Isogenies between abelian varieties – an algorithmic survey 2022/09/21 — Isogeny days, Leuven

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest

Outline

Isogenies and polarisations

Postdoc

- The ANR CIAO is looking for a one year postdoc in Bordeaux https://anr.fr/Projet-ANR-19-CE48-0008
- Topics: anything related to isogeny based cryptography
- Position available until 2024-04 (should be extendable by 6 months)
- Email: http://www.normalesup.org/~robert/pro/infos.html

Outline

Motivations

Polarised abelian varieties

Isogenies and polarisations

Algorithms for isogenies

Usage of isogenies

- Speed up the arithmetic (eg split the multiplication by [2] or [3]);
- Determine End(A) (volcano...);
- Point counting algorithms (ℓ -adic or p-adic: SEA, Satoh ...) Publicity: [Kieffer 2021] SEA like algorithm in $\widetilde{O}_K(\log^4 q)$ for abelian surfaces with RM by O_K .
- Compute class polynomials (CM-method)
- Compute modular polynomials
- Arithmetic for \mathbb{F}_q : construct normal basis of a finite field, irreducible polynomials, automorphism invariant smoothness basis [Couveignes-Lercier]...
- Find curves with many points
- Explore isogeny graphs (eg find a component with no Jacobians in dimension 4)
- Evaluate modular forms

Isogenies in classical cryptography

- Discrete Logarithm Problem, Pairings
- Transfer the DLP (Weil descent...)
- Reduce the impact of side channel attacks
- Random self reducibility, worst case to average case reductions.

Isogeny based cryptography

- Hash functions
- Key exchange (SIDH, CSIDH)
- Signatures (SQISign)

Higher dimensional isogenies?

- Classical cryptography: dimension 1 and 2. A bit in dimension 3 (class polynomials).
- Isogeny based cryptography: dimension 1 (hash functions in dimension 2 too).
- So mainly for algorithmic number theory (descent...)
- Certainly no use for elliptic curve based cryptosystems.

Higher dimensional isogenies?

- Classical cryptography: dimension 1 and 2. A bit in dimension 3 (class polynomials).
- Isogeny based cryptography: dimension 1 (hash functions in dimension 2 too).
- So mainly for algorithmic number theory (descent...)
- Certainly no use for elliptic curve based cryptosystems.

• A *N*-isogeny $f : A \to B$ in dimension g can always be efficiently embedded into a N' isogeny $F : A' \to B'$ in dimension 8g (and sometimes 4g, 2g) for any $N' \ge N$.

• Considerable flexibility (at the cost of going up in dimension).

The embedding lemma

• A N-isogeny $f : A \rightarrow B$ in dimension g can always be efficiently embedded into a N' isogeny $F: A' \rightarrow B'$ in dimension 8g (and sometimes 4g, 2g) for any $N' \ge N$.

• Considerable flexibility (at the cost of going up in dimension).

• Write
$$N' - N = a_1^2 + a_2^2 + a_3^2 + a_4^2$$
.

$$\begin{pmatrix} a_1 & -a_2 & -a_3 & -a_4 & \hat{f} & 0\\ a_2 & a_1 & a_4 & -a_3 & 0 & \hat{f} \end{pmatrix}$$

•
$$F = \begin{pmatrix} a_1 & -a_2 & -a_3 & -a_4 & \hat{f} & 0 & 0 & 0 \\ a_2 & a_1 & a_4 & -a_3 & 0 & \hat{f} & 0 & 0 \\ a_3 & -a_4 & a_1 & a_2 & 0 & 0 & \hat{f} & 0 \\ a_4 & a_3 & -a_2 & a_1 & 0 & 0 & 0 & \hat{f} \\ -f & 0 & 0 & 0 & a_1 & a_2 & a_3 & a_4 \\ 0 & -f & 0 & 0 & -a_2 & a_1 & -a_4 & a_3 \\ 0 & 0 & -f & 0 & -a_3 & a_4 & a_1 & a_2 \\ 0 & 0 & 0 & -f & -a_4 & -a_2 & a_2 & a_1 \end{pmatrix}$$

The embedding lemma

• A *N*-isogeny $f : A \to B$ in dimension g can always be efficiently embedded into a N' isogeny $F : A' \to B'$ in dimension 8g (and sometimes 4g, 2g) for any $N' \ge N$.

- Considerable flexibility (at the cost of going up in dimension).
- Breaks SIDH ([Castryck-Decru], [Maino-Martindale] in dimension 2, [R.] in dimension 4 or 8) \Rightarrow if $N_A > N_B$, take $N' = N_A$, $N = N_B$ The dimension 8 attack is in proven quasi-linear time, see http://www.normalesup.org/~robert/pro/publications/slides/2022-09-Bordeaux-SIDH.pdf for details.
- An isogeny always have a representation allowing evaluation in polylogarithmic time $\log^{O(1)} N$ [R.] \Rightarrow take $N' \ge N$ powersmooth. (Finding this representation takes quasi-linear time.)

The embedding lemma

Isogeny diamonds

• $f_1 : A \to A_1 n_1$ -isogeny, $f'_1 : A_1 \to B n'_1$ -isogeny, $f_2 : A \to A_2 n_2$ -isogeny, $f'_2 : A_2 \to B n'_2$ -isogeny, $f'_2 \circ f_2 = f'_1 \circ f_1$.

•
$$F = \begin{pmatrix} f_1 & \widetilde{f}'_1 \\ -f_2 & \widetilde{f}'_2 \end{pmatrix}$$
 is an $\begin{pmatrix} n_1 + n_2 & 0 \\ 0 & n'_1 + n'_2 \end{pmatrix}$ -isogeny.

