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Key exchange on a (commutative) graph
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Key exchange on a (commutative) graph
Alice starts from ‘a’, follows the path 001110, and get ‘w’.
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Key exchange on a (commutative) graph
Bob starts from ‘a’, follows the path 101101, and get ‘l’.
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Key exchange on a (commutative) graph
Alice starts from ‘l’, follows the path 001110, and get ‘g’.
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Key exchange on a (commutative) graph
Bob starts from ‘w’, follows the path 101101, and get ‘g’.
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Key exchange on a (commutative) graph
The full exchange:
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Key exchange on a (commutative) graph
Bigger graph (62 nodes)
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Key exchange on a (commutative) graph
Even bigger graph (676 nodes)
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Isogeny graphs for key exchange

Needs a graph with good mixing properties:
A path of length 𝑂(log𝑁) gives a uniform node ⇒ Ramanujan/expander graph.

The graph does not fit in memory.

Needs an algorithm taking a node as input and giving the neighbour nodes as output.

Isogeny graph of ordinary elliptic curves 𝐸/𝔽𝑝 [Couveignes (1997)], [Rostovtsev–Stolbunov
(2006)]

Graph of size ≈ √𝑝.
Torsor (principal homogeneous space) under the class group Cl(End(𝐸0)).

, Commutative graph!

/ Hidden shift problem solvable in quantum subexponential 𝐿(1/2) time for an abelian group
action via Kuperberg’s algorithm.

SIDH: supersingular elliptic curve Diffie-Helmann [De Feo, Jao (2011)],[De Feo, Jao, Plût (2014)]

Use the isogeny graph of a supersingular elliptic curve 𝐸 over 𝔽𝑝2 .
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Isogeny graphs for key exchange
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SIDH in practice
𝑝 = 2𝑎3𝑏 − 1. 𝑁𝐴 = 2𝑎, 𝑁𝐵 = 3𝑏, 𝑁𝐴 prime to 𝑁𝐵.

𝐸0 ∶ 𝑦2 = 𝑥3 + 𝑥 (supersingular when 𝑎 ≥ 2) or 𝐸0 ∶ 𝑦2 = 𝑥3 + 6𝑥2 + 𝑥.
𝐸0[𝑁𝐴] = ⟨𝑃𝐴, 𝑄𝐴⟩, 𝐸0[𝑁𝐵] = ⟨𝑃𝐵, 𝑄𝐵⟩.
Alice’s secret isogeny: 𝜙𝐴 of kernel ⟨𝑃𝐴 + 𝑠𝐴𝑄𝐴⟩.
Bob’s secret isogeny: 𝜙𝐵 of kernel ⟨𝑃𝐵 + 𝑠𝐵𝑄𝐵⟩.
Key exchange:

𝐸0 𝐸𝐵

𝐸𝐴 𝐸𝐴𝐵

𝜙𝐵

𝜙𝐴 𝜙′
𝐴

𝜙′
𝐵

𝐸𝐴𝐵 is the shared secret.

𝜙′
𝐴 ∘ 𝜙𝐵 = 𝜙′

𝐵 ∘ 𝜙𝐴 ∶ 𝐸0 → 𝐸𝐴𝐵 has kernel Ker𝜙𝐴 + Ker𝜙𝐵.

𝜙′
𝐴 has kernel ⟨𝜙𝐵(𝑃𝐴 + 𝑠𝐴𝑄𝐴)⟩, 𝜙′

𝐵 has kernel ⟨𝜙𝐴(𝑃𝐵 + 𝑠𝐵𝑄𝐵)⟩.
Alice publishes: 𝑃′

𝐵 = 𝜙𝐴(𝑃𝐵), 𝑄′
𝐵 = 𝜙𝐴(𝑄𝐵).

Bob publishes: 𝑃′
𝐴 = 𝜙𝐵(𝑃𝐴), 𝑄′

𝐴 = 𝜙𝐵(𝑄𝐴). (“Torsion points”.)

