Isogenies between abelian varieties - an algorithmic survey 2022/09/21 - Isogeny days, Leuven

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest

Outline

(9) Motivations

2 Polarised abelian varieties
(3) Isogenies and polarisations

4 Algorithms for isogenies

Postdoc

- The ANR CIAO is looking for a one year postdoc in Bordeaux https://anr.fr/Projet-ANR-19-CE48-0008
- Topics: anything related to isogeny based cryptography
- Position available until 2024-04 (should be extendable by 6 months)
- Email: http://www. normalesup.org/~robert/pro/infos.html

Outline

(1) Motivations

P Polarised abelian varieties

3 Isogenies and polarisations

A Algorithms for isogenies

Usage of isogenies

- Speed up the arithmetic (eg split the multiplication by [2] or [3]);
- Determine End (A) (volcano...);
- Point counting algorithms (ℓ-adic or p-adic: SEA, Satoh ...)

Publicity: [Kieffer 2021] SEA like algorithm in $\widetilde{O}_{K}\left(\log ^{4} q\right)$ for abelian surfaces with RM by O_{K}.

- Compute class polynomials (CM-method)
- Compute modular polynomials
- Arithmetic for \mathbb{F}_{q} : construct normal basis of a finite field, irreducible polynomials, automorphism invariant smoothness basis [Couveignes-Lercier]...
- Find curves with many points
- Explore isogeny graphs (eg find a component with no Jacobians in dimension 4)
- Evaluate modular forms

Isogenies in classical cryptography

- Discrete Logarithm Problem, Pairings
- Transfer the DLP (Weil descent...)
- Reduce the impact of side channel attacks
- Random self reducibility, worst case to average case reductions.
- Hash functions
- Key exchange (SIDH, CSIDH)
- Signatures (SQISign)

Higher dimensional isogenies?

- Classical cryptography: dimension 1 and 2. A bit in dimension 3 (class polynomials).
- Isogeny based cryptography: dimension 1 (hash functions in dimension 2 too).
- So mainly for algorithmic number theory (descent...)
- Certainly no use for elliptic curve based cryptosystems.

Higher dimensional isogenies?

- Classical cryptography: dimension 1 and 2. A bit in dimension 3 (class polynomials).
- Isogeny based cryptography: dimension 1 (hash functions in dimension 2 too).
- So mainly for algorithmic number theory (descent...)
- Eertainly no use for ellipticeurve based cryptosystems.

The embedding lemma

- A N-isogeny $f: A \rightarrow B$ in dimension g can always be efficiently embedded into a N^{\prime} isogeny $F: A^{\prime} \rightarrow B^{\prime}$ in dimension $8 g$ (and sometimes $4 g, 2 g$) for any $N^{\prime} \geq N$.

- Considerable flexibility (at the cost of going up in dimension).

The embedding lemma

- A N-isogeny $f: A \rightarrow B$ in dimension g can always be efficiently embedded into a N^{\prime} isogeny $F: A^{\prime} \rightarrow B^{\prime}$ in dimension $8 g$ (and sometimes $4 g, 2 g$) for any $N^{\prime} \geq N$.

- Considerable flexibility (at the cost of going up in dimension).
- Write $N^{\prime}-N=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$.
- $F=\left(\begin{array}{cccccccc}a_{1} & -a_{2} & -a_{3} & -a_{4} & \hat{f} & 0 & 0 & 0 \\ a_{2} & a_{1} & a_{4} & -a_{3} & 0 & \hat{f} & 0 & 0 \\ a_{3} & -a_{4} & a_{1} & a_{2} & 0 & 0 & \hat{f} & 0 \\ a_{4} & a_{3} & -a_{2} & a_{1} & 0 & 0 & 0 & \hat{f} \\ -f & 0 & 0 & 0 & a_{1} & a_{2} & a_{3} & a_{4} \\ 0 & -f & 0 & 0 & -a_{2} & a_{1} & -a_{4} & a_{3} \\ 0 & 0 & -f & 0 & -a_{3} & a_{4} & a_{1} & a_{2} \\ 0 & 0 & 0 & -f & -a_{4} & -a_{3} & a_{2} & a_{1}\end{array}\right)$

The embedding lemma

- A N-isogeny $f: A \rightarrow B$ in dimension g can always be efficiently embedded into a N^{\prime} isogeny $F: A^{\prime} \rightarrow B^{\prime}$ in dimension $8 g$ (and sometimes $4 g, 2 g$) for any $N^{\prime} \geq N$.

- Considerable flexibility (at the cost of going up in dimension).
- Breaks SIDH ([Castryck-Decru], [Maino-Martindale] in dimension 2, [R.] in dimension 4 or 8) \Rightarrow if $N_{A}>N_{B}$, take $N^{\prime}=N_{A}, N=N_{B}$ The dimension 8 attack is in proven quasi-linear time, see http://www. normalesup.org/ ~robert/pro/publications/slides/2022-09-Bordeaux-SIDH. pdf for details.
- An isogeny always have a representation allowing evaluation in polylogarithmic time $\log ^{O(1)} N$ $[\mathrm{R}.] \Rightarrow$ take $N^{\prime} \geq N$ powersmooth.
(Finding this representation takes quasi-linear time.)

The embedding lemma

Isogeny diamonds

- $f_{1}: A \rightarrow A_{1} n_{1}$-isogeny, $f_{1}^{\prime}: A_{1} \rightarrow B n_{1}^{\prime}$-isogeny, $f_{2}: A \rightarrow A_{2} n_{2}$-isogeny, $f_{2}^{\prime}: A_{2} \rightarrow B$ n_{2}^{\prime}-isogeny, $f_{2}^{\prime} \circ f_{2}=f_{1}^{\prime} \circ f_{1}$.

$$
\begin{aligned}
& A \xrightarrow{f_{1}} A_{1} \\
& \left\lvert\, \begin{array}{ll}
f_{2} & \\
A_{2} \xrightarrow{f_{2}^{\prime}} & \mid f_{1}^{\prime} \\
\end{array}\right.
\end{aligned}
$$

- $F=\left(\begin{array}{cc}f_{1} & \widetilde{f_{1}^{\prime}} \\ -f_{2} & \widetilde{f}_{2}^{\prime}\end{array}\right)$ is an $\left(\begin{array}{cc}n_{1}+n_{2} & 0 \\ 0 & n_{1}^{\prime}+n_{2}^{\prime}\end{array}\right)$-isogeny.
- Isogeny diamonds: If $n_{1}^{\prime}=n_{2}$ (so $n_{2}^{\prime}=n_{1}$), F is an N-isogeny where $N=n_{1}+n_{2}$ ([Kani] for $g=1,[$ R. $]$ for $g>1$.)