• Isogeny diamonds: If $n'_1 = n_2$ (so $n'_2 = n_1$), F is an N-isogeny where $N = n_1 + n_2$ ([Kani] for g = 1, [R.] for g > 1.)

Algorithms for N-isogenies

Jacobian model:

- Vélu's formula for elliptic curves [Vélu 1971]
- [Kohel, 1999]: Vélu's formula from equations of K;
- [Richelot, 1836,1837] 2-isogenies between Jacobians of genus 2 hyperelliptic curves, [Mestre 2013] for general g;
- Various explicit formula for small degree isogenies in dimension 2;
- [Smith 2008]: 2-isogenies for quartic genus 3 curves;
- [R. 2007]: the analog of Vélu's formula for genus 2 does not seem to work?
- [Couveignes-Ezome (2015)]: Algorithm in $\widetilde{O}(N^g)$ in the Jacobian model (complete algorithm for g = 2, [Milio 2019] for g = 3).
- Restricted to $g \leq 3$.

Algorithms for N-isogenies

Jacobian model:

- Vélu's formula for elliptic curves [Vélu 1971]
- [Couveignes-Ezome (2015)]: Algorithm in $\widetilde{O}(N^g)$ in the Jacobian model (complete algorithm for g = 2, [Milio 2019] for g = 3).

Theta model:

- 2-isogenies: duplication formula for theta functions [Riemann ?]
- [Mumford, 1966] isogeny formula, [Koizumi 1976, Kempf 1989] product formula (requires theta constants of higher level)
- [Lubicz-R. 2012]: ℓ^2 -isogenies between abelian varieties in $O(\ell^g)$ and $\ell^{g(g+1)/2} \ell$ -th roots. This corresponds to taking an ℓ -isogeny, and then each choice of roots prolongs this ℓ -isogeny into a different ℓ^2 -isogeny (we get all ℓ^2 -isogenies whose kernel stays of rank g), see also [Castryck, Decru, Vercauteren] work on radical isogenies.
- [Cosset-R. (2014)]: ℓ -isogenies in $O(\ell^g)$ if $\ell \equiv 1 \pmod{4}$, $O(\ell^{2g})$ if $\ell \equiv 3 \pmod{4}$;
- [Lubicz-R. (2022)]: An N-isogeny in dimension g can be evaluated in linear time $O(N^g)$ arithmetic operations in the theta model given generators of its kernel.
- Warning: exponential dependency 2^g or 4^g in the dimension g.
- [Lubicz-R. (2015)]: isogenies from equations of the kernel
- [Dudeanu, Jetchev, R., Vuille (2022)]: cyclic isogenies for abelian varieties with RM.

Inría

Outline

Polarised abelian varieties

Isogenies and polarisations

Algorithms for isogenies

Polarised abelian varieties over $\mathbb C$

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie group V/A with

- A complex vector space V of dimension g (linear data);
- A \mathbb{Z} -lattice Λ in V (of rank 2g) (arithmetic data);
- A polarisation (quadratic data)

Example

- A vector space V ≃ C^g is described by a basis;
- A lattice $\Lambda = \Omega \mathbb{Z}^g \oplus \mathbb{Z}^g$ is described by a period matrix Ω ;
- The quotient \mathbb{C}^g/Λ is a torus. It is not an abelian variety in general!
- The moduli space of torus is of dimension g^2 .
- If $\Omega \in \mathfrak{H}_{g'}H = \operatorname{Im} \Omega^{-1}$ is a principal polarisation.
- The moduli space of abelian varieties is of dimension g(g + 1)/2.
- NB: when g = 1 both spaces have dimension 1.

Inría-

Polarisations

 $A = V/\Lambda$. A polarisation on A is:

- An Hermitian form H on V with $\operatorname{Im} H(\Lambda, \Lambda) \subset \mathbb{Z}$;
- A symplectic form *E* on *H* with $E(\Lambda, \Lambda) \subset \mathbb{Z}: E = \operatorname{Im} H$
- A (symmetric) morphism $\Phi: A \to \widehat{A}: \Phi = \Phi_H: z \mapsto H(z, \cdot) \in \widehat{A} = \operatorname{Hom}_{\overline{\mathbb{C}}}(V, \mathbb{C})$
- (The algebraic equivalence class of) a divisor \mathcal{D} [Apell-Humbert].

Divisors and theNéron-Severi group

- To work algorithmically with an abelian variety, we need (projective) coordinates u_1, \ldots, u_m ;
- A point $P \in A$ is represented by its coordinates $(u_1(P) : \cdots, u_m(P))$.
- Coordinates are given by sections of (very ample) divisors;
- Linearly equivalent divisors $\mathcal{D} \simeq \mathcal{D}'$ give isomorphic coordinates;
- Pic(A): divisors modulo linear equivalence.
- $\mathcal{D} \sim \mathcal{D}'$ are algebraically equivalent $\Leftrightarrow \mathcal{D}'$ is linearly equivalent to a translate of \mathcal{D} , ie $\mathcal{D}' \simeq t_x \mathcal{D}$ (if \mathcal{D} is ample);

 $\mathcal{D}' \simeq t_{\chi} \mathcal{D} \Rightarrow \mathcal{D}' \sim \mathcal{D}$ and the converse is true if $\Phi_{\mathcal{D}}$ is surjective, ie the polarisation is non degenerate.

