Isogenies, Polarisations and Real Multiplication 2015/10/06 - Journées C2 - La Londe-Les-Maures

Gaëtan Bisson, Romain Cosset, Alina Dudeanu, Sorina Ionica, Dimitar Jetchev, David Lubicz, Chloe Martindale, Enea Milio, Damien Robert, Marco Streng
université
*BORDEAUX

Outline

(1) Isogenies on elliptic curves

2 Abelian varieties and polarisations
(3) Maximal isotropic isogenies
4. Cyclic isogenies and Real Multiplication
(5) Isogeny graphs in dimension 2

Isogenies between elliptic curves

Definition

An isogeny is a (non trivial) algebraic map $f: E_{1} \rightarrow E_{2}$ between two elliptic curves such that $f(P+Q)=f(P)+f(Q)$ for all geometric points $P, Q \in E_{1}$.

Theorem

An algebraic map f: $E_{1} \rightarrow E_{2}$ is an isogeny if and only if $f\left(0_{E_{1}}\right)=0_{E_{2}}$

Corollary

An algebraic map between two elliptic curves is either

- trivial (i.e. constant)
- or the composition of a translation with an isogeny.

Remark

- Isogenies are surjective (on the geometric points). In particular, if E is ordinary, any curve isogenous to E is also ordinary.
- Two elliptic curves over \mathbb{F}_{q} are isogenous if and only if they have the same number of points (Tate).

Algorithmic aspect of isogenies

- Given a kernel $K \subset E(\bar{k})$ compute the isogenous elliptic curve E / K;
- Given a kernel $K \subset E(\bar{k})$ and $P \in E(k)$ compute the image of P under the isogeny $E \rightarrow E / K$;
- Given a kernel $K \subset E(\bar{k})$ compute the map $E \rightarrow E / K$;
- Given an elliptic curve E / k compute all isogenous (of a certain degree d) elliptic curves E^{\prime};
- Given two elliptic curves E_{1} and E_{2} check if they are d-isogenous and if so compute the kernel $K \subset E_{1}(\bar{k})$.

Algorithmic aspect of isogenies

- Given a kernel $K \subset E(\bar{k})$ compute the isogenous elliptic curve E / K (Vélu's formulae [Vél71]);
- Given a kernel $K \subset E(\bar{k})$ and $P \in E(k)$ compute the image of P under the isogeny $E \rightarrow E / K$ (Vélu's formulae [Vél71]);
- Given a kernel $K \subset E(\bar{k})$ compute the map $E \rightarrow E / K$ (formal version of Vélu's formulae [Koh96]);
- Given an elliptic curve E / k compute all isogenous (of a certain degree d) elliptic curves E^{\prime} (Modular polynomial [Eng09; BLS12]);
- Given two elliptic curves E_{1} and E_{2} check if they are d-isogenous and if so compute the kernel $K \subset E_{1}(\bar{k})$ (Elkie's method via a differential equation [Elk92; Bos+08]).
\Rightarrow We have quasi-linear algorithms for all these aspects of isogeny computation over elliptic curves.

Destructive cryptographic applications

- An isogeny $f: E_{1} \rightarrow E_{2}$ transports the DLP from E_{1} to E_{2}. This can be used to attack the DLP on E_{1} if there is a weak curve on its isogeny class (and an efficient way to compute an isogeny to it).

Example

- Extend attacks using Weil descent [GHSO2]
- Transfert the DLP from the Jacobian of an hyperelliptic curve of genus 3 to the Jacobian of a quartic curve [Smiog].

Constructive cryptographic applications

- One can recover informations on the elliptic curve E modulo ℓ by working over the ℓ-torsion.
- But by computing isogenies, one can work over a cyclic subgroup of cardinal ℓ instead.
- Since thus a subgroup is of degree ℓ, whereas the full ℓ-torsion is of degree ℓ^{2}, we can work faster over it.

Example

- The SEA point counting algorithm [Sch95; Mor95; Elk97];
- The CRT algorithms to compute class polynomials [Sut11; ES10];
- The CRT algorithms to compute modular polynomials [BLS12].

Further applications of isogenies

- Splitting the multiplication using isogenies can improve the arithmetic [DIK06; Gau07];
- The isogeny graph of a supersingular elliptic curve can be used to construct secure hash functions [CLG09];
- Construct public key cryptosystems by hiding vulnerable curves by an isogeny (the trapdoor) [Tes06], or by encoding informations in the isogeny graph [RS06];
- Take isogenies to reduce the impact of side channel attacks [Sma03];
- Construct a normal basis of a finite field [CL09];
- Improve the discrete logarithm in \mathbb{F}_{q}^{*} by finding a smoothness basis invariant by automorphisms [CL08].

Computing explicit isogenies

- If E_{1} and E_{2} are two elliptic curves given by short Weierstrass equations $y^{2}=x^{3}+a_{i} x+b_{i}$ an isogeny $f: E_{1} \rightarrow E_{2}$ is of the form

$$
f(x, y)=\left(R_{1}(x), y R_{2}(x)\right)
$$

where R_{1} and R_{2} are rational functions. (Exercice: $f\left(0_{E_{1}}\right)=0_{E_{2}}$; what does this implies on the degrees of R_{1} and R_{2} ?)

- Let $w_{E}=d x / 2 y$ be the canonical differential. Then $f^{*} w_{E^{\prime}}=c w_{E}$, with c in k so

$$
f(x, y)=\left(\frac{g(x)}{h(x)}, c y\left(\frac{g(x)}{h(x)}\right)^{\prime}\right),
$$

where $h(x)=\prod_{P \in \operatorname{Kerf}\left\{\left\{_{E}\right\}\right.}\left(x-x_{P}\right)$.

Theorem ([Vél71])

Given the equation h of the kernel Kerf, Vélu's formula can compute the isogeny f in time linear in degf.

Modular polynomials

Here $k=\bar{k}$.

Definition (Modular polynomial)

The modular polynomial $\varphi_{\ell}(x, y) \in \mathbb{Z}[x, y]$ is a bivariate polynomial such that $\varphi_{\ell}(x, y)=0 \Leftrightarrow x=j\left(E_{1}\right)$ and $y=j\left(E_{2}\right)$ with E_{1} and $E_{2} \ell$-isogeneous.