Algorithms for N -isogenies

Jacobian model:

- Vélu's formula for elliptic curves [Vélu 1971]
- [Kohel, 1999]: Vélu's formula from equations of K;
- [Richelot, 1836,1837] 2-isogenies between Jacobians of genus 2 hyperelliptic curves, [Mestre 2013] for general g;
- Various explicit formula for small degree isogenies in dimension 2;
- [Smith 2008]: 2-isogenies for quartic genus 3 curves;
- [R. 2007]: the analog of Vélu's formula for genus 2 does not seem to work?
- [Couveignes-Ezome (2015)]: Algorithm in $\widetilde{O}\left(N^{g}\right)$ in the Jacobian model (complete algorithm for $g=2$, [Milio 2019] for $g=3$).
- Restricted to $g \leq 3$.

Algorithms for N -isogenies

Jacobian model:

- Vélu's formula for elliptic curves [Vélu 1971]
- [Couveignes-Ezome (2015)]: Algorithm in $\widetilde{O}\left(N^{g}\right)$ in the Jacobian model (complete algorithm for $g=2$, [Milio 2019] for $g=3$).
Theta model:
- 2-isogenies: duplication formula for theta functions [Riemann ?]
- [Mumford, 1966] isogeny formula, [Koizumi 1976, Kempf 1989] product formula (requires theta constants of higher level)
- [Lubicz-R. 2012]: ℓ^{2}-isogenies between abelian varieties in $O\left(\ell^{g}\right)$ and $\ell^{g}(g+1) / 2 \ell$-th roots.

This corresponds to taking an ℓ-isogeny, and then each choice of roots prolongs this ℓ-isogeny into a different ℓ^{2}-isogeny (we get all ℓ^{2}-isogenies whose kernel stays of rank g), see also [Castryck, Decru, Vercauteren] work on radical isogenies.

- [Cosset-R. (2014)]: ℓ-isogenies in $O\left(\ell^{g}\right)$ if $\ell \equiv 1(\bmod 4), O\left(\ell^{2 g}\right)$ if $\ell \equiv 3(\bmod 4)$;
- [Lubicz-R. (2022)]: An N-isogeny in dimension g can be evaluated in linear time $O\left(N^{g}\right)$ arithmetic operations in the theta model given generators of its kernel.
- Warning: exponential dependency 2^{g} or 4^{g} in the dimension g.
- [Lubicz-R. (2015)]: isogenies from equations of the kernel
- [Dudeanu, Jetchev, R., Vuille (2022)]: cyclic isogenies for abelian varieties with RM.

Outline

\author{

- Motivations
 2 Polarised abelian varieties
 Isogenies and polarisations
 A Algorithms for isogenies
}

Polarised abelian varieties over \mathbb{C}

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie group V / Λ with

- A complex vector space V of dimension g (linear data);
- A \mathbb{Z}-lattice Λ in V (of rank $2 g$) (arithmetic data);
- A polarisation (quadratic data)

Example

- A vector space $V \simeq \mathbb{C}^{g}$ is described by a basis;
- A lattice $\Lambda=\Omega \mathbb{Z}^{g} \oplus \mathbb{Z}^{g}$ is described by a period matrix Ω;
- The quotient \mathbb{C}^{g} / Λ is a torus. It is not an abelian variety in general!
- The moduli space of torus is of dimension g^{2}.
- If $\Omega \in \mathfrak{H}_{g}, H=\operatorname{Im} \Omega^{-1}$ is a principal polarisation.
- The moduli space of abelian varieties is of dimension $g(g+1) / 2$.
- NB: when $g=1$ both spaces have dimension 1 .

Polarisations

$A=V / \Lambda$. A polarisation on A is:

- An Hermitian form H on V with $\operatorname{Im} H(\Lambda, \Lambda) \subset \mathbb{Z}$;
- A symplectic form E on H with $E(\Lambda, \Lambda) \subset \mathbb{Z}: E=\operatorname{Im} H$
- A (symmetric) morphism $\Phi: A \rightarrow \widehat{A:} \Phi=\Phi_{H}: z \mapsto H(z, \cdot) \in \widehat{A}=\operatorname{Hom}_{\overline{\mathbb{C}}}(V, \mathbb{C})$
- (The algebraic equivalence class of) a divisor \mathcal{D} [Apell-Humbert].

Divisors and theNéron-Severi group

- To work algorithmically with an abelian variety, we need (projective) coordinates u_{1}, \ldots, u_{m};
- A point $P \in A$ is represented by its coordinates ($\left.u_{1}(P): \cdots, u_{m}(P)\right)$.
- Coordinates are given by sections of (very ample) divisors;
- Linearly equivalent divisors $D \simeq \mathscr{D}^{\prime}$ give isomorphic coordinates;
- $\operatorname{Pic}(A)$: divisors modulo linear equivalence.
- $D \sim D^{\prime}$ are algebraically equivalent $\Leftrightarrow D^{\prime}$ is linearly equivalent to a translate of D, ie $D^{\prime} \simeq t_{x} \mathcal{D}$ (if \mathcal{D} is ample);
$D^{\prime} \simeq t_{x} D \Rightarrow D^{\prime} \sim D$ and the converse is true if Φ_{D} is surjective, ie the polarisation is non degenerate.
- Algebraically equivalent divisors = same coordinates up to translation;
- Néron-Severi group $N S(A)=\operatorname{Pic}(A) / \operatorname{Pic}^{0}(A)$: divisors modulo algebraic equivalence.

