Arithmetic on Elliptic Curves, Abelian varieties and Kummer varieties

2015/03/26 - EMA, Franceville, Gabon

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest
Institut de Mathématiques de Bordeaux
Équipe MACISA, Laboratoire International de Recherche en Informatique et Mathématiques Appliquées

université
${ }^{\text {®eBORDEAUX}}$

Discrete logarithm

Definition (DLP)

Let $G=\langle g\rangle$ be a cyclic group of prime order. Let $x \in \mathbb{N}$ and $h=g^{x}$. The discrete logarithm $\log _{g}(h)$ is x.

- Exponentiation: $O(\log p)$. DLP: $\widetilde{O}(\sqrt{\bar{p}})$ (in a generic group). So we can use the DLP for public key cryptography.
\Rightarrow We want to find secure groups with efficient addition law and compact representation.

Elliptic curves

Definition (char $k \neq 2,3$)

An elliptic curve is a plane curve with equation

$$
y^{2}=x^{3}+a x+b \quad 4 a^{3}+27 b^{2} \neq 0 .
$$

Exponentiation:

$$
(\ell, P) \mapsto \ell P
$$

Discrete logarithm:

$$
(P, \ell P) \mapsto \ell
$$

Scalar multiplication on an elliptic curve

Scalar multiplication on an elliptic curve

Scalar multiplication on an elliptic curve

ECC (Elliptic curve cryptography)

Example (NIST-p-256)

- E elliptic curve $y^{2}=x^{3}-3 x+$ 41058363725152142129326129780047268409114441015993725554835256314039467401291 Over $\mathbb{F}_{115792089210356248762697446949407573530086143415290314195533631308867097853951}$
- Public key:
$P=(48439561293906451759052585252797914202762949526041747995844080717082404635286$, $36134250956749795798585127919587881956611106672985015071877198253568414405109)$, $Q=(76028141830806192577282777898750452406210805147329580134802140726480409897389$, 85583728422624684878257214555223946135008937421540868848199576276874939903729)
- Private key: ℓ such that $Q=\ell P$.
- Used by the NSA;
- Used in Europeans biometric passports.

Addition law on the Weierstrass model

$E: y^{2}=x^{3}+a x+b$ (short Weierstrass form).

- Distinct points P and Q :

$$
\begin{gathered}
P+Q=-R=\left(x_{R},-y_{R}\right) \\
\lambda=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}} \\
x_{R}=\lambda^{2}-x_{P}-x_{Q} \\
y_{R}=y_{P}+\lambda\left(x_{R}-x_{P}\right)
\end{gathered}
$$

(If $x_{P}=x_{Q}$ then $P=-Q$ and $P+Q=0_{E}$).

- If $P=Q$, then λ comes from the tangent at P :

$$
\begin{gathered}
\lambda=\frac{3 x_{P}^{2}+b}{2 y_{P}} \\
x_{R}=\lambda^{2}-2 x_{P} \\
y_{R}=y_{P}+\lambda\left(x_{R}-x_{P}\right)
\end{gathered}
$$

\Rightarrow Avoid divisions by working with projective coordinates $(X: Y: Z)$:

$$
E: Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}
$$

- The scalar multiplication $P \mapsto n . P$ is computed via the standard double and add algorithm;
- On average $\log n$ doubling and $1 / 2 \log n$ additions;
- Standard tricks to speed-up include NAF form, windowing ...
- The multiscalar multiplication $(P, Q) \mapsto n . P+m . Q$ can also be computed via doubling and the addition of P, Q or $P+Q$ according to the bits of n and m;
- On average $\log N$ doubling and $3 / 4 \log N$ additions where $N=\max (n, m)$;
- GLV idea: if there exists an efficiently computable endomorphism α such that $\alpha(P)=u . P$ where $u \approx \sqrt{n}$, then replace the scalar multiplication $n . P$ by the multiscalar multiplication $n_{1} P+n_{2} \alpha(P)$;
- One can expect n_{1} and n_{2} to be half the size of $n \Rightarrow$ from $\log n$ doubling and $1 / 2 \log n$ additions to $1 / 2 \log n$ doubling and $3 / 8 \log n$ additions.