- Roots of $\varphi_{\ell}\left(j\left(E_{1}\right),.\right) \Leftrightarrow$ elliptic curves ℓ-isogeneous to E_{1}. There are $\ell+1=\# \mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)$ such roots if ℓ is prime.
- φ_{ℓ} is symmetric;
- The height of φ_{ℓ} grows as $\widetilde{O}(\ell)$;
- φ_{ℓ} has total size $\widetilde{O}\left(\ell^{3}\right)$.

- Let E / \mathbb{F}_{q} be an ordinary elliptic curve, $\chi_{\pi}=X^{2}-t X+q$ the characteristic polynomial of the Frobenius π;
- $\# E\left(\mathbb{F}_{q}\right)=1-t+q$.
- $\Delta_{\pi}=t^{2}-4 q<0$ (since $t \leqslant 2 \sqrt{q}$ by Hasse) so $\operatorname{End}(E) \supset \mathbb{Z}[\pi]$ is an order in $K=\mathbb{Q}\left(\sqrt{\Delta_{\pi}}\right)$ a quadratic imaginary field;
- Write $\Delta_{\pi}=\Delta_{0} f^{2}$, where Δ is the discriminant of K, then f is the conductor of $\mathbb{Z}[\pi] \subset O_{K}$.
- Conversely fix N in the Hasse-Weil interval, and let $t=1+q-N$ and O_{K} be the maximal order in $\mathbb{Q}\left(\sqrt{\Delta_{\pi}}\right)$;
- If E / \mathbb{F}_{q} has endomorphism ring O_{K} (or an order in K containing $\mathbb{Z}[\pi]$), then $\# E\left(\mathbb{F}_{q}\right)=N$.

Complex Multiplication

Theorem (Fondamental theorem of Complex Multiplication)

Let K be a quadratic imaginary field, E / \mathbb{C} an elliptic curve with $\operatorname{End}(E)=O_{K}$.

- $j(E)$ is algebraic and $K(j(E))$ is the Hilbert class field \mathfrak{H}_{K} of K (the maximal unramified abelian extension of K).
- The minimal polynomial of $j(E)$ is

$$
H_{K}(X)=\prod_{\sigma \in \operatorname{Gal}\left(\mathfrak{H}_{K} / K\right) \simeq \mathrm{Cl}(K)}(X-\sigma(j(E)))=\prod_{E_{i} / \mathbb{C} \mid \operatorname{End}\left(E_{i}\right)=O_{K}}\left(X-j\left(E_{i}\right)\right) \in \mathbb{Z}[X]
$$

where for $\sigma=[I] \in \operatorname{Gal}\left(\mathfrak{H}_{K} / K\right) \simeq \mathrm{Cl}(K), \sigma(j(E))=j(E / E[I])$;

- If $p=\mathfrak{p}_{1} \mathfrak{p}_{2}$ splits in K, and \mathfrak{P} is a prime above p in \mathfrak{H}_{K} then E has good reduction at p and $E_{\mathbb{F}_{\mathfrak{F}}}$ is an ordinary elliptic curve over $\mathbb{F}_{\mathfrak{P}}$. The extension $\mathbb{F}_{\mathfrak{P}} / \mathbb{F}_{p}$ has degree the order of $\left[\mathfrak{p}_{i}\right] \in \mathrm{Cl}\left(O_{K}\right)$ and $\operatorname{End}\left(E_{\mathbb{F}_{\mathfrak{P}}}\right)=O_{K}$
- In particular if p splits completely in \mathfrak{H}_{K} (or equivalently if \mathfrak{p}_{i} is principal), then H_{K} splits over \mathbb{F}_{p} :

$$
H_{K} \equiv \prod_{E / \mathbb{F}_{p} \mid \operatorname{End}(E)=O_{K}}(X-j(E)) \bmod p
$$

The CRT method to compute the class polynomial H_{K}

(1) Find p completely split in \mathfrak{H}_{K};
(2) Find all $\# \mathrm{Cl}(K)$ elliptic curves E over \mathbb{F}_{p} with $\operatorname{End}(E)=O_{K}$;
(0) Recover $H_{K} \bmod p=\prod_{E / \mathcal{F}_{\nu} \mid \operatorname{End}(E)=o_{K}}(X-j(E))$;
(1) Iterate the process for several primes p_{i} and use the CRT to recover H_{K} from $H_{K} \bmod p_{i}$.

Theorem ([Bel+08; Sut11])

Using isogenies in Step 3 to

- Compute End (E) for a random E / \mathbb{F}_{p};
- Go up in the volcano once a curve E in the right isogeny class is found;
- Once a curve E / \mathbb{F}_{p} is found with $\operatorname{End}(E)=O_{K}$ compute all the others directly from the action of $\mathrm{Cl}(K)$;
yields a quasi-linear algorithm.

Computing End (E) and going up in the volcano [Koh96; FM02]

- If E / \mathbb{F}_{q} is ordinary, $\# E\left(\mathbb{F}_{q}\right)$ gives π and so $\mathbb{Z}[\pi] \subset \operatorname{End}(E) \subset O_{K}$;
- It remains to compute the conductor f of $\operatorname{End}(E)$;
- It suffices to compute $v_{\ell}(f)$ for ℓ dividing the conductor f_{π} of $\mathbb{Z}[\pi]$;
- In the ℓ-isogeny graph, following three paths allows to determine the height we are on, and from it the valuation $v_{\ell}(f)$.
- A similar method is used to go up in the volcano.

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie group V / Λ with

- A complex vector space V of dimension g;
- A \mathbb{Z}-lattice Λ in V (of rank $2 g$);
- An Hermitian form H on V with $E(\Lambda, \Lambda) \subset \mathbb{Z}$ where $E=\operatorname{Im} H$ is symplectic.
- Such an Hermitian form H is called a polarisation on A. Conversely, any symplectic form E on V such that $E(\Lambda, \Lambda) \subset \mathbb{Z}$ and $E(i x, i y)=E(x, y)$ for all $x, y \in V$ gives a polarisation H with $E=\operatorname{Im} H$.
- Over a symplectic basis of Λ, E is of the form.

$$
\left(\begin{array}{cc}
0 & D_{\delta} \\
-D_{\delta} & 0
\end{array}\right)
$$

where D_{δ} is a diagonal positive integer matrix $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{g}\right)$ and $\delta_{1}\left|\delta_{2}\right| \cdots \mid \delta_{g}$.

