Applications of isogenies between abelian varieties to elliptic curves

 2023/03/20 - Arithmétique en Plat Pays, LeuvenDamien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest

Key exchange on a (commutative) graph

Key exchange on a (commutative) graph

Alice starts from ' a ', follows the path 001110 , and get ' w '.

Key exchange on a (commutative) graph

Bob starts from 'a', follows the path 101101, and get 'I'.

Key exchange on a (commutative) graph

Alice starts from ' 1 ', follows the path 001110, and get ' g '.

Key exchange on a (commutative) graph

Bob starts from ' w ', follows the path 101101, and get ' g '.

Key exchange on a (commutative) graph
The full exchange:

Key exchange on a (commutative) graph

Bigger graph (62 nodes)

Key exchange on a (commutative) graph

Even bigger graph (676 nodes)

Isogeny graphs for key exchange

- Needs a graph with good mixing properties:

A path of length $O(\log N)$ gives a uniform node \Rightarrow Ramanujan/expander graph.

- The graph does not fit in memory $\left(N=2^{256}\right)$.
- Needs an algorithm taking a node as input and giving the neighbour nodes as output.
- Isogeny graph of ordinary elliptic curves E / \mathbb{F}_{p} [Couveignes (1997)], [Rostovtsev-Stolbunov (2006)]
- Graph of size $N \approx \sqrt{p}$.
- Torsor (principal homogeneous space) under the class group $\mathrm{Cl}\left(\operatorname{End}\left(E_{0}\right)\right)$.
() Commutative graph!
(3) Hidden shift problem solvable in quantum subexponential $L(1 / 2)$ time for an abelian group action via Kuperberg's algorithm.
- SIDH: supersingular elliptic curve Diffie-Helmann [De Feo, Jao (2011)],[De Feo, Jao, Plût (2014)]
- Use the isogeny graph of a supersingular elliptic curve E over $\mathbb{F}_{p^{2}}(N \approx p)$.

Isogeny graphs for key exchange

SIDH in practice

- $p=2^{a} 3^{b}-1 . N_{A}=2^{a}, N_{B}=3^{b}, N_{A}$ prime to N_{B}.
- $E_{0}: y^{2}=x^{3}+x$ (supersingular when $a \geq 2$)
- $E_{0}\left[N_{A}\right]=\left\langle P_{A}, Q_{A}\right\rangle, E_{0}\left[N_{B}\right]=\left\langle P_{B}, Q_{B}\right\rangle$.
- Alice's secret isogeny: ϕ_{A} of kernel $\left\langle P_{A}+s_{A} Q_{A}\right\rangle$.
- Bob's secret isogeny: ϕ_{B} of kernel $\left\langle P_{B}+s_{B} Q_{B}\right\rangle$.
- Key exchange:

$$
\begin{array}{cc}
E_{0} \xrightarrow{\phi_{B}} & E_{B} \\
\downarrow^{\phi_{A}} & \downarrow^{\prime} \phi_{A}^{\prime} \\
E_{A} \xrightarrow{\phi_{B}^{\prime}} & E_{A B}
\end{array}
$$

