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Usage of isogenies

Speed up the arithmetic (eg split the multiplication by [2] or [3]);
Determine End(𝐴) (volcano…);

Point counting algorithms (ℓ-adic or 𝑝-adic: SEA, Satoh …)

Publicity: [Kieffer 2021] SEA like algorithm in 𝑂𝐾(log4 𝑞) for abelian surfaces with RM by 𝒪𝐾.

Compute class polynomials (CM-method)

Compute modular polynomials

Arithmetic for 𝔽𝑞: construct normal basis of a finite field, irreducible polynomials, automorphism
invariant smoothness basis [Couveignes-Lercier]…

Find curves with many points

Explore isogeny graphs (eg find a component with no Jacobians in dimension 4)
Evaluate modular forms
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Isogenies in classical cryptography

Discrete Logarithm Problem, Pairings

Transfer the DLP (Weil descent…)

Reduce the impact of side channel attacks

Random self reducibility, worst case to average case reductions.
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Isogeny based cryptography

Hash functions

Key exchange (SIDH, CSIDH)

Signatures (SQISign)
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Higher dimensional isogenies?

Classical cryptography: dimension 1 and 2. A bit in dimension 3 (class polynomials).

Isogeny based cryptography: dimension 1 (hash functions in dimension 2 too).

So mainly for algorithmic number theory (descent…)

Certainly no use for elliptic curve based cryptosystems.
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The embedding lemma

A 𝑁-isogeny 𝑓 ∶ 𝐴 → 𝐵 in dimension 𝑔 can always be efficiently embedded into a 𝑁′ isogeny
𝐹 ∶ 𝐴′ → 𝐵′ in dimension 8𝑔 (and sometimes 4𝑔, 2𝑔) for any 𝑁′ ≥ 𝑁.

𝐴 𝐵

𝐴′ 𝐵′

𝑓

𝐹

Considerable flexibility (at the cost of going up in dimension).
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𝐴 𝐵

𝐴′ 𝐵′

𝑓

𝐹

Considerable flexibility (at the cost of going up in dimension).

Write 𝑁′ − 𝑁 = 𝑎2
1 + 𝑎2

2 + 𝑎2
3 + 𝑎2

4.

𝐹 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎1 −𝑎2 −𝑎3 −𝑎4 ̂𝑓 0 0 0
𝑎2 𝑎1 𝑎4 −𝑎3 0 ̂𝑓 0 0
𝑎3 −𝑎4 𝑎1 𝑎2 0 0 ̂𝑓 0
𝑎4 𝑎3 −𝑎2 𝑎1 0 0 0 ̂𝑓
−𝑓 0 0 0 𝑎1 𝑎2 𝑎3 𝑎4
0 −𝑓 0 0 −𝑎2 𝑎1 −𝑎4 𝑎3
0 0 −𝑓 0 −𝑎3 𝑎4 𝑎1 𝑎2
0 0 0 −𝑓 −𝑎4 −𝑎3 𝑎2 𝑎1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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The embedding lemma

A 𝑁-isogeny 𝑓 ∶ 𝐴 → 𝐵 in dimension 𝑔 can always be efficiently embedded into a 𝑁′ isogeny
𝐹 ∶ 𝐴′ → 𝐵′ in dimension 8𝑔 (and sometimes 4𝑔, 2𝑔) for any 𝑁′ ≥ 𝑁.

𝐴 𝐵

𝐴′ 𝐵′

𝑓

𝐹

Considerable flexibility (at the cost of going up in dimension).

Breaks SIDH ([Castryck-Decru], [Maino-Martindale] in dimension 2, [R.] in dimension 4 or 8) ⇒ if
𝑁𝐴 > 𝑁𝐵, take 𝑁′ = 𝑁𝐴, 𝑁 = 𝑁𝐵
The dimension 8 attack is in proven quasi-linear time, see http://www.normalesup.org/
~robert/pro/publications/slides/2022-09-Bordeaux-SIDH.pdf for details.

An isogeny always have a representation allowing evaluation in polylogarithmic time log𝑂(1) 𝑁
[R.] ⇒ take 𝑁′ ≥ 𝑁 powersmooth.
(Finding this representation takes quasi-linear time.)
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Isogeny diamonds

𝑓1 ∶ 𝐴 → 𝐴1 𝑛1-isogeny, 𝑓 ′
1 ∶ 𝐴1 → 𝐵 𝑛′

1-isogeny, 𝑓2 ∶ 𝐴 → 𝐴2 𝑛2-isogeny, 𝑓 ′
2 ∶ 𝐴2 → 𝐵

𝑛′
2-isogeny, 𝑓 ′

2 ∘ 𝑓2 = 𝑓 ′
1 ∘ 𝑓1.

𝐴 𝐴1

𝐴2 𝐵

𝑓1

𝑓2 𝑓 ′
1

𝑓 ′
2

𝐹 = ( 𝑓1 𝑓 ′
1

−𝑓2 𝑓 ′
2
) is an (𝑛1 + 𝑛2 0

0 𝑛′
1 + 𝑛′

2
)-isogeny.

Isogeny diamonds: If 𝑛′
1 = 𝑛2 (so 𝑛′

2 = 𝑛1), 𝐹 is an 𝑁-isogeny where 𝑁 = 𝑛1 + 𝑛2 ([Kani] for
𝑔 = 1, [R.] for 𝑔 > 1.)
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Algorithms for 𝑁-isogenies

Jacobian model:

Vélu’s formula for elliptic curves [Vélu 1971]

[Kohel, 1999]: Vélu’s formula from equations of 𝐾;

[Richelot, 1836,1837] 2-isogenies between Jacobians of genus 2 hyperelliptic curves, [Mestre
2013] for general 𝑔;
Various explicit formula for small degree isogenies in dimension 2;
[Smith 2008]: 2-isogenies for quartic genus 3 curves;

[R. 2007]: the analog of Vélu’s formula for genus 2 does not seem to work?

[Couveignes-Ezome (2015)]: Algorithm in 𝑂(𝑁𝑔) in the Jacobian model (complete algorithm for
𝑔 = 2, [Milio 2019] for 𝑔 = 3).
Restricted to 𝑔 ≤ 3.
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Algorithms for 𝑁-isogenies
Jacobian model:

Vélu’s formula for elliptic curves [Vélu 1971]

[Couveignes-Ezome (2015)]: Algorithm in 𝑂(𝑁𝑔) in the Jacobian model (complete algorithm for
𝑔 = 2, [Milio 2019] for 𝑔 = 3).