$$
E: x^{2}+y^{2}=1+d x^{2} y^{2}, d \neq 0,-1 .
$$

- Addition of $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$:

$$
P+Q=\left(\frac{x_{1} y_{2}+x_{2} y_{1}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

- When $d=0$ we get a circle (a curve of genus 0) and we find back the addition law on the circle coming from the sine and cosine laws;
- Neutral element: $(0,1) ;-(x, y)=(x, y) ; T=(1,0)$ has order $4,2 T=(0,1)$.
- If d is not a square in K , then there are no exceptional points: the denominators are always nonzero \Rightarrow complete addition laws;
\Rightarrow Very useful to prevent some Side Channel Attacks.
- $E: a x^{2}+y^{2}=1+d x^{2} y^{2}$;
- Extensively studied by Bernstein and Lange;
- Addition of $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$:

$$
P+Q=\left(\frac{x_{1} y_{2}+x_{2} y_{1}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-a x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

- Neutral element: $(0,1) ;-(x, y)=(x, y) ; T=(0,-1)$ has order 2 ;
- Complete addition if a is a square and d not a square.

Montgomery

- $E: B y^{2}=x^{3}+A x^{2}+x$;
- Birationally equivalent to twisted Edwards curves;
- The map $E \rightarrow \mathbb{A}^{1},(x, y) \mapsto(x)$ maps E to the Kummer line $K_{E}=E / \pm 1$;
- We represent a point $\pm P \in K_{E}$ by the projective coordinates $(X: Z)$ where $x=X / Z$;
- Differential addition: Given $\pm P_{1}=\left(X_{1}: Z_{1}\right), \pm P_{2}=\left(X_{2}: Z_{2}\right)$ and $\pm\left(P_{1}-P_{2}\right)=\left(X_{3}: Z_{3}\right)$; then one can compute $\pm\left(P_{1}+P_{2}\right)=\left(X_{4}: Z_{4}\right)$ by

$$
\begin{aligned}
& X_{4}=Z_{3}\left(\left(X_{1}-Z_{1}\right)\left(X_{2}+Z_{2}\right)+\left(X_{1}+Z_{1}\right)\left(X_{2}-Z_{2}\right)\right)^{2} \\
& Z_{4}=X_{3}\left(\left(X_{1}-Z_{1}\right)\left(X_{2}+Z_{2}\right)-\left(X_{1}+Z_{1}\right)\left(X_{2}-Z_{2}\right)\right)^{2}
\end{aligned}
$$

Montgomery's scalar multiplication

- The scalar multiplication $\pm P \mapsto \pm n . P$ can be computed through differential additions if we can construct a differential chain;
- If $\pm[n] P=\left(X_{n}-Z_{n}\right)$, then

$$
\begin{aligned}
& X_{m+n}=Z_{m-n}\left(\left(X_{m}-Z_{m}\right)\left(X_{n}+Z_{n}\right)+\left(X_{m}+Z_{m}\right)\left(X_{n}-Z_{n}\right)\right)^{2} \\
& Z_{m+n}=X_{m-n}\left(\left(X_{m}-Z_{m}\right)\left(X_{n}+Z_{n}\right)-\left(X_{m}+Z_{m}\right)\left(X_{n}-Z_{n}\right)\right)^{2}
\end{aligned}
$$

- Montgomery's ladder use the chain $n P,(n+1) P$;
- From $n P,(n+1) P$ the next iteration computes $2 n P,(2 n+1) P$ or $(2 n+1) P,(2 n+2) P$ via one doubling and one differential addition.

Jacobian of curves

C a smooth irreducible projective curve of genus g.

- Divisor: formal sum $D=\sum n_{i} P_{i}, \quad P_{i} \in C(\bar{k})$. $\operatorname{deg} D=\sum n_{i}$.
- Principal divisor: $\sum_{P \in C(\bar{k})} \nu_{P}(f) . P ; \quad f \in \bar{k}(C)$.