- Algebraically equivalent divisors = same coordinates up to translation;
- Néron-Severi group $NS(A) = \operatorname{Pic}(A) / \operatorname{Pic}^{0}(A)$: divisors modulo algebraic equivalence.

More precisely: NS(A) is the fppf sheaf associated to the functor $\operatorname{Pic}(A) / \operatorname{Pic}^0(A)$. Here $\operatorname{Pic}^0(A)$ is the connected component of the Picard group, it corresponds to divisors algebraically equivalent to 0, or equivalently to divisors D_0 such that $\Phi_{D_0} = 0$, ie $t_P^*D_0 \simeq D_0$ for all $P \in A$. So an algebraic class $\lambda = [D]$ may be rational with no representative D defined over k. This does not happens when $k = \mathbb{F}_q$, representatives form a torsor under $\widehat{A} = \operatorname{Pic}^0(A)$, and this torsor is trivial, ie has a section, since $H^1(\mathbb{F}_q, \widehat{A}) = 0$.

In general, the pullback $\mathcal{D}' = (1 \times \lambda)^* P$ of the Poincarre sheaf satisfy $\Phi_{\mathcal{D}'} = 2\lambda$, so 2λ is always represented by a rational divisor.

ln ría-

Polarisation $\lambda =$

- a divisor Θ up to algebraic equivalence;
- a (symmetric) morphism $\lambda : A \to \widehat{A}$. $\lambda = \Phi_{\Theta} : A \to \widehat{A}, P \mapsto t_P^* \Theta - \Theta$. Ker $\lambda \simeq (\mathbb{Z}^g / D\mathbb{Z}^g)^2$ with $D = (d_1, \dots, d_g), d_i \mid d_{i+1} : \lambda$ is of type (d_1, \dots, d_g) . deg $\Theta := \prod d_i$.
- a pairing $T_{\ell}A \times T_{\ell}A \to Z(\overline{\ell})(1), (P,Q) \mapsto e_{\lambda}(P,Q) = e_A(P,\lambda Q);$

Polarisation $\lambda =$

- a divisor Θ up to algebraic equivalence;
- a (symmetric) morphism $\lambda : A \to \widehat{A}$. $\lambda = \Phi_{\Theta} : A \to \widehat{A}, P \mapsto t_{P}^{*}\Theta - \Theta$. Ker $\lambda \simeq (\mathbb{Z}^{g}/D\mathbb{Z}^{g})^{2}$ with $D = (d_{1}, \dots, d_{g}), d_{i} \mid d_{i+1}: \lambda$ is of type (d_{1}, \dots, d_{g}) . deg $\Theta := \prod d_{i}$.
- a pairing $T_{\ell}A \times T_{\ell}A \to Z(\overline{\ell})(1), (P,Q) \mapsto e_{\lambda}(P,Q) = e_A(P,\lambda Q);$

The polarisation λ is

- Non degenerate if $\lambda : A \rightarrow \widehat{A}$ is an isogeny;
- Positive if $\lambda = \Phi_{\Theta}$ and Θ is ample (\Rightarrow non degenerate).
- Principal if λ is (positive and) an isomorphism.

Polarisation λ =

- a divisor Θ up to algebraic equivalence;
- a (symmetric) morphism $\lambda : A \to \widehat{A}$. $\lambda = \Phi_{\Theta} : A \to \widehat{A}, P \mapsto t_{P}^{*} \Theta - \Theta$. Ker $\lambda \simeq (\mathbb{Z}^{g}/D\mathbb{Z}^{g})^{2}$ with $D = (d_{1}, \dots, d_{g}), d_{i} \mid d_{i+1}: \lambda$ is of type (d_{1}, \dots, d_{g}) . deg $\Theta := \prod d_{i}$.
- a pairing $T_{\ell}A \times T_{\ell}A \to Z(\overline{\ell})(1), (P,Q) \mapsto e_{\lambda}(P,Q) = e_A(P,\lambda Q);$

The polarisation λ is

- Non degenerate if $\lambda : A \rightarrow \widehat{A}$ is an isogeny;
- Positive if $\lambda = \Phi_{\Theta}$ and Θ is ample (\Rightarrow non degenerate).
- Principal if λ is (positive and) an isomorphism.

Example

If *H* polarisation on
$$A = V/\Lambda$$
: $H \simeq \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_g \end{pmatrix}$, $\lambda_i \in \mathbb{R}$, $E = \operatorname{Im} H \simeq \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$ with $D = \begin{pmatrix} d_1 & 0 \\ 0 & d_g \end{pmatrix}$ on Λ , $d_1 \mid d_2 \cdots \mid d_g$, Ker $\Phi_H \simeq \Lambda^{\perp}/\Lambda \simeq (\mathbb{Z}^g/D\mathbb{Z}^g)^2$.
• *H* non degenerate $\Leftrightarrow \lambda_i \neq 0$;

Polarisation λ =

- a divisor Θ up to algebraic equivalence;
- a (symmetric) morphism $\lambda : A \to \widehat{A}$. $\lambda = \Phi_{\Theta} : A \to \widehat{A}, P \mapsto t_{P}^{*} \Theta - \Theta$. Ker $\lambda \simeq (\mathbb{Z}^{g}/D\mathbb{Z}^{g})^{2}$ with $D = (d_{1}, \dots, d_{g}), d_{i} \mid d_{i+1} : \lambda$ is of type (d_{1}, \dots, d_{g}) . deg $\Theta := \prod d_{i}$.
- a pairing $T_{\ell}A \times T_{\ell}A \to Z(\overline{\ell})(1), (P,Q) \mapsto e_{\lambda}(P,Q) = e_A(P,\lambda Q);$

The polarisation λ is

- Non degenerate if $\lambda : A \rightarrow \widehat{A}$ is an isogeny;
- Positive if $\lambda = \Phi_{\Theta}$ and Θ is ample (\Rightarrow non degenerate).
- Principal if λ is (positive and) an isomorphism.

