# Efficient representation of isogenies 2023/07/10 - EWHA-KMS, Korea 

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest


## Isogenies

- Elliptic curve: $E / k: y^{2}=x^{3}+a x+b$
- Algebraic group law
- Isogeny: $f: E_{1} \rightarrow E_{2}$ with $f\left(0_{E_{1}}\right)=0_{E_{2}}$
- $f(x, y)=\left(\frac{g(x)}{h(x)}, c y\left(\frac{g(x)}{h(x)}\right)^{\prime}\right)$
- $f(P+Q)=f(P)+f(Q)$
- Kernel: $\operatorname{Ker} f=\{P \in E(\bar{k}) \mid f(P)=0\}$
- Determines $f, \operatorname{deg}(f)=\# \operatorname{Ker} f$
- Conversely to every finite subgroup $K$ corresponds an isogeny $f: E \rightarrow E / K$ with kernel $K$
- In this talk: separable isogenies (for simplicity)
- Isogeny evaluation: codomain $E_{2}$ and image of points $f(P)$
© Easy!
- Isogeny path: from $\left(E_{1}, E_{2}\right)$ find an isogeny $f: E_{1} \rightarrow E_{2}$
© Hard! Even for quantum computers!
$\Rightarrow$ Post quantum cryptosystems $)$


## Isogeny path

Ordinary case:
(-) Commutative group action (from the class group of $\operatorname{End}(E)$ )
(2) Quantum subexponential $L(1 / 2)$ algorithm (Kuperberg)

Supersingular case:

- Isogeny graph has good mixing properties
- Best algorithm is essentially exhaustive search (meet in the middle)
() Quantum exponential time
(2) No commutative group action
- Is isogeny evaluation actually easy?
- Depends on the representation and the degree $N$ of $f$ !
- Kernel equation: $K=\operatorname{Ker} f$ described by $h(x)=0$
- Generator: $K=\langle T\rangle$
- For supersingular curves: ideal representation or suborder representation
- This talk: torsion representation
- Representation in polylog space with polylog time evaluation for any isogeny in any dimension


## Kernel representation

- $K: h(x)=0$ representing the kernel $K$ of degree $N$
- $h(x)=\prod_{P \in K-0_{E}}(x-x(P))$
- $f(x, y)=\left(\frac{g(x)}{h(x)}, y\left(\frac{g(x)}{h(x)}\right)^{\prime}\right)$
- $\frac{g(x)}{h(x)}=\# K . x-\sigma-u^{\prime}(x) \frac{h^{\prime}(x)}{h(x)}-2 u(x)\left(\frac{h^{\prime}(x)}{h(x)}\right)^{\prime}$ if $E: y^{2}=u(x)$ [Kohel 1996]
- Space: polynomial of degee $O(N)$ over $\mathbb{F}_{q}$, so $O(N \log q)=$ linear space
- Evaluation: $O(N)$ arithmetic operations in $\mathbb{F}_{q}=$ linear time


## Generator representation

- $K=\langle T\rangle, K$ defined over $\mathbb{F}_{q}, T$ defined over $\mathbb{F}_{q^{d}}, d=O(N)$
- $x(f(P))=x(P)+\sum_{i=1}^{N-1}(x(P+i T)-x(i T))$ [Vélu 1971]
$y(f(P))=y(P)+\sum_{i=1}^{N-1}(y(P+i T)-y(i T))$
- Space: $O(1)$ elements over $\mathbb{F}_{q^{d}}=O(d \log q)$
- If $d=1$ (or small): compact representation!
- Evaluation: $O(N)$ operations over $\mathbb{F}_{q^{d}} \Rightarrow$ linear if $d$ small, quadratic if $d$ large
- VeluSqrt [Bernstein, De Feo, Leroux, Smith 2020]: evaluation in $\widetilde{O}(\sqrt{N})$ over $\mathbb{F}_{q^{d}}$ (via a time/memory trade off)


## Smooth degree

- If $N=\prod \ell_{i}^{e_{i}}$ is smooth, decompose $f$ into a product $f=f_{1} \circ f_{2} \circ \ldots f_{n}$ of small degree isogenies $(n=O(\log N))$
- Decomposed representation: complexity for evaluation depends on $\ell_{N}:=\max \left(\ell_{i}\right)$
- Space: $O\left(n \ell_{N} \log q\right)$
- Evaluation: $O\left(n \ell_{N} \log q\right)$
- Logarithmic time!


