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Isogenies between elliptic curves

Definition

An isogeny is a (non trivial) algebraic map f : E1→ E2 between two elliptic
curves such that f(P+Q)= f(P)+ f(Q) for all geometric points P,Q � E1.

Theorem

An algebraic map f : E1→ E2 is an isogeny if and only if f(0E1)= 0E2

Corollary

An algebraic map between two elliptic curves is either

trivial (i.e. constant)

or the composition of a translation with an isogeny.

Remark

Isogenies are surjective (on the geometric points). In particular, if E is
ordinary, any curve isogenous to E is also ordinary.

Two elliptic curves over Fq are isogenous if and only if they have the
same number of points (Tate).
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Algorithmic aspect of isogenies

Given a kernel K⊂ E(k) compute the isogenous elliptic curve E/K ;

Given a kernel K⊂ E(k) and P � E(k) compute the image of P under the
isogeny E→ E/K ;

Given a kernel K⊂ E(k) compute the map E→ E/K ;

Given an elliptic curve E/k compute all isogenous (of a certain degree d)
elliptic curves E′ ;

Given two elliptic curves E1 and E2 check if they are d-isogenous and if
so compute the kernel K⊂ E1(k) .
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Algorithmic aspect of isogenies

Given a kernel K⊂ E(k) compute the isogenous elliptic curve E/K (Vélu’s
formulae [Vél71]);

Given a kernel K⊂ E(k) and P � E(k) compute the image of P under the
isogeny E→ E/K (Vélu’s formulae [Vél71]);

Given a kernel K⊂ E(k) compute the map E→ E/K (formal version of
Vélu’s formulae [Koh96]);

Given an elliptic curve E/k compute all isogenous (of a certain degree d)
elliptic curves E′ (Modular polynomial [Eng09; BLS12]);

Given two elliptic curves E1 and E2 check if they are d-isogenous and if
so compute the kernel K⊂ E1(k) (Elkie’s method via a differential
equation [Elk92; Bos+08]).

⇒ We have quasi-linear algorithms for all these aspects of isogeny
computation over elliptic curves.
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Destructive cryptographic applications

An isogeny f : E1→ E2 transports the DLP from E1 to E2. This can be used
to attack the DLP on E1 if there is a weak curve on its isogeny class (and
an efficient way to compute an isogeny to it).

Example

Extend attacks using Weil descent [GHS02]

Transfert the DLP from the Jacobian of an hyperelliptic curve of genus 3 to the
Jacobian of a quartic curve [Smi09].
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Constructive cryptographic applications

One can recover informations on the elliptic curve E modulo ` by
working over the `-torsion.

But by computing isogenies, one can work over a cyclic subgroup of
cardinal ` instead.

Since thus a subgroup is of degree `, whereas the full `-torsion is of
degree `2, we can work faster over it.

Example

The SEA point counting algorithm [Sch95; Mor95; Elk97];

The CRT algorithms to compute class polynomials [Sut11; ES10];

The CRT algorithms to compute modular polynomials [BLS12].
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Further applications of isogenies

Splitting the multiplication using isogenies can improve the arithmetic
[DIK06; Gau07];

The isogeny graph of a supersingular elliptic curve can be used to
construct secure hash functions [CLG09];

Construct public key cryptosystems by hiding vulnerable curves by an
isogeny (the trapdoor) [Tes06], or by encoding informations in the
isogeny graph [RS06];

Take isogenies to reduce the impact of side channel attacks [Sma03];

Construct a normal basis of a finite field [CL09];

Improve the discrete logarithm in F∗q by finding a smoothness basis
invariant by automorphisms [CL08].
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Computing explicit isogenies

If E1 and E2 are two elliptic curves given by short Weierstrass equations
y2 = x3+aix+bi an isogeny f : E1→ E2 is of the form

f(x,y)= (R1(x),yR2(x))

where R1 and R2 are rational functions. (Exercice: f(0E1)= 0E2 ; what
does this implies on the degrees of R1 and R2?)