Jacobian of $C=$ Divisors of degree 0 modulo principal divisors

- + Galois action
$=$ Abelian variety of dimension g.
- Divisor class of a divisor $D \in \operatorname{Jac}(C)$ is generically represented by a sum of g points.

Higher dimension

Dimension 2:
Addition law on the Jacobian of an hyperelliptic curve of genus 2:

$$
y^{2}=f(x), \operatorname{deg} f=5
$$

$$
\begin{aligned}
& D=P_{1}+P_{2}-2 \infty \\
& D^{\prime}=Q_{1}+Q_{2}-2 \infty
\end{aligned}
$$

Higher dimension

Dimension 2:
Addition law on the Jacobian of an hyperelliptic curve of genus 2:

$$
y^{2}=f(x), \operatorname{deg} f=5
$$

Higher dimension

Dimension 2:
Addition law on the Jacobian of an hyperelliptic curve of genus 2:

$$
y^{2}=f(x), \operatorname{deg} f=5
$$

- $H: y^{2}=f(x), \operatorname{deg} f=2 g+1$: hyperelliptic curve of genus g with a rational point at infinity;
- Every divisor D can be represented by a reduced divisor

$$
\sum_{i=1}^{r}\left(P_{i}\right)-r(\infty)
$$

where $r \leqslant g$ and $P_{i} \neq-P_{j}$ for $i \neq j$;

- The divisor D is represented by its Mumford coordinates (u, v) where if $P_{i}=\left(x_{i}, y_{i}\right)$:

$$
\begin{gathered}
u(x)=\prod\left(x-x_{i}\right) \\
v\left(x_{i}\right)=y_{i} \\
\operatorname{deg} v<\operatorname{deg} u \leqslant g \\
u(x) \mid v(x)^{2}-f(x) ;
\end{gathered}
$$

The last condition encodes that $y-\nu(x)$ has multiplicity $m_{i}=\mathrm{v}_{P_{i}}(D)$ at P_{i}.

Cantor's algorithm

Algorithm

$$
\text { Input } D_{1}=\left(u_{1}, v_{1}\right), D_{2}=\left(u_{2}, v_{2}\right) \text {; }
$$

Output $D=(u, v)$ such that $D \sim D_{1}+D_{2}$;
(1) Semireduce: Compute the extended gcd of $u_{1}, u_{2}, v_{1}+v_{2}$

$$
\begin{gathered}
d=s_{1} u_{1}+s_{2} u_{2}+s_{3}\left(v_{1}+v_{2}\right) \\
u=\frac{u_{1} u_{2}}{d^{2}} \\
v=\frac{s_{1} u_{1} v_{2}+s_{2} u_{2} v_{1}+s_{3}\left(v_{1} v_{2}+f\right)}{d} \text { modulo } u
\end{gathered}
$$

(2) Reduce:

$$
\begin{gathered}
u=\frac{f-v^{2}}{u} \\
v=-v \text { modulo } u
\end{gathered}
$$

until $\operatorname{deg} u \leqslant g$.

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.

Example

- Elliptic curves= Abelian varieties of dimension 1 ;
- If C is a (smooth) curve of genus g, its Jacobian is an abelian variety of dimension g;
- In dimension $g=2$, every (absolutely simple principally polarised) abelian variety is the Jacobian of an hyperelliptic curve of genus 2;
- In dimension $g \geqslant 4$, not every abelian variety is a Jacobian.
- For the same level of security, abelian surfaces need fields half the size as for elliptic curves (good for embedded devices);
- The moduli space is of dimension 3 compared to $1 \Rightarrow$ more possibilities to find efficient parameters;
- Potential speed record (the record holder often change between elliptic curves and abelian surfaces);
- But lot of algorithms still lacking compared to elliptic curves!
- Abelian variety over $\mathbb{C}: A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$, where $\Omega \in \mathscr{H}_{g}(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic are analytic (quasi periodic) functions on \mathbb{C}^{g}.