Ker𝜙′
𝐴 = ⟨𝑃′

𝐴 + 𝑠𝐴𝑄′
𝐴⟩, Ker𝜙′

𝐵 = ⟨𝑃′
𝐵 + 𝑠𝐵𝑄′

𝐵⟩.
Key exchange in 𝑂(log𝑁𝐴ℓ1/2

𝐴 + log𝑁𝐵ℓ1/2
𝐵 )

(Via fast smooth isogeny computation [De Feo, Jao, Plût (2014)] and Velusqrt [Bernstein, De Feo, Leroux, Smith

(2020)]).

Damien Robert Higher dimensional isogenies 4 / 20



SIDH in practice
𝑝 = 2𝑎3𝑏 − 1. 𝑁𝐴 = 2𝑎, 𝑁𝐵 = 3𝑏, 𝑁𝐴 prime to 𝑁𝐵.

𝐸0 ∶ 𝑦2 = 𝑥3 + 𝑥 (supersingular when 𝑎 ≥ 2) or 𝐸0 ∶ 𝑦2 = 𝑥3 + 6𝑥2 + 𝑥.
𝐸0[𝑁𝐴] = ⟨𝑃𝐴, 𝑄𝐴⟩, 𝐸0[𝑁𝐵] = ⟨𝑃𝐵, 𝑄𝐵⟩.
Alice’s secret isogeny: 𝜙𝐴 of kernel ⟨𝑃𝐴 + 𝑠𝐴𝑄𝐴⟩.
Bob’s secret isogeny: 𝜙𝐵 of kernel ⟨𝑃𝐵 + 𝑠𝐵𝑄𝐵⟩.
Key exchange:

𝐸0 𝐸𝐵

𝐸𝐴 𝐸𝐴𝐵

𝜙𝐵

𝜙𝐴 𝜙′
𝐴

𝜙′
𝐵

𝐸𝐴𝐵 is the shared secret.

𝜙′
𝐴 ∘ 𝜙𝐵 = 𝜙′

𝐵 ∘ 𝜙𝐴 ∶ 𝐸0 → 𝐸𝐴𝐵 has kernel Ker𝜙𝐴 + Ker𝜙𝐵.

𝜙′
𝐴 has kernel ⟨𝜙𝐵(𝑃𝐴 + 𝑠𝐴𝑄𝐴)⟩, 𝜙′

𝐵 has kernel ⟨𝜙𝐴(𝑃𝐵 + 𝑠𝐵𝑄𝐵)⟩.
Alice publishes: 𝑃′

𝐵 = 𝜙𝐴(𝑃𝐵), 𝑄′
𝐵 = 𝜙𝐴(𝑄𝐵).

Bob publishes: 𝑃′
𝐴 = 𝜙𝐵(𝑃𝐴), 𝑄′

𝐴 = 𝜙𝐵(𝑄𝐴). (“Torsion points”.)

Ker𝜙′
𝐴 = ⟨𝑃′

𝐴 + 𝑠𝐴𝑄′
𝐴⟩, Ker𝜙′

𝐵 = ⟨𝑃′
𝐵 + 𝑠𝐵𝑄′

𝐵⟩.
Key exchange in 𝑂(log𝑁𝐴ℓ1/2

𝐴 + log𝑁𝐵ℓ1/2
𝐵 )

(Via fast smooth isogeny computation [De Feo, Jao, Plût (2014)] and Velusqrt [Bernstein, De Feo, Leroux, Smith

(2020)]).

Damien Robert Higher dimensional isogenies 4 / 20



SIDH in practice
𝑝 = 2𝑎3𝑏 − 1. 𝑁𝐴 = 2𝑎, 𝑁𝐵 = 3𝑏, 𝑁𝐴 prime to 𝑁𝐵.