## Decomposing a smooth degree isogeny

- $K=\langle T\rangle$ of smooth degree $N=\prod_{i=1}^{m} \ell_{i}^{e_{i}}$
- Compute $S_{1}=\left[N / \ell_{1}\right] T, f_{1}: E \rightarrow E_{1}$ with kernel $K_{1}=\left\langle S_{1}\right\rangle$, and $T_{1}=f_{1}(T)$
- Start again with $E_{1}$ and $K_{1}=\left\langle T_{1}\right\rangle$ of degree $N / \ell_{1}$
- Complexity of the decomposition: $O\left(\log ^{2} N \ell_{N}\right)$ operations in $\mathbb{F}_{q^{d}}$
- Can be improved to $\widetilde{O}\left(\log N \ell_{N}\right)$ [De Feo, Jao, Plût 2011]
$\Delta d$ can be large, $d=\Theta(N)$ in the worst case $\Rightarrow$ quasi-linear time
- CRT representation: $K=\prod_{i} K\left[\ell_{i}^{e_{i}}\right]$
- $K=\left\langle G_{1}, \ldots, G_{m}\right\rangle$, with $K\left[\ell_{i}^{e_{i}}\right]=\left\langle G_{i}\right\rangle$
- Cost depends on the degrees $d_{i}$ of the field of definition of each $G_{i}$ :
$\widetilde{O}\left(m\left(\sum e_{i}\right) \ell_{N}\right)$ operations in fields $\mathbb{F}_{q^{d_{i} \vee d_{j}}}$
$\Rightarrow$ Polynomial time in $\ell_{N}$ and the $d_{i}$ (and $\log N, \log q$ )
- Example: the cost of decomposing a $2^{n}$-isogeny depends on whether $E\left[2^{n}\right]$ lies over a small or big extension
- If $N B$-powersmooth, $d_{i}=O(B)$
$\Rightarrow$ Decomposition in polylogarithmic time from a CRT representation of $K$ for powersmooth $N$


## Decomposing a smooth degree isogeny from a kernel equation

- $N=\ell_{1} N_{1}$, kernel equation: $h(x)=0$
- Work with the formal point $P=(x, y)$ in the algebra $\mathcal{A}=\mathbb{F}_{q}[x, y] /\left(h(x), y^{2}-x^{3}-a b-b\right)$
- The denominator of $\ell_{1}$.P gives an equation $g(x)=0$ for $K\left[\ell_{1}\right], g \mid h$
- This allows to compute $f_{1}(P)$, with $\operatorname{Ker} f_{1}=K\left[\ell_{1}\right]$ via $O\left(\ell_{1}\right)$ operations in $\mathcal{A}$
- Iterate
- Decomposition cost: $\widetilde{O}\left(\ell_{N} N\right)$ arithmetic operations


## Ideal and suborder representation

- For supersingular curves: Deuring correspondance
- $\operatorname{End}(E)=$ quaternion algebra
- Ideals = Isogenies
(). Ideal representation: evaluation in polylogarithmic time!
© Leaks too much informations: the isogeny path becomes trivial
- Variant: suborder representation [Leroux 2022], leaks less informations


## Summary

- Kernel representation: linear space and time
- Generator representation: possibly compact, linear or quadratic time
- If $N$ smooth: decomposed representation = logarithmic space and time
- Decomposition cost given a CRT representation $K=\left\langle G_{1}, \ldots, G_{m}\right\rangle$ : polynomial time in $d=\max \left(d_{i}\right)$ and $\ell_{N}=\max (\ell \mid N)$; so polylogarithmic time if $N$ powersmooth
- What if $N$ is a large prime?
- Ideal representation or suborder representation
(2) Leaks information, only available for supersingular curves


## Scalar multiplication

- Scalar multiplication: $P \mapsto$ N. $P$
- Double and add: $O(\log N)$ arithmetic operations, even if $N$ is prime!
- $F: E^{2} \rightarrow E^{2},\left(P_{1}, P_{2}\right) \mapsto\left(P_{1}+P_{2}, P_{1}-P_{2}\right)$ is a 2-isogeny in dimension 2.
- $F=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$
- Double: $F(T, T)=(2 T, 0)$.
- Add: $F(T, Q)=(T+Q, T-Q)$.
- We can evaluate N.P as a composition of $O(\log N)$ evaluations of $F$, projections $E^{2} \rightarrow E$ and embeddings $E \rightarrow E^{2}$.
- Double and add on $E=2$-isogenies in dimension 2


## The embedding lemma [R. 2022]

- A $N$-isogeny $f: A \rightarrow B$ in dimension $g$ can always be efficiently embedded into a $N^{\prime}$ isogeny $F: A^{\prime} \rightarrow B^{\prime}$ in dimension $8 g$ (and sometimes $4 g, 2 g$ ) for any $N^{\prime} \geq N$.