Let wE = dx/2y be the canonical differential. Then f∗wE′ = cwE, with c in
k so

f(x,y)=

�

g(x)
h(x)

,cy

�

g(x)
h(x)

�′�

,

where h(x)=
∏

P�Ker f\{0E}(x−xP).

Theorem ([Vél71])

Given the equation h of the kernel Ker f, Vélu’s formula can compute the isogeny
f in time linear in deg f.
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Modular polynomials

Here k= k.

Definition (Modular polynomial)

The modular polynomial ϕ`(x,y) � Z[x,y] is a bivariate polynomial such that
ϕ`(x,y)= 0⇔ x= j(E1) and y= j(E2) with E1 and E2 `-isogeneous.

Roots of ϕ`(j(E1), .)⇔ elliptic curves `-isogeneous to E1.
There are `+ 1=#P1(F`) such roots if ` is prime.

ϕ` is symmetric;

The height of ϕ` grows as eO(`);

ϕ` has total size eO(`3).
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A 3-isogeny graph in dimension 1 [Koh96; FM02]
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Find elliptic curves with a prescribed number of points

Let E/Fq be an ordinary elliptic curve, χπ= X2− tX+q the characteristic
polynomial of the Frobenius π;

#E(Fq)= 1− t+q.

∆π= t2−4q< 0 (since t¶ 2pq by Hasse) so End(E)⊃Z[π] is an order in
K=Q(
p

∆π) a quadratic imaginary field;

Write ∆π=∆0f2, where ∆ is the discriminant of K, then f is the
conductor of Z[π]⊂OK.

Conversely fix N in the Hasse-Weil interval, and let t= 1+q−N and OK

be the maximal order in Q(
p

∆π);

If E/Fq has endomorphism ring OK (or an order in K containing Z[π]),
then #E(Fq)=N.
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Complex Multiplication

Theorem (Fondamental theorem of Complex Multiplication)

Let K be a quadratic imaginary field, E/C an elliptic curve with End(E)=OK.

j(E) is algebraic and K(j(E)) is the Hilbert class field HK of K (the maximal
unramified abelian extension of K).

The minimal polynomial of j(E) is

HK(X)=
∏

σ�Gal(HK/K)'Cl(K)

(X−σ(j(E)))=
∏

Ei/C|End(Ei)=OK

(X− j(Ei)) � Z[X]

where for σ= [I] �Gal(HK/K)'Cl(K), σ(j(E))= j(E/E[I]);

If p= p1p2 splits in K, and P is a prime above p in HK then E has good
reduction at p and EFP is an ordinary elliptic curve over FP. The extension
FP/Fp has degree the order of [pi] �Cl(OK) and End(EFP)=OK

In particular if p splits completely in HK (or equivalently if pi is principal),
then HK splits over Fp:

HK ≡
∏

E/Fp |End(E)=OK

(X− j(E)) mod p.
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The CRT method to compute the class polynomial HK

1 Find p completely split in HK;

2 Find all #Cl(K) elliptic curves E over Fp with End(E)=OK;

3 Recover HK mod p=
∏

E/Fp |End(E)=OK
(X− j(E));

4 Iterate the process for several primes pi and use the CRT to recover HK

from HK mod pi.

Theorem ([Bel+08; Sut11])

Using isogenies in Step 3 to

Compute End(E) for a random E/Fp;
Go up in the volcano once a curve E in the right isogeny class is found;

Once a curve E/Fp is found with End(E)=OK compute all the others
directly from the action of Cl(K);

yields a quasi-linear algorithm.
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Computing End(E) and going up in the volcano [Koh96; FM02]

If E/Fq is ordinary, #E(Fq) gives π and so Z[π]⊂ End(E)⊂OK;

It remains to compute the conductor f of End(E);

It suffices to compute v`(f) for ` dividing the conductor fπ of Z[π];
In the `-isogeny graph, following three paths allows to determine the
height we are on, and from it the valuation v`(f).