- $E_{A B}$ is the shared secret.
- $\phi_{A}^{\prime} \circ \phi_{B}=\phi_{B}^{\prime} \circ \phi_{A}: E_{0} \rightarrow E_{A B}$ has kernel $\operatorname{Ker} \phi_{A}+\operatorname{Ker} \phi_{B}$.
- ϕ_{A}^{\prime} has kernel $\left\langle\phi_{B}\left(P_{A}+s_{A} Q_{A}\right)\right\rangle, \phi_{B}^{\prime}$ has kernel $\left\langle\phi_{A}\left(P_{B}+s_{B} Q_{B}\right)\right\rangle$.
- Alice publishes: $P_{B}^{\prime}=\phi_{A}\left(P_{B}\right), Q_{B}^{\prime}=\phi_{A}\left(Q_{B}\right)$. Bob publishes: $P_{A}^{\prime}=\phi_{B}\left(P_{A}\right), Q_{A}^{\prime}=\phi_{B}\left(Q_{A}\right)$. ("Torsion points".)
- $\operatorname{Ker} \phi_{A}^{\prime}=\left\langle P_{A}^{\prime}+s_{A} Q_{A}^{\prime}\right\rangle, \operatorname{Ker} \phi_{B}^{\prime}=\left\langle P_{B}^{\prime}+s_{B} Q_{B}^{\prime}\right\rangle$.
- Key exchange in $\widetilde{O}\left(\log N_{A} \ell_{A}^{1 / 2}+\log N_{B} l_{B}^{1 / 2}\right)$
(Via fast smooth isogeny computation [De Feo, Jao, Plût (2014)] and Velusqrt [Bernstein, De Feo, Leroux, Smith (2020)]).
- Evaluation: given an N-isogeny f and a point $Q \in E\left(\mathbb{F}_{q}\right)$, evaluate $f(Q)$.
- N-evaluation problem: f is an N-isogeny $=\operatorname{Ker} f$ is of degree N.
- Interpolation: given a tuple $(P, f(P))$, recover f.
- (N, N^{\prime})-interpolation problem: given f an N-isogeny and P a point of N^{\prime}-torsion, from $(P, f(P))$ and $Q \in E\left(\mathbb{F}_{q}\right)$, evaluate $f(Q)\left(N^{\prime} \geq N\right)$.
- Weak interpolation: we are given $\left(P_{1}, f\left(P_{1}\right)\right),\left(P_{2}, f\left(P_{2}\right)\right)$ for $\left(P_{1}, P_{2}\right)$ a basis of $E\left[N^{\prime}\right]$.
- SIDH: the key exchange uses the N_{A} and N_{B} evaluation problems
- If we can solve the weak interpolation problem when $N=N_{A}, N^{\prime}=N_{B}$ are smooth in polylogarithmic time, we can break SIDH.

Isogeny evaluation and interpolation

Evaluation

- $f: E_{1} \rightarrow E_{2}$ an N-isogeny
- $f(x, y)=\left(\frac{g(x)}{h(x)}, c y\left(\frac{g(x)}{h(x)}\right)^{\prime}\right), \operatorname{deg} g, \operatorname{deg} h \leq N$
- [Vélu 1971]: given $h(x)$ representing the kernel $\operatorname{Ker} f:\{P \in E \mid h(x(P))=0\}$, evaluate $f(Q)$ in $O(N)$ operations in \mathbb{F}_{q}.
- Velusqr:: special case $\operatorname{Ker} f=\langle T\rangle, T \in \mathbb{F}_{q}$, evaluate $f(Q)$ in $\widetilde{O}(\sqrt{N})$ operations in \mathbb{F}_{q}.
- Linear time.
- If N is smooth, f can be decomposed into a product of small isogenies.
- Evaluation in $O\left(\log N \ell_{N}\right)$ or $\widetilde{O}\left(\log N \sqrt{\ell_{N}}\right)$.
- Logarithmic time.
- The decomposition cost is quasi-logarithmic if $\operatorname{Ker} f=\langle T\rangle$ with $T \in \mathbb{F}_{q}$; polylogarithmic if N is powersmooth; but linear if T lives in a large extension.

Interpolation

- Given $(P, f(P)), P$ a point of order $N^{\prime} \geq 2 N$, recover the rational function $\frac{g(x)}{h(x)}$ in $\widetilde{O}(N)$ by interpolating the points $(x(m P), x(m f(P))), m=1, \ldots, N^{\prime}-1$.
- Can evaluate on Q directly.
- Special case $: P \in T_{0_{E}}(E)$ a"fat point" of order $p \Rightarrow$ solve a differential equation [Elkies 1992] $(P \neq 0, p>2 N)$.
- Quasi-linear time.
- Faster algorithm when N^{\prime} is smooth?
- Yes if $f(P)=0$. Then $N=N^{\prime}$ and $\operatorname{Ker} f=\langle P\rangle$.
- If $N=N^{\prime}$, the weak interpolation problem reduces via the DLP to the N^{\prime}-evaluation problem.
- This is why the SIDH key exchange is fast: Bob uses the torsion point information published by Alice to find the kernel of his pushforward isogeny.
- No reason to expect a fast algorithm when N^{\prime} is prime to N.