- $\operatorname{deg} H=\prod \delta_{i} ; H$ is a principal polarisation if $\operatorname{deg} H=1$.

Principal polarisations

- If A is principally polarised, $A=\mathbb{C}^{g} /\left(\Omega \mathbb{Z}^{g} \oplus \mathbb{Z}^{g}\right)$ where the matrix Ω is in \mathfrak{H}_{g}, the Siegel space of symmetric matrices Ω with $\operatorname{Im} \Omega$ positive definite;
- The principal polarisation H is given by the matrix $(\operatorname{lm} \Omega)^{-1}$.
- The choice of a symplectic basis gives an action of $\mathrm{Sp}_{2 g}(\mathbb{Z})$ on \mathfrak{H}_{g} :

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \Omega=(a \Omega+b)(c \Omega+d)^{-1}
$$

- The moduli space of principally polarised abelian varieties is isomorphic to $\mathfrak{H}_{g} / \mathrm{Sp}_{2 g}(\mathbb{Z})$ and has dimension $g(g+1) / 2$.

Examples

- In dimension 1 all abelian varieties are principally polarised and are exactly the elliptic curves;
- In dimension 2 the absolutely simple principally polarised abelian surfaces are a Jacobian of an hyperelliptic curve of genus 2;
- In dimension 3 the absolutely simple principally polarised abelian threefold are a Jacobian of a curve of genus 3 .

Isogenies

Let $A=V / \Lambda$ and $B=V^{\prime} / \Lambda^{\prime}$.

Definition

An isogeny $f: A \rightarrow B$ is a bijective linear map $f: V \rightarrow V^{\prime}$ such that $f(\Lambda) \subset \Lambda^{\prime}$. The kernel of the isogeny is $f^{-1}\left(\Lambda^{\prime}\right) / \Lambda \subset A$ and its degree is the cardinal of the kernel.

- Two abelian varieties over a finite field are isogenous iff they have the same zeta function (Tate);
- A morphism of abelian varieties $f: A \rightarrow B$ (seen as varieties) is a group morphism iff $f\left(0_{A}\right)=0_{B}$.

The dual abelian variety

Definition

If $A=V / \Lambda$ is an abelian variety, its dual is $\widehat{A}=\operatorname{Hom}_{\overline{\mathbb{C}}}(V, \mathbb{C}) / \Lambda^{*}$. Here $\operatorname{Hom}_{\overline{\mathbb{C}}}(V, \mathbb{C})$ is the space of anti-linear forms and $\Lambda^{*}=\{f \mid f(\Lambda) \subset \mathbb{Z}\}$ is the orthogonal of Λ.

- If H is a polarisation on A, its dual H^{*} is a polarisation on \widehat{A}. Moreover, there is an isogeny $\Phi_{H}: A \rightarrow \widehat{A}$:

$$
x \mapsto H(x, \cdot)
$$

of degree $\operatorname{deg} H$. We note $K(H)$ its kernel.

- If $f: A \rightarrow B$ is an isogeny, then its dual is an isogeny $\widehat{f}: \widehat{B} \rightarrow \widehat{A}$ of the same degree.

Remark

The canonical pairing $A \times \widehat{A} \rightarrow \mathbb{C},(x, f) \mapsto f(x)$ induces a canonical principal polarisation on $A \times \widehat{A}$, the Poincaré bundle:

$$
E_{P}\left(\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right)\right)=f_{1}\left(x_{2}\right)-f_{2}\left(x_{1}\right)
$$

The pullback $\left(\mathrm{Id}, \varphi_{H}\right)^{*} E_{P}=2 E$.

Isogenies and polarisations

Definition

- An isogeny $f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ between polarised abelian varieties is an isogeny such that

$$
f^{*} H_{2}:=H_{2}(f(\cdot), f(\cdot))=H_{1} .
$$

- f is an ℓ-isogeny between principally polarised abelian varieties if H_{1} and H_{2} are principal and $f^{*} H_{2}=\ell H_{1}$.

An isogeny $f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ respect the polarisations iff the following diagram commutes

Isogenies and polarisations

Definition

- An isogeny $f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ between polarised abelian varieties is an isogeny such that

$$
f^{*} H_{2}:=H_{2}(f(\cdot), f(\cdot))=H_{1} .
$$

- f is an ℓ-isogeny between principally polarised abelian varieties if H_{1} and H_{2} are principal and $f^{*} H_{2}=\ell H_{1}$.
$f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ is an ℓ-isogeny between principally polarised abelian varieties iff the following diagram commutes

Isogenies and polarisations

Definition

- An isogeny $f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ between polarised abelian varieties is an isogeny such that

$$
f^{*} H_{2}:=H_{2}(f(\cdot), f(\cdot))=H_{1} .
$$

- f is an ℓ-isogeny between principally polarised abelian varieties if H_{1} and H_{2} are principal and $f^{*} H_{2}=\ell H_{1}$.

Proposition

If $K \subset A(\bar{k}), H_{1}$ descends to a polarisation H_{2} on A / K (ie $f^{*} H_{2}=H_{1}$) if and only if $\operatorname{Im} H_{1}\left(K+\Lambda_{1}, K+\Lambda_{1}\right) \subset \mathbb{Z}$ iff K is isotropic for the E_{1}-pairing. The degree of H_{2} is then $\operatorname{deg} H_{1} / \operatorname{deg} f^{2}$.

Example

Let $\Lambda_{1}=\Omega_{1} \mathbb{Z}^{g}+\mathbb{Z}^{g}, H_{1}=\ell\left(\operatorname{Im} \Omega_{1}\right)^{-1}$, then A / K is principally polarised $\left(A / K=\mathbb{C}^{g} /\left(\Omega_{2} \mathbb{Z}^{g}+\mathbb{Z}^{g}\right)\right)$ if $K=\frac{1}{\ell} \mathbb{Z}^{g}$ or $K=\frac{1}{\ell} \Omega \mathbb{Z}^{g}$.