More precisely: $N S(A)$ is the fppf sheaf associated to the functor $\operatorname{Pic}(A) / \operatorname{Pic}^{0}(A)$. Here $\operatorname{Pic}^{0}(A)$ is the connected component of the Picard group, it corresponds to divisors algebraically equivalent to 0 , or equivalently to divisors D_{0} such that $\Phi_{D_{0}}=0$, ie $t_{P}^{*} D_{0} \simeq D_{0}$ for all $P \in A$. So an algebraic class $\lambda=[D]$ may be rational with no representative D defined over k. This does not happens when $k=\mathbb{F}_{q}$, representatives form a torsor under $\widehat{A}=\operatorname{Pic}^{0}(A)$, and this torsor is trivial, ie has a section, since $H^{1}\left(\mathbb{F}_{q}, \widehat{A}\right)=0$. In general, the pullback $D^{\prime}=(1 \times \lambda)^{*} P$ of the Poincarre sheaf satisfy $\Phi_{D^{\prime}}=2 \lambda$, so 2λ is always represented by a rational divisor.

Facets of polarisations

Polarisation $\lambda=$

- a divisor Θ up to algebraic equivalence;
- a (symmetric) morphism $\lambda: A \rightarrow \widehat{A}$. $\lambda=\Phi_{\Theta}: A \rightarrow \widehat{A}, P \mapsto t_{P}^{*} \Theta-\Theta$. $\operatorname{Ker} \lambda \simeq\left(\mathbb{Z}^{g} / D \mathbb{Z}^{g}\right)^{2}$ with $D=\left(d_{1}, \ldots, d_{g}\right), d_{i} \mid d_{i+1}: \lambda$ is of type $\left(d_{1}, \ldots, d_{g}\right)$. $\operatorname{deg} \Theta:=\prod d_{i}$.
- a pairing $T_{\ell} A \times T_{\ell} A \rightarrow Z(\bar{\ell})(1),(P, Q) \mapsto e_{\lambda}(P, Q)=e_{A}(P, \lambda Q)$;

Facets of polarisations

Polarisation $\lambda=$

- a divisor Θ up to algebraic equivalence;
- a (symmetric) morphism $\lambda: A \rightarrow \widehat{A}$.

$$
\begin{aligned}
& \lambda=\Phi_{\Theta}: A \rightarrow \widehat{A}, P \mapsto t_{P}^{*} \Theta-\Theta . \\
& \operatorname{Ker} \lambda \simeq\left(\mathbb{Z}^{g} / D \mathbb{Z}^{g}\right)^{2} \text { with } D=\left(d_{1}, \ldots, d_{g}\right), d_{i} \mid d_{i+1}: \lambda \text { is of type }\left(d_{1}, \ldots, d_{g}\right) .
\end{aligned}
$$

$$
\operatorname{deg} \Theta:=\prod d_{i}
$$

- a pairing $T_{\ell} A \times T_{\ell} A \rightarrow Z(\bar{\ell})(1),(P, Q) \mapsto e_{\lambda}(P, Q)=e_{A}(P, \lambda Q)$;

The polarisation λ is

- Non degenerate if $\lambda: A \rightarrow \widehat{A}$ is an isogeny;
- Positive if $\lambda=\Phi_{\Theta}$ and Θ is ample (\Rightarrow non degenerate).
- Principal if λ is (positive and) an isomorphism.

Facets of polarisations

Polarisation $\lambda=$

- a divisor Θ up to algebraic equivalence;
- a (symmetric) morphism $\lambda: A \rightarrow \widehat{A}$.
$\lambda=\Phi_{\Theta}: A \rightarrow \widehat{A}, P \mapsto t_{P}^{*} \Theta-\Theta$.
$\operatorname{Ker} \lambda \simeq\left(\mathbb{Z}^{g} / D \mathbb{Z}^{g}\right)^{2}$ with $D=\left(d_{1}, \ldots, d_{g}\right), d_{i} \mid d_{i+1}: \lambda$ is of type $\left(d_{1}, \ldots, d_{g}\right)$. $\operatorname{deg} \Theta:=\prod d_{i}$.
- a pairing $T_{\ell} A \times T_{\ell} A \rightarrow Z(\bar{\ell})(1),(P, Q) \mapsto e_{\lambda}(P, Q)=e_{A}(P, \lambda Q)$;

The polarisation λ is

- Non degenerate if $\lambda: A \rightarrow \widehat{A}$ is an isogeny;
- Positive if $\lambda=\Phi_{\Theta}$ and Θ is ample (\Rightarrow non degenerate).
- Principal if λ is (positive and) an isomorphism.

Example

If H polarisation on $A=V / \Lambda: H \simeq\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{g}\end{array}\right), \lambda_{i} \in \mathbb{R}, E=\operatorname{Im} H \simeq\left(\begin{array}{cc}0 & D \\ -D & 0\end{array}\right)$ with
$D=\left(\begin{array}{lll}d_{1} & & 0 \\ & \ddots & \\ 0 & & d_{g}\end{array}\right)$ on $\Lambda, d_{1}\left|d_{2} \cdots\right| d_{g}, \operatorname{Ker} \Phi_{H} \simeq \Lambda^{\perp} / \Lambda \simeq\left(\mathbb{Z}^{g} / D \mathbb{Z}^{g}\right)^{2}$.

- H non degenerate $\Leftrightarrow \lambda_{i} \neq 0$;
- H nositive $\Leftrightarrow \lambda .>0$.

Facets of polarisations

Polarisation $\lambda=$

- a divisor Θ up to algebraic equivalence;
- a (symmetric) morphism $\lambda: A \rightarrow \widehat{A}$.
$\lambda=\Phi_{\Theta}: A \rightarrow \widehat{A}, P \mapsto t_{P}^{*} \Theta-\Theta$.
$\operatorname{Ker} \lambda \simeq\left(\mathbb{Z}^{g} / D \mathbb{Z}^{g}\right)^{2}$ with $D=\left(d_{1}, \ldots, d_{g}\right), d_{i} \mid d_{i+1}: \lambda$ is of type $\left(d_{1}, \ldots, d_{g}\right)$.
$\operatorname{deg} \Theta:=\prod d_{i}$.
- a pairing $T_{\ell} A \times T_{\ell} A \rightarrow Z(\bar{\ell})(1),(P, Q) \mapsto e_{\lambda}(P, Q)=e_{A}(P, \lambda Q)$;

The polarisation λ is

- Non degenerate if $\lambda: A \rightarrow \widehat{A}$ is an isogeny;
- Positive if $\lambda=\Phi_{\Theta}$ and Θ is ample (\Rightarrow non degenerate).
- Principal if λ is (positive and) an isomorphism.