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=\sum_{n \in \mathbb{Z} g} e^{\pi i^{t}(n+a) \Omega(n+a)+2 \pi i^{t}(n+a)(z+b)} \quad a, b \in \mathbb{Q}^{g}
$$

Quasi-periodicity:

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right]\left(z+m_{1} \Omega+m_{2}, \Omega\right)=e^{2 \pi i\left(^{t} a \cdot m_{2}-t b \cdot m_{1}\right)-\pi i^{t} m_{1} \Omega m_{1}-2 \pi i^{t} m_{1} \cdot z} \vartheta\left[\begin{array}{c}
a \\
b
\end{array}\right](z, \Omega) .
$$

- Projective coordinates: theta functions of level n

$$
\begin{array}{rll}
A & \longrightarrow & \mathbb{P}_{\mathbb{C}}^{n^{g}-1} \\
z & \longmapsto & \left(\vartheta_{i}(z)\right)_{i \in Z(\bar{n})}
\end{array}
$$

where $Z(\bar{n})=\mathbb{Z}^{g} / n \mathbb{Z}^{g}$ and $\vartheta_{i}=\vartheta\left[\begin{array}{l}0 \\ \frac{i}{n}\end{array}\right]\left(., \frac{\Omega}{n}\right)$.

Riemann relations $(k=\mathbb{C})$

$$
\begin{aligned}
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right) .
\end{aligned}
$$

where $\quad \chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\bar{n})$

$$
\begin{aligned}
& \left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=A(i, j, k, l) \\
& A=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

Example: differential addition in dimension 1 and in level 2

Algorithm

$$
\begin{aligned}
\text { Input } & z_{P}=\left(x_{0}, x_{1}\right), z_{Q}=\left(y_{0}, y_{1}\right) \text { and } z_{P-Q}=\left(z_{0}, z_{1}\right) \text { with } z_{0} z_{1} \neq 0 ; \\
& z_{0}=(a, b) \text { and } A=2\left(a^{2}+b^{2}\right), B=2\left(a^{2}-b^{2}\right) .
\end{aligned}
$$

Output $z_{P+Q}=\left(t_{0}, t_{1}\right)$.
(2) $t_{0}^{\prime}=\left(x_{0}^{2}+x_{1}^{2}\right)\left(y_{0}^{2}+y_{2}^{2}\right) / A$
(2) $t_{1}^{\prime}=\left(x_{0}^{2}-x_{1}^{2}\right)\left(y_{0}^{2}-y_{1}^{2}\right) / B$
(3) $t_{0}=\left(t_{0}^{\prime}+t_{1}^{\prime}\right) / z_{0}$
(4) $t_{1}=\left(t_{0}^{\prime}-t_{1}^{\prime}\right) / z_{1}$

Return $\left(t_{0}, t_{1}\right)$

- To use Riemann relations, one needs non zero theta null points;
- If the level n is even and $n>2$ then the embedding given by the theta functions of level n is always projectively normal (Mumford-Kempf);
- Projective normality is linked to the non annulation of some theta null points;
- It is thus always possible to compute the addition law on the abelian variety from Riemann relations.

Kummer varieties

- If the level $n=2$, then the theta coordinates give an embedding of the Kummer variety $\mathscr{K}=A / \pm 1$;
- No addition law on the Kummer variety;
- But still possible to define differential additions: from $\pm P, \pm Q$ and $\pm(P-Q)$ then $\pm(P+Q)$ is well defined;
- How to compute it?
- In Riemann relations, the theta constants appearing to the formulas correspond to the classical theta functions of level four $\vartheta\left[\begin{array}{c}\frac{a}{2} \\ \frac{b}{2}\end{array}\right](2 x, \Omega)$. They are even $($ resp. odd $)$ when $a \cdot b=0(\bmod 2)(\operatorname{resp} a \cdot b=1(\bmod 2))$.