A similar method is used to go up in the volcano.
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Polarised abelian varieties over C

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie
group V/Λ with

A complex vector space V of dimension g;

A Z-lattice Λ in V (of rank 2g);

An Hermitian form H on V with E(Λ,Λ)⊂Z where E= ImH is
symplectic.

Such an Hermitian form H is called a polarisation on A. Conversely, any
symplectic form E on V such that E(Λ,Λ)⊂Z and E(ix, iy)= E(x,y) for all
x,y �V gives a polarisation H with E= ImH.
Over a symplectic basis of Λ, E is of the form.

�

0 Dδ
−Dδ 0

�

where Dδ is a diagonal positive integer matrix δ=(δ1,δ2, . . . ,δg) and
δ1 |δ2| · · · |δg.
degH=
∏

δi; H is a principal polarisation if degH= 1.



Isogenies on elliptic curves Abelian varieties and polarisations Maximal isotropic isogenies Cyclic isogenies Isogeny graphs in dimension 2

Principal polarisations

If A is principally polarised, A=Cg/(ΩZg⊕Zg) where the matrix Ω is in
Hg, the Siegel space of symmetric matrices Ωwith ImΩ positive definite;

The principal polarisation H is given by the matrix (ImΩ)−1.

The choice of a symplectic basis gives an action of Sp2g(Z) on Hg:

�

a b
c d

�

·Ω=(aΩ+b)(cΩ+d)−1;

The moduli space of principally polarised abelian varieties is
isomorphic to Hg/Sp2g(Z) and has dimension g(g+ 1)/2.

Examples

In dimension 1 all abelian varieties are principally polarised and are
exactly the elliptic curves;

In dimension 2 the absolutely simple principally polarised abelian
surfaces are a Jacobian of an hyperelliptic curve of genus 2;

In dimension 3 the absolutely simple principally polarised abelian
threefold are a Jacobian of a curve of genus 3.
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Isogenies

Let A=V/Λ and B=V′/Λ′.

Definition

An isogeny f : A→ B is a bijective linear map f :V→V′ such that f(Λ)⊂Λ′. The
kernel of the isogeny is f−1(Λ′)/Λ⊂ A and its degree is the cardinal of the
kernel.

Two abelian varieties over a finite field are isogenous iff they have the
same zeta function (Tate);

A morphism of abelian varieties f : A→ B (seen as varieties) is a group
morphism iff f(0A)= 0B.
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The dual abelian variety

Definition

If A=V/Λ is an abelian variety, its dual is bA=HomC(V,C)/Λ∗. Here
HomC(V,C) is the space of anti-linear forms and Λ∗= {f | f(Λ)⊂Z} is the
orthogonal of Λ.

If H is a polarisation on A, its dual H∗ is a polarisation on bA. Moreover,
there is an isogeny ΦH : A→ bA:

x 7→H(x, ·)

of degree degH. We note K(H) its kernel.
If f : A→ B is an isogeny, then its dual is an isogeny bf : bB→ bA of the same
degree.

Remark

The canonical pairing A×bA→C,(x, f) 7→ f(x) induces a canonical principal
polarisation on A×bA, the Poincaré bundle:

EP((x1, f1),(x2, f2))= f1(x2)− f2(x1).

The pullback (Id,ϕH)
∗EP = 2E.
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Isogenies and polarisations

Definition

An isogeny f : (A,H1)→ (B,H2) between polarised abelian varieties is an
isogeny such that

f∗H2 :=H2(f(·), f(·))=H1.

f is an `-isogeny between principally polarised abelian varieties if H1

and H2 are principal and f∗H2 = `H1.