Coordinates: if Θ is an ample divisor:

- $\operatorname{dim} H^{0}(\Theta)=\Theta^{g} / g!=\operatorname{deg} \Theta$, "degree" of the polarisation (Riemann-Roch).

So if Θ is a principal polarisation, $\operatorname{dim} H^{0}(N \Theta)=N^{g}$.
More generally, if \mathcal{D} is ample, $\operatorname{dim} H^{0}(\mathcal{D})=\prod_{i=1}^{g} d_{i}=\operatorname{deg} \mathcal{D}=\operatorname{deg} \Phi_{D}^{1 / 2}$: the degree of the isogeny Φ_{D} associated to \mathcal{D} is the square of the "degree" of \mathcal{D}.

- 3Θ is very ample (Lefschetz).
- 2Θ descends to $K_{A}=A / \pm 1$ if Θ is a principal polarisation, and is very ample there if Θ is indecomposable.
- 2Θ is very ample if it is base point free;

Jacobians

- C curve of genus g.
- $\operatorname{Jac}(C) \simeq \operatorname{Pic}^{0}(C)$ its Jacobian.
- Jac(C) $\sim C^{\langle g\rangle}$
- $\Theta_{C}=\{$ degenerate divisors on $C\}$ (the Theta divisor) is a principal polarisation on Jac (C). Ex: when $g=2, C \simeq \Theta_{C} C \subset J \operatorname{Jac}(C)$.
- C is determined by $\mathrm{Jac}(C), \Theta_{C}$) (Torelli)

They have the same field of moduli, but if C is not hyperelliptic the field of definition of $\left(J \mathrm{ac}(C), \Theta_{C}\right)$ can be smaller than the field of definition of C.

Jacobians

Example

- C / \mathbb{C} curve of genus g;
- V the dual of the space $V^{\vee}=H^{0}\left(C, \Omega_{C}^{1}\right)$ of holomorphic differentials of the first kind on C;
- $\Lambda \simeq H_{1}(C, \mathbb{Z}) \subset V$ the set of periods.

The Abel-Jacobi map Φ is the integration of differentials on loops: $H^{0}\left(C, \Omega_{C}^{1}\right) \times H_{1}(C, \mathbb{Z}) \mapsto \mathbb{C},(\omega, \gamma) \mapsto \int_{\gamma} \omega$; it induces $\Phi: H_{1}(\mathrm{C}, \mathbb{Z}) \rightarrow \operatorname{Hom}\left(H^{0}\left(\mathrm{C}, \Omega_{C}^{1}\right), \mathbb{C}\right)$ and Λ is the image of Φ.
By Poincare-Serre's duality: $\operatorname{Alb}(C) \simeq H^{0}\left(C, \Omega_{C}^{1}\right)^{\vee} / H_{1}(C, \mathbb{Z}) \simeq H^{0}\left(C, O_{C}\right) / H^{1}(\mathbb{C}, \mathbb{Z}) \simeq H^{1}\left(X, O_{C}{ }^{*}\right) \simeq \operatorname{Pic}^{0}(C)=\mathrm{Jac}(C)$.

- The intersection pairing $H_{1}(C, \mathbb{Z}) \times H_{1}(C, \mathbb{Z}) \rightarrow \mathbb{Z}$ gives a symplectic form E on Λ;
- H the associated Hermitian form on V (via the integration pairing):

$$
H^{*}\left(w_{1}, w_{2}\right)=\int_{C} w_{1} \wedge w_{2}
$$

- $(V / \Lambda, H)$ is a principally polarised abelian variety: the Jacobian of C.

Elliptic curves vs abelian varieties

E elliptic curve

- $D \mapsto \operatorname{deg} D$ induces an isomorphism $N S(E) \simeq \mathbb{Z}$;
- $\left[\left(0_{E}\right)\right]$: unique principal polarisation
- $E \simeq \hat{E}$ via $P \mapsto(P)-\left(0_{E}\right)$
- $\Gamma\left(0_{E}\right)=\langle 1\rangle, \Gamma\left(2\left(0_{E}\right)\right)=\langle 1, x\rangle$: embedding of $E / \pm 1$, $\Gamma\left(3\left(0_{E}\right)\right)=\langle 1, x, y\rangle:$ Weierstrass model $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$.

The same principally polarised abelian variety A (ppav) could be, depending on its polarisation Θ_{A} :

- A product of elliptic curves;
- Non decomposable;
- The Jacobian of an hyperelliptic curve;
- The Jacobian of a non hyperelliptic curve ($g \geq 3$);
- Not a Jacobian $(g \geq 4)$

Outline

```
M Motivations
P Polarised abelian varieties
(3) Isogenies and polarisations
```


Isogenies and dual isogenies

- $f: A \rightarrow B$ morphism \Leftrightarrow algebraic map + group morphism
(it suffices to check $f\left(0_{A}\right)=0_{B}$ by rigidity);
- f isogeny $\Leftrightarrow \operatorname{Ker} f$ finite + surjective
$\Leftrightarrow \operatorname{dim} A=\operatorname{dim} B$ and surjective $\quad \Leftrightarrow \operatorname{dim} A=\operatorname{dim} B$ and $\operatorname{Ker} f$ finite;
- Divisibility: $g_{1} \circ f=g_{2} \circ f \Rightarrow g_{1}=g_{2}$,

$$
f \circ g_{1}=f \circ g_{2} \Rightarrow g_{1}=g_{2}
$$

- Dual isogeny $\hat{f}: \hat{B}=\operatorname{Pic}^{0}(B) \rightarrow \widehat{A}=\operatorname{Pic}^{0}(A), \hat{f}(Q):=f^{*} D_{Q}$.
- $(\widehat{g \circ f})=\hat{f} \circ \hat{g}$;
- Pairings:
$0 \rightarrow K \rightarrow A \xrightarrow{f} B \rightarrow 0$ induces $0 \rightarrow \hat{K} \rightarrow \hat{B} \xrightarrow{\hat{f}} \widehat{A} \rightarrow 0$ with $\hat{K} \simeq \operatorname{Hom}\left(K, \mathbb{G}_{m}\right)$. Apply $\operatorname{Hom}\left(\cdot, \mathbb{G}_{m}\right)$ and use $\widehat{A} \simeq \operatorname{Ext}^{1}\left(A, \mathbb{G}_{m}\right)$
- $e_{f}: K \times \hat{K} \rightarrow \mathbb{G}_{m}$ Weil-Cartier pairing
- $f=[\ell]: e_{W, \ell}: A[\ell] \times \widehat{A}[\ell] \rightarrow \mu_{\ell}$ Weil pairing;
- Compatibility of pairings and isogenies: on $T_{\ell} A \times T_{\ell} \hat{B}$,

$$
e_{f}(x, y)=e_{B}(f(x), y)=e_{A}(x, \hat{f}(y))
$$

- Biduality: $\widehat{\hat{A}} \simeq A, \hat{\hat{f}} \simeq f$ (canonically).