Coordinates: if Θ is an ample divisor:

- $\dim H^0(\Theta) = \Theta^g/g! = \deg \Theta$, "degree" of the polarisation (Riemann-Roch). So if Θ is a principal polarisation, $\dim H^0(N\Theta) = N^g$. More generally, if \mathcal{D} is ample, $\dim H^0(\mathcal{D}) = \prod_{i=1}^g d_i = \deg \mathcal{D} = \deg \Phi_{\mathcal{D}}^{1/2}$: the degree of the isogeny $\Phi_{\mathcal{D}}$ associated to \mathcal{D} is the square of the "degree" of \mathcal{D} .
- 3@ is very ample (Lefschetz).
- 2 Θ descends to $K_A = A/\pm 1$ if Θ is a principal polarisation, and is very ample there if Θ is indecomposable.
- 2Θ is very ample if it is base point free;

lnría

Jacobians

- C curve of genus g.
- $\operatorname{Jac}(C) \simeq \operatorname{Pic}^0(C)$ its Jacobian.
- $Jac(C) \sim C^{\langle g \rangle}$
- $\Theta_C = \{ \text{degenerate divisors on } C \}$ (the Theta divisor) is a principal polarisation on Jac(C). Ex: when $g = 2, C \simeq \Theta_C C \subset \text{Jac}(C)$.
- C is determined by $(\operatorname{Jac}(C), \Theta_C)$ (Torelli)

They have the same field of moduli, but if C is not hyperelliptic the field of definition of $(Jac(C), \Theta_C)$ can be smaller than the field of definition of C.

Jacobians

Example

- C/ℂ curve of genus g;
- V the dual of the space $V^{\vee} = H^0(C, \Omega_C^1)$ of holomorphic differentials of the first kind on C;
- $\Lambda \simeq H_1(C, \mathbb{Z}) \subset V$ the set of periods. The Abel-Jacobi map Φ is the integration of differentials on loops: $H^0(C, \Omega_C^1) \times H_1(C, \mathbb{Z}) \mapsto \mathbb{C}, (\omega, \gamma) \mapsto \int_{\gamma} \omega$; it induces $\Phi : H_1(C, \mathbb{Z}) \to \operatorname{Hom}(H^0(C, \Omega_C^1), \mathbb{C})$ and Λ is the image of Φ . By Poincare-Serre's duality: Alb(C) $\simeq H^0(C, \Omega_C^1)^{\vee}/H_1(C, \mathbb{Z}) \simeq H^0(C, \mathcal{O}_C)/H^1(\mathbb{C}, \mathbb{Z}) \simeq H^1(X, \mathcal{O}_C^*) \simeq \operatorname{Pic}^0(C) = \operatorname{Jac}(C).$
- The intersection pairing $H_1(C, \mathbb{Z}) \times H_1(C, \mathbb{Z}) \to \mathbb{Z}$ gives a symplectic form E on Λ ;
- H the associated Hermitian form on V (via the integration pairing):

$$H^*(w_1, w_2) = \int_C w_1 \wedge w_2;$$

• $(V/\Lambda, H)$ is a principally polarised abelian variety: the Jacobian of C.

Elliptic curves vs abelian varieties

E elliptic curve

- $D \mapsto \deg D$ induces an isomorphism $NS(E) \simeq \mathbb{Z}$;
- $[(0_E)]$: unique principal polarisation
- $E \simeq \hat{E} \operatorname{via} P \mapsto (P) (0_E)$
- $\Gamma(0_E) = \langle 1 \rangle, \Gamma(2(0_E)) = \langle 1, x \rangle$: embedding of $E / \pm 1$, $\Gamma(3(0_E)) = \langle 1, x, y \rangle$: Weierstrass model $y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$.

The same principally polarised abelian variety A (ppav) could be, depending on its polarisation Θ_A :

- A product of elliptic curves;
- Non decomposable;
- The Jacobian of an hyperelliptic curve;
- The Jacobian of a non hyperelliptic curve ($g \ge 3$);
- Not a Jacobian ($g \ge 4$)

Outline

- Isogenies and polarisations
 - Algorithms for isogenies

Isogenies and dual isogenies

- $f: A \rightarrow B$ morphism \Leftrightarrow algebraic map + group morphism (it suffices to check $f(0_A) = 0_B$ by rigidity);
- f isogeny \Leftrightarrow Ker f finite + surjective $\Leftrightarrow \dim A = \dim B$ and surjective $\Leftrightarrow \dim A = \dim B$ and Ker f finite;

• Divisibility:
$$g_1 \circ f = g_2 \circ f \Rightarrow g_1 = g_2$$
,
 $f \circ g_1 = f \circ g_2 \Rightarrow g_1 = g_2$.