Interpolation

- Given $(P, f(P)), P$ a point of order $N^{\prime} \geq 2 N$, recover the rational function $\frac{g(x)}{h(x)}$ in $\widetilde{O}(N)$ by interpolating the points $(x(m P), x(m f(P))), m=1, \ldots, N^{\prime}-1$.
- Can evaluate on Q directly.
- Special case $: P \in T_{0_{E}}(E)$ a"fat point" of order $p \Rightarrow$ solve a differential equation [Elkies 1992] $(P \neq 0, p>2 N)$.
- Quasi-linear time.
- Faster algorithm when N^{\prime} is smooth?
- Yes if $f(P)=0$. Then $N=N^{\prime}$ and $\operatorname{Ker} f=\langle P\rangle$.
- If $N=N^{\prime}$, the weak interpolation problem reduces via the DLP to the N^{\prime}-evaluation problem.
- This is why the SIDH key exchange is fast: Bob uses the torsion point information published by Alice to find the kernel of his pushforward isogeny.
- No reason to expect a fast algorithm when N^{\prime} is prime to N .

Revisiting isogeny evaluation

- Can an N-isogeny be evaluated faster than linear time when N has a large prime factor?
- If $f=[\ell]$ (so $N=\ell^{2}$): double and add in $O(\log \ell)$ to evaluate ℓQ.
- $F: E^{2} \rightarrow E^{2},\left(P_{1}, P_{2}\right) \mapsto\left(P_{1}+P_{2}, P_{1}-P_{2}\right)$ is a 2-isogeny in dimension 2.
- Double: $F(T, T)=(2 T, 0)$.
- Add: $F(T, Q)=(T+Q, T-Q)$.
- We can evaluate ℓQ as a composition of $O(\log \ell)$ evaluations of F, projections $E^{2} \rightarrow E$ and embeddings $E \rightarrow E^{2}$.
- Double and add on $E=2$-isogenies in dimension 2

Polarisations and isogenies on an abelian variety

- Polarisation on $A=\mathrm{a}$ (symmetric) isogeny $\lambda_{A}: A \rightarrow \widehat{A}$
- Principal polarisation: λ_{A} is an isomorphism.
- Warning: A may have several non equivalent principal polarisations if $g>1$.
- $f:\left(A, \lambda_{A}\right) \rightarrow\left(B, \lambda_{B}\right) N$-isogeny between ppav: $f^{*} \lambda_{B}=N \lambda_{A}$.

- Dual isogeny: $\widehat{f}: \widehat{B} \rightarrow \widehat{A}$
- Contragredient isogeny: $\tilde{f}=\lambda_{A}^{-1} \hat{f} \lambda_{B}: B \rightarrow A$
- $f N$-isogeny $\Leftrightarrow \tilde{f} f=N \Leftrightarrow f \tilde{f}=N$.
- $\operatorname{Ker} f=\operatorname{Im}(\tilde{f} \mid B[N])$.

Algorithms for N -isogenies in higher dimension

- [Cosset-R. (2014), Lubicz-R. (2012-2022)]: An N-isogeny in dimension g can be evaluated in linear time $O\left(N^{g}\right)$ arithmetic operations in the theta model given generators of its kernel.
- Warning: exponential dependency 2^{g} or 4^{g} in the dimension g.
- [Couveignes-Ezome (2015)]: Algorithm in $O\left(N^{g}\right)$ in the Jacobian model.
- Not hard to extend to product of Jacobians.
- Restricted to $g \leq 3$.