- Considerable flexibility (at the cost of going up in dimension).
- Breaks SIDH ([Castryck-Decru 2022], [Maino-Martindale 2022] in dimension 2, [R. 2022] in dimension 4 or 8)
- Write $N^{\prime}-N=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$
$\cdot F=\left(\begin{array}{cccccccc}a_{1} & -a_{2} & -a_{3} & -a_{4} & \hat{f} & 0 & 0 & 0 \\ a_{2} & a_{1} & a_{4} & -a_{3} & 0 & \hat{f} & 0 & 0 \\ a_{3} & -a_{4} & a_{1} & a_{2} & 0 & 0 & \hat{f} & 0 \\ a_{4} & a_{3} & -a_{2} & a_{1} & 0 & 0 & 0 & \hat{f} \\ -f & 0 & 0 & 0 & a_{1} & a_{2} & a_{3} & a_{4} \\ 0 & -f & 0 & 0 & -a_{2} & a_{1} & -a_{4} & a_{3} \\ 0 & 0 & -f & 0 & -a_{3} & a_{4} & a_{1} & a_{2} \\ 0 & 0 & 0 & -f & -a_{4} & -a_{3} & a_{2} & a_{1}\end{array}\right)$


## The embedding lemma for isogeny representation

- To embed the $N$-isogeny $f$ into the $N^{\prime}$-isogeny $F$, needs $(P, Q, f(P), f(Q))$ for $(P, Q)$ a basis of $E\left[N^{\prime}\right]$
$\Rightarrow$ Torsion representation
- Evaluation: evaluate an $N^{\prime}$-isogeny $F$ in higher dimension $g: O\left(N^{\prime g}\right)$ [Lucicz-R. 2008-2022] (Warning: the $O()$ hides a constant $2^{g}$ )
- $N^{\prime}$ smooth: decompose $F$ into small isogenies
$\Rightarrow$ Evaluation in polylogarithmic time
- Decomposition: use a CRT basis of $E\left[N^{\prime}\right]$
$\Rightarrow$ Decomposition in polylogarithmic time if $d=\max \left(d_{i}\right)$ small, e.g. $N^{\prime}$ powersmooth.


## The torsion representation

- Represent $f$ by its degree $N$ and

$$
\left(P_{i}, Q_{i}, f\left(P_{i}\right), f\left(Q_{i}\right)\right)
$$

for $\left(P_{i}, Q_{i}\right)$ a basis of $E\left[N_{i}\right]$, with $N_{i}$ coprimes and prime to $N$

- Needs $N^{\prime}=\Pi N_{i}>N$

Trick via the dual isogeny: only needs $\prod N_{i}>\sqrt{N}$ (for uniqueness: $\Pi N_{i}^{2}>4 N$ )

- Evaluation (and decomposition) polynomial in the $\ell_{N_{i}}$ and $d_{i}$, the degrees of the fields of definition of $\left(P_{i}, Q_{i}\right)$
(;) Evaluation in polylogarithmic time (take small $N_{i}$ )
() Even faster if $E\left[\ell^{m}\right]$ rational for large $m$ and small $\ell$ : if $E\left[2^{m}\right]$ is rational embed any degree $N<2^{m}$ isogeny into a $2^{m}$-isogeny! (Dual isogeny trick: embed any degree $N<2^{2 m}$ isogeny into two $2^{m}$-isogenies)
(;) Universal: can be efficiently recovered from any other efficient representation
(3) Works in any dimension (ie on abelian varieties)
(:) Needs the codomain of $f$ (at least implicitly: it can be recovered from the $\left.f\left(P_{i}\right), f\left(Q_{i}\right)\right)$


## Using the torsion representation

- Dual: If $f: E \rightarrow E^{\prime}$ has an efficient representation, its dual $\hat{f}: E^{\prime} \rightarrow E$ too
- Since $\hat{f}(f(P))=N P$, the torsion representation is $\left(f\left(P_{i}\right), f\left(Q_{i}\right), N P_{i}, N Q_{i}\right)$ on $E^{\prime}\left[N_{i}\right]$
- Example: Frobenius $\pi_{p}$ has efficient evaluation $(x, y) \mapsto\left(x^{p}, y^{p}\right)$, hence the Verschiebung $\hat{\pi}_{p}$ too on any point
- Division: If $f=m g$ has an efficient representation, $g$ too
- Torsion representation: $\left(P_{i}, Q_{i}, f\left(P_{i}\right) / m, f\left(Q_{i}\right) / m\right)$ on $E\left[N_{i}\right], N_{i}$ prime to $m$ (if necessary compute new evaluation points for $f$ )
- Allows to evaluate $g$ on $E[m]$
- Example: if $A / \mathbb{F}_{q}$ ordinary, $\alpha \in \operatorname{End}(E)=\left(a_{0}+a_{1} \pi+\cdots+a_{g} \pi^{g}\right) / m$, gives an efficient representation for any endomorphism