𝐸0 ∶ 𝑦2 = 𝑥3 + 𝑥 (supersingular when 𝑎 ≥ 2) or 𝐸0 ∶ 𝑦2 = 𝑥3 + 6𝑥2 + 𝑥.
𝐸0[𝑁𝐴] = ⟨𝑃𝐴, 𝑄𝐴⟩, 𝐸0[𝑁𝐵] = ⟨𝑃𝐵, 𝑄𝐵⟩.
Alice’s secret isogeny: 𝜙𝐴 of kernel ⟨𝑃𝐴 + 𝑠𝐴𝑄𝐴⟩.
Bob’s secret isogeny: 𝜙𝐵 of kernel ⟨𝑃𝐵 + 𝑠𝐵𝑄𝐵⟩.
Key exchange:

𝐸0 𝐸𝐵

𝐸𝐴 𝐸𝐴𝐵

𝜙𝐵

𝜙𝐴 𝜙′
𝐴

𝜙′
𝐵

𝐸𝐴𝐵 is the shared secret.

𝜙′
𝐴 ∘ 𝜙𝐵 = 𝜙′

𝐵 ∘ 𝜙𝐴 ∶ 𝐸0 → 𝐸𝐴𝐵 has kernel Ker𝜙𝐴 + Ker𝜙𝐵.

𝜙′
𝐴 has kernel ⟨𝜙𝐵(𝑃𝐴 + 𝑠𝐴𝑄𝐴)⟩, 𝜙′

𝐵 has kernel ⟨𝜙𝐴(𝑃𝐵 + 𝑠𝐵𝑄𝐵)⟩.
Alice publishes: 𝑃′

𝐵 = 𝜙𝐴(𝑃𝐵), 𝑄′
𝐵 = 𝜙𝐴(𝑄𝐵).

Bob publishes: 𝑃′
𝐴 = 𝜙𝐵(𝑃𝐴), 𝑄′

𝐴 = 𝜙𝐵(𝑄𝐴). (“Torsion points”.)

Ker𝜙′
𝐴 = ⟨𝑃′

𝐴 + 𝑠𝐴𝑄′
𝐴⟩, Ker𝜙′

𝐵 = ⟨𝑃′
𝐵 + 𝑠𝐵𝑄′

𝐵⟩.
Key exchange in 𝑂(log𝑁𝐴ℓ1/2

𝐴 + log𝑁𝐵ℓ1/2
𝐵 )

(Via fast smooth isogeny computation [De Feo, Jao, Plût (2014)] and Velusqrt [Bernstein, De Feo, Leroux, Smith

(2020)]).

Damien Robert Higher dimensional isogenies 4 / 20



SIDH in practice
𝑝 = 2𝑎3𝑏 − 1. 𝑁𝐴 = 2𝑎, 𝑁𝐵 = 3𝑏, 𝑁𝐴 prime to 𝑁𝐵.

𝐸0 ∶ 𝑦2 = 𝑥3 + 𝑥 (supersingular when 𝑎 ≥ 2) or 𝐸0 ∶ 𝑦2 = 𝑥3 + 6𝑥2 + 𝑥.
𝐸0[𝑁𝐴] = ⟨𝑃𝐴, 𝑄𝐴⟩, 𝐸0[𝑁𝐵] = ⟨𝑃𝐵, 𝑄𝐵⟩.
Alice’s secret isogeny: 𝜙𝐴 of kernel ⟨𝑃𝐴 + 𝑠𝐴𝑄𝐴⟩.
Bob’s secret isogeny: 𝜙𝐵 of kernel ⟨𝑃𝐵 + 𝑠𝐵𝑄𝐵⟩.
Key exchange:

𝐸0 𝐸𝐵

𝐸𝐴 𝐸𝐴𝐵

𝜙𝐵

𝜙𝐴 𝜙′
𝐴

𝜙′
𝐵

𝐸𝐴𝐵 is the shared secret.

𝜙′
𝐴 ∘ 𝜙𝐵 = 𝜙′

𝐵 ∘ 𝜙𝐴 ∶ 𝐸0 → 𝐸𝐴𝐵 has kernel Ker𝜙𝐴 + Ker𝜙𝐵.