- Let $\left(A, H_{0}\right)$ be a principally polarised abelian variety over \mathbb{C};
- $A=\mathbb{C}^{g} /\left(\Omega \mathbb{Z}^{g}+\mathbb{Z}^{g}\right)$ with $\Omega \in \mathfrak{H}_{g}$ and $H_{0}=(\mathfrak{j} \Omega)^{-1}$.
- All automorphic forms corresponding to a multiple of H_{0} come from the theta functions with characteristics:

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=\sum_{n \in \mathbb{Z}} e^{\pi i i^{t}(n+a) \Omega(n+a)+2 \pi i^{t}(n+a)(z+b)} \quad a, b \in \mathbb{Q}^{g}
$$

- Automorphic property:

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right]\left(\mathbf{z}+m_{1} \Omega+m_{2}, \Omega\right)=e^{2 \pi i\left(t a \cdot m_{2}-{ }^{t} b \cdot m_{1}\right)-\pi i^{t} m_{1} \Omega m_{1}-2 \pi i i^{t} m_{1} \cdot \mathbf{z}} \vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega) .
$$

- Define $\vartheta_{i}=\vartheta\left[\begin{array}{l}0 \\ \frac{1}{n}\end{array}\right]$ (., $\left.\frac{\Omega}{n}\right)$ for $i \in Z(\bar{n})=\mathbb{Z}^{g} / n \mathbb{Z}^{g}$
- $\left(\vartheta_{i}\right)_{i \in Z(\bar{n})}= \begin{cases}\text { coordinates system } & n \geqslant 3 \\ \text { coordinates on the Kummer variety } A / \pm 1 & n=2\end{cases}$

Computing isogenies in dimension 2

- Richelot formuluae [Ric36; Ric37] allows to compute 2-isogenies between Jacobians of hyperelliptic curves of genus 2 (ie maximal isotropic kernels in A[2]);
- The duplication formulae for theta functions

$$
\begin{gathered}
\vartheta\left[\begin{array}{l}
\chi \\
0
\end{array}\right]\left(0,2 \frac{\Omega}{n}\right)^{2}=\frac{1}{2^{g}} \sum_{t \in \frac{1}{2} \mathbb{Z}^{g} / \mathbb{Z}^{g}} e^{-2 i \pi 2^{t} \chi \cdot t} \vartheta\left[\begin{array}{l}
0 \\
t
\end{array}\right]\left(0, \frac{\Omega}{n}\right)^{2} \\
\vartheta\left[\begin{array}{l}
0 \\
i_{2}
\end{array}\right](0,2 \Omega)^{2}=\frac{1}{2^{g}} \sum_{i_{1}+i_{2}=0} \sum_{(\bmod 2)} \vartheta\left[i_{1}^{0}\right](0, \Omega) \vartheta\left[i_{2 / 2}^{0}\right](0, \Omega) \quad\left(\text { for all } \chi \in \frac{1}{2} \mathbb{Z}^{g} / \mathbb{Z}^{g}\right) ;
\end{gathered}
$$

allows to generalize Richelot formulae to any dimension;

- Dupont compute modular polynomials of level 2 in [Dup06] and started the computation of modular polynomials of level 3.
- Low degree formulae [DL08] effective for $\ell=3$ and made explicit in [Smi12];
- Via constructing functions on the Jacobian from functions on the curve [CE14].

The isogeny formula

$$
\begin{aligned}
& \ell \wedge n=1, \quad A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right), \quad B=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right) \\
& \vartheta_{b}^{A}:=\vartheta\left[\begin{array}{c}
0 \\
\frac{b}{n}
\end{array}\right]\left(\cdot, \frac{\Omega}{n}\right), \quad \vartheta_{b}^{B}:=\vartheta\left[\begin{array}{c}
0 \\
\frac{b}{n}
\end{array}\right]\left(\cdot, \frac{\ell \Omega}{n}\right)
\end{aligned}
$$

Theorem ([CR14; LR15])

Let F be a matrix of rank r such that ${ }^{t} F F=\ell \operatorname{Id}_{r}, X=(\ell x, 0, \ldots, 0)$ in $\left(\mathbb{C}^{g}\right)^{r}$ and $Y=Y F^{-1}=(x, 0, \ldots, 0) F^{T} \in\left(\mathbb{C}^{g}\right)^{r}, i \in(Z(\bar{n}))^{r}$ and $j=i F^{-1}$.

$$
\vartheta_{i_{1}}^{A}(\ell z) \ldots \vartheta_{i_{r}}^{A}(0)=\sum_{\substack{t_{1}, \ldots, t_{r} \in \frac{1}{\mathbb{Z}^{g}} / \mathbb{Z}^{g} \\ F\left(t_{1}, \ldots, t_{r}\right)=(0, \ldots, 0)}} \vartheta_{j_{1}}^{B}\left(Y_{1}+t_{1}\right) \ldots \vartheta_{j_{r}}^{B}\left(Y_{r}+t_{r}\right),
$$

This can be computed given only the equations (in a suitable form) of the kernel K. When K is rational, the complexity is $\widetilde{O}\left(\ell^{g}\right)$ or $\widetilde{O}\left(\ell^{2 g}\right)$ operations in \mathbb{F}_{q} according to whether $\ell \equiv 1$ or 3 modulo 4.

- "Record" isogeny computation: $\ell=1321$.

Birational invariants for $\mathfrak{H}_{g} / \mathrm{Sp}_{4}(\mathbb{Z})$

Definition

- The Igusa invariants are Siegel modular functions j_{1}, j_{2}, j_{3} for $\Gamma=\operatorname{Sp}_{4}(\mathbb{Z})$ defined by

$$
j_{1}:=\frac{h_{12}^{5}}{h_{10}^{6}}, \quad j_{2}:=\frac{h_{4} h_{12}^{3}}{h_{10}^{4}}, \quad j_{3}:=\frac{h_{16} h_{12}^{2}}{h_{10}^{4}}
$$

where the h_{i} are modular forms of weight i given by explicit polynomials in terms of theta constants.