Theorem (Mumford-Koizumi)

The even theta null points $\left\{\left.\vartheta\left[\begin{array}{c}\frac{a}{2} \\ \frac{b}{2}\end{array}\right](0, \Omega) \right\rvert\,(-1)^{t} a b=1\right\}$ are non null if and only if the embedding given by the theta functions of level 2 is projectively normal. Corollary ([Lubicz-R.])

- In this case, from the theta coordinates of P and Q we can recover all elements of the form $\vartheta_{i}(P+Q) \vartheta_{j}(P-Q)+\vartheta_{j}(P+Q) \vartheta_{i}(P-Q)$;
\Rightarrow Differential additions, Scalar multiplication.

Cost of the arithmetic with low level theta functions (char $k \neq 2$)

	Montgomery	Level 2	Jacobians coordinates
Doubling	$5 M+4 S+1 m_{0}$	$3 M+6 S+3 m_{0}$	$3 M+5 S$
Mixed Addition			$7 M+6 S+1 m_{0}$

Table: Multiplication cost in dimension 1 (one step).

	Mumford	Level 2	Level 4
Doubling	$34 M+7 S$		
Mixed Addition	$37 M+6 S$		

Table: Multiplication cost in dimension 2 (one step).

Arithmetic on Kummer and abelian varieties

We assume for simplicity from now on that $g=2$.

- An abelian surface A can be embedded into projective space via theta functions of level 4 in $\mathbb{P}^{15} \Rightarrow$ expensive arithmetic;
- If we use level 2 , we get an embedding of the Kummer surface K_{A} into $\mathbb{P}^{3} \Rightarrow$ very efficient arithmetic, but no general addition law;
- Mumford coordinates (u, v) yields an embedding of the non degenerate divisors into \mathbb{A}^{4}, somewhat efficient arithmetic;
- The image of a divisor in K_{A} can be represented by the coordinates (u, v^{2}), but there is no efficient differential addition;

Summary

On the Kummer variety, very efficient scalar multiplication given by theta functions of level 2 , competitive with the scalar multiplication on elliptic curves. But going back to the abelian variety means using level 4 theta functions. Do we really need 12 extra functions just to encode a choice of sign? Recall that in dimension 1, going from the Kummer line to the elliptic curve is simply adding y to x.

Arithmetic from Riemann relations

From now on we assume n even and that if $n=2$ then we are projectively normal.
Given $x=\left(\vartheta_{i}(x)\right)$ and $y=\left(\vartheta_{i}(y)\right)$, one can recover

- All $\vartheta_{i}(x+y) \vartheta_{j}(x-y)$ when $n>2$;
- All $\vartheta_{i}(x+y) \vartheta_{j}(x-y)+\vartheta_{j}(x+y) \vartheta_{i}(x-y)$ when $n=2$.

Proposition (2|n)

- Given $x=\left(\vartheta_{i}(x)\right)$, one can compute $-x=\left(\vartheta_{-i}(x)\right.$ (Opposite);
- Given the points x, y and $x-y$, one can compute $x+y$ (Differential addition);
- Given the points x_{1}, \ldots, x_{n} and the two by two sums $x_{i}+x_{j}$, one can recover $x_{1}+\ldots+x_{n}$ (Multiway addition).
(Multiway additions use a generalised version of Riemann relations.)

Remark

The previous arithmetic actually can be defined over affine lifts of the projective theta coordinates. These lifts correspond to the lift of the projection $\mathbb{C}^{g} \rightarrow \mathbb{C}^{g} / \Lambda$ when $\bar{k}=\mathbb{C}$. This extra affine data is crucial for isogenies or pairings computations [LR10; LR15].

(Projective) additions

Given x and y, we want to compute $x+y$.