Theta model:

2-isogenies: duplication formula for theta functions [Riemann ?]

[Mumford, 1966] isogeny formula, [Koizumi 1976, Kempf 1989] product formula (requires theta
constants of higher level)

[Lubicz-R. 2012]: ℓ2-isogenies between abelian varieties in 𝑂(ℓ𝑔) and ℓ𝑔(𝑔+1)/2 ℓ-th roots.
This corresponds to taking an ℓ-isogeny, and then each choice of roots prolongs this ℓ-isogeny into a different ℓ2-isogeny (we get all ℓ2-isogenies

whose kernel stays of rank 𝑔), see also [Castryck, Decru, Vercauteren] work on radical isogenies.

[Cosset-R. (2014)]: ℓ-isogenies in 𝑂(ℓ𝑔) if ℓ ≡ 1 (mod 4), 𝑂(ℓ2𝑔) if ℓ ≡ 3 (mod 4);
[Lubicz-R. (2022)]: An 𝑁-isogeny in dimension 𝑔 can be evaluated in linear time 𝑂(𝑁𝑔)
arithmetic operations in the theta model given generators of its kernel.

Warning: exponential dependency 2𝑔 or 4𝑔 in the dimension 𝑔.

[Lubicz-R. (2015)]: isogenies from equations of the kernel

[Dudeanu, Jetchev, R., Vuille (2022)]: cyclic isogenies for abelian varieties with RM.
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Polarised abelian varieties over ℂ

Definition

A complex abelian variety 𝐴 of dimension 𝑔 is isomorphic to a compact Lie group 𝑉/𝛬 with

A complex vector space 𝑉 of dimension 𝑔 (linear data);

A ℤ-lattice 𝛬 in 𝑉 (of rank 2𝑔) (arithmetic data);

A polarisation (quadratic data)

Example

A vector space 𝑉 ≃ ℂ𝑔 is described by a basis;

A lattice 𝛬 = 𝛺ℤ𝑔 ⊕ ℤ𝑔 is described by a period matrix 𝛺;

The quotient ℂ𝑔/𝛬 is a torus. It is not an abelian variety in general!

The moduli space of torus is of dimension 𝑔2.

If 𝛺 ∈ ℌ𝑔, 𝐻 = Im𝛺−1 is a principal polarisation.

The moduli space of abelian varieties is of dimension 𝑔(𝑔 + 1)/2.
NB: when 𝑔 = 1 both spaces have dimension 1.
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Polarisations

𝐴 = 𝑉/𝛬. A polarisation on 𝐴 is:

An Hermitian form 𝐻 on 𝑉 with Im𝐻(𝛬, 𝛬) ⊂ ℤ;

A symplectic form 𝐸 on 𝐻 with 𝐸(𝛬, 𝛬) ⊂ ℤ: 𝐸 = Im𝐻
A (symmetric) morphism 𝛷 ∶ 𝐴 → 𝐴: 𝛷 = 𝛷𝐻 ∶ 𝑧 ↦ 𝐻(𝑧, ⋅) ∈ 𝐴 = Homℂ(𝑉, ℂ)
(The algebraic equivalence class of ) a divisor 𝒟 [Apell-Humbert].
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Divisors and theNéron-Severi group

To work algorithmically with an abelian variety, we need (projective) coordinates 𝑢1, … , 𝑢𝑚;

A point 𝑃 ∈ 𝐴 is represented by its coordinates (𝑢1(𝑃) ∶ ⋯ , 𝑢𝑚(𝑃)).
Coordinates are given by sections of (very ample) divisors;

Linearly equivalent divisors 𝒟 ≃ 𝒟 ′ give isomorphic coordinates;

Pic(𝐴): divisors modulo linear equivalence.

𝒟 ∼ 𝒟 ′ are algebraically equivalent ⇔ 𝒟 ′ is linearly equivalent to a translate of 𝒟, ie
𝒟 ′ ≃ 𝑡𝑥𝒟 (if 𝒟 is ample);
𝒟′ ≃ 𝑡𝑥𝒟 ⇒ 𝒟′ ∼ 𝒟 and the converse is true if 𝛷𝒟 is surjective, ie the polarisation is non degenerate.

Algebraically equivalent divisors = same coordinates up to translation;

Néron-Severi group 𝑁𝑆(𝐴) = Pic(𝐴)/ Pic0(𝐴): divisors modulo algebraic equivalence.
More precisely: 𝑁𝑆(𝐴) is the fppf sheaf associated to the functor Pic(𝐴)/ Pic0(𝐴). Here Pic0(𝐴) is the connected component of the Picard
group, it corresponds to divisors algebraically equivalent to 0, or equivalently to divisors 𝐷0 such that 𝛷𝐷0

= 0, ie 𝑡∗
𝑃𝐷0 ≃ 𝐷0 for all 𝑃 ∈ 𝐴.

So an algebraic class 𝜆 = [𝒟] may be rational with no representative 𝒟 defined over 𝑘. This does not happens when 𝑘 = 𝔽𝑞, representatives

form a torsor under 𝐴 = Pic0(𝐴), and this torsor is trivial, ie has a section, since 𝐻1(𝔽𝑞, 𝐴) = 0.

In general, the pullback 𝒟′ = (1 × 𝜆)∗𝑃 of the Poincarre sheaf satisfy 𝛷𝒟′ = 2𝜆, so 2𝜆 is always represented by a rational divisor.
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Facets of polarisations

Polarisation 𝜆 =

a divisor 𝛩 up to algebraic equivalence;

a (symmetric) morphism 𝜆 ∶ 𝐴 → 𝐴.
𝜆 = 𝛷𝛩 ∶ 𝐴 → 𝐴, 𝑃 ↦ 𝑡∗

𝑃𝛩 − 𝛩.
Ker𝜆 ≃ (ℤ𝑔/𝐷ℤ𝑔)2 with 𝐷 = (𝑑1, … , 𝑑𝑔), 𝑑𝑖 ∣ 𝑑𝑖+1: 𝜆 is of type (𝑑1, … , 𝑑𝑔).
deg𝛩 ≔ ∏ 𝑑𝑖.

a pairing 𝑇ℓ𝐴 × 𝑇ℓ𝐴 → 𝑍(ℓ)(1), (𝑃, 𝑄) ↦ 𝑒𝜆(𝑃, 𝑄) = 𝑒𝐴(𝑃, 𝜆𝑄);
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a pairing 𝑇ℓ𝐴 × 𝑇ℓ𝐴 → 𝑍(ℓ)(1), (𝑃, 𝑄) ↦ 𝑒𝜆(𝑃, 𝑄) = 𝑒𝐴(𝑃, 𝜆𝑄);

The polarisation 𝜆 is

Non degenerate if 𝜆 ∶ 𝐴 → 𝐴 is an isogeny;

Positive if 𝜆 = 𝛷𝛩 and 𝛩 is ample (⇒ non degenerate).