- Invariants derived by Streng are better suited for computations:

$$
i_{1}:=\frac{h_{4} h_{6}}{h_{10}}, \quad i_{2}:=\frac{h_{4}^{2} h_{12}}{h_{10}^{2}}, \quad i_{3}:=\frac{h_{4}^{5}}{h_{10}^{2}} .
$$

- The three invariants $j_{i, \ell}(\Omega)=j_{i}(\ell \Omega)$ encode a principally polarised abelian surface ℓ-isogeneous to $A=\mathbb{C}^{g} /\left(\Omega \mathbb{Z}^{g}+\mathbb{Z}^{g}\right)$;
- All others ppav ℓ-isogenous to A comes from the action of $\Gamma / \Gamma_{0}(\ell)$ on Ω. The index is $\ell^{3}+\ell^{2}+\ell+1$.

Modular polynomials in dimension 2

Definition (ℓ-modular polynomials)

$$
\begin{gathered}
\Phi_{1, \ell}\left(X, j_{1}, j_{2}, j_{3}\right)=\prod_{r \in \Gamma / \Gamma_{0}(\ell)}\left(X-j_{1, \ell}^{r}\right) \\
\Psi_{i, \ell}\left(X, j_{1}, j_{2}, j_{3}\right)=\sum_{r \in \Gamma / \Gamma_{0}(\ell)} j_{i, \ell}^{\gamma} \prod_{r^{\prime} \in \Gamma / \Gamma_{0}(\ell) \backslash\{\gamma\}}\left(X-j_{1, \ell}^{r^{\prime}}\right) \quad(i=2,3) \\
\Phi_{1, \ell}, \Psi_{2, \ell}, \Psi_{3, \ell} \in \mathbb{Q}\left(j_{1}, j_{2}, j_{3}\right)[X] .
\end{gathered}
$$

- Computed via an evaluation-interpolation approach;
- Evaluation requires evaluating the modular invariants on Ω at high precision;
\Rightarrow Uses a generalized version of the AGM to compute theta functions in quasi-linear time in the precision [Dup06];
\Rightarrow Need to interpolate rational functions;
- Denominator describes the Humbert surface of discriminant ℓ^{2} [BL09; Gru10];
- Quasi-linear algorithm [Dup06; Mil14];
- Can be generalized to smaller modular invariants [Mil14].

Example of modular polynomials in dimension 2 [Mil14]

Invariant	ℓ	Size
Igusa	2	57 MB
Streng	2	2.1 MB
Streng	3	890 MB
Theta	3	175 KB
Theta	5	200 MB
Theta	7	29 GB

Example

The denominator of $\Phi_{1,3}$ for modular functions b_{1}, b_{2}, b_{3} derived from theta constant of level 2 is:
$1024 b_{3}^{6} b_{2}^{6} b_{1}^{10}-\left(\left(768 b_{3}^{8}+1536 b_{3}^{4}-256\right) b_{3}^{8}+1536 b_{3}^{8} b_{3}^{4}-256 b_{3}^{8}\right) b_{1}^{8}+\left(1024 b_{3}^{6} b_{2}^{10}+\right.$ $\left.\left(1024 b_{3}^{10}+2560 b_{3}^{6}-512 b_{3}^{2}\right) b_{2}^{6}-\left(512 b_{3}^{6}-64 b_{3}^{2}\right) b_{2}^{2}\right) b_{1}^{6}-\left(1536 b_{3}^{8} b_{2}^{8}+\left(-416 b_{3}^{4}+\right.\right.$ $\left.32) b_{2}^{4}+32 b_{3}^{4}\right) b_{1}^{4}-\left(\left(512 b_{3}^{6}-64 b_{3}^{2}\right) b_{2}^{6}-64 b_{3}^{6} b_{2}^{2}\right) b_{1}^{2}+256 b_{3}^{8} b_{2}^{8}-32 b_{3}^{4} b_{2}^{4}+1$.

Isogeny graphs in dimension $2\left(\ell=q_{1} q_{2}=Q_{1} Q_{1} Q_{2} Q_{2}\right)$

Isogeny graphs in dimension $2(\ell=q=Q Q)$

Isogeny graphs in dimension $2(\ell=q=Q Q)$

Non principal polarisations

- Let $f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ be an isogeny between principally polarised abelian varieties;
- When Kerf is not maximal isotropic in $A[\ell]$ then $f^{*} H_{2}$ is not of the form ℓH_{1};
- How can we go from the principal polarisation H_{1} to $f^{*} H_{1}$?

Non principal polarisations

Theorem (Birkenhake-Lange, Th. 5.2.4)

Let A be an abelian variety with a principal polarisation H_{1};

- Let $O_{0}=\operatorname{End}(A)^{s}$ be the real algebra of endomorphisms symmetric under the Rosati involution;
- Let $\mathrm{NS}(A)$ be the Néron-Severi group of line bundles modulo algebraic equivalence.
Then
- $\mathrm{NS}(A)$ is isomorphic to O_{0} via

$$
\beta \in O_{0} \mapsto H_{\beta}=\beta H_{1}=H_{1}(\beta \cdot, \cdot) ;
$$

- This induces a bijection between polarisations of degree d in $\operatorname{NS}(A)$ and totally positive symmetric endomorphisms of norm d in O_{0}^{++};
- The isomorphic class of a polarisation $H_{\beta} \in \mathrm{NS}(A)$ for $f \in O_{0}^{++}$correspond to the action $\varphi \mapsto \varphi^{*} \beta \varphi$ of the automorphisms of A.
- Let $f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ be an isogeny between principally polarised abelian varieties with cyclic kernel of degree ℓ;
- There exists β such that the following diagram commutes:

- β is an $(\ell, 0, \ldots, \ell, 0, \ldots)$-isogeny whose kernel is not isotropic for the H_{1}-Weil pairing on $A[\ell]$!
- β commutes with the Rosatti involution so is a real endomorphism (β is H_{1}-symmetric). Since H_{1} is Hermitian, β is totally positive.
- Kerf is maximal isotropic for βH_{1}; conversely if K is a maximal isotropic kernel in $A[\beta]$ then $f: A \rightarrow A / K$ fits in the diagram above.

Theorem ([Dudeanu, Jetchev, R.])