- When $4 \mid n$, we can always compute $x+y$ by using Riemann relations;
- When $n=2$, we can compute the (sub-scheme) $\{x+y, x-y\}$ as follows:
- Let $\kappa_{i j}=\vartheta_{i}(x+y) \vartheta_{j}(x-y)+\vartheta_{j}(x+y) \vartheta_{i}(x-y)$;
- The roots of $\mathfrak{P}_{i}(X)=X^{2}-2 \frac{\kappa_{i 0}}{\kappa_{00}} X+\frac{\kappa_{i i}}{\kappa_{00}}$ are $\frac{\vartheta_{i}\left(z_{P}+z_{Q}\right)}{\vartheta_{0}\left(z_{P}+z_{Q}\right)}$ and $\frac{\vartheta_{i}\left(z_{P}-z_{Q}\right)}{\vartheta_{0}\left(z_{P}-z_{Q}\right)}$;
- We recover the subscheme $\{x+y, x-y\}$ via the equation $\mathfrak{P}_{\alpha}(X)=0$ and the linear relations coming from

$$
\left(\begin{array}{ll}
\vartheta_{0}(x+y) & \vartheta_{0}(x-y) \\
\vartheta_{\alpha}(x+y) & \vartheta_{\alpha}(x-y)
\end{array}\right)\binom{\vartheta_{i}(x-y)}{\vartheta_{i}(x+y)}=\binom{\kappa_{0 i}}{\kappa_{\alpha i}} ;
$$

- Recovering the set $\{x+y, x-y\}$ explicitly costs a square root in k.

Compatible additions

We work on the Kummer variety $K=A / \pm 1$.

Theorem

Let x, y, z, t be geometric points on A such that $x+y=z+t$ and $x-y \neq z-t$. Then one can compute $x+y=z+t$ on K.

Proof.

The corresponding point is just the intersection of $\{x+y, x-y\}$ and $\{z+t, z-t\}$. In practice this is just a gcd computation between two quadratic polynomials!

Projective multiway additions

Corollary (Projective multiway addition)

Let x_{0} be a point not of 2-torsion. Then from $x_{1}, \ldots, x_{n} \in K$ and $x_{0}+x_{1}, \ldots, x_{0}+x_{n} \in K$, one can compute $x_{1}+\ldots x_{n}$ and $x_{0}+x_{1}+\ldots x_{n}$.

Proof.

By an easy recursion, it suffices to look at the case $n=2$. In the previous theorem set $x=x_{1}, y=x_{2}, z=x_{0}+x_{1}, t=-x_{0}+x_{2}$ to recover $x_{1}+x_{2}$, and $x=x_{1}, y=x_{0}+x_{2}, z=x_{2}, t=x_{0}+x_{1}$ to recover $x_{0}+x_{1}+x_{2}$.

Remark

- The arithmetic here works only in the projective setting, that's why the projective multiway addition needs less input than the affine multiway addition;
- In the $n=2$ case above, one can also recover the point $x_{0}+x_{1}+x_{2}$ or $x_{1}+x_{2}$ once the other is computed by using Riemann relations for the three-way addition.

Double scalar multiplication

In a Kummer variety, how to compute $\alpha P+\beta Q$? (Think GLV/GLS). We assume that we are given P, Q and $P+Q$.
(1) A Montgomery square $m P+n Q,(m+1) P+n Q, m P+(n+1) Q$, $(m+1) P+(n+1) Q$, adding the correct element to the square depending on the current bits of (α, β);
(2) A cleverer way is to use a triangle (Bernstein);
(3) But actually we only need to keep track of two elements in the square.

Example

From $n P+(m+1) Q,(n+1) P+m Q$, one can recover $n P+m Q$ by using a compatible addition with $x=n P+(m+1) Q, y=-Q, z=(n+1) P+m Q$, $t=-P$.

Remark

We expect to need to reconstruct a missing element in the square with probability $1 / 2$, but when we do that we can be clever in the two elements we keep, so the probability is actually higher.

Multi scalar multiplication

- In a Kummer variety, we want to compute $\sum \alpha_{i} P_{i}$. (Think higher dimensional GLV/GLS).
- We assume that we are given the two by two sums $P_{i}+P_{j}$ (actually, we just need the $P_{1}+P_{i}$, we can recover the others via compatible additions);
- The trivial way would be to use an hypercube;
- But as previously, we just need two elements in the hypercube, say $\sum m_{i} P_{i}$ and $P_{1}+\sum m_{i} P_{i} ;$
- At each step we do one compatible addition to recover the element we need in the hypercube, and then use it for two differential additions;
- The total cost is 2 differential additions +1 compatible addition by bits.