An isogeny f : (A,H1)→ (B,H2) respect the polarisations iff the following
diagram commutes

A B

bA bB

f

bf

ΦH1 ΦH2
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Isogenies and polarisations

Definition

An isogeny f : (A,H1)→ (B,H2) between polarised abelian varieties is an
isogeny such that

f∗H2 :=H2(f(·), f(·))=H1.

f is an `-isogeny between principally polarised abelian varieties if H1

and H2 are principal and f∗H2 = `H1.

f : (A,H1)→ (B,H2) is an `-isogeny between principally polarised abelian
varieties iff the following diagram commutes

A B

A bA bB

f

bf

Φ`H1 ΦH2

[`]

ΦH1
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Isogenies and polarisations

Definition

An isogeny f : (A,H1)→ (B,H2) between polarised abelian varieties is an
isogeny such that

f∗H2 :=H2(f(·), f(·))=H1.

f is an `-isogeny between principally polarised abelian varieties if H1

and H2 are principal and f∗H2 = `H1.

Proposition

If K⊂ A(k), H1 descends to a polarisation H2 on A/K (ie f∗H2 =H1) if and only if
ImH1(K+Λ1,K+Λ1)⊂Z iff K is isotropic for the E1-pairing. The degree of H2 is
then degH1/deg f2.

Example

Let Λ1 =Ω1Zg+Zg, H1 = `(ImΩ1)
−1, then A/K is principally polarised

(A/K=Cg/(Ω2Zg+Zg)) if K= 1
`Zg or K=

1
`ΩZg.
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Theta functions

Let (A,H0) be a principally polarised abelian variety over C;
A=Cg/(ΩZg+Zg) with Ω �Hg and H0 =(ℑΩ)−1.
All automorphic forms corresponding to a multiple of H0 come from
the theta functions with characteristics:

ϑ [ ab ] (z,Ω)=
∑

n�Zg
eπi

t(n+a)Ω(n+a)+2πi t(n+a)(z+b) a,b �Qg

Automorphic property:

ϑ [ ab ] (z+m1Ω+m2,Ω)= e2πi(
ta·m2−tb·m1)−πi tm1Ωm1−2πi tm1 ·zϑ [ ab ] (z,Ω).

Define ϑi = ϑ
�

0
i
n

�

(., Ωn ) for i � Z(n)=Zg/nZg

(ϑi)i�Z(n) =

�

coordinates system n¾ 3
coordinates on the Kummer variety A/± 1 n= 2
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Computing isogenies in dimension 2

Richelot formuluae [Ric36; Ric37] allows to compute 2-isogenies
between Jacobians of hyperelliptic curves of genus 2 (ie maximal
isotropic kernels in A[2]);

The duplication formulae for theta functions

ϑ [χ0 ] (0,2
Ω

n
)2 =

1
2g
∑

t� 12 Zg/Zg
e−2iπ2

tχ ·tϑ [ 0t ] (0,
Ω

n
)2

ϑ
�

0
i/2

�

(0,2Ω)2 =
1
2g
∑

i1+i2=0 (mod 2)

ϑ
�

0
i1/2

�

(0,Ω)ϑ
�

0
i2/2

�

(0,Ω) (for all χ �
1
2
Zg/Zg);

allows to generalize Richelot formulae to any dimension;

Dupont compute modular polynomials of level 2 in [Dup06] and started
the computation of modular polynomials of level 3.

Low degree formulae [DL08] effective for `= 3 and made explicit in
[Smi12];

Via constructing functions on the Jacobian from functions on the curve
[CE14].
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The isogeny formula

`∧n= 1, A=Cg/(Zg+ΩZg), B=Cg/(Zg+ `ΩZg)

ϑAb := ϑ
�

0
b
n

�

�

·,
Ω

n

�

, ϑBb := ϑ
�

0
b
n

�

�

·,
`Ω

n

�

Theorem ([CR14; LR15])

Let F be a matrix of rank r such that tFF= ` Idr, X=(`x,0, ...,0) in (Cg)r and
Y= YF−1 =(x,0, . . . ,0)FT � (Cg)r, i � (Z(n))r and j= iF−1.

ϑAi1(`z) . . .ϑAir(0)=
∑

t1 ,...,tr� 1` Z
g/Zg

F(t1 ,...,tr)=(0,...,0)

ϑBj1(Y1+ t1) . . .ϑBjr(Yr+ tr),

This can be computed given only the equations (in a suitable form) of the kernel
K. When K is rational, the complexity is eO(`g) or eO(`2g) operations in Fq
according to whether `≡ 1 or 3 modulo 4.