- Dual isogeny $\hat{f}: \hat{B} = \operatorname{Pic}^{0}(B) \to \hat{A} = \operatorname{Pic}^{0}(A), \hat{f}(Q) := f^{*}D_{Q}.$
- $(\widehat{g \circ f}) = \widehat{f} \circ \widehat{g};$
- Pairings:

$$0 \to K \to A \xrightarrow{f} B \to 0 \text{ induces } 0 \to \hat{K} \to \hat{B} \xrightarrow{\hat{f}} \hat{A} \to 0 \text{ with } \hat{K} \simeq \text{Hom}(K, \mathbb{G}_m).$$

- $e_f: K \times \hat{K} \to \mathbb{G}_m$ Weil-Cartier pairing
- $f = [\ell]: e_{W,\ell}: A[\ell] \times \widehat{A}[\ell] \to \mu_{\ell}$ Weil pairing;
- Compatibility of pairings and isogenies: on $T_{\ell}A \times T_{\ell}\hat{B}$,

$$e_f(x,y)=e_B(f(x),y)=e_A(x,\hat{f}(y)).$$

• Biduality: $\widehat{\widehat{A}} \simeq A$, $\widehat{\widehat{f}} \simeq f$ (canonically).

By the universal property of $\widehat{A} = \operatorname{Pic}^0(A)$, id : $\widehat{A} \to \widehat{A}$ corresponds to the Poincaré sheaf P on $A \times \widehat{A}$, and P is "symmetric", $e_P((x, x'), (y, y')) = e(x, y')e(x', y)^{-1}$.

lnría

Isogenies and polarisations

- $f: A \rightarrow B$ isogeny.
- v_1, \ldots, v_m coordinates on *B* given by sections of \mathcal{D}_B .
- Then $u_i := v_i \circ f$ are coordinates on A given by sections of $\mathcal{D}_A := f^* \mathcal{D}_B$.
- $\deg \mathcal{D}_A = \deg f \cdot \deg \mathcal{D}_B.$
- $f: (A, \lambda_A) \to (B, \lambda_B)$ isogeny of ppavs.
- If λ_A is induced by Θ_A (resp. λ_B by Θ_B), a model of A (resp. B) will be given by coordinates of mΘ_A (resp. mΘ_B), where m = 2, 3, 4 ... is small.
- We want to relate Θ_A with $f^*\Theta_B$ (or relate $m\Theta_A$ with $f^*m\Theta_B$).

N-isogenies

Definition

An isogeny $f: (A, \lambda_A) \to (B, \lambda_B)$ between ppav is an *N*-isogeny if $f^* \Theta_B \sim N \Theta_A$.

•
$$\Phi_{f^*\Theta_B}(P) = t_P^*f^*\Theta_B - f^*\Theta_B = f^*(t_{f(P)}^*\Theta_B - \Theta_B) = f^*\Phi_{\Theta_B}(f(P)) = (\hat{f} \circ \Phi_{\Theta_B} \circ f)(P);$$

•
$$f^*\lambda_B := \hat{f} \circ \lambda_B \circ f$$

• f is an N-isogeny $\Leftrightarrow f^*\lambda_B = N\lambda_A$;

N-isogenies

Definition

An isogeny $f : (A, \lambda_A) \to (B, \lambda_B)$ between ppav is an N-isogeny if $f^* \Theta_B \sim N \Theta_A$.

- $\Phi_{f^* \Theta_B}(P) = t_P^* f^* \Theta_B f^* \Theta_B = f^* (t_{f(P)}^* \Theta_B \Theta_B) = f^* \Phi_{\Theta_B}(f(P)) = (\hat{f} \circ \Phi_{\Theta_B} \circ f)(P);$
- $f^*\lambda_B := \hat{f} \circ \lambda_B \circ f;$
- f is an N-isogeny $\Leftrightarrow f^*\lambda_B = N\lambda_A$;
- Contragredient isogeny: $\tilde{f} = \lambda_A^{-1} \hat{f} \lambda_B : B \to A$;

$$\begin{array}{c} A \xrightarrow{f} B \\ \lambda_A^{-1} & \downarrow^{\lambda_I} \\ \widehat{A} \xleftarrow{f} \widehat{B} \end{array}$$

•
$$f$$
 is an N -isogeny $\Leftrightarrow \tilde{f}f = N \Leftrightarrow f\tilde{f} = N$.

Example

An isogeny $f: E_1 \rightarrow E_2$ between elliptic curves is automatically an *N*-isogeny where $N = \deg f$.

N-isogenies and isotropic kernels

- Compatibility with pairings: on $T_{\ell}A \times T_{\ell}B$, $e_{\lambda_B}(f(x), y) = e_{\lambda_A}(x, \tilde{f}(y))$.
- $f: (A, \lambda_A) \to (B, \lambda_B)$ *N*-isogeny \Rightarrow Ker *f* is maximal isotropic in *A*[*N*] for the Weil pairing
- Ker $f = \text{Im}\tilde{f} \mid B[N]$, Kerf is dual to Ker \tilde{f}
- Conversely, if $K \subset A[N]$ maximal isotropic, $N\lambda_A$ descends to a principal polarisation on B = A/K.

The pairing $e_{\lambda_A,N} = e_{\Phi_N\lambda_A}$ on $A[N] \times A[N]$ is also the commutator pairing of Mumford's theta group $G(N\mathcal{O}_A)$. If K is isotropic, it admits a lift \widetilde{K} in $G(N\mathcal{O}_A)$, so $N\mathcal{O}_A$ descends to a divisor \mathcal{O}_B on B = A/K. The degree relation shows that deg $\mathcal{O}_B = 1$ if K is maximal.

- If $f : (A, \lambda_A) \to (B, \lambda_B)$ has maximal isotropic kernel in $A[N], N\lambda_A$ descends to a principal polarisation λ'_B on B.
- But we may have $\lambda'_B \neq \lambda_B$.
- $\tilde{f} \circ f = N$ is a stronger condition that ensures compatibility of f with λ_B .
- f is an N-isogeny $\Leftrightarrow e_{\lambda_B}(f(x), f(y)) = e_{\lambda_A}(x, y)^N$ on $T_{\ell}A \times T_{\ell}A$.