An efficient representation

Definition

Let A be an abelian variety with a point $T \in A(k)$ not of two torsion, and let $K=A / \pm 1$ be the associated Kummer variety. We represent a point $x \in A(\bar{k})$ by the couple $(x, x+T) \in K^{2}$.

Remark

To represent $x+T$ we just need to give a root of $\mathfrak{P}_{1}(X)$, hence this representation needs only $1+2^{g}$ coordinates.

- Differential addition: From $(x, x+T), y,(x-y, x-y+T)$, recover $(x+y, x+y+T)$ via two level 2 differential additions;
- Addition: this uses two compatible additions (or one compatible addition + one threeway addition);
- Scalar multiplication:
(1) Do a Montgomery ladder: One doubling and two differential additions at each step (adding the same point, so some savings $-23 M+13 S$ by bits);
(2) Use a standard level 2 multiplication to compute ($m-1$)P, $m P(16 M+9 S$ by bits) and recover $m P+T$ as a compatible addition

$$
m P+T=(m P)+T=(m-1) P+(P+T) ;
$$

- Multi scalar multiplication: likewise, do a level 2 multiscalar multiplication to compute $\left(\sum m_{i} P_{i}\right)-P_{1}, \sum m_{i} P_{i}$ and recover $\sum m_{i} P_{i}+T$ as

$$
\sum m_{i} P_{i}+T=\left(\sum m_{i} P_{i}\right)+T=\left(\left(\sum m_{i} P_{i}\right)-P_{1}\right)+\left(P_{1}+T\right) ;
$$

\Rightarrow This representation only add a small overhead compared to the level 2 representation, but allows to compute additions!

Differential addition

- Notations: $x, y, X=x+y, Y=x-y, 0_{A}=\left(a_{i}\right)$;

$$
z_{i}^{\chi}=\left(\sum_{t \in Z(\overline{2})} \chi(t) x_{i+t} x_{t}\right)\left(\sum_{t \in Z(\overline{2})} \chi(t) y_{i+t} y_{t}\right) /\left(\sum_{t \in Z(\overline{2})} \chi(t) a_{i+t} a_{t}\right)
$$

$$
\begin{aligned}
& 4 X_{00} Y_{00}=z_{00}^{00}+z_{00}^{01}+z_{00}^{10}+z_{00}^{11} ; \\
& 4 X_{01} Y_{01}=z_{00}^{00}-z_{00}^{01}+z_{00}^{10}+z_{00}^{11} \\
& 4 X_{10} Y_{10}=z_{00}^{00}+z_{00}^{01}-z_{00}^{10}-z_{00}^{11} ; \\
& 4 X_{11} Y_{11}=z_{00}^{00}-z_{00}^{01}-z_{00}^{10}+z_{00}^{11} ;
\end{aligned}
$$

$\Rightarrow 7 M+12 S+9 M_{0}$ for the differential addition (here we neglect multiplications by constants).

Remark

$\left(\sum_{t} \chi(t) a_{i+t} a_{t}\right)$ is simply the classical theta null point $\vartheta\left[\begin{array}{c}\chi / 2 \\ i / 2\end{array}\right](0, \Omega)^{2}$.