𝜙′
𝐴 has kernel ⟨𝜙𝐵(𝑃𝐴 + 𝑠𝐴𝑄𝐴)⟩, 𝜙′

𝐵 has kernel ⟨𝜙𝐴(𝑃𝐵 + 𝑠𝐵𝑄𝐵)⟩.
Alice publishes: 𝑃′

𝐵 = 𝜙𝐴(𝑃𝐵), 𝑄′
𝐵 = 𝜙𝐴(𝑄𝐵).

Bob publishes: 𝑃′
𝐴 = 𝜙𝐵(𝑃𝐴), 𝑄′

𝐴 = 𝜙𝐵(𝑄𝐴). (“Torsion points”.)

Ker𝜙′
𝐴 = ⟨𝑃′

𝐴 + 𝑠𝐴𝑄′
𝐴⟩, Ker𝜙′

𝐵 = ⟨𝑃′
𝐵 + 𝑠𝐵𝑄′

𝐵⟩.
Key exchange in 𝑂(log𝑁𝐴ℓ1/2

𝐴 + log𝑁𝐵ℓ1/2
𝐵 )

(Via fast smooth isogeny computation [De Feo, Jao, Plût (2014)] and Velusqrt [Bernstein, De Feo, Leroux, Smith

(2020)]).

Damien Robert Higher dimensional isogenies 4 / 20



Isogeny evaluation and interpolation

Evaluation: given an 𝑁-isogeny 𝑓 and a point 𝑄 ∈ 𝐸(𝔽𝑞), evaluate 𝑓 (𝑄).
𝑁-evaluation problem: 𝑓 is an 𝑁-isogeny = Ker 𝑓 is of degree 𝑁.

Interpolation: given a tuple (𝑃, 𝑓 (𝑃)), recover 𝑓.
(𝑁, 𝑁′)-interpolation problem: given 𝑓 an 𝑁-isogeny and 𝑃 a point of 𝑁′-torsion, from
(𝑃, 𝑓 (𝑃)) and 𝑄 ∈ 𝐸(𝔽𝑞), evaluate 𝑓 (𝑄) (𝑁′ ≥ 𝑁).

Weak interpolation: we are given (𝑃1, 𝑓 (𝑃1)), (𝑃2, 𝑓 (𝑃2)) for (𝑃1, 𝑃2) a basis of 𝐸[𝑁].

SIDH: the key exchange uses the 𝑁𝐴 and 𝑁𝐵 evaluation problems

If we can solve the weak interpolation problem when 𝑁 = 𝑁𝐴, 𝑁′ = 𝑁𝐵 are smooths in
polylogarithmic time, we can break SIDH.
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Isogeny evaluation and interpolation
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Evaluation

𝑓 (𝑥, 𝑦) = ( 𝑔(𝑥)
ℎ(𝑥) , 𝑐𝑦 ( 𝑔(𝑥)

ℎ(𝑥) )
′
);

[Vélu]: given the kernel Ker 𝑓 ∶ {𝑃 ∈ 𝐸 ∣ ℎ(𝑥(𝑃)) = 0} of degree 𝑁, can evaluate 𝑓 (𝑄) in
𝑂(𝑁) operations in 𝔽𝑞.

Velusqrt: in the special case Ker 𝑓 = ⟨𝑇⟩, 𝑇 ∈ 𝔽𝑞, can evaluate 𝑓 (𝑄) in 𝑂(√𝑁) operations in
𝔽𝑞.

Linear time.

If 𝑁 is smooth, 𝑓 can be decomposed into a product of small isogenies.

Evaluation in 𝑂(log𝑁ℓ𝑁) or 𝑂(log𝑁√ℓ𝑁).
Logarithmic time.