Properties of contragredient isogenies Biduality: $\tilde{f} = f$.

Composition: $f : A \to B$ a N-isogeny, $g : B \to C$ a M-isogeny, $g \circ f : A \to C$.

•
$$\widetilde{g \circ f} = \widetilde{f} \circ \widetilde{g} : C \to A;$$

- $(\widetilde{g \circ f}) \circ (g \circ f) = \tilde{f} \circ \tilde{g} \circ g \circ f = NM.$
- The composition $g \circ f$ is an NM-isogeny.
- Conversely, if $g \circ f$ is an N-isogeny and f (resp. g) is an M-isogeny, then g (resp. f) is an N/M-isogeny.
- An *N*-isogeny is always the composition of ℓ_i -isogenies for $\ell_i \mid N$.

Product polarisation:

•
$$(A, \lambda_A) \times (B, \lambda_B) = (A \times B, \lambda_A \times \lambda_B)$$
 where $\lambda_A \times \lambda_B : A \times B \to \widehat{A} \times \widehat{B}$ is the product.

•
$$F = \begin{pmatrix} a & c \\ b & d \end{pmatrix} : (A \times B, \lambda_A \times \lambda_B) \to (C \times D, \lambda_C \times \lambda_D).$$

• $\hat{F} = \begin{pmatrix} \hat{a} & \hat{b} \\ \hat{c} & \hat{d} \end{pmatrix} : \hat{C} \times \hat{D} \to \hat{A} \times \hat{B}.$
• $\tilde{F} = \begin{pmatrix} \tilde{a} & \tilde{b} \\ \tilde{c} & \tilde{d} \end{pmatrix} : C \times D \to A \times B.$

• Exercice: check that the 8×8 -matrix at the beginning of the talk is a N'-isogeny.

lnría

Polarisations and symmetric endomorphisms

- (A, λ_A) ppav
- $\phi \in \operatorname{End}^{\lambda}(A) \mapsto \lambda_A \circ \phi$ induces a bijection between endomorphisms ϕ invariant under the Rosatti involution ($\tilde{\phi} = \phi$) and polarisations: $NS(A) \simeq \operatorname{End}^{\lambda}(A)$.
- Let $\beta \in \operatorname{End}^{\lambda}(A)$, f is a β -isogeny if $\tilde{f}f = \beta$.
- If $f : A \to B$ is any isogeny, λ_A , λ_B principal polarisations, then f is a β -isogeny where $\beta = \tilde{f}f$. In particular Ker f is maximal isotropic for the e_β pairing on $A[\beta]$.

Example

- Via the product principal polarisation $(A \times B, \lambda_A \times \lambda_B), F = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ is symmetric ($\tilde{F} = F$) iff $\tilde{a} = a, \tilde{d} = d, \tilde{b} = c$.
- $NS(A \times B) = NS(A) \times NS(B) \times Hom(A, B).$
- An ℓ-isogeny of abelian varieties has kernel of type (ℤ/ℓℤ)^g.
- An ℓ^2 -isogeny of elliptic curves can have kernel of type $\mathbb{Z}/\ell^2\mathbb{Z}$ or $\mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$.
- An ℓ^2 -isogeny of abelian surfaces can have kernel of type $(\mathbb{Z}/\ell^2\mathbb{Z})^2$ or $\mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell^2\mathbb{Z}$ or $(\mathbb{Z}/\ell\mathbb{Z})^4$.
- If an abelian surface (A, λ_A) has RM End^{λ_A} $(A) = O_K$ a real quadratic order and $\ell = \beta\beta^c$, a β -isogeny will have cyclic kernel $\mathbb{Z}/\ell\mathbb{Z}$.

Outline

Motivation

Isogenies and polarisations

Algorithms for isogenies

Algorithms for N-isogenies (overview)

- Input: generators $P_1, ..., P_g$ of K, a maximal isotropic kernel for A[N], a point $P \in A$ given by coordinates u_i , where u_i are sections of $m\Theta_A$.
- Output: A description of B = A/K, and the coordinates $v_i(Q)$ where Q = f(P), where v_i are sections of $m\Theta_B$ (Θ_B a descent of $N\Theta_A$ by $f : A \to B$).
- Construct $\mathcal{D} = f^* m \Theta_B$ on A.

This is a divisor invariant by translation by K and algebraically equivalent to $Nm \mathcal{O}_A$. The converse is true by descent theory.

Source the coordinates $v_i \circ f$ on A.

These are sections of $\mathcal D$ invariant by translation on K, and the converse is true:

$$\Gamma(B, m\Theta_B) \simeq \Gamma(A, f^*m\Theta_B)^K.$$

Evaluate these coordinates on $P: v_i(Q) = v_i \circ f(P)$.

Vélu's formula

- Weierstrass coordinates x, y on E = sections of $3(0_E)$. (x is a section of $2(0_E)$, y of $3(0_E)$.)
- *K* maximal isotropic in *E*[*N*].
- $\mathcal{D} = \sum_{P \in K} t_P^*(3(0_E)) = \sum_{P \in K} 3(P)$ is certainly invariant by K;
- So \mathcal{D} descends to $3(0_{E'})$ on E' = E/K;
- x, y are sections of \mathcal{D} but are not invariant by translation;
- $X(P) = \sum_{T \in K} X(P + T)$ and $Y(P) = \sum_{T \in K} Y(P + T)$ are sections of \mathcal{D} invariant by translation;
- They descend to Weierstrass coordinates on E';
- This is Vélu's formula (up to a constant).
- Cost: *O*(*N*).
- Recover equations for *E*['] via the formal group law.