By the universal property of $\widehat{A}=\operatorname{Pic}^{0}(A)$, id : $\widehat{A} \rightarrow \widehat{A}$ corresponds to the Poincaré sheaf P on $A \times \widehat{A}$, and P is "symmetric", $e_{P}\left(\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)\right)=e\left(x, y^{\prime}\right) e\left(x^{\prime}, y\right)^{-1}$.

Isogenies and polarisations

- $f: A \rightarrow B$ isogeny.
- v_{1}, \ldots, v_{m} coordinates on B given by sections of \mathscr{D}_{B}.
- Then $u_{i}:=v_{i} \circ f$ are coordinates on A given by sections of $D_{A}:=f^{*} D_{B}$.
- $\operatorname{deg} D_{A}=\operatorname{deg} f \cdot \operatorname{deg} D_{B}$.
- $f:\left(A, \lambda_{A}\right) \rightarrow\left(B, \lambda_{B}\right)$ isogeny of ppavs.
- If λ_{A} is induced by Θ_{A} (resp. λ_{B} by Θ_{B}), a model of A (resp. B) will be given by coordinates of $m \Theta_{A}$ (resp. $m \Theta_{B}$), where $m=2,3,4 \ldots$ is small.
- We want to relate Θ_{A} with $f^{*} \Theta_{B}$ (or relate $m \Theta_{A}$ with $f^{*} m \Theta_{B}$).

N -isogenies

Definition

An isogeny $f:\left(A, \lambda_{A}\right) \rightarrow\left(B, \lambda_{B}\right)$ between ppav is an N-isogeny if $f^{*} \Theta_{B} \sim N \Theta_{A}$.

- $\Phi_{f^{*} \Theta_{B}}(P)=t_{P}^{*} f^{*} \Theta_{B}-f^{*} \Theta_{B}=f^{*}\left(t_{f(P)}^{*} \Theta_{B}-\Theta_{B}\right)=f^{*} \Phi_{\Theta_{B}}(f(P))=\left(\hat{f} \circ \Phi_{\Theta_{B}} \circ f\right)(P)$;
- $f^{*} \lambda_{B}:=\hat{f} \circ \lambda_{B} \circ f ;$
- f is an N-isogeny $\Leftrightarrow f^{*} \lambda_{B}=N \lambda_{A}$;

$$
\begin{aligned}
& A \xrightarrow{f} B \\
& \downarrow_{A} \\
& \hat{A} \stackrel{\lambda_{B}}{\stackrel{(}{f}} \\
& \hat{B}
\end{aligned}
$$

N-isogenies

Definition

An isogeny $f:\left(A, \lambda_{A}\right) \rightarrow\left(B, \lambda_{B}\right)$ between ppav is an N-isogeny if $f^{*} \Theta_{B} \sim N \Theta_{A}$.

- $\Phi_{f^{*} \Theta_{B}}(P)=t_{P}^{*} f^{*} \Theta_{B}-f^{*} \Theta_{B}=f^{*}\left(t_{f(P)}^{*} \Theta_{B}-\Theta_{B}\right)=f^{*} \Phi_{\Theta_{B}}(f(P))=\left(\hat{f} \circ \Phi_{\Theta_{B}} \circ f\right)(P)$;
- $f^{*} \lambda_{B}:=\hat{f} \circ \lambda_{B} \circ f ;$
- f is an N-isogeny $\Leftrightarrow f^{*} \lambda_{B}=N \lambda_{A}$;
- Contragredient isogeny: $\tilde{f}=\lambda_{A}^{-1} \hat{f} \lambda_{B}: B \rightarrow A$;

- f is an N-isogeny $\Leftrightarrow \tilde{f f}=N \Leftrightarrow f \tilde{f}=N$.

Example

An isogeny $f: E_{1} \rightarrow E_{2}$ between elliptic curves is automatically an N-isogeny where $N=\operatorname{deg} f$.

N -isogenies and isotropic kernels

- Compatibility with pairings: on $T_{\ell} A \times T_{\ell} B, e_{\lambda_{B}}(f(x), y)=e_{\lambda_{A}}(x, \tilde{f}(y))$.
- $f:\left(A, \lambda_{A}\right) \rightarrow\left(B, \lambda_{B}\right) N$-isogeny $\Rightarrow \operatorname{Ker} f$ is maximal isotropic in $A[N]$ for the Weil pairing
- $\operatorname{Ker} f=\operatorname{Im} \tilde{f} \mid B[N], \operatorname{Ker} f$ is dual to $\operatorname{Ker} \tilde{f}$
- Conversely, if $K \subset A[N]$ maximal isotropic, $N \lambda_{A}$ descends to a principal polarisation on $B=A / K$.
The pairing $e_{\lambda_{A}, N}=e_{\Phi_{N \lambda}}$ on $A[N] \times A[N]$ is also the commutator pairing of Mumford's theta group $G\left(N \Theta_{A}\right)$. If K is isotropic, it admits a lift \widetilde{K} in $G\left(N \Theta_{A}\right)$, so $N \Theta_{A}$ descends to a divisor Θ_{B} on $B=A / K$. The degree relation shows that $\operatorname{deg} \Theta_{B}=1$ if K is maximal.
- If $f:\left(A, \lambda_{A}\right) \rightarrow\left(B, \lambda_{B}\right)$ has maximal isotropic kernel in $A[N], N \lambda_{A}$ descends to a principal polarisation λ_{B}^{\prime} on B.
- But we may have $\lambda_{B}^{\prime} \neq \lambda_{B}$.
- $\tilde{f} \circ f=N$ is a stronger condition that ensures compatibility of f with λ_{B}.
- f is an N-isogeny $\Leftrightarrow e_{\lambda_{B}}(f(x), f(y))=e_{\lambda_{A}}(x, y)^{N}$ on $T_{\ell} A \times T_{\ell} A$.