- Let (A, \mathscr{L}) be a ppav and $\beta \in \operatorname{End}(A)^{++}$be a totally positive real element of degree ℓ. Let $K \subset \operatorname{Ker} \beta$ be cyclic of degree ℓ (note that it is automatically isotropic). Then A / K is principally polarised.
- Conversely if there is a cyclic isogeny $f: A \rightarrow B$ of degree ℓ between ppav then there exists $\beta \in \operatorname{End}(A)^{++}$such that $\operatorname{Ker} f \subset \operatorname{Ker} \beta$.
- Given the kernel kerf we have a polynomial time algorithm in degffor computing the isogeny f.

Corollary

- If $N S(A)=\mathbb{Z}$ there are no cyclic isogenies to a ppav;
- For an ordinary abelian surface, if there is a cyclic isogeny of degree ℓ then ℓ splits into totally positive principal ideals in the real quadratic order which is locally maximal at ℓ. A cyclic isogeny does not change the real multiplication.
- Given $\beta \in O_{K_{0}}$ one can define the β-modular polynomial in terms of symmetric invariants of the Hilbert space $\mathfrak{H}_{1}^{g} /\left(\mathrm{Sl}_{2}\left(O_{K_{0}}\right) \oplus \mathrm{SI}_{2}\left(O_{K_{0}}\right)^{\sigma}\right)$;
- If $D=2$ or $D=5$ the symmetric Hilbert moduli space is rational and parametrized by two invariants: the Gundlach invariants;
- Use an evaluation-interpolation approach via the action of $\mathrm{SI}_{2}\left(O_{K_{0}}\right) / \Gamma_{0}\left(\beta_{i}\right)$ which give all the $\ell+1 \beta_{i}$-isogenies;
- For general D the Hilbert space is not unirational \Rightarrow we need to interpolate three invariants (the pull back of three Siegel invariants);
- There is an algebraic relation between the invariants we interpolate \Rightarrow need to normalise the modular polynomials by fixing a Gröbner basis.

Example of cyclic modular polynomials in dimension 2 [Milio-R.]

$\ell(D=2)$	Size (Gundlach)	Theta	$\ell(D=5)$	Size (Gundlach)	Theta
2	8.5 KB		5	22 KB	45 KB
7	172 KB		11	3.5 MB	308 KB
17	5.8 MB	221 KB	19	33 MB	3.6 MB
23	21 MB		29	188 MB	
31	70 MB		31	248 MB	
41	225 MB	7.2 MB			

Example

For $D=2, \beta=5+2 \sqrt{2} \mid 17$, using b_{1}, b_{2}, b_{3} pullback of level 2 theta functions on the Hilbert space, the denominator of $\Phi_{1, \beta}$ is $b_{3}^{6} b_{2}^{18}+\left(6 b_{3}^{8} 6 b_{3}^{4}+1\right) b_{2}^{16}+$ $\left(15 b_{3}^{10} 24 b_{3}^{6}+7 b_{3}^{2}\right) b_{2}^{14}+\left(20 b_{3}^{12} 42 b_{3}^{8}+9 b_{3}^{4}+2\right) b_{2}^{12}+\left(15 b_{3}^{14} 48 b_{3}^{10}+37 b_{3}^{6}+4 b_{3}^{2}\right) b_{2}^{10}+$ $\left(6 b_{3}^{16} 42 b_{3}^{12}+68 b_{3}^{8} 26 b_{3}^{4}+3\right) b_{2}^{8}+\left(b_{3}^{18} 24 b_{3}^{14}+37 b_{3}^{10}+8 b_{3}^{6} b_{3}^{2}\right) b_{2}^{6}+\left(6 b_{3}^{16}+\right.$ $\left.9 b_{3}^{12} 26 b_{3}^{8} 24 b_{3}^{4}+2\right) b_{2}^{4}+\left(7 b_{3}^{14}+4 b_{3}^{10} b_{3}^{6}\right) b_{2}^{2}+\left(b_{3}^{16}+2 b_{3}^{12}+3 b_{3}^{8}+2 b_{3}^{4}+1\right)$.

Abelian varieties with real and complex multiplication

- Let K be a CM field (a totally imaginary quadratic extension of a totally real field K_{0} of dimension g);
- An abelian variety with RM by K_{0} is of the form $\mathbb{C}^{g} /\left(\Lambda_{1} \oplus \Lambda_{2} \tau\right)$ where Λ_{i} is a lattice in K_{0}, K_{0} is embedded into \mathbb{C}^{g} via $K_{0} \otimes_{\mathbb{Q}} \mathbb{R}=\mathbb{R}^{g} \subset \mathbb{C}^{g}$, and $\tau \in \mathfrak{H}_{1}^{g}$;
- The polarisations are of the form

$$
H\left(z_{1}, z_{2}\right)=\sum_{\varphi_{i} K \rightarrow C} \varphi_{i}\left(\lambda z_{1} \overline{z_{2}}\right) / \mathfrak{\Im} \tau_{i}
$$

for a totally positive element $\lambda \in K_{0}^{++}$. In other words if $x_{i}, y_{i} \in K_{0}$, then $E\left(x_{1}+y_{1} \tau, x_{2}+y_{2} \tau\right)=\operatorname{Tr}_{K_{0} / Q}\left(\lambda\left(x_{2} y_{1}-x_{1} y_{2}\right)\right)$.

- An abelian variety with CM by K is of the form $\mathbb{C}^{g} / \Phi(\Lambda)$ where Λ is a lattice in K and Φ is a CM-type.
- The polarisations are of the form

$$
E\left(z_{1}, z_{2}\right)=\operatorname{Tr}_{\mathrm{K} / \mathrm{Q}}\left(\xi z_{1} \overline{z_{2}}\right)
$$

for a totally imaginary element $\xi \in K$. The polarisation is principal iff $\xi \bar{\Lambda}=\Lambda^{\star}$ where Λ^{\star} is the dual of Λ for the trace.