Revisiting Vélu's formula

- Recall: $\mathcal{D} = \sum_{P \in K} t_P^* 3(0_E);$
- We want to construct sections U of \mathcal{D} that are of the form $U = v \circ f, v$ a coordinate on E'.
- Equivalently: U is invariant by translation by K.
- In particular: div U is a divisor invariant by translation by K such that div $U + \mathcal{D} \ge 0$.
- If $\mathcal{E} = \operatorname{div} f_{\mathcal{E}}$ is a principal divisor invariant by translation, $f_{\mathcal{E}}$ may not be invariant by translation!

Lemma

Let $\mathcal{E} = \sum_{i} a_i \sum_{T \in K} (P_i + T) = \operatorname{div} f_{\mathcal{E}} a$ principal divisor and $P_0 := \sum a_i P_i$. Then $f_{\mathcal{E}}$ is invariant by translation iff $P_0 \in K$.

Proof.

If $T \in K$, $f_{\mathcal{E}}(x + T)/f_{\mathcal{E}}(x) = e_f(T, f(P_0)) = e_N(T, P_0)$. So $f_{\mathcal{E}}$ is invariant by $K \Leftrightarrow P_0 \in E[\ell]$ is orthogonal to $K \Leftrightarrow P_0 \in K \Leftrightarrow f(P_0) = 0$.

Revisiting Vélu's formula

- Recall: $\mathcal{D} = \sum_{P \in K} t_P^* 3(0_E);$
- We want to construct sections U of \mathcal{D} that are of the form $U = v \circ f, v$ a coordinate on E'.
- Equivalently: *U* is invariant by translation by *K*.
- In particular: div U is a divisor invariant by translation by K such that div $U + \mathcal{D} \ge 0$.
- If $\mathcal{E} = \operatorname{div} f_{\mathcal{E}}$ is a principal divisor invariant by translation, $f_{\mathcal{E}}$ may not be invariant by translation!

Lemma

Let $\mathcal{E} = \sum_{i} a_i \sum_{T \in K} (P_i + T) = \operatorname{div} f_{\mathcal{E}} a$ principal divisor and $P_0 := \sum a_i P_i$. Then $f_{\mathcal{E}}$ is invariant by translation iff $P_0 \in K$.

Example

- Take $Q_1, Q_2 \in E(k), \mathcal{E} = \sum_{T \in K} ((Q_1 + T) + (-Q_1 + T) (Q_2 + T) (-Q_2 + T)),$
- $f_{\mathcal{E}} = \prod_{T \in K} \frac{x x(Q_1 + T)}{x x(Q_2 + T)}$ (convention: $x 0_E := 1$).
- $f_{\mathcal{E}}$ is invariant by translation and descends to $\frac{X-f(Q_1)}{X-f(Q_2)}$ on E/K, X a Weierstrass coordinate.
- When $Q_2 = 0_E$, we recover formula from [Costello-Hisil, 2017], [Renes, 2017].
- Used by the sqrtVelu algorithm!

Vélu's formula in higher dimension?

- (A, Θ_A) ppav, K maximal isotropic in A[N]
- $\mathcal{D} = \sum_{P \in K} t_P^*(m \Theta_A)$ is certainly invariant by K;
- If u is a section of $m\Theta_A$, $U(P) = \sum_{T \in K} u(P + T)$ is certainly a section of \mathcal{D} invariant by K.
- But $\mathcal{D} \sim N^g m \Theta_A$;
- So it descends to a divisor ~ N^{g-1}mΘ_B!
- Our coordinates have degree too big (unless g = 1).

The theta group

- $Nm\Theta_A$ is not invariant by K
- So it does not descend to $m\Theta_B$
- But it is linearly equivalent to \mathcal{D} , a divisor invariant by $K: \mathcal{D} = Nm\Theta_A + \operatorname{div} g$.
- So $\operatorname{div}(g/t_T^*g) = t_T^* Nm \Theta_A Nm \Theta_A$.
- Goal: construct \mathcal{D} . Equivalently construct g.
- Find functions g_T such that $\operatorname{div} g_T = t_T^* N m \Theta_A N m \Theta_A$
- Try to glue these functions into a global function g (cocycle condition): $g_T(P) = g(P)/g(P+T).$
- Theta group: $G(Nm\Theta_A) = \{(T, g_T) | \operatorname{div} g_T = t_T^* Nm\Theta_A Nm\Theta_A\}$
- Gluing condition $\Leftrightarrow K \rightarrow G(Nm\Theta_A), T \mapsto (T, g_T)$ is a group section;
- Twisted trace: if U is a section of $Nm\Theta_A$, $U'(P) = \sum_{T \in K} g_T(P)U(P+T)$ is a section of \mathcal{D} invariant by K, hence descends to B = A/K.

• Find functions g_T , div $g_T = t_T^* Nm \Theta_A - Nm \Theta_A$ for each $T \in K$, that glue together.

- Use symmetry: Θ_A symmetric divisor, g_T symmetric.
- **②** Unique choice if N is odd, two choices for each T when N is even \Rightarrow annoying!

 $\text{Twisted Vélu's formula: if } K = \langle T \rangle, \\ X(P) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} \zeta_N^i X(P+T), \\ Y(P) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} \zeta_N^i Y(P+T).$

Eg: if N is even, $X(P) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} (-1)^i X(P+T)$ descends to a section on the symmetric divisor 2f(W), $W \in E[2] - K$.