Properties of contragredient isogenies

Biduality: $\tilde{f}=f$.

Composition: $f: A \rightarrow B$ a N-isogeny, $g: B \rightarrow C$ a M-isogeny, $g \circ f: A \rightarrow C$.

- $\widetilde{g \circ f}=\tilde{f} \circ \tilde{g}: C \rightarrow A$;
- $(\widetilde{g \circ f}) \circ(g \circ f)=\tilde{f} \circ \tilde{g} \circ g \circ f=N M$.
- The composition $g \circ f$ is an NM-isogeny.
- Conversely, if $g \circ f$ is an N-isogeny and f (resp. g) is an M-isogeny, then g (resp. f) is an N / M-isogeny.
- An N-isogeny is always the composition of ℓ_{i}-isogenies for $\ell_{i} \mid N$.

Product polarisation:

- $\left(A, \lambda_{A}\right) \times\left(B, \lambda_{B}\right)=\left(A \times B, \lambda_{A} \times \lambda_{B}\right)$ where $\lambda_{A} \times \lambda_{B}: A \times B \rightarrow \widehat{A} \times \hat{B}$ is the product.
- $F=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right):\left(A \times B, \lambda_{A} \times \lambda_{B}\right) \rightarrow\left(C \times D, \lambda_{C} \times \lambda_{D}\right)$.
- $\hat{F}=\left(\begin{array}{ll}\hat{a} & \hat{b} \\ \hat{c} & \hat{d}\end{array}\right): \hat{C} \times \hat{D} \rightarrow \hat{A} \times \hat{B}$.
- $\tilde{F}=\left(\begin{array}{ll}\tilde{a} & \tilde{b} \\ \tilde{c} & \tilde{d}\end{array}\right): C \times D \rightarrow A \times B$.
- Exercice: check that the 8×8-matrix at the beginning of the talk is a N^{\prime}-isogeny.

Polarisations and symmetric endomorphisms

- $\left(A, \lambda_{A}\right)$ ppav
- $\phi \in \operatorname{End}^{\lambda}(A) \mapsto \lambda_{A} \circ \phi$ induces a bijection between endomorphisms ϕ invariant under the Rosatti involution ($\widetilde{\phi}=\phi$) and polarisations: $N S(A) \simeq \operatorname{End}^{\lambda}(A)$.
- Let $\beta \in \operatorname{End}^{\lambda}(A), f$ is a β-isogeny if $\tilde{f f}=\beta$.
- If $f: A \rightarrow B$ is any isogeny, λ_{A}, λ_{B} principal polarisations, then f is a β-isogeny where $\beta=\tilde{f} f$. In particular $\operatorname{Ker} f$ is maximal isotropic for the e_{β} pairing on $A[\beta]$.

Example

- Via the product principal polarisation $\left(A \times B, \lambda_{A} \times \lambda_{B}\right), F=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is symmetric $(\tilde{F}=F)$ iff $\tilde{a}=a, \tilde{d}=d, \tilde{b}=c$.
- $N S(A \times B)=N S(A) \times N S(B) \times \operatorname{Hom}(A, B)$.
- An ℓ-isogeny of abelian varieties has kernel of type $(\mathbb{Z} / \ell \mathbb{Z})^{g}$.
- An ℓ^{2}-isogeny of elliptic curves can have kernel of type $\mathbb{Z} / \ell^{2} \mathbb{Z}$ or $\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}$.
- An ℓ^{2}-isogeny of abelian surfaces can have kernel of type $\left(\mathbb{Z} / \ell^{2} \mathbb{Z}\right)^{2}$ or $\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell^{2} \mathbb{Z}$ or $(\mathbb{Z} / \ell \mathbb{Z})^{4}$.
- If an abelian surface $\left(A, \lambda_{A}\right)$ has $\operatorname{RM} \operatorname{End}^{\lambda_{A}}(A)=O_{K}$ a real quadratic order and $\ell=\beta \beta^{c}$, a β-isogeny will have cyclic kernel $\mathbb{Z} / \ell \mathbb{Z}$.

Outline

2 Polarised abelian varieties

3 Isogenies and polarisations

4 Algorithms for isogenies

Algorithms for N -isogenies (overview)

- Input: generators P_{1}, \ldots, P_{g} of K, a maximal isotropic kernel for $A[N]$, a point $P \in A$ given by coordinates u_{i}, where u_{i} are sections of $m \Theta_{A}$.
- Output: A description of $B=A / K$, and the coordinates $v_{i}(Q)$ where $Q=f(P)$, where v_{i} are sections of $m \Theta_{B}\left(\Theta_{B}\right.$ a descent of $N \Theta_{A}$ by $\left.f: A \rightarrow B\right)$.
- Construct $D=f^{*} m \Theta_{B}$ on A.

This is a divisor invariant by translation by K and algebraically equivalent to $N m \Theta_{A}$. The converse is true by descent theory.
(O) Construct the coordinates $v_{i} \circ f$ on A.

These are sections of \mathscr{D} invariant by translation on K, and the converse is true:

$$
\Gamma\left(B, m \Theta_{B}\right) \simeq \Gamma\left(A, f^{*} m \Theta_{B}\right)^{K}
$$

(Evaluate these coordinates on $P: v_{i}(Q)=v_{i} \circ f(P)$.

Vélu's formula

- Weierstrass coordinates x, y on $E=$ sections of $3\left(0_{E}\right)$. $\left(x\right.$ is a section of $2\left(0_{E}\right), y$ of $3\left(0_{E}\right)$.)
- K maximal isotropic in $E[N]$.
- $D=\sum_{P \in K} t_{P}^{*}\left(3\left(0_{E}\right)\right)=\sum_{P \in K} 3(P)$ is certainly invariant by K;
- So D descends to $3\left(0_{E^{\prime}}\right)$ on $E^{\prime}=E / K$;
- x, y are sections of \mathscr{D} but are not invariant by translation;
- $X(P)=\sum_{T \in K} X(P+T)$ and $Y(P)=\sum_{T \in K} Y(P+T)$ are sections of \mathcal{D} invariant by translation;
- They descend to Weierstrass coordinates on E^{\prime};
- This is Vélu's formula (up to a constant).
- Cost: $O(N)$.
- Recover equations for E^{\prime} via the formal group law.