The decomposition cost is quasi-logarithmic if Ker 𝑓 = ⟨𝑇⟩ with 𝑇 ∈ 𝔽𝑞; polylogarithmic if 𝑁′

is powersmooth; but linear if 𝑇 lives in a large extension.
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Interpolation

Given (𝑃, 𝑓 (𝑃)), 𝑃 a point of order 𝑁′ ≥ 2𝑁, we can recover the rational function
𝑔(𝑥)
ℎ(𝑥) in 𝑂(𝑁)

by interpolating the points (𝑥(𝑚𝑃), 𝑥(𝑚𝑓 (𝑃))), 𝑚 = 1, … , 𝑁′ − 1.
Can evaluate on 𝑄 directly.

Special case when 𝑝 > 2𝑁: 𝑃 ≠ 0 ∈ 𝑇0𝐸
(𝐸), a “fat point”of order 𝑝 ⇒solve a differential

equation [Elkies].

Quasi-linear time.

Faster algorithm when 𝑁′ is smooth?

Yes if 𝑓 (𝑃) = 0. Then 𝑁 = 𝑁′ and Ker 𝑓 = ⟨𝑃⟩.
If 𝑁 = 𝑁′, the weak interpolation problem reduces via the DLP to the 𝑁-evaluation problem.

This is why the SIDH key exchange is fast: Bob uses the torsion point information published by
Alice to find the kernel of his pushforward isogeny.

No reason to expect a fast algorithm when 𝑁′ is prime to 𝑁.
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Revisiting isogeny evaluation

Can an 𝑁-isogeny be evaluated faster than linear time when 𝑁 has a large prime factor?

If 𝑓 = [ℓ] (so 𝑁 = ℓ2): double and add in 𝑂(log ℓ) to evaluate ℓ𝑄.

𝐹 ∶ 𝐸2 → 𝐸2, (𝑃1, 𝑃2) ↦ (𝑃1 + 𝑃2, 𝑃1 − 𝑃2) is a 2-isogeny in dimension 2.
Double: 𝐹(𝑃, 𝑃) = (2𝑃, 0).
Add: 𝐹(𝑃, 𝑄) = (𝑃 + 𝑄, 𝑃 − 𝑄).

We can evaluate ℓ𝑄 as a composition of 𝑂(log ℓ) evaluations of 𝐹, projections 𝐸2 → 𝐸 and
embeddings 𝐸 → 𝐸2.

Double and add on 𝐸 = 2-isogenies in dimension 2
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Polarisations on an abelian variety

If 𝐴 is an abelian variety, a polarisation is:

a (symmetric) isogeny 𝜆𝐴 ∶ 𝐴 → 𝐴;

an (algebraic equivalence class) of an ample divisor 𝛩𝐴;

an (anti-symmetric) pairing 𝑇ℓ(𝐴) × 𝑇ℓ(𝐴) → 𝔾𝑚;

projective coordinates 𝐴 99K ℙ𝑚
𝑘 (up to translation)

Principal polarisation= 𝜆𝐴 is an isomorphism: principally polarized abelian variety (ppav)
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𝑁-isogenies

𝑓 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) is an 𝑁-isogeny between ppav if 𝑓 ∗𝜆𝐵 = 𝑁𝜆𝐴.

Dual isogeny: ̂𝑓 ∶ �̂� → 𝐴
Contragredient isogeny / Dual with respect to the principal polarisations:

̃𝑓 = 𝜆−1
𝐴

̂𝑓 𝜆𝐵 ∶ 𝐵 → 𝐴

𝐴 𝐵

𝐴 �̂�

𝑓

𝜆𝐵𝜆−1
𝐴

̂𝑓

𝑓 is an 𝑁-isogeny ⇔ ̃𝑓 𝑓 = 𝑁 ⇔ 𝑓 ̃𝑓 = 𝑁.

Ker 𝑓 = Im ( ̃𝑓 ∣ 𝐵[𝑁]).
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𝑁-isogenies and isotropic kernels

𝑓 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) 𝑁-isogeny ⇒Ker 𝑓 is maximal isotropic in 𝐴[𝑁] for theWeil pairing

Conversely, if 𝐾 ⊂ 𝐴[𝑁] maximal isotropic, 𝑁𝜆𝐴 descends to a principal polarisation on
𝐵 = 𝐴/𝐾.