“Record” isogeny computation: `= 1321.
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Birational invariants for Hg/Sp4(Z)

Definition

The Igusa invariants are Siegel modular functions j1, j2, j3 for Γ = Sp4(Z)
defined by

j1 :=
h512
h610

, j2 :=
h4h312
h410

, j3 :=
h16h212
h410

where the hi are modular forms of weight i given by explicit
polynomials in terms of theta constants.

Invariants derived by Streng are better suited for computations:

i1 :=
h4h6
h10

, i2 :=
h24h12
h210

, i3 :=
h54
h210

.

The three invariants ji,`(Ω)= ji(`Ω) encode a principally polarised
abelian surface `-isogeneous to A=Cg/(ΩZg+Zg);
All others ppav `-isogenous to A comes from the action of Γ/Γ0(`) on Ω.
The index is `3+ `2+ `+ 1.
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Modular polynomials in dimension 2

Definition (`-modular polynomials)

Φ1,`(X, j1, j2, j3)=
∏

γ�Γ/Γ0(`)

(X− jγ1,`)

Ψi,`(X, j1, j2, j3)=
∑

γ�Γ/Γ0(`)

jγi,`
∏

γ′�Γ/Γ0(`)\{γ}

(X− jγ
′

1,`) (i= 2,3)

Φ1,`,Ψ2,`,Ψ3,` �Q(j1, j2, j3)[X].

Computed via an evaluation–interpolation approach;
Evaluation requires evaluating the modular invariants on Ω at high
precision;

⇒ Uses a generalized version of the AGM to compute theta functions in
quasi-linear time in the precision [Dup06];

⇒ Need to interpolate rational functions;
Denominator describes the Humbert surface of discriminant `2 [BL09;
Gru10];
Quasi-linear algorithm [Dup06; Mil14];
Can be generalized to smaller modular invariants [Mil14].
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Example of modular polynomials in dimension 2 [Mil14]

Invariant ` Size

Igusa 2 57 MB
Streng 2 2.1 MB
Streng 3 890 MB
Theta 3 175 KB
Theta 5 200 MB
Theta 7 29 GB

Example

The denominator of Φ1,3 for modular functions b1, b2, b3 derived from theta
constant of level 2 is:
1024b63b

6
2b

10
1 − ((768b

8
3+ 1536b43−256)b

8
3+ 1536b83b

4
3−256b

8
3)b

8
1 +(1024b63b

10
2 +

(1024b103 +2560b63−512b
2
3)b

6
2− (512b

6
3−64b

2
3)b

2
2)b

6
1 − (1536b

8
3b

8
2+(−416b43+

32)b42+32b43)b
4
1 − ((512b

6
3−64b

2
3)b

6
2−64b

6
3b

2
2)b

2
1 +256b83b

8
2−32b

4
3b

4
2+ 1.
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Isogeny graphs in dimension 2 (`= q1q2 =Q1Q1Q2Q2)

3 3

3 3
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Isogeny graphs in dimension 2 (`= q=QQ)

3 3

3 3
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Isogeny graphs in dimension 2 (`= q=QQ)

3 3 3

3

3 3 3
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Isogeny graphs and lattice of orders [Bisson, Cosset, R.]
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Non principal polarisations

Let f : (A,H1)→ (B,H2) be an isogeny between principally polarised
abelian varieties;

When Ker f is not maximal isotropic in A[`] then f∗H2 is not of the form
`H1;

How can we go from the principal polarisation H1 to f∗H1?
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Non principal polarisations

Theorem (Birkenhake-Lange, Th. 5.2.4)

Let A be an abelian variety with a principal polarisation H1;

Let O0 = End(A)s be the real algebra of endomorphisms symmetric under
the Rosati involution;

Let NS(A) be the Néron-Severi group of line bundles modulo algebraic
equivalence.