Revisiting Vélu's formula

- Recall: $\mathcal{D}=\sum_{P \in K} t_{P}^{*} 3\left(0_{E}\right)$;
- We want to construct sections U of \mathscr{D} that are of the form $U=v \circ f, v$ a coordinate on E^{\prime}.
- Equivalently: U is invariant by translation by K.
- In particular: $\operatorname{div} U$ is a divisor invariant by translation by K such that $\operatorname{div} U+D \geq 0$.
- If $\mathcal{E}=\operatorname{div} f_{\varepsilon}$ is a principal divisor invariant by translation, $f_{\mathcal{E}}$ may not be invariant by translation!

Lemma

Let $\mathcal{E}=\sum_{i} a_{i} \sum_{T \in K}\left(P_{i}+T\right)=\operatorname{div} f_{\varepsilon}$ a principal divisor and $P_{0}:=\sum a_{i} P_{i}$. Then f_{ε} is invariant by translation iff $P_{0} \in K$.

Proof.

If $T \in K, f_{\varepsilon}(x+T) / f_{\mathcal{E}}(x)=e_{f}\left(T, f\left(P_{0}\right)\right)=e_{N}\left(T, P_{0}\right)$. So f_{ε} is invariant by $K \Leftrightarrow P_{0} \in E[\ell]$ is orthogonal to $K \Leftrightarrow P_{0} \in K \Leftrightarrow f\left(P_{0}\right)=0$.

Revisiting Vélu's formula

- Recall: $\mathcal{D}=\sum_{P \in K} t_{P}^{*} 3\left(0_{E}\right)$;
- We want to construct sections U of \mathcal{D} that are of the form $U=v \circ f, v$ a coordinate on E^{\prime}.
- Equivalently: U is invariant by translation by K.
- In particular: $\operatorname{div} U$ is a divisor invariant by translation by K such that $\operatorname{div} U+D \geq 0$.
- If $\mathcal{E}=\operatorname{div} f_{\varepsilon}$ is a principal divisor invariant by translation, f_{ε} may not be invariant by translation!

Lemma

Let $\mathcal{E}=\sum_{i} a_{i} \sum_{T \in K}\left(P_{i}+T\right)=\operatorname{div} f_{\varepsilon}$ a principal divisor and $P_{0}:=\sum a_{i} P_{i}$.Then f_{ε} is invariant by translation iff $P_{0} \in K$.

Example

- Take $Q_{1}, Q_{2} \in E(k), \varepsilon=\sum_{T \in K}\left(\left(Q_{1}+T\right)+\left(-Q_{1}+T\right)-\left(Q_{2}+T\right)-\left(-Q_{2}+T\right)\right)$,
- $f_{\mathcal{E}}=\prod_{T \in K} \frac{x-x\left(\mathrm{Q}_{1}+T\right)}{x-x\left(\mathrm{Q}_{2}+T\right)}$ (convention: $x-0_{E}:=1$).
- f_{ε} is invariant by translation and descends to $\frac{X-f\left(Q_{1}\right)}{X-f\left(Q_{2}\right)}$ on $E / K, X$ a Weierstrass coordinate.
- When $Q_{2}=0_{E}$, we recover formula from [Costello-Hisil, 2017], [Renes, 2017].
- Used by the sqrtVelu algorithm!

Vélu's formula in higher dimension?

- $\left(A, \Theta_{A}\right)$ ppav, K maximal isotropic in $A[N]$
- $D=\sum_{P \in K} t_{P}^{*}\left(m \Theta_{A}\right)$ is certainly invariant by K;
- If u is a section of $m \Theta_{A}, U(P)=\sum_{T \in K} u(P+T)$ is certainly a section of \mathscr{D} invariant by K.
- But $\mathcal{D} \sim N^{g} m \Theta_{A}$;
- So it descends to a divisor $\sim N^{g-1} m \Theta_{B}$!
- Our coordinates have degree too big (unless $g=1$).

The theta group

- $N m \Theta_{A}$ is not invariant by K
- So it does not descend to $m \Theta_{B}$
- But it is linearly equivalent to \mathscr{D}, a divisor invariant by $K: \mathscr{D}=N m \Theta_{A}+\operatorname{div} g$.
- So $\operatorname{div}\left(g / t_{T}^{*} g\right)=t_{T}^{*} N m \Theta_{A}-N m \Theta_{A}$.
- Goal: construct D. Equivalently construct g.
- Find functions g_{T} such that $\operatorname{div} g_{T}=t_{T}^{*} N m \Theta_{A}-N m \Theta_{A}$
- Try to glue these functions into a global function g (cocycle condition):
$g_{T}(P)=g(P) / g(P+T)$.
- Theta group: $G\left(N m \Theta_{A}\right)=\left\{\left(T, g_{T}\right) \mid \operatorname{div} g_{T}=t_{T}^{*} N m \Theta_{A}-N m \Theta_{A}\right\}$
- Gluing condition $\Leftrightarrow K \rightarrow G\left(N m \Theta_{A}\right), T \mapsto\left(T, g_{T}\right)$ is a group section;
- Twisted trace: if U is a section of $N m \Theta_{A}, U^{\prime}(P)=\sum_{T \in K} g_{T}(P) U(P+T)$ is a section of \mathcal{D} invariant by K, hence descends to $B=A / K$.

General framework for an N -isogeny algorithm

- Find functions $g_{T}, \operatorname{div} g_{T}=t_{T}^{*} N m \Theta_{A}-N m \Theta_{A}$ for each $T \in K$, that glue together.
(Use symmetry: Θ_{A} symmetric divisor, g_{T} symmetric.
(2) Unique choice if N is odd, two choices for each T when N is even \Rightarrow annoying!

Twisted Vélu's formula: if $K=\langle T\rangle, X(P)=\sum_{i \in \mathbb{Z} / N \mathbb{Z}} \zeta_{N}^{i} X(P+T), Y(P)=\sum_{i \in \mathbb{Z} / N \mathbb{Z}} \zeta_{N}^{i} Y(P+T)$.
Eg: if N is even, $X(P)=\sum_{i \in \mathbb{Z} / N \mathbb{Z}}(-1)^{i} X(P+T)$ descends to a section on the symmetric divisor $2 f(W), W \in E[2]-K$.