Principal if 𝜆 is (positive and) an isomorphism.
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deg𝛩 ≔ ∏ 𝑑𝑖.
a pairing 𝑇ℓ𝐴 × 𝑇ℓ𝐴 → 𝑍(ℓ)(1), (𝑃, 𝑄) ↦ 𝑒𝜆(𝑃, 𝑄) = 𝑒𝐴(𝑃, 𝜆𝑄);

The polarisation 𝜆 is
Non degenerate if 𝜆 ∶ 𝐴 → 𝐴 is an isogeny;
Positive if 𝜆 = 𝛷𝛩 and 𝛩 is ample (⇒ non degenerate).
Principal if 𝜆 is (positive and) an isomorphism.

Example

If 𝐻 polarisation on 𝐴 = 𝑉/𝛬: 𝐻 ≃
⎛⎜⎜⎜
⎝

𝜆1 0
⋱

0 𝜆𝑔

⎞⎟⎟⎟
⎠
, 𝜆𝑖 ∈ ℝ, 𝐸 = Im𝐻 ≃ ( 0 𝐷

−𝐷 0) with

𝐷 =
⎛⎜⎜⎜
⎝

𝑑1 0
⋱

0 𝑑𝑔

⎞⎟⎟⎟
⎠

on 𝛬, 𝑑1 ∣ 𝑑2 ⋯ ∣ 𝑑𝑔, Ker𝛷𝐻 ≃ 𝛬⟂/𝛬 ≃ (ℤ𝑔/𝐷ℤ𝑔)2.

𝐻 non degenerate ⇔ 𝜆𝑖 ≠ 0;
𝐻 positive ⇔ 𝜆𝑖 > 0;
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Facets of polarisations
Polarisation 𝜆 =

a divisor 𝛩 up to algebraic equivalence;
a (symmetric) morphism 𝜆 ∶ 𝐴 → 𝐴.
𝜆 = 𝛷𝛩 ∶ 𝐴 → 𝐴, 𝑃 ↦ 𝑡∗

𝑃𝛩 − 𝛩.
Ker𝜆 ≃ (ℤ𝑔/𝐷ℤ𝑔)2 with 𝐷 = (𝑑1, … , 𝑑𝑔), 𝑑𝑖 ∣ 𝑑𝑖+1: 𝜆 is of type (𝑑1, … , 𝑑𝑔).
deg𝛩 ≔ ∏ 𝑑𝑖.
a pairing 𝑇ℓ𝐴 × 𝑇ℓ𝐴 → 𝑍(ℓ)(1), (𝑃, 𝑄) ↦ 𝑒𝜆(𝑃, 𝑄) = 𝑒𝐴(𝑃, 𝜆𝑄);

The polarisation 𝜆 is
Non degenerate if 𝜆 ∶ 𝐴 → 𝐴 is an isogeny;
Positive if 𝜆 = 𝛷𝛩 and 𝛩 is ample (⇒ non degenerate).
Principal if 𝜆 is (positive and) an isomorphism.

Coordinates: if 𝛩 is an ample divisor:
dim𝐻0(𝛩) = 𝛩𝑔/𝑔! = deg𝛩, “degree”of the polarisation (Riemann-Roch).
So if 𝛩 is a principal polarisation, dim𝐻0(𝑁𝛩) = 𝑁𝑔.
More generally, if 𝒟 is ample, dim𝐻0(𝒟) = ∏𝑔

𝑖=1 𝑑𝑖 = deg𝒟 = deg𝛷1/2
𝒟 : the degree of the isogeny 𝛷𝒟 associated to 𝒟 is the square of

the “degree”of 𝒟.

3𝛩 is very ample (Lefschetz).
2𝛩 descends to 𝐾𝐴 = 𝐴/ ± 1 if 𝛩 is a principal polarisation, and is very ample there if 𝛩 is
indecomposable.
2𝛩 is very ample if it is base point free;

Summary: positive polarisations = coordinates up to translation.Damien Robert Isogenies 16 / 35



Jacobians

𝐶 curve of genus 𝑔.
Jac(𝐶) ≃ Pic0(𝐶) its Jacobian.

Jac(𝐶) ∼ 𝐶⟨𝑔⟩

𝛩𝐶 = { degenerate divisors on 𝐶 } (the Theta divisor) is a principal polarisation on Jac(𝐶).
Ex: when 𝑔 = 2, 𝐶 ≃ 𝛩𝐶𝐶 ⊂ Jac(𝐶).
𝐶 is determined by (Jac(𝐶), 𝛩𝐶) (Torelli)
They have the same field of moduli, but if 𝐶 is not hyperelliptic the field of definition of (Jac(𝐶), 𝛩𝐶) can be smaller than the field of definition

of 𝐶.
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Jacobians

Example

𝐶/ℂ curve of genus 𝑔;
𝑉 the dual of the space 𝑉∨ = 𝐻0(𝐶, 𝛺1

𝐶) of holomorphic differentials of the first kind on 𝐶;

𝛬 ≃ 𝐻1(𝐶, ℤ) ⊂ 𝑉 the set of periods.
The Abel-Jacobi map 𝛷 is the integration of differentials on loops: 𝐻0(𝐶, 𝛺1

𝐶) × 𝐻1(𝐶, ℤ) ↦ ℂ, (𝜔, 𝛾) ↦ ∫𝛾 𝜔; it induces

𝛷 ∶ 𝐻1(𝐶, ℤ) → Hom(𝐻0(𝐶, 𝛺1
𝐶), ℂ) and 𝛬 is the image of 𝛷.