- Let A be a principally polarised abelian surface over \mathbb{F}_{q} with CM by $O \subset O_{K}$ and RM by $O_{0} \subset O_{K_{0}}$;
- If O_{0} is maximal (locally at ℓ) and that we are in the split case: $(\ell)=\left(\beta_{1}\right)\left(\beta_{2}\right)$ in O_{0}, then $A[\ell]=A\left[\beta_{1}\right] \oplus A\left[\beta_{2}\right]$. Assume that β_{i} is totally positive.
- There are two kind of cyclic isogenies: β_{1}-isogenies ($K \subset A\left[\beta_{1}\right]$) and β_{2}-isogenies.
- Looking at β_{1} isogenies, we recover the volcano structure: $O=O_{0}+\mathrm{fO}_{\mathrm{K}}$ for a certain O_{0}-ideal f such that the conductor of O is $f \mathrm{O}_{K}$.
- If f is prime to β_{1}, there are 2,1 , or 0 horizontal isogenies according to whether β_{1} splits, is ramified or is inert in O. The others are descending to $O_{0}+\mathfrak{f} \beta_{1} O_{K}$;
- If \mathfrak{f} is not prime to β_{1} there is one ascending isogeny (to $O_{0}+\mathfrak{f} / \beta_{1} O_{K}$) and ℓ descending ones;
- We are at the bottom when the β_{1}-valuation of \mathfrak{f} is equal to the valuation of the conductor of $\mathbb{Z}[\pi, \bar{\pi}]$.
- ℓ-isogenies preserving O_{0} are a composition of a β_{1}-isogeny with a β_{2}-isogeny.
- When ℓ is inert, ℓ-isogenies preserving the $\mathrm{RM} O_{0}$ form a volcano.

Cyclic isogeny graph in dimension 2 [IT14]

β_{1} is inert and β_{2} is split in K.

Changing the real multiplication in dimension 2: moving between pancakes

Cyclic isogenies (that preserve principal polarisations) conserve real multiplication; so we need to look at ℓ-isogenies.

Proposition

- Let O_{ℓ} be the order of conductor ℓ inside $O_{K_{0}}$. ℓ-isogenies going from O_{ℓ} to $O_{K_{0}}$ are of the form

$$
\mathbb{C}^{g} /\left(O_{\ell} \oplus O_{\ell}^{\vee} \tau\right) \rightarrow \mathbb{C}^{g} /\left(O_{K_{0}} \oplus O_{K_{0}}^{\vee} \tau\right)
$$

- $\mathrm{SI}_{2}\left(O_{K_{0}} \oplus O_{K_{0}}^{\vee}\right) / \mathrm{SI}_{2}\left(O_{\ell} \oplus O_{\ell}^{\vee}\right)$ acts on such isogenies;
- When ℓ splits in $O_{K_{0}}, \mathrm{SI}_{2}\left(O_{K_{0}} \oplus O_{K_{0}}^{\vee}\right) / \mathrm{SI}_{2}\left(O_{\ell} \oplus O_{\ell}^{\vee}\right) \simeq$ $\mathrm{Sl}_{2}\left(O_{K_{0}} / \ell O_{K_{0}}\right) / \mathrm{SI}_{2}\left(O_{\ell} / \ell O_{\ell}\right) \simeq \mathrm{SL}_{2}\left(\mathbb{F}_{l}^{2}\right) / \mathrm{SI}_{2}\left(\mathbb{F}_{l}\right) \simeq \mathrm{SI}_{2}\left(\mathbb{F}_{l}\right)$, so we find $\ell^{3}-\ell$ ℓ-isogenies changing the real multiplication.
- On the other hand there is $(\ell+1)^{2} \ell$-isogenies preserving the real multiplication
- In total we find all $\ell^{3}+\ell^{2}+\ell+1 \ell$-isogenies.

Changing the real multiplication in dimension 2: moving between pancakes

Corollary ([Ionica, Martindale, R., Streng])
If O is maximal at ℓ,

- If ℓ is split there are $\ell^{2}+2 \ell+1 R M$-horizontal ℓ-isogenies and $\ell^{3}-\ell$ $R M$-descending ℓ-isogenies;
- If ℓ is inert there are $\ell^{2}+1$ RM-horizontal ℓ-isogenies and $\ell^{3}+\ell$ $R M$-descending ℓ-isogenies;
- If ℓ is ramified there are $\ell^{2}+\ell+1 R M$-horizontal ℓ-isogenies and ℓ^{3} $R M$-descending ℓ-isogenies;
If O is not maximal at ℓ, there are $1 R M$-ascending ℓ-isogeny, $\ell^{2}+\ell$
$R M$-horizontal ℓ-isogenies and $\ell^{3} R M$-descending ℓ-isogenies.
- AVIsogenies: Magma code written by Bisson, Cosset and R. http://avisogenies.gforge.inria.fr
- Released under LGPL $2+$.
- Implement isogeny computation (and applications thereof) for abelian varieties using theta functions.