General framework for an N -isogeny algorithm

- Find functions $g_{T}, \operatorname{div} g_{T}=t_{T}^{*} N m \Theta_{A}-N m \Theta_{A}$ for each $T \in K$, that glue together.
(0) Generate sections U of $N m \Theta_{A}$.
- The multiplication map $\Gamma\left(m_{1} \Theta_{A}\right) \otimes \Gamma\left(m_{2} \Theta_{A}\right) \rightarrow \Gamma\left(\left(m_{1}+m_{2}\right) \Theta_{A}\right), u \otimes v \mapsto u v$ is surjective if $m_{1} \geq 3, m_{2} \geq 2$ [Mumford, Koizumi, Kempf].
- $\Sigma_{\alpha \in \overparen{A}} \Gamma\left(A, m_{1} \Theta_{A} \otimes P_{\alpha}\right) \Gamma\left(A, m_{2} \Theta_{A} \otimes P_{-\alpha}\right)=\Gamma\left(A,\left(m_{1}+m_{2}\right) \Theta_{A}\right)$ [Mumford] for $m_{1}, m_{2}>0$.

So we can always generate all sections of $\Gamma\left(N m \Theta_{A}\right)$ using multiplications of sections of $\Gamma\left(m \Theta_{A}\right)$, eventually using also translations if $m \leq 2$.

General framework for an N -isogeny algorithm

- Find functions $g_{T}, \operatorname{div} g_{T}=t_{T}^{*} N m \Theta_{A}-N m \Theta_{A}$ for each $T \in K$, that glue together.
- Generate sections U of $N m \Theta_{A}$.
- Take the twisted traces of the sections U.
- This gives coordinates (section of $m \Theta_{B}$) on B
- More work required to recover a suitable model of B (depends on the model).

General framework for an N -isogeny algorithm

- Find functions $g_{T}, \operatorname{div} g_{T}=t_{T}^{*} N m \Theta_{A}-N m \Theta_{A}$ for each $T \in K$, that glue together.
- Generate sections U of $N m \Theta_{A}$.
- Take the twisted traces of the sections U.
- This gives coordinates (section of $m \Theta_{B}$) on B
- More work required to recover a suitable model of B (depends on the model).
- Summary [R. 2021]: from an effective version of the Theorem of the square:

$$
t_{P+Q}^{*} \Theta_{A}+\Theta_{A}-t_{P}^{*} \Theta_{A}-t_{Q}^{*} \Theta_{A}=\operatorname{div} \mu_{P, Q^{\prime}}
$$

there is a general framework to

- Compute the addition law;
(3) Compute the Weil and Tate pairings;
- Compute isogenies.

Isogenies in the theta model

- Analytic theta functions:

$$
\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i^{t}(n+a) \Omega(n+a)+2 \pi i^{t}(n+a)(z+b)} \quad a, b \in \mathbb{Q}^{g}
$$

- Universal
- Work with theta functions of level $m=2$ or $m=4: m^{g}$ coordinates.
- Rationality: rational $\Gamma(m, 2 m)$-symplectic structure.
- N-isogenies in $O\left(N^{g}\right)$.
- Implementations in Magma (AVIsogenies) and Sage (ThetAV)
- General framework for β-isogenies but requires bootstrapping (still more work needed!).
- Theta functions $\theta_{A \times B}$ for the product theta structure on $A \times B$ are simply product of theta functions $\theta_{A} \cdot \theta_{B}$.
- $\left(\begin{array}{cc}N_{1} & 0 \\ 0 & N_{2}\end{array}\right)$-isogenies in $O\left(N_{1}^{g} N_{2}^{g}\right)$.
- Moduli: $\chi(\tau)=\prod \theta\left[\begin{array}{l}a / 2 \\ b / 2\end{array}\right](\tau)$ describes interesting modular locus: the locus of product of elliptic curves when $g=2\left(\chi_{10}\right)$, the locus of products and Jacobians of hyperelliptic curves when $g=3\left(\chi_{18}\right)$.
The modular form $g\left(A, w_{A}\right)=\prod_{\left(B, w_{B}\right)} \chi_{10}\left(B, w_{B}\right)$ of weight $10\left(\ell^{3}+\ell^{2}+\ell+1\right)$ (whose product is across all normalised ℓ-isogenies) describes the locus $H_{\ell^{2}}$ of ℓ-split abelian surfaces (the Humbert surface of discriminant ℓ^{2}). Expressed as a polynomial P in terms of $\psi_{4}, \psi_{6}, \chi_{10}, \chi_{12}, P$ is of size $\widetilde{O}\left(\ell^{12}\right)$ and can be computed in quasi-linear time by evaluation-interpolation. Checking if $\left(A, \Theta_{A}\right) / \mathbb{F}_{q}$ is inzian ℓ-split can then be done by evaluating $P\left(A, \Theta_{A}\right)$ in time $O\left(\ell^{9} \log q\right)$, or directly via the analytic method in $\widetilde{O}\left(\ell^{3}\left(\log q+d^{2}\right)\right)$.

Isogenies in the Jacobian model

- $\iota: C \rightarrow \mathrm{Jac}(C)$;
- If g is a function on C, it induces a function $\iota_{*} g$ on $\operatorname{Jac}(C)$ via $\left(\iota_{*} g\right)\left(\sum n_{i}\left(P_{i}\right)\right)=\prod g\left(P_{i}\right)^{n_{i}}$.
- All functions on $\mathrm{Jac}(\mathrm{C})$ can be built from $\iota_{*} g$ and determinants;
- NB: for pairings computations, the functions $\iota_{*} g$ are enough!
- N-isogenies between Jacobians in $\widetilde{O}\left(N^{g}\right)$ when $g=2$ [Couveignes-Ezome 2015] and $g=3$ [Milio 2019]
- Implementations in Magma.
- The extension to product of Jacobians should not be too hard.

Algorithms for isogenies

- Better algorithms for β-isogenies;
- $\widetilde{O}\left(N^{g / 2}\right)$-algorithms?
- Batch isogeny evaluation?
- More compact models of abelian varieties?
- Evaluating an isogeny on a point is only a small topic of algorithms related to isogenies: modular polynomials, explicit Kodaira-Spencer isomorphism, differential equations, ...