By Poincare-Serre’s duality: Alb(𝐶) ≃ 𝐻0(𝐶, 𝛺1
𝐶)∨/𝐻1(𝐶, ℤ) ≃ 𝐻0(𝐶, 𝒪𝐶)/𝐻1(ℂ, ℤ) ≃ 𝐻1(𝑋, 𝒪𝐶

∗) ≃ Pic0(𝐶) = Jac(𝐶).

The intersection pairing 𝐻1(𝐶, ℤ) × 𝐻1(𝐶, ℤ) → ℤ gives a symplectic form 𝐸 on 𝛬;

𝐻 the associated Hermitian form on 𝑉 (via the integration pairing):

𝐻∗(𝑤1, 𝑤2) = ∫
𝐶

𝑤1 ∧ 𝑤2;

(𝑉/𝛬, 𝐻) is a principally polarised abelian variety: the Jacobian of 𝐶.
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Elliptic curves vs abelian varieties

𝐸 elliptic curve

𝐷 ↦ deg𝐷 induces an isomorphism 𝑁𝑆(𝐸) ≃ ℤ;

[(0𝐸)]: unique principal polarisation

𝐸 ≃ �̂� via 𝑃 ↦ (𝑃) − (0𝐸)
𝛤(0𝐸) = ⟨1⟩, 𝛤(2(0𝐸)) = ⟨1, 𝑥⟩: embedding of 𝐸/ ± 1,
𝛤(3(0𝐸)) = ⟨1, 𝑥, 𝑦⟩: Weierstrass model 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6.

The same principally polarised abelian variety 𝐴 (ppav) could be, depending on its polarisation 𝛩𝐴:

A product of elliptic curves;

Non decomposable;

The Jacobian of an hyperelliptic curve;

The Jacobian of a non hyperelliptic curve (𝑔 ≥ 3);
Not a Jacobian (𝑔 ≥ 4)
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Isogenies and dual isogenies
𝑓 ∶ 𝐴 → 𝐵 morphism ⇔ algebraic map + group morphism
(it suffices to check 𝑓 (0𝐴) = 0𝐵 by rigidity);
𝑓 isogeny ⇔ Ker 𝑓 finite + surjective
⇔ dim𝐴 = dim𝐵 and surjective ⇔ dim𝐴 = dim𝐵 and Ker 𝑓 finite;
Divisibility: 𝑔1 ∘ 𝑓 = 𝑔2 ∘ 𝑓 ⇒ 𝑔1 = 𝑔2,
𝑓 ∘ 𝑔1 = 𝑓 ∘ 𝑔2 ⇒ 𝑔1 = 𝑔2.

Dual isogeny ̂𝑓 ∶ �̂� = Pic0(𝐵) → 𝐴 = Pic0(𝐴), ̂𝑓 (𝑄) ≔ 𝑓 ∗𝐷𝑄.
̂(𝑔 ∘ 𝑓 ) = ̂𝑓 ∘ ̂𝑔;

Pairings:

0 → 𝐾 → 𝐴
𝑓

−→ 𝐵 → 0 induces 0 → �̂� → �̂�
̂𝑓

−→ 𝐴 → 0 with �̂� ≃ Hom(𝐾, 𝔾𝑚).
ApplyHom(⋅, 𝔾𝑚) and use 𝐴 ≃ Ext1(𝐴, 𝔾𝑚)

𝑒𝑓 ∶ 𝐾 × �̂� → 𝔾𝑚 Weil-Cartier pairing

𝑓 = [ℓ]: 𝑒𝑊,ℓ ∶ 𝐴[ℓ] × 𝐴[ℓ] → 𝜇ℓ Weil pairing;

Compatibility of pairings and isogenies: on 𝑇ℓ𝐴 × 𝑇ℓ�̂�,

𝑒𝑓(𝑥, 𝑦) = 𝑒𝐵(𝑓 (𝑥), 𝑦) = 𝑒𝐴(𝑥, ̂𝑓 (𝑦)).

Biduality: ̂̂𝐴 ≃ 𝐴, ̂̂𝑓 ≃ 𝑓 (canonically).
By the universal property of 𝐴 = Pic0(𝐴), id ∶ 𝐴 → 𝐴 corresponds to the Poincaré sheaf 𝑃 on 𝐴 × 𝐴, and 𝑃 is “symmetric”,

𝑒𝑃((𝑥, 𝑥′), (𝑦, 𝑦′)) = 𝑒(𝑥, 𝑦′)𝑒(𝑥′, 𝑦)−1.
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Isogenies and polarisations

𝑓 ∶ 𝐴 → 𝐵 isogeny.

𝑣1, … , 𝑣𝑚 coordinates on 𝐵 given by sections of 𝒟𝐵.

Then 𝑢𝑖 ≔ 𝑣𝑖 ∘ 𝑓 are coordinates on 𝐴 given by sections of 𝒟𝐴 ≔ 𝑓 ∗𝒟𝐵.

deg𝒟𝐴 = deg 𝑓 ⋅ deg𝒟𝐵.

𝑓 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) isogeny of ppavs.

If 𝜆𝐴 is induced by 𝛩𝐴 (resp. 𝜆𝐵 by 𝛩𝐵), a model of 𝐴 (resp. 𝐵) will be given by coordinates of
𝑚𝛩𝐴 (resp. 𝑚𝛩𝐵), where 𝑚 = 2, 3, 4 … is small.

We want to relate 𝛩𝐴 with 𝑓 ∗𝛩𝐵 (or relate 𝑚𝛩𝐴 with 𝑓 ∗𝑚𝛩𝐵).
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𝑁-isogenies

Definition

An isogeny 𝑓 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) between ppav is an 𝑁-isogeny if 𝑓 ∗𝛩𝐵 ∼ 𝑁𝛩𝐴.