Bibliography

J. Belding, R. Bröker, A. Enge, and K. Lauter. "Computing Hilbert Class Polynomials". In: ANTS.

Ed. by A. J. van der Poorten and A. Stein. Vol. 5011. Lecture Notes in Computer Science. Springer, 2008, pp. 282-295. ISBN: 978-3-540-79455-4 (cit. on p. 14).
A. Bostan, F. Morain, B. Salvy, and E. Schost. "Fast algorithms for computing isogenies between elliptic curves". In: Mathematics of Computation 77.263 (2008), pp. 1755-1778 (cit. on p. 5).
R. Bröker and K. Lauter. "Modular polynomials for genus 2". In: LMS J. Comput. Math. 12 (2009), pp. 326-339. ISSN: 1461-1570. arXiv: 0804.1565 (cit. on p. 27).
R. Bröker, K. Lauter, and A. Sutherland. "Modular polynomials via isogeny volcanoes". In: Mathematics of Computation 81.278 (2012), pp. 1201-1231. arXiv: 1001.0402 (cit. on pp. 5, 7).
D. Charles, K. Lauter, and E. Goren. "Cryptographic hash functions from expander graphs". In: Journal of Cryptology 22.1 (2009), pp. 93-113. ISSN: 0933-2790 (cit. on p. 8).
R. Cosset and D. Robert. "An algorithm for computing (ℓ, ℓ)-isogenies in polynomial time on Jacobians of hyperelliptic curves of genus 2". In: Mathematics of Computation (Nov. 2014). DOI: 10.1090/S0025-5718-2014-02899-8. URL: http://www.normalesup.org/~robert/pro/publications/articles/niveau.pdf. HAL: hal-00578991, eprint: 2011/143. (Cit. on p. 25).
J.-M. Couveignes and T. Ezome. "Computing functions on Jacobians and their quotients". In: (2014). arXiv: 1409.0481 (cit. on p. 24).
J. Couveignes and R. Lercier. "Galois invariant smoothness basis". In: Algebraic geometry and its applications (2008) (cit. on p. 8).
J. Couveignes and R. Lercier. "Elliptic periods for finite fields". In: Finite fields and their applications 15.1 (2009), pp. 1-22 (cit. on p. 8).
C. Doche, T. Icart, and D. Kohel. "Efficient scalar multiplication by isogeny decompositions". In: Public Key Cryptography-PKC 2006 (2006), pp. 191-206 (cit. on p. 8).
I. Dolgachev and D. Lehavi. "On isogenous principally polarized abelian surfaces". In: Curves and abelian varieties 465 (2008), pp. 51-69 (cit. on p. 24).
A. Dudeanu, jetchev, and D. Robert. "Computing cyclic isogenies in genus 2". Sept. 2013. In preparation.
R. Dupont. "Moyenne arithmetico-geometrique, suites de Borchardt et applications". In: These de doctorat, Ecole polytechnique, Palaiseau (2006) (cit. on pp. 24, 27).
N. Elkies. "Explicit isogenies". In: manuscript, Boston MA (1992) (cit. on p. 5).
N. Elkies. "Elliptic and modular curves over finite fields and related computational issues". In: Computational perspectives on number theory: proceedings of a conference in honor of AOL Atkin, September 1995, University of Illinois at Chicago. Vol. 7. Amer Mathematical Society. 1997, p. 21 (cit. on p. 7).
A. Enge. "Computing modular polynomials in quasi-linear time". In: Math. Comp 78.267 (2009), pp. 1809-1824 (cit. on p. 5).
A. Enge and A. Sutherland. "Class invariants by the CRT method, ANTS IX: Proceedings of the Algorithmic Number Theory 9th International Symposium". In: Lecture Notes in Computer Science 6197 (July 2010), pp. 142-156 (cit. on p. 7).
M. Fouquet and F. Morain. "Isogeny volcanoes and the SEA algorithm". In: Algorithmic Number Theory (2002), pp. 47-62 (cit. on Pp. 11, 15).
S. Galbraith, F. Hess, and N. Smart. "Extending the GHS Weil descent attack". In: Advances in Cryptology-EUROCRYPT 2002. Springer. 2002, pp. 29-44 (cit. on p. 6).
P. Gaudry. "Fast genus 2 arithmetic based on Theta functions". In: Journal of Mathematical Cryptology 1.3 (2007), pp. 243-265 (cit. on p. 8).
D. Gruenewald. "Computing Humbert surfaces and applications". In: Arithmetic, Geometry, Cryptography and Codint Theory 2009 (2010), pp. 59-69 (cit. on p. 27).
S. Ionica, C. Martindale, D. Robert, and M. Streng. "Isogeny graphs of ordinary abelian surfaces over a finite field". Mar. 2013. In preparation.
S. Ionica and E. Thomé. "Isogeny graphs with maximal real multiplication." In: IACR Cryptology ePrint Archive 2014 (2014), p. 230 (cit. on pp. 40, 41).
D. Kohel. "Endomorphism rings of elliptic curves over finite fields". PhD thesis. University of California, 1996 (cit. on pp. 5, 11, 15).
D. Lubicz and D. Robert. "Computing isogenies between abelian varieties". In: Compositio Mathematica 148.5 (Sept. 2012), pp. 1483-1515. DOI: 10.1112/S0010437X12000243. arXiv: 1001.2016 [math.AG]. URL:
http://www.normalesup.org/~robert/pro/publications/articles/isogenies.pdf. HAL: hal-00446062.
D. Lubicz and D. Robert. "Computing separable isogenies in quasi-optimal time". Feb. 2015. URL: http://www.normalesup.org/~robert/pro/publications/articles/rational.pdf. HAL: hal-00954895. (Cit. on p. 25).
E. Milio. "A quasi-linear algorithm for computing modular polynomials in dimension 2". In: arXiv preprint arXiv:1411.0409 (2014) (cit. on pp. 27, 28).
E. Milio and D. Robert. "Cyclic modular polynomials for Hilbert surface". July 2015. In preparation.
F. Morain. "Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects algorithmiques". In: J. Théor. Nombres Bordeaux 7 (1995), pp. 255-282 (cit. on p. 7).
F. Richelot. "Essai sur une méthode générale pour déterminer la valeur des intégrales ultra-elliptiques, fondée sur des transformations remarquables de ces transcendantes". In: C. R. Acad. Sci. Paris 2 (1836), pp. 622-627 (cit. on p. 24).
F. Richelot. "De transformatione Integralium Abelianorum primiordinis commentation". In: J. reine angew. Math. 16 (1837), pp. 221-341 (cit. on p. 24).
A. Rostovtsev and A. Stolbunov. "Public-key cryptosystem based on isogenies". In: International Association for Cryptologic Research. Cryptology ePrint Archive (2006). eprint: http://eprint.iacr.org/2006/145 (cit. on p. 8).
R. Schoof. "Counting points on elliptic curves over finite fields". In: J. Théor. Nombres Bordeaux 7.1 (1995), pp. 219-254 (cit. on p. 7).
N. Smart. "An analysis of Goubin's refined power analysis attack". In: Cryptographic Hardware and Embedded Systems-CHES 2003 (2003), pp. 281-290 (cit. on p. 8).
B. Smith. Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3 Hyperelliptic Curves. Feb. 2009. arXiv: 0806.2995 (cit. on p. 6).
B. Smith. "Computing low-degree isogenies in genus 2 with the Dolgachev-Lehavi method". In:
A. Sutherland. "Computing Hilbert class polynomials with the Chinese remainder theorem". In: Mathematics of Computation 80.273 (2011), pp. 501-538 (cit. on pp. 7, 14).
E. Teske. "An elliptic curve trapdoor system". In: Journal of cryptology 19.1 (2006), pp. 115-133 (cit. on p. 8).
J. Vélu. "Isogénies entre courbes elliptiques". In: Compte Rendu Académie Sciences Paris Série A-B 273 (1971), A238-A241 (cit. on pp. 5. 9).