Then

NS(A) is isomorphic to O0 via

β �O0 7→Hβ =βH1 =H1(β ·, ·);

This induces a bijection between polarisations of degree d in NS(A) and
totally positive symmetric endomorphisms of norm d in O++

0 ;

The isomorphic class of a polarisation Hβ �NS(A) for f �O
++
0 correspond to

the action ϕ 7→ϕ∗βϕ of the automorphisms of A.
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Cyclic isogeny

Let f : (A,H1)→ (B,H2) be an isogeny between principally polarised
abelian varieties with cyclic kernel of degree `;

There exists β such that the following diagram commutes:

A B

A bA bB

f

bf

Φf∗H2 ΦH2

β

ΦH1

β is an (`,0, . . . ,`,0, . . .)-isogeny whose kernel is not isotropic for the
H1-Weil pairing on A[`]!

β commutes with the Rosatti involution so is a real endomorphism (β
is H1-symmetric). Since H1 is Hermitian, β is totally positive.

Ker f is maximal isotropic for βH1; conversely if K is a maximal isotropic
kernel in A[β ] then f : A→ A/K fits in the diagram above.
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β -isogenies

Theorem ([Dudeanu, Jetchev, R.])

Let (A,L ) be a ppav and β � End(A)++ be a totally positive real element of
degree `. Let K⊂ Kerβ be cyclic of degree ` (note that it is automatically
isotropic). Then A/K is principally polarised.

Conversely if there is a cyclic isogeny f : A→ B of degree ` between ppav
then there exists β � End(A)++ such that Ker f⊂ Kerβ .
Given the kernel ker f we have a polynomial time algorithm in deg f for
computing the isogeny f.

Corollary

If NS(A)=Z there are no cyclic isogenies to a ppav;
For an ordinary abelian surface, if there is a cyclic isogeny of degree ` then
` splits into totally positive principal ideals in the real quadratic order
which is locally maximal at `. A cyclic isogeny does not change the real
multiplication.
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Cyclic modular polynomials in dimension 2 [Milio-R.]

Given β �OK0 one can define the β -modular polynomial in terms of
symmetric invariants of the Hilbert space H

g
1/(Sl2(OK0)⊕Sl2(OK0)

σ);

If D= 2 or D= 5 the symmetric Hilbert moduli space is rational and
parametrized by two invariants: the Gundlach invariants;

Use an evaluation–interpolation approach via the action of
Sl2(OK0)/Γ0(βi) which give all the `+ 1 βi-isogenies;

For general D the Hilbert space is not unirational⇒ we need to
interpolate three invariants (the pull back of three Siegel invariants);

There is an algebraic relation between the invariants we interpolate⇒
need to normalise the modular polynomials by fixing a Gröbner basis.
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Example of cyclic modular polynomials in dimension 2 [Milio-R.]

` (D= 2) Size (Gundlach) Theta ` (D= 5) Size (Gundlach) Theta

2 8.5KB 5 22KB 45KB
7 172KB 11 3.5MB 308KB
17 5.8MB 221KB 19 33MB 3.6MB
23 21 MB 29 188MB
31 70 MB 31 248 MB
41 225 MB 7.2MB

Example

For D= 2, β = 5+2
p
2 | 17, using b1,b2,b3 pullback of level 2 theta functions

on the Hilbert space, the denominator of Φ1,β is b63b
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2 +(6b836b

4
3+ 1)b162 +

(15b103 24b
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3+7b23)b
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2 +(20b123 42b

8
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3 +37b63+4b23)b
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2 +

(6b163 42b
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3 +68b8326b

4
3+3)b82+(b183 24b
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2
3)b
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2+(b163 +2b123 +3b83+2b43+ 1).
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Abelian varieties with real and complex multiplication

Let K be a CM field (a totally imaginary quadratic extension of a totally
real field K0 of dimension g);

An abelian variety with RM by K0 is of the form Cg/(Λ1⊕Λ2τ) where Λi is
a lattice in K0, K0 is embedded into Cg via K0⊗QR=Rg ⊂Cg, and τ �H

g
1 ;

The polarisations are of the form

H(z1,z2)=
∑

ϕi:K→C

ϕi(λz1z2)/ℑτi

for a totally positive element λ � K++
0 . In other words if xi,yi � K0, then

E(x1+ y1τ,x2+ y2τ)= TrK0/Q(λ(x2y1−x1y2)).