𝛷𝑓 ∗𝛩𝐵
(𝑃) = 𝑡∗

𝑃𝑓 ∗𝛩𝐵 − 𝑓 ∗𝛩𝐵 = 𝑓 ∗(𝑡∗
𝑓 (𝑃)𝛩𝐵 − 𝛩𝐵) = 𝑓 ∗𝛷𝛩𝐵

(𝑓 (𝑃)) = ( ̂𝑓 ∘ 𝛷𝛩𝐵
∘ 𝑓 )(𝑃);

𝑓 ∗𝜆𝐵 ≔ ̂𝑓 ∘ 𝜆𝐵 ∘ 𝑓;
𝑓 is an 𝑁-isogeny ⇔ 𝑓 ∗𝜆𝐵 = 𝑁𝜆𝐴;

𝐴 𝐵

𝐴 �̂�

𝑓

𝜆𝐴 𝜆𝐵

̂𝑓
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𝑁-isogenies

Definition

An isogeny 𝑓 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) between ppav is an 𝑁-isogeny if 𝑓 ∗𝛩𝐵 ∼ 𝑁𝛩𝐴.

𝛷𝑓 ∗𝛩𝐵
(𝑃) = 𝑡∗

𝑃𝑓 ∗𝛩𝐵 − 𝑓 ∗𝛩𝐵 = 𝑓 ∗(𝑡∗
𝑓 (𝑃)𝛩𝐵 − 𝛩𝐵) = 𝑓 ∗𝛷𝛩𝐵

(𝑓 (𝑃)) = ( ̂𝑓 ∘ 𝛷𝛩𝐵
∘ 𝑓 )(𝑃);

𝑓 ∗𝜆𝐵 ≔ ̂𝑓 ∘ 𝜆𝐵 ∘ 𝑓;
𝑓 is an 𝑁-isogeny ⇔ 𝑓 ∗𝜆𝐵 = 𝑁𝜆𝐴;

Contragredient isogeny: ̃𝑓 = 𝜆−1
𝐴

̂𝑓 𝜆𝐵 ∶ 𝐵 → 𝐴;

𝐴 𝐵

𝐴 �̂�

𝑓

𝜆𝐵𝜆−1
𝐴

̂𝑓

𝑓 is an 𝑁-isogeny ⇔ ̃𝑓 𝑓 = 𝑁 ⇔ 𝑓 ̃𝑓 = 𝑁.

Example

An isogeny 𝑓 ∶ 𝐸1 → 𝐸2 between elliptic curves is automatically an 𝑁-isogeny where 𝑁 = deg 𝑓.
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𝑁-isogenies and isotropic kernels

Compatibility with pairings: on 𝑇ℓ𝐴 × 𝑇ℓ𝐵, 𝑒𝜆𝐵
(𝑓 (𝑥), 𝑦) = 𝑒𝜆𝐴

(𝑥, ̃𝑓 (𝑦)).
𝑓 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) 𝑁-isogeny ⇒Ker 𝑓 is maximal isotropic in 𝐴[𝑁] for theWeil pairing

Ker 𝑓 = Im ̃𝑓 ∣ 𝐵[𝑁], Ker 𝑓 is dual to Ker ̃𝑓

Conversely, if 𝐾 ⊂ 𝐴[𝑁] maximal isotropic, 𝑁𝜆𝐴 descends to a principal polarisation on
𝐵 = 𝐴/𝐾.
The pairing 𝑒𝜆𝐴,𝑁 = 𝑒𝛷𝑁𝜆𝐴

on 𝐴[𝑁] × 𝐴[𝑁] is also the commutator pairing of Mumford’s theta group 𝐺(𝑁𝛩𝐴). If 𝐾 is isotropic, it

admits a lift 𝐾 in 𝐺(𝑁𝛩𝐴), so 𝑁𝛩𝐴 descends to a divisor 𝛩𝐵 on 𝐵 = 𝐴/𝐾. The degree relation shows that deg𝛩𝐵 = 1 if 𝐾 is maximal.

If 𝑓 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) has maximal isotropic kernel in 𝐴[𝑁], 𝑁𝜆𝐴 descends to a principal
polarisation 𝜆′

𝐵 on 𝐵.

But we may have 𝜆′
𝐵 ≠ 𝜆𝐵.

̃𝑓 ∘ 𝑓 = 𝑁 is a stronger condition that ensures compatibility of 𝑓 with 𝜆𝐵.

𝑓 is an 𝑁-isogeny ⇔ 𝑒𝜆𝐵
(𝑓 (𝑥), 𝑓 (𝑦)) = 𝑒𝜆𝐴

(𝑥, 𝑦)𝑁 on 𝑇ℓ𝐴 × 𝑇ℓ𝐴.
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Properties of contragredient isogenies
Biduality: ̃̃𝑓 = 𝑓.

Composition: 𝑓 ∶ 𝐴 → 𝐵 a 𝑁-isogeny, 𝑔 ∶ 𝐵 → 𝐶 a 𝑀-isogeny, 𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶.

𝑔 ∘ 𝑓 = ̃𝑓 ∘ ̃𝑔 ∶ 𝐶 → 𝐴;

(𝑔 ∘ 𝑓) ∘ (𝑔 ∘ 𝑓 ) = ̃𝑓 ∘ ̃𝑔 ∘ 𝑔 ∘ 𝑓 = 𝑁𝑀.

The composition 𝑔 ∘ 𝑓 is an 𝑁𝑀-isogeny.

Conversely, if 𝑔 ∘ 𝑓 is an 𝑁-isogeny and 𝑓 (resp. 𝑔) is an 𝑀-isogeny, then 𝑔 (resp. 𝑓) is an
𝑁/𝑀-isogeny.

An 𝑁-isogeny is always the composition of ℓ𝑖-isogenies for ℓ𝑖 ∣ 𝑁.

Product polarisation:

(𝐴, 𝜆𝐴) × (𝐵, 𝜆𝐵) = (𝐴 × 𝐵, 𝜆𝐴 × 𝜆𝐵) where 𝜆𝐴 × 𝜆𝐵 ∶ 𝐴 × 𝐵 → 𝐴 × �̂� is the product.

𝐹 = (𝑎 𝑐
𝑏 𝑑) ∶ (𝐴 × 𝐵, 𝜆𝐴 × 𝜆𝐵) → (𝐶 × 𝐷, 𝜆𝐶 × 𝜆𝐷).

̂𝐹 = ( ̂𝑎 ̂𝑏
̂𝑐 ̂𝑑) ∶ ̂𝐶 × �̂� → ̂𝐴 × �̂�.

̃𝐹 = ( ̃𝑎 ̃𝑏
̃𝑐 ̃𝑑) ∶ 𝐶 × 𝐷 → 𝐴 × 𝐵.