Kani's lemma $[$ Kani 1997] $(g=1),[$ R. 2022] $(g>1)$

- $\alpha: A \rightarrow B$ a a-isogeny, $\beta: A \rightarrow C$ ab-isogeny.
- $\alpha^{\prime}: C \rightarrow D$ a a-isogeny, $\beta^{\prime}: C \rightarrow D$ a b-isogeny with $\beta^{\prime} \alpha=\alpha^{\prime} \beta$:

- If a prime to b, the pushforward $\alpha^{\prime}, \beta^{\prime}$ of α by β satisfy these conditions.
- $F=\left(\begin{array}{cc}\alpha & \widetilde{\beta^{\prime}} \\ -\beta & \widetilde{\alpha^{\prime}}\end{array}\right): A \times D \rightarrow B \times C$.
- $\tilde{F}=\left(\begin{array}{cc}\tilde{\alpha} & -\tilde{\beta} \\ \beta^{\prime} & \alpha^{\prime}\end{array}\right): B \times C \rightarrow A \times D, \quad \tilde{F} F=a+b$.
- F is an $a+b$-isogeny with respect to the product polarisations.
- $\operatorname{Ker} F=\left\{\tilde{\alpha}(P), \beta^{\prime}(P) \mid P \in B[a+b]\right\}$ (if a is prime to b)

Revisiting the interpolation

- $f: E_{1} \rightarrow E_{2}$ an N-isogeny.
- Goal: replace f by F an N^{\prime}-isogeny.
- Find $\alpha: E_{1} \rightarrow E_{1}^{\prime}$ an m-isogeny, with $N^{\prime}=N+m$.
- Kani's lemma: $F: E_{1} \times E_{2}^{\prime} \rightarrow E_{1}^{\prime} \times E_{2}$ is an N^{\prime}-isogeny.
- Since we know $f\left(E\left[N^{\prime}\right]\right)$, and we can evaluate α on $E\left[N^{\prime}\right]$, we recover $\operatorname{Ker} F$ (or $\operatorname{Ker} \tilde{F}$)
- Evaluate F, hence f at any point: $F(P, 0)=(\alpha(P),-f(P))$.
- This evaluation is fast if N^{\prime} is (power) smooth.

Examples:

- m smooth [Castryck-Decru 2022; Maino-Martindale 2022]
- $m=\ell^{2}$: take $\alpha=[\ell]$
- End (E) has an efficient endomorphism α of norm m [Castryck-Decru].

The general case

- $\alpha=\left(\begin{array}{cc}a_{1} & a_{2} \\ -a_{2} & a_{1}\end{array}\right)$ is always an endomorphism of norm $m=a_{1}^{2}+a_{2}^{2}$ on E^{2} (Gaussian integers $\mathbb{Z}[i])$
- $\alpha=\left(\begin{array}{cccc}a_{1} & -a_{2} & -a_{3} & -a_{4} \\ a_{2} & a_{1} & a_{4} & -a_{3} \\ a_{3} & -a_{4} & a_{1} & a_{2} \\ a_{4} & a_{3} & -a_{2} & a_{1}\end{array}\right)$ is always an endomorphism of norm $m=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$ on E^{4} (Hamilton's quaternion algebra)
- Evaluating α costs $O(\log m)$ arithmetic operations
- Every integer is a sum of four squares [Δ ı́ $\varphi \alpha \nu \tau o \varsigma ~ o ́ ~ ' A \lambda \varepsilon \xi \alpha \nu \delta \rho \varepsilon v ́ s, ~ L a g r a n g e] . ~$

$$
\begin{array}{ccc}
E_{1}^{4} \xrightarrow{f} & E_{2}^{4} \\
\downarrow^{\alpha} & & \downarrow^{\alpha} \\
E_{1}^{4} \xrightarrow{f} & E_{2}^{4}
\end{array}
$$

- $F: E_{1}^{4} \times E_{2}^{4} \rightarrow E_{1}^{4} \times E_{2}^{4}$ is an N^{\prime}-isogeny.

The embedding lemma [R. 2022]

- A N-isogeny $f: A \rightarrow B$ in dimension g can always be efficiently embedded into a N^{\prime} isogeny $F: A^{\prime} \rightarrow B^{\prime}$ in dimension $8 g$ (and sometimes $4 g, 2 g$) for any $N^{\prime} \geq N$.