An elliptic curve only has one principal polarisation (𝑁𝑆(𝐸) = ℤ).

So 𝑓 ∶ 𝐸1 → 𝐸2 is an 𝑁-isogeny ⇔ #Ker 𝑓 = 𝑁.

But in higher dimension there may be many non equivalent principal polarisations.

Example (Superspecial abelian surfaces)

𝐴 = 𝐸2, 𝐸/𝔽𝑝2 supersingular. It admits ≈ 𝑝2/288 product polarisations (𝐸1 × 𝐸2, 𝜆𝐸1
× 𝜆𝐸2

)
where 𝐸1, 𝐸2 are supersingular and ≈ 𝑝3/2880 indecomposable polarisations (Jac𝐶, 𝛩𝐶) where 𝐶
is an hyperelliptic curve of genus 2.

If 𝑓 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) has maximal isotropic kernel in 𝐴[𝑁], 𝑁𝜆𝐴 descends to a principal
polarisation 𝜆′

𝐵 on 𝐵.

But we may have 𝜆′
𝐵 ≠ 𝜆𝐵.

̃𝑓 ∘ 𝑓 = 𝑁 is a stronger condition that ensures compatibility of 𝑓 with 𝜆𝐵.
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Algorithms for 𝑁-isogenies

[Cosset-R. (2014), Lubicz-R. (2012–2022)]: An 𝑁-isogeny in dimension 𝑔 can be evaluated in linear
time 𝑂(𝑁𝑔) arithmetic operations in the theta model given generators of its kernel.

Warning: exponential dependency 2𝑔 or 4𝑔 in the dimension 𝑔.

[Couveignes-Ezome (2015)]: Algorithm in 𝑂(𝑁𝑔) in the Jacobian model.

Not hard to extend to product of Jacobians.

Restricted to 𝑔 ≤ 3.
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Composition and product polarisations

Composition: 𝑓 ∶ 𝐴 → 𝐵 a 𝑁-isogeny, 𝑔 ∶ 𝐵 → 𝐶 a 𝑀-isogeny, 𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶.

𝑔 ∘ 𝑓 = ̂𝑓 ∘ ̂𝑔 ∶ ̂𝐶 → ̂𝐴;

𝑔 ∘ 𝑓 = ̃𝑓 ∘ ̃𝑔 ∶ 𝐶 → 𝐴;

(𝑔 ∘ 𝑓) ∘ (𝑔 ∘ 𝑓 ) = ̃𝑓 ∘ ̃𝑔 ∘ 𝑔 ∘ 𝑓 = 𝑁𝑀.

The composition 𝑔 ∘ 𝑓 is an 𝑁𝑀-isogeny.

Conversely, if 𝑔 ∘ 𝑓 is an 𝑁-isogeny and 𝑓 (resp. 𝑔) is an 𝑀-isogeny, then 𝑔 (resp. 𝑓) is an 𝑁/𝑀-isogeny.

Product polarisation: (𝐴, 𝜆𝐴) × (𝐵, 𝜆𝐵) = (𝐴 × 𝐵, 𝜆𝐴 × 𝜆𝐵) where 𝜆𝐴 × 𝜆𝐵 ∶ 𝐴 × 𝐵 → 𝐴 × �̂�
is the product.

𝐹 = (𝑎 𝑐
𝑏 𝑑) ∶ (𝐴 × 𝐵, 𝜆𝐴 × 𝜆𝐵) → (𝐶 × 𝐷, 𝜆𝐶 × 𝜆𝐷).

̂𝐹 = ( ̂𝑎 ̂𝑏
̂𝑐 ̂𝑑) ∶ ̂𝐶 × �̂� → ̂𝐴 × �̂�.