Exercice: check that the 8 × 8-matrix at the beginning of the talk is a 𝑁′-isogeny.
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Polarisations and symmetric endomorphisms
(𝐴, 𝜆𝐴) ppav

𝜙 ∈ End𝜆(𝐴) ↦ 𝜆𝐴 ∘ 𝜙 induces a bijection between endomorphisms 𝜙 invariant under the

Rosatti involution (𝜙 = 𝜙) and polarisations: 𝑁𝑆(𝐴) ≃ End𝜆(𝐴).
Let 𝛽 ∈ End𝜆(𝐴), 𝑓 is a 𝛽-isogeny if ̃𝑓 𝑓 = 𝛽.
If 𝑓 ∶ 𝐴 → 𝐵 is any isogeny, 𝜆𝐴, 𝜆𝐵 principal polarisations, then 𝑓 is a 𝛽-isogeny where 𝛽 = ̃𝑓 𝑓.
In particular Ker 𝑓 is maximal isotropic for the 𝑒𝛽 pairing on 𝐴[𝛽].

Example

Via the product principal polarisation (𝐴 × 𝐵, 𝜆𝐴 × 𝜆𝐵), 𝐹 = (𝑎 𝑐
𝑏 𝑑) is symmetric ( ̃𝐹 = 𝐹) iff

̃𝑎 = 𝑎, ̃𝑑 = 𝑑, ̃𝑏 = 𝑐.
𝑁𝑆(𝐴 × 𝐵) = 𝑁𝑆(𝐴) × 𝑁𝑆(𝐵) ×Hom(𝐴, 𝐵).

An ℓ-isogeny of abelian varieties has kernel of type (ℤ/ℓℤ)𝑔.
An ℓ2-isogeny of elliptic curves can have kernel of type ℤ/ℓ2ℤ or ℤ/ℓℤ × ℤ/ℓℤ.
An ℓ2-isogeny of abelian surfaces can have kernel of type (ℤ/ℓ2ℤ)2 or
ℤ/ℓℤ × ℤ/ℓℤ × ℤ/ℓ2ℤ or (ℤ/ℓℤ)4.
If an abelian surface (𝐴, 𝜆𝐴) has RM End𝜆𝐴(𝐴) = 𝒪𝐾 a real quadratic order and ℓ = 𝛽𝛽𝑐, a
𝛽-isogeny will have cyclic kernel ℤ/ℓℤ.
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Algorithms for 𝑁-isogenies (overview)

Input: generators 𝑃1, … , 𝑃𝑔 of 𝐾, a maximal isotropic kernel for 𝐴[𝑁], a point 𝑃 ∈ 𝐴 given by
coordinates 𝑢𝑖, where 𝑢𝑖 are sections of 𝑚𝛩𝐴.

Output: A description of 𝐵 = 𝐴/𝐾, and the coordinates 𝑣𝑖(𝑄) where 𝑄 = 𝑓 (𝑃), where 𝑣𝑖 are
sections of 𝑚𝛩𝐵 (𝛩𝐵 a descent of 𝑁𝛩𝐴 by 𝑓 ∶ 𝐴 → 𝐵).

1 Construct 𝒟 = 𝑓 ∗𝑚𝛩𝐵 on 𝐴.
This is a divisor invariant by translation by 𝐾 and algebraically equivalent to 𝑁𝑚𝛩𝐴. The
converse is true by descent theory.

2 Construct the coordinates 𝑣𝑖 ∘ 𝑓 on 𝐴.
These are sections of 𝒟 invariant by translation on 𝐾, and the converse is true:

𝛤(𝐵, 𝑚𝛩𝐵) ≃ 𝛤(𝐴, 𝑓 ∗𝑚𝛩𝐵)𝐾.

3 Evaluate these coordinates on 𝑃: 𝑣𝑖(𝑄) = 𝑣𝑖 ∘ 𝑓 (𝑃).
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Vélu’s formula

Weierstrass coordinates 𝑥, 𝑦 on 𝐸 = sections of 3(0𝐸). (𝑥 is a section of 2(0𝐸), 𝑦 of 3(0𝐸).)
𝐾 maximal isotropic in 𝐸[𝑁].
𝒟 = ∑𝑃∈𝐾 𝑡∗

𝑃(3(0𝐸)) = ∑𝑃∈𝐾 3(𝑃) is certainly invariant by 𝐾;

So 𝒟 descends to 3(0𝐸′) on 𝐸′ = 𝐸/𝐾;

𝑥, 𝑦 are sections of 𝒟 but are not invariant by translation;

𝑋(𝑃) = ∑𝑇∈𝐾 𝑋(𝑃 + 𝑇) and 𝑌(𝑃) = ∑𝑇∈𝐾 𝑌(𝑃 + 𝑇) are sections of 𝒟 invariant by
translation;

They descend toWeierstrass coordinates on 𝐸′;

This is Vélu’s formula (up to a constant).

Cost: 𝑂(𝑁).
Recover equations for 𝐸′ via the formal group law.
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Revisiting Vélu’s formula

Recall: 𝒟 = ∑𝑃∈𝐾 𝑡∗
𝑃3(0𝐸);

We want to construct sections 𝑈 of 𝒟 that are of the form 𝑈 = 𝑣 ∘ 𝑓, 𝑣 a coordinate on 𝐸′.

Equivalently: 𝑈 is invariant by translation by 𝐾.

In particular: div𝑈 is a divisor invariant by translation by 𝐾 such that div𝑈 + 𝒟 ≥ 0.
If ℰ = div 𝑓ℰ is a principal divisor invariant by translation, 𝑓ℰ may not be invariant by translation!

Lemma

Letℰ = ∑𝑖 𝑎𝑖 ∑𝑇∈𝐾(𝑃𝑖 + 𝑇) = div 𝑓ℰ a principal divisor and𝑃0 ≔ ∑ 𝑎𝑖𝑃𝑖. Then 𝑓ℰ is invariant by
translation iff𝑃0 ∈ 𝐾.

Proof.