• Find functions g_T , $\operatorname{div} g_T = t_T^* Nm \Theta_A - Nm \Theta_A$ for each $T \in K$, that glue together.

• Generate sections U of $Nm\Theta_A$.

- The multiplication map $\Gamma(m_1 \Theta_A) \otimes \Gamma(m_2 \Theta_A) \rightarrow \Gamma((m_1 + m_2) \Theta_A), u \otimes v \mapsto uv$ is surjective if $m_1 \geq 3, m_2 \geq 2$ [Mumford, Koizumi, Kempf].
- $$\label{eq:scalar} \begin{split} & \Sigma_{\alpha\in\widehat{A}}\Gamma(A,m_1\mathcal{O}_A\otimes P_{\alpha})\Gamma(A,m_2\mathcal{O}_A\otimes P_{-\alpha})=\Gamma(A,(m_1+m_2)\mathcal{O}_A) \ [\text{Mumford}] \ \text{for} \ m_1,m_2>0. \end{split}$$

So we can always generate all sections of $\Gamma(Nm\Theta_A)$ using multiplications of sections of $\Gamma(m\Theta_A)$, eventually using also translations if $m \leq 2$.

- Find functions g_T , $\operatorname{div} g_T = t_T^* N m \Theta_A N m \Theta_A$ for each $T \in K$, that glue together.
- **2** Generate sections U of $Nm\Theta_A$.
- Take the twisted traces of the sections U.
- This gives coordinates (section of $m\Theta_B$) on B
- More work required to recover a suitable model of B (depends on the model).

- Find functions g_T , $\operatorname{div} g_T = t_T^* N m \Theta_A N m \Theta_A$ for each $T \in K$, that glue together.
- Generate sections U of $Nm\Theta_A$.
- Take the twisted traces of the sections U.
- This gives coordinates (section of $m\Theta_B$) on B
- More work required to recover a suitable model of B (depends on the model).
- Summary [R. 2021]: from an effective version of the Theorem of the square:

$$t_{P+Q}^* \Theta_A + \Theta_A - t_P^* \Theta_A - t_Q^* \Theta_A = \operatorname{div} \mu_{P,Q},$$

there is a general framework to

- Compute the addition law;
- Compute the Weil and Tate pairings;
- Compute isogenies.

Isogenies in the theta model

• Analytic theta functions:

$$\theta\left[\begin{smallmatrix}a\\b\end{smallmatrix}\right](z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i^t (n+a)\Omega(n+a) + 2\pi i^t (n+a)(z+b)} \quad a,b \in \mathbb{Q}^g;$$

- Universal
- Work with theta functions of level m = 2 or m = 4: m^g coordinates.
- Rationality: rational $\Gamma(m, 2m)$ -symplectic structure.
- *N*-isogenies in $O(N^g)$.
- Implementations in Magma (AVIsogenies) and Sage (ThetAV)
- General framework for β -isogenies but requires bootstrapping (still more work needed!).
- Theta functions $\theta_{A \times B}$ for the product theta structure on $A \times B$ are simply product of theta functions $\theta_A \cdot \theta_B$.

•
$$\begin{pmatrix} N_1 & 0 \\ 0 & N_2 \end{pmatrix}$$
-isogenies in $O(N_1^g N_2^g)$.

• Moduli: $\chi(\tau) = \prod \theta \begin{bmatrix} a/2 \\ b/2 \end{bmatrix} (\tau)$ describes interesting modular locus: the locus of product of elliptic curves when $g = 2 (\chi_{10})$, the locus of products and Jacobians of hyperelliptic curves when $g = 3 (\chi_{18})$.

The modular form $g(A, w_A) = \prod_{(B, w_B)} \chi_{10}(B, w_B)$ of weight $10(\ell^3 + \ell^2 + \ell + 1)$ (whose product is across all normalised ℓ -isogenies) describes the locus H_{ℓ^2} of ℓ -split abelian surfaces (the Humbert surface of discriminant ℓ^2). Expressed as a polynomial P in terms of $\psi_4, \psi_6, \chi_{10}, \chi_{12}, P$ is of size $\widetilde{O}(\ell^{12})$ and can be computed in quasi-linear time by evaluation-interpolation. Checking if $(A, \Theta_A)/\mathbb{F}_q$ is ℓ -split can then be done by evaluating $P(A, \Theta_A)$ in time $O(\ell^9 \log q)$, or directly via the analytic method in $\widetilde{O}(\ell^3(\log q + d^2))$.

Isogenies in the Jacobian model

- $\iota: C \to \operatorname{Jac}(C);$
- If g is a function on C, it induces a function ι_*g on Jac(C) via $(\iota_*g)(\sum n_i(P_i)) = \prod g(P_i)^{n_i}$.
- All functions on Jac(C) can be built from l_{*}g and determinants;
- NB: for pairings computations, the functions *t**g are enough!
- N-isogenies between Jacobians in $\widetilde{O}(N^g)$ when g=2 [Couveignes-Ezome 2015] and g=3 [Milio 2019]
- Implementations in Magma.
- The extension to product of Jacobians should not be too hard.

Algorithms for isogenies

- Better algorithms for β-isogenies;
- $\widetilde{O}(N^{g/2})$ -algorithms?
- Batch isogeny evaluation?
- More compact models of abelian varieties?
- Evaluating an isogeny on a point is only a small topic of algorithms related to isogenies: modular polynomials, explicit Kodaira-Spencer isomorphism, differential equations, ...