An abelian variety with CM by K is of the form Cg/Φ(Λ) where Λ is a
lattice in K and Φ is a CM-type.

The polarisations are of the form

E(z1,z2)= TrK/Q(ξz1z2)

for a totally imaginary element ξ � K. The polarisation is principal iff
ξΛ=Λ? where Λ? is the dual of Λ for the trace.
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Cyclic isogeny graph in dimension 2 [IT14]

Let A be a principally polarised abelian surface over Fq with CM by
O⊂OK and RM by O0 ⊂OK0 ;

If O0 is maximal (locally at `) and that we are in the split case:
(`)= (β1)(β2) in O0, then A[`] = A[β1]⊕A[β2]. Assume that βi is totally
positive.

There are two kind of cyclic isogenies: β1-isogenies (K⊂ A[β1]) and
β2-isogenies.

Looking at β1 isogenies, we recover the volcano structure: O=O0+ fOK
for a certain O0-ideal f such that the conductor of O is fOK.

If f is prime to β1, there are 2, 1, or 0 horizontal isogenies according to
whether β1 splits, is ramified or is inert in O. The others are descending to
O0+ fβ1OK;
If f is not prime to β1 there is one ascending isogeny (to O0+ f/β1OK) and `
descending ones;
We are at the bottom when the β1-valuation of f is equal to the valuation of
the conductor of Z[π,π].

`-isogenies preserving O0 are a composition of a β1-isogeny with a
β2-isogeny.

When ` is inert, `-isogenies preserving the RM O0 form a volcano.
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Cyclic isogeny graph in dimension 2 [IT14]

β1 is inert and β2 is
split in K.

3 3

3 3
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Changing the real multiplication in dimension 2: moving between
pancakes

Cyclic isogenies (that preserve principal polarisations) conserve real
multiplication; so we need to look at `-isogenies.

Proposition

Let O` be the order of conductor ` inside OK0 . `-isogenies going from O` to
OK0 are of the form

Cg/(O`⊕O∨`τ)→C
g/(OK0 ⊕O

∨
K0
τ).

Sl2(OK0 ⊕O
∨
K0
)/Sl2(O`⊕O∨` ) acts on such isogenies;

When ` splits in OK0 , Sl2(OK0 ⊕O
∨
K0
)/Sl2(O`⊕O∨` )'

Sl2(OK0/`OK0)/Sl2(O`/`O`)' SL2(F
2
l )/Sl2(Fl)' Sl2(Fl), so we find `

3− `
`-isogenies changing the real multiplication.

On the other hand there is (`+ 1)2 `-isogenies preserving the real
multiplication

In total we find all `3+ `2+ `+ 1 `-isogenies.
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Changing the real multiplication in dimension 2: moving between
pancakes

Corollary ([Ionica, Martindale, R., Streng])

If O is maximal at `,

If ` is split there are `2+2`+ 1 RM-horizontal `-isogenies and `3− `
RM-descending `-isogenies;

If ` is inert there are `2+ 1 RM-horizontal `-isogenies and `3+ `
RM-descending `-isogenies;

If ` is ramified there are `2+ `+ 1 RM-horizontal `-isogenies and `3

RM-descending `-isogenies;

If O is not maximal at `, there are 1 RM-ascending `-isogeny, `2+ `
RM-horizontal `-isogenies and `3 RM-descending `-isogenies.
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AVIsogenies [Bisson, Cosset, R.]

AVIsogenies: Magma code written by Bisson, Cosset and R.
http://avisogenies.gforge.inria.fr

Released under LGPL 2+.

Implement isogeny computation (and applications thereof) for abelian
varieties using theta functions.

http://avisogenies.gforge.inria.fr
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