If 𝑇 ∈ 𝐾, 𝑓ℰ(𝑥 + 𝑇)/𝑓ℰ(𝑥) = 𝑒𝑓(𝑇, 𝑓 (𝑃0)) = 𝑒𝑁(𝑇, 𝑃0). So 𝑓ℰ is invariant by 𝐾 ⇔ 𝑃0 ∈ 𝐸[ℓ] is
orthogonal to 𝐾 ⇔ 𝑃0 ∈ 𝐾 ⇔ 𝑓 (𝑃0) = 0.
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Revisiting Vélu’s formula

Recall: 𝒟 = ∑𝑃∈𝐾 𝑡∗
𝑃3(0𝐸);

We want to construct sections 𝑈 of 𝒟 that are of the form 𝑈 = 𝑣 ∘ 𝑓, 𝑣 a coordinate on 𝐸′.

Equivalently: 𝑈 is invariant by translation by 𝐾.

In particular: div𝑈 is a divisor invariant by translation by 𝐾 such that div𝑈 + 𝒟 ≥ 0.
If ℰ = div 𝑓ℰ is a principal divisor invariant by translation, 𝑓ℰ may not be invariant by translation!

Lemma

Letℰ = ∑𝑖 𝑎𝑖 ∑𝑇∈𝐾(𝑃𝑖 + 𝑇) = div 𝑓ℰ a principal divisor and𝑃0 ≔ ∑ 𝑎𝑖𝑃𝑖. Then 𝑓ℰ is invariant by
translation iff𝑃0 ∈ 𝐾.

Example

Take 𝑄1, 𝑄2 ∈ 𝐸(𝑘), ℰ = ∑𝑇∈𝐾 ((𝑄1 + 𝑇) + (−𝑄1 + 𝑇) − (𝑄2 + 𝑇) − (−𝑄2 + 𝑇)),

𝑓ℰ = ∏𝑇∈𝐾
𝑥−𝑥(𝑄1+𝑇)
𝑥−𝑥(𝑄2+𝑇) (convention: 𝑥 − 0𝐸 ≔ 1).

𝑓ℰ is invariant by translation and descends to
𝑋−𝑓 (𝑄1)
𝑋−𝑓 (𝑄2) on 𝐸/𝐾, 𝑋 aWeierstrass coordinate.

When 𝑄2 = 0𝐸, we recover formula from [Costello-Hisil, 2017], [Renes, 2017].

Used by the sqrtVelu algorithm!
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Vélu’s formula in higher dimension?

(𝐴, 𝛩𝐴) ppav, 𝐾 maximal isotropic in 𝐴[𝑁]
𝒟 = ∑𝑃∈𝐾 𝑡∗

𝑃(𝑚𝛩𝐴) is certainly invariant by 𝐾;

If 𝑢 is a section of 𝑚𝛩𝐴, 𝑈(𝑃) = ∑𝑇∈𝐾 𝑢(𝑃 + 𝑇) is certainly a section of 𝒟 invariant by 𝐾.

But 𝒟 ∼ 𝑁𝑔𝑚𝛩𝐴;

So it descends to a divisor ∼ 𝑁𝑔−1𝑚𝛩𝐵!

Our coordinates have degree too big (unless 𝑔 = 1).
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The theta group

𝑁𝑚𝛩𝐴 is not invariant by 𝐾
So it does not descend to 𝑚𝛩𝐵

But it is linearly equivalent to 𝒟, a divisor invariant by 𝐾: 𝒟 = 𝑁𝑚𝛩𝐴 + div 𝑔.
So div(𝑔/𝑡∗

𝑇𝑔) = 𝑡∗
𝑇𝑁𝑚𝛩𝐴 − 𝑁𝑚𝛩𝐴.

Goal: construct 𝒟. Equivalently construct 𝑔.

Find functions 𝑔𝑇 such that div 𝑔𝑇 = 𝑡∗
𝑇𝑁𝑚𝛩𝐴 − 𝑁𝑚𝛩𝐴

Try to glue these functions into a global function 𝑔 (cocycle condition):
𝑔𝑇(𝑃) = 𝑔(𝑃)/𝑔(𝑃 + 𝑇).

Theta group: 𝐺(𝑁𝑚𝛩𝐴) = {(𝑇, 𝑔𝑇) ∣ div 𝑔𝑇 = 𝑡∗
𝑇𝑁𝑚𝛩𝐴 − 𝑁𝑚𝛩𝐴}

Gluing condition ⇔ 𝐾 → 𝐺(𝑁𝑚𝛩𝐴), 𝑇 ↦ (𝑇, 𝑔𝑇) is a group section;

Twisted trace: if 𝑈 is a section of 𝑁𝑚𝛩𝐴, 𝑈′(𝑃) = ∑𝑇∈𝐾 𝑔𝑇(𝑃)𝑈(𝑃 + 𝑇) is a section of 𝒟
invariant by 𝐾, hence descends to 𝐵 = 𝐴/𝐾.
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General framework for an 𝑁-isogeny algorithm

1 Find functions 𝑔𝑇,div 𝑔𝑇 = 𝑡∗
𝑇𝑁𝑚𝛩𝐴 − 𝑁𝑚𝛩𝐴 for each 𝑇 ∈ 𝐾, that glue together.

1 Use symmetry: 𝛩𝐴 symmetric divisor, 𝑔𝑇 symmetric.
2 Unique choice if 𝑁 is odd, two choices for each 𝑇 when 𝑁 is even ⇒ annoying!

Twisted Vélu’s formula: if 𝐾 = ⟨𝑇⟩, 𝑋(𝑃) = ∑𝑖∈ℤ/𝑁ℤ 𝜁 𝑖
𝑁𝑋(𝑃 + 𝑇), 𝑌(𝑃) = ∑𝑖∈ℤ/𝑁ℤ 𝜁 𝑖

𝑁𝑌(𝑃 + 𝑇).