## Using the torsion representation

- Addition: if $f, g$ have an efficient representation, $f+g$ too
$\triangle$ Needs $\operatorname{deg}(f+g)$
- $[\operatorname{deg}(f+g)]=\widehat{f+g} \circ(f+g)$ can be computed on $E\left[N_{i}\right]$ from evaluating $f, g, \hat{f}, \hat{g} ;$ this gives $\operatorname{deg}(f+g) \bmod N_{i}$
- Recover $\operatorname{deg}(f+g)$ by the CRT and the Cauchy-Schwarz bound:

$$
\operatorname{deg}(f+g) \leq \operatorname{deg}(f)+\operatorname{deg}(g)+2 \sqrt{\operatorname{deg}(f) \operatorname{deg}(f)}
$$

- Torsion representation: $\left(P_{i}, Q_{i}, f\left(P_{i}\right)+g\left(P_{i}\right), f\left(Q_{i}\right)+g\left(Q_{i}\right)\right)$ on $E\left[N_{i}\right]$ (if necessary compute new evaluation points for $f, g$ )
- Lifting: Lift $f$ by lifting $F$
(Lift to $\mathbb{Q}_{q} / p^{m}$ or to $\mathbb{F}_{q}[[\epsilon]] / \epsilon^{m}$ )


## Algorithmic applications [R. 2022]

- $E / \mathbb{F}_{q}$ ordinary elliptic curve, $K=\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$. Given the factorisation of $\left[O_{K}: \mathbb{Z}[\pi]\right.$ ], compute $\operatorname{End}(E)$ in polynomial time (via efficient division).
Factorisation: quantum polynomial time, classical subexponential time
- Previously: no quantum polynomial time algorithm known

Classical algorithm in $L(1 / 2)$ under GRH [Bisson-Sutherland 2009]

- Compute the canonical lift $\hat{E} / \mathbb{Z}_{q}$ in polynomial time
- Previously: $L(1 / 2)$ under GRH [Couveignes-Henocq 2002]
- Compute the modular polynomial $\Phi_{\ell}$ in quasi-linear time in any dimension $g$
- Previously: no algorithm known to compute $\Phi_{\ell}$ in quasi-linear time when $g>2$


## Point counting and canonical lifts

$E / \mathbb{F}_{q}, q=p^{n}$

- [Schoof 1985]: $\widetilde{O}\left(n^{5} \log ^{5} p\right)$ (Étale cohomology)
- [SEA 1992]: $\widetilde{O}\left(n^{4} \log ^{4} p\right)$ (Heuristic)
- [Kedlaya 2001]: $\widetilde{O}\left(n^{3} p\right)$ (Rigid cohomology)
- [Harvey 2007]: $\widetilde{O}\left(n^{3.5} p^{1 / 2}+n^{5} \log p\right)$
- [Satoh 2000] (canonical lifts of ordinary curves): $\widetilde{O}\left(n^{2} p^{2}\right)$ (Crystalline cohomology)
- [Maiga-R. 2021]: $\widetilde{O}\left(n^{2} p\right)$
- [R. 2022]: $\widetilde{\mathrm{O}}\left(n^{2} \log ^{8} p+n \log ^{11} p\right)$


## Cryptographic applications

- Free protocols from the shackle of using only smooth degree isogenies
- Choose $E$ with large rational $2^{m}$-torsion $\Rightarrow$ embed $N$-isogenies into higher dimensional $2^{m}$-isogenies
- SQISignHD [Dartois, Leroux, R., Wesolowski 2023]: post-quantum signature scheme
- Signing in dimension 1 , verification in dimension 4
- Public key: 64B, Signature: 105B

Prior Art: SQISign: 204B, Lattices: 666B-2420B, (ECDSA: 64B)

- FESTA [Basso, Maino, Pope 2023]: encryption in dimension 1, decryption in dimension 2
- Identity based encryption [Fouotsa 2023]: use dimension 8


## Open problems

- Optimize $2^{m}$-isogenies in higher dimension
- Work in progress to optimize the constants:

| $g$ | Old ratios | New ratios |
| :---: | :---: | :---: |
| 2 | $\times 6$ | $\times 4$ |
| 4 | $\times 160$ | $\times 32$ |
| 8 | $\times 75000$ | $\times 1024$ |

- Main drawback of the torsion representation: needs enough evaluation points
- Efficient conversion from the generator representation for a prime degree isogeny?
- Efficient representation which does not need the codomain?