̃𝐹 = ( ̃𝑎 ̃𝑏
̃𝑐 ̃𝑑) ∶ 𝐶 × 𝐷 → 𝐴 × 𝐵.

Damien Robert Higher dimensional isogenies 13 / 20



Kani’s lemma [Kani (1997)], [R. (2022-08)]

𝛼 ∶ 𝐴 → 𝐵 a 𝑎-isogeny, 𝛽 ∶ 𝐴 → 𝐶 a 𝑏-isogeny.
𝛼′ ∶ 𝐶 → 𝐷 a 𝑎-isogeny, 𝛽′ ∶ 𝐶 → 𝐷 a 𝑏-isogeny with 𝛽′𝛼 = 𝛼′𝛽:

𝐴 𝐵

𝐶 𝐷

𝛼

𝛽 𝛽′

𝛼′

NB: If 𝑎 prime to 𝑏, the pushforward 𝛼′, 𝛽′ of 𝛼, 𝛽 by 𝛽, 𝛼 satisfy these conditions.

𝐹 = ( 𝛼 𝛽′

−𝛽 𝛼′) ∶ 𝐴 × 𝐷 → 𝐵 × 𝐶.

̃𝐹 = ( ̃𝛼 − ̃𝛽
𝛽′ 𝛼′ ) ∶ 𝐵 × 𝐶 → 𝐴 × 𝐷, ̃𝐹𝐹 = 𝑎 + 𝑏.

𝐹 is an 𝑎 + 𝑏-isogeny with respect to the product polarisations.

Ker𝐹 = { ̃𝛼(𝑃), 𝛽′(𝑃) ∣ 𝑃 ∈ 𝐵[𝑎 + 𝑏]} (if 𝑎 is prime to 𝑏)
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Revisiting the interpolation

If we know 𝑓 (𝐸[𝑁′]), and we can find a 𝑚 = 𝑁′ − 𝑁 isogeny 𝛼 that we can evaluate on 𝐸[𝑁′],
we recover Ker𝐹.

We can then evaluate 𝐹, hence 𝑓 at any point: 𝐹(𝑃, 0) = (𝛼(𝑃), −𝑓 (𝑃)) = 𝐹(𝑃, 0).
This evaluation is fast if 𝑁′ is smooth.

Examples:

𝑚 smooth [Maino-Martindale]

𝑚 = ℓ2: take 𝛼 = [ℓ];
End(𝐸) has an efficient endomorphism of norm 𝑚 [Castryck-Decru].
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The general case

𝛼 = ( 𝑎1 𝑎2
−𝑎2 𝑎1

) is always an endomorphism of norm 𝑎2
1 + 𝑎2

2 on 𝐸2 (Gaussian integers ℤ[𝑖]);

𝛼 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎1 −𝑎2 −𝑎3 −𝑎4
𝑎2 𝑎1 𝑎4 −𝑎3
𝑎3 −𝑎4 𝑎1 𝑎2
𝑎4 𝑎3 −𝑎2 𝑎1

⎞⎟⎟⎟⎟⎟⎟
⎠

is always an endomorphism of norm 𝑚 = 𝑎2
1 + 𝑎2

2 + 𝑎2
3 + 𝑎2

4

on 𝐸4 (Hamilton’s quaternion algebra)

Evaluating 𝛼 costs 𝑂(log𝑚) arithmetic operations;

Every integer is a sum of four squares [Διόφαντος ὁ Ἀλεξανδρεύς, Lagrange].
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The embedding lemma [R.]

A 𝑁-isogeny 𝑓 ∶ 𝐴 → 𝐵 in dimension 𝑔 can always be efficiently embedded into a 𝑁′ isogeny
𝐹 ∶ 𝐴′ → 𝐵′ in dimension 8𝑔 (and sometimes 4𝑔, 2𝑔) for any 𝑁′ ≥ 𝑁.

𝐴 𝐵

𝐴′ 𝐵′

𝑓

𝐹

Considerable flexibility (at the cost of going up in dimension).