- Considerable flexibility (at the cost of going up in dimension).
- Breaks SIDH ([Castryck-Decru], [Maino-Martindale] in dimension 2, [R.] in dimension 4 or 8)
- Reduces the (N, N^{\prime})-weak interpolation problem to the N^{\prime}-evaluation problem in higher dimension
- Only needs $N^{\prime 2} \geq N$ (uses the dual isogeny)
\Rightarrow Solves the weak interpolation problem when N^{\prime} is (power) smooth
- Amazing fact: does not requires $\operatorname{Ker} f$, works even if N is prime
- Open question: case N^{\prime} prime? Need a fast N^{\prime}-evaluation algorithm!

Efficient representation of isogenies [R. 2022]

- For the N-evaluation problem, once we have evaluated f on a basis of the N^{\prime}-torsion this reduces to the N^{\prime}-weak interpolation problem which reduces to the N^{\prime}-evaluation problem (in higher dimension).
\Rightarrow Can always embed an N-isogeny f into a N^{\prime}-isogeny F with N^{\prime} powersmooth
- Then decompose F as a product of small isogenies.
- Polylogarithmic space $O\left(\log ^{3} N\right)$
- Evaluation in polylogarithmic time $O\left(\log ^{7} N\right)$ arithmetic operations.
- Previously: no representation giving better than linear time for a generic isogeny.
- Representation: $\left(P_{i}, Q_{i}, f\left(P_{i}\right), f\left(Q_{i}\right)\right)$ for $\left(P_{i}, Q_{i}\right)$ basis of $E\left[\ell_{i}\right]$, small torsion points $\left(\ell_{i} \mid N^{\prime}\right)$
- We need to evaluate f on the N^{\prime}-torsion: given the kernel, the decomposition step is quasi-linear.

Examples

f an N-isogeny with an efficient representation.

- Efficient division: evaluate $/ D$ on any point.
- Contragredient isogeny: evaluate \tilde{f} on any point.
\Rightarrow Efficient evaluation of the Verschiebung $\hat{\pi}_{p}$.
- Efficient lifting of isogenies: embed f into F at precision $m=1$, then lift F to precision $m>1$.

Applications [R. 2022]

- E / \mathbb{F}_{q} ordinary elliptic curve, $K=\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$. Given the factorisation of $\left[O_{K}: \mathbb{Z}[\pi]\right]$, compute End (E) in polynomial time.
Factorisation: quantum polynomial time, classical subexponential time
- Previously: no quantum polynomial time algorithm known.

Classical algorithm in $L(1 / 2)$ under GRH [Bisson-Sutherland 2009].

- Compute the canonical lift \hat{E} / \mathbb{Z}_{q} in polynomial time.
- Previously: $L(1 / 2)$ under GRH [Couveignes-i-Henocq 2002]
- Compute the modular polynomial Φ_{ℓ} in quasi-linear time $O\left(\ell^{3} \log ^{3} \ell \log \log \ell\right)$ (no heuristics!).
- Compute $\Phi_{\ell} \bmod p$ in quasi-linear time $\widetilde{O}\left(\ell^{2} \log p\right)$.
- If E / K elliptic curve of height H over a number field, compute $\Phi_{\ell}(j(E), Y)$ in quasi-linear time $\widetilde{O}\left(H \ell^{2}\right)$.
- Generalisations to abelian varieties.
- Previously: no algorithm known to compute Φ_{ℓ} in quasi-linear time when $g>2$.

Point counting and canonical lifts

$E / \mathbb{F}_{q}, q=p^{n}$.

- [Schoof 1985]: $\widetilde{O}\left(n^{5} \log ^{5} p\right)$ (Étale cohomology)
- [SEA 1992]: $\widetilde{O}\left(n^{4} \log ^{4} p\right)$ (Heuristic)
- [Kedlaya 2001]: $\widetilde{O}\left(n^{3} p\right)$ (Rigid cohomology)
- [Harvey 2007]: $\widetilde{O}\left(n^{3.5} p^{1 / 2}+n^{5} \log p\right)$
- [Satoh 2000] (canonical lifts of ordinary curves): $\widetilde{O}\left(n^{2} p^{2}\right)$ (Crystalline cohomology)
- [Maiga-R. 2021]: $\widetilde{O}\left(n^{2} p\right)$
- [R. 2022]: $\widetilde{O}\left(n^{2} \log ^{8} p+n \log ^{11} p\right)$