Eg: if 𝑁 is even, 𝑋(𝑃) = ∑𝑖∈ℤ/𝑁ℤ(−1)𝑖𝑋(𝑃 + 𝑇) descends to a section on the symmetric divisor 2𝑓 (𝑊), 𝑊 ∈ 𝐸[2] − 𝐾.
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General framework for an 𝑁-isogeny algorithm

1 Find functions 𝑔𝑇,div 𝑔𝑇 = 𝑡∗
𝑇𝑁𝑚𝛩𝐴 − 𝑁𝑚𝛩𝐴 for each 𝑇 ∈ 𝐾, that glue together.

2 Generate sections 𝑈 of 𝑁𝑚𝛩𝐴.
1 The multiplication map 𝛤(𝑚1𝛩𝐴) ⊗ 𝛤(𝑚2𝛩𝐴) → 𝛤((𝑚1 + 𝑚2)𝛩𝐴), 𝑢 ⊗ 𝑣 ↦ 𝑢𝑣 is surjective if

𝑚1 ≥ 3, 𝑚2 ≥ 2 [Mumford, Koizumi, Kempf].
2 𝛴𝛼∈𝐴𝛤(𝐴, 𝑚1𝛩𝐴 ⊗ 𝑃𝛼)𝛤(𝐴, 𝑚2𝛩𝐴 ⊗ 𝑃−𝛼) = 𝛤(𝐴, (𝑚1 + 𝑚2)𝛩𝐴) [Mumford] for 𝑚1, 𝑚2 > 0.

So we can always generate all sections of 𝛤(𝑁𝑚𝛩𝐴) using multiplications of sections of
𝛤(𝑚𝛩𝐴), eventually using also translations if 𝑚 ≤ 2.
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General framework for an 𝑁-isogeny algorithm

1 Find functions 𝑔𝑇,div 𝑔𝑇 = 𝑡∗
𝑇𝑁𝑚𝛩𝐴 − 𝑁𝑚𝛩𝐴 for each 𝑇 ∈ 𝐾, that glue together.

2 Generate sections 𝑈 of 𝑁𝑚𝛩𝐴.
3 Take the twisted traces of the sections 𝑈.
4 This gives coordinates (section of 𝑚𝛩𝐵) on 𝐵

More work required to recover a suitable model of 𝐵 (depends on the model).
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General framework for an 𝑁-isogeny algorithm

1 Find functions 𝑔𝑇,div 𝑔𝑇 = 𝑡∗
𝑇𝑁𝑚𝛩𝐴 − 𝑁𝑚𝛩𝐴 for each 𝑇 ∈ 𝐾, that glue together.

2 Generate sections 𝑈 of 𝑁𝑚𝛩𝐴.
3 Take the twisted traces of the sections 𝑈.
4 This gives coordinates (section of 𝑚𝛩𝐵) on 𝐵

More work required to recover a suitable model of 𝐵 (depends on the model).

Summary [R. 2021]: from an effective version of the Theorem of the square:

𝑡∗
𝑃+𝑄𝛩𝐴 + 𝛩𝐴 − 𝑡∗

𝑃𝛩𝐴 − 𝑡∗
𝑄𝛩𝐴 = div𝜇𝑃,𝑄,

there is a general framework to
1 Compute the addition law;
2 Compute theWeil and Tate pairings;
3 Compute isogenies.
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Isogenies in the theta model
Analytic theta functions:

𝜃 [ 𝑎
𝑏 ] (𝑧, 𝛺) = ∑

𝑛∈ℤ𝑔
𝑒𝜋𝑖 𝑡(𝑛+𝑎)𝛺(𝑛+𝑎)+2𝜋𝑖 𝑡(𝑛+𝑎)(𝑧+𝑏) 𝑎, 𝑏 ∈ ℚ𝑔;

Universal
Work with theta functions of level 𝑚 = 2 or 𝑚 = 4: 𝑚𝑔 coordinates.
Rationality: rational 𝛤(𝑚, 2𝑚)-symplectic structure.
𝑁-isogenies in 𝑂(𝑁𝑔).
Implementations in Magma (AVIsogenies) and Sage (ThetAV)

General framework for 𝛽-isogenies but requires bootstrapping (still more work needed!).
Theta functions 𝜃𝐴×𝐵 for the product theta structure on 𝐴 × 𝐵 are simply product of theta
functions 𝜃𝐴 ⋅ 𝜃𝐵.

(𝑁1 0
0 𝑁2

)-isogenies in 𝑂(𝑁𝑔
1𝑁𝑔

2).

Moduli: 𝜒(𝜏) = ∏ 𝜃 [ 𝑎/2
𝑏/2 ] (𝜏) describes interesting modular locus: the locus of product of

elliptic curves when 𝑔 = 2 (𝜒10), the locus of products and Jacobians of hyperelliptic curves
when 𝑔 = 3 (𝜒18).
The modular form 𝑔(𝐴, 𝑤𝐴) = ∏(𝐵,𝑤𝐵) 𝜒10(𝐵, 𝑤𝐵) of weight 10(ℓ3 + ℓ2 + ℓ + 1) (whose product is across all normalised ℓ-isogenies)

describes the locus 𝐻ℓ2 of ℓ-split abelian surfaces (the Humbert surface of discriminant ℓ2). Expressed as a polynomial 𝑃 in terms of

𝜓4, 𝜓6, 𝜒10, 𝜒12, 𝑃 is of size 𝑂(ℓ12) and can be computed in quasi-linear time by evaluation-interpolation. Checking if (𝐴, 𝛩𝐴)/𝔽𝑞 is

ℓ-split can then be done by evaluating 𝑃(𝐴, 𝛩𝐴) in time 𝑂(ℓ9 log 𝑞), or directly via the analytic method in 𝑂(ℓ3(log 𝑞 + 𝑑2)).
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Isogenies in the Jacobian model

𝜄 ∶ 𝐶 → Jac(𝐶);
If 𝑔 is a function on 𝐶, it induces a function 𝜄∗𝑔 on Jac(𝐶) via (𝜄∗𝑔)(∑ 𝑛𝑖(𝑃𝑖)) = ∏ 𝑔(𝑃𝑖)𝑛𝑖 .

All functions on Jac(𝐶) can be built from 𝜄∗𝑔 and determinants;

NB: for pairings computations, the functions 𝜄∗𝑔 are enough!

𝑁-isogenies between Jacobians in 𝑂(𝑁𝑔) when 𝑔 = 2 [Couveignes-Ezome 2015] and 𝑔 = 3
[Milio 2019]

Implementations in Magma.

The extension to product of Jacobians should not be too hard.
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Algorithms for isogenies

Better algorithms for 𝛽-isogenies;

𝑂(𝑁𝑔/2)-algorithms?

Batch isogeny evaluation?

More compact models of abelian varieties?

Evaluating an isogeny on a point is only a small topic of algorithms related to isogenies: modular
polynomials, explicit Kodaira-Spencer isomorphism, differential equations, …
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