Breaks SIDH ([Castryck-Decru], [Maino-Martindale] in dimension 2, [R.] in dimension 4 or 8)
Reduces the (𝑁, 𝑁′)-weak interpolation problem to the 𝑁′-evaluation problem in higher
dimension;

Only needs 𝑁′2 ≥ 𝑁 (uses the dual isogeny)

⇒ Solves the weak interpolation problem when 𝑁′ is (power) smooth

Amazing fact: does not requires Ker 𝑓, works even if 𝑁 is prime

Open question: case 𝑁′ prime? Can we find a fast 𝑁′-evaluation algorithm?
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Efficient representation of isogenies [R.]

For the 𝑁-evaluation problem, once we have evaluated 𝑓 on a basis of the 𝑁′-torsion this reduces
to the 𝑁′-weak interpolation problem which reduces to the 𝑁′-evaluation problem (in higher
dimension).

Can always embed an 𝑁-isogeny 𝑓 into a 𝑁′-isogeny with 𝑁′ powersmooth;

Then decompose 𝐹 as a product of small isogenies: polylogarithmic space 𝑂(log3 𝑁);
We need to evaluate 𝑓 on the 𝑁′-torsion: decomposition is quasi-linear;

Evaluation in polylogarithmic time 𝑂(log7 𝑁) arithmetic operations.
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Point counting

The Frobenius 𝜋𝑝 can be evaluated in 𝑂(log 𝑝) arithmetic operations;

Its action on the tangent space 𝑇0𝐸
𝐸 is trivial/;

The action 𝜆 mod 𝑝 of the Verschiebung 𝜋𝑝 on 𝑇0𝐸
𝐸 is non trivial (if 𝐸 is ordinary), and gives

the trace 𝑡 = 𝜆 + 𝑞/𝜆 of 𝜋𝑝 modulo 𝑝,;

Since 𝜋𝑝 ∘ 𝜋𝑝 = [𝑝], the Verschiebung can be efficiently evaluated on the image of 𝜋𝑝 ,;

But 𝜋𝑝(𝑇0𝐸
𝐸) = 0/.

We can instead embed 𝜋𝑝 (and 𝜋𝑝) into a powersmooth separable isogeny 𝐹 and evaluate 𝐹 on
the tangent space!

Polynomial point counting algorithm: 𝜆 mod 𝑝 in 𝑂(log10 𝑝) arithmetic operations.

Similar to Schoof’s algorithm (but slower): evaluate 𝜋𝑝 on small ℓ𝑖-torsion points.

Rather than doing a DLP on these points to reconstruct 𝑡 mod ∏ ℓ𝑖, we reconstruct a
∏ ℓ𝑖-isogeny 𝐹 embedding the Frobenius.

A lift of 𝐹 gives a lift of 𝜋𝑝. So we can compute the action of 𝜋𝑝 on the deformation space of 𝐸.

⇒ Compute canonical lift 𝐸 in time polynomial in 𝑂(log 𝑝)!

Damien Robert Higher dimensional isogenies 19 / 20



Point counting and canonical lifts

𝐸/𝔽𝑞, 𝑞 = 𝑝𝑛.

[Schoof 1985]: 𝑂(log5 𝑞) = 𝑂(𝑛5 log5 𝑝) (Étale cohomology)

[SEA 1992]: 𝑂(log4 𝑞) = 𝑂(𝑛4 log4 𝑝)

[Kedlaya 2001]: 𝑂(𝑛3𝑝) (Rigid cohomology)

[Harvey 2007]: 𝑂(𝑛3.5𝑝1/2 + 𝑛5 log 𝑝)

[Satoh 2000] (canonical lifts of ordinary curves): 𝑂(𝑛2𝑝2) (Crystalline cohomology)

[Maiga – R. 2021]: 𝑂(𝑛2𝑝)

[R. 2022]: 𝑂(𝑛2 log8 𝑝 + 𝑛 log11 𝑝)
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