+2.5M
» Biextension ladder: 1M+2S+2M

@ Operations in IFqk with denominator elimination (k even):

> Miller double: 1M+1S+1M
> Miller addition: 1M+1M

= The biextension approach is probably faster for odd embedding degree, or when P € G, like for
the ate and optimal ate pairings



Ate and optimal ate

@ Tate pairing: P € E[(),](]Fqk),Q S E(IFqk),IZ | qk -1

o Take any gp,in the biextension, since qu = nqk(P) =P,

*1qu

Tk (gP,Q) =Ap- 8p,0

@ Thisis the reduced Tate pairing: e (P, Q) = Ap

o Ate pairing: P € Gy = E[t][7; — q1,Q € Gy = E[t](F,)
o Takeany gp o in the biextension, since 77, (P) = qP,

*1.49

nq(gP,Q) =Ap- 8p,0

@ Thisis the Ate pairing: atey(P, Q) = Ap
@ Similar formulas for the optimal Ate pairing

@ The reduced Tate pairing is the Weil-Cartier pairing e . 7o
q

@ From the biextension point of view, the Ate pairing is better understood via the Weil-Cartier pairing ery Gy, xGy - G,



Other applications of biextensions
@ The biextension arithmetic allow to recover the action of the theta group of level {71 while
working in level 17

@ An explicit version of the theorem of the square on a given model of an abelian variety gives the
biextension arithmetic

@ From this we can compute the addition law, pairings, but also isogenies and basis of theta
functions [R/s HDR 2021]

@ [BGS 2022]'s modification of Doliskani’s supersingularity testing is actually a self Tate pairing
computation er 11 (P, P) 21
@ IfPe E(]Fq) isoforder fwithg =1 (mod €), E/(P)[{] =~ (ZZ)? < er(P,P)=1

@ The biextension arithmetic is a mix of arithmetic on E and arithmetic on IFq

@ When computing P > (P, leaking a biextension exponentiation gp o +> g;lé‘ allows to solve
the DLP in subexponential time (by reducing to DLPs in IF;)

@ One projective coordinate leak in the Montgomery ladder is enough to fully recover !

@ Previously: could only recover a few bits of {

@ Projective coordinate leak: from P = (xp, 1), compute .P = (X, Z) via the Montgomery
ladder, and leak (X, Z) rather than just X /Z.



Open questions

Still a work in progress, with many open questions!

Extend to other Kummer models?

Other representations of the biextension elements?

Exploit further the cubical torsor structure and the algebraic Riemann relations?
How to do denominator elimination?

Compute the Weil-Cartier pairing associated to any endomorphism or isogeny?

Toan isogenyf : A — B corresponds a unique biextension X.
How to compute in Xf? Can we use Xfto find yet another representation of f?

New insights on pairing inversion?
Inverting pairings = finding a {-th root in the biextension

New insights on the DLP?