Normal additions

$$
\begin{aligned}
& \qquad \begin{array}{ll}
2\left(X_{10} Y_{00}+X_{00} Y_{10}\right)=z_{10}^{00}+z_{10}^{01} ; \\
2\left(X_{11} Y_{01}+X_{01} Y_{11}\right)=z_{10}^{00}-z_{10}^{01} ; \\
2\left(X_{01} Y_{00}+X_{00} Y_{01}\right)=z_{01}^{00}+z_{01}^{10} ; \\
2\left(X_{11} Y_{10}+X_{10} Y_{11}\right)=z_{01}^{00}-z_{01}^{10} ; \\
2\left(X_{11} Y_{00}+X_{00} Y_{11}\right)=z_{11}^{00}+z_{11}^{11} ; \\
2\left(X_{01} Y_{10}+X_{10} Y_{01}\right)=z_{11}^{00}-z_{11}^{11} ;
\end{array} \\
& \Rightarrow\left(4 M+8 S+3 M_{0}\right)+3 \times\left(2 M+4 S+2 M_{0}\right)=10 M+20 S+9 M_{0} \text { to compute all } \\
& \text { the } \kappa_{i j} .
\end{aligned}
$$

- $\mathfrak{P}_{\alpha}(Z)=Z^{2}-2 \frac{\kappa_{\alpha 0}}{K_{00}} Z+\frac{\kappa_{\alpha \alpha}}{K_{00}}$ whose roots are $\left\{\frac{X_{\alpha}}{X_{0}}, \frac{Y_{\alpha}}{Y_{0}}\right\}$;
- We can recover the coordinates X_{i}, Y_{i} by solving the equation

$$
\left(\begin{array}{cc}
1 & 1 \\
Z & Z^{\prime}
\end{array}\right)\binom{Y_{i} / Y_{0}}{X_{i} / X_{0}}=\binom{2 \kappa_{0 i} / \kappa_{00}}{2 \kappa_{a i} / \kappa_{00}} ;
$$

- We find

$$
X_{i}=\frac{X_{\alpha} \kappa_{0 i}-X_{0} \kappa_{\alpha i}}{X_{\alpha} \kappa_{00}-X_{0} \kappa_{\alpha 0}} .
$$

$\Rightarrow\left(10 M+20 S+9 M_{0}\right)+8 M=18 M+20 S+9 M_{0}$ to compute X once we know Z.

- Let $P_{1}=X^{2}+a X+b$ and $P_{2}=X^{2}+c X+d$. Then P_{1} and P_{2} have a common root iff $(a d-b c)(c-a)=(d-b)^{2}$, in this case this root is $(d-b) /(a-c)$.
- A compatible addition amount to computing a normal addition $x+y$, and finding a root of \mathfrak{P}_{α} as a common root of the polynomial $\mathfrak{P}_{\alpha}^{\prime}$ coming from the addition of $(x+t, y+t)$;
- So for a compatible addition we need the extra computation of $\mathfrak{P}_{\alpha}^{\prime} \Rightarrow$ $6 M+12 S+5 M_{0} ;$
- The common root is

$$
\frac{\kappa_{\alpha \alpha}^{\prime} \kappa_{00}^{\prime}-\kappa_{\alpha \alpha} \kappa_{00}}{2\left(\kappa_{\alpha 0}^{\prime}-\kappa_{\alpha 0}\right)} ;
$$

$\Rightarrow 28 M+32 S+14 M_{0} ;$

- In the $(x, x+t)$ representation, once we have computed $x+y$ via a compatible addition, we can reuse some operations in the computation of $x+y+t$;
- Still, it is more efficient to use a three way addition to compute $x+y+t$ rather than another compatible addition.
- More details in [LR14];
- Possible improvements: find better normalisations, use the equation of the Kummer surface ...

Bibliography
\square D. Lubicz and D. Robert. "Efficient pairing computation with theta functions". In: ed. by G. Hanrot, F. Morain, and E. Thomé. Vol. 6197. Lecture Notes in Comput. Sci. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings. Springer-Verlag, July 2010. DOI: 10.1007/978-3-642-14518-6_21. URL:
http://www.normalesup.org/~robert/pro/publications/ articles/pairings.pdf. Slides: 2010-07-ANTS-Nancy.pdf (30min, Nancy), HAL: hal-00528944. (Cit. on p. 29).
D. Lubicz and D. Robert. "Arithmetic on Abelian and Kummer Varieties". June 2014. URL: http://www.normalesup.org/ ~robert/pro/publications/articles/arithmetic.pdf. HAL: hal-01057467, eprint: 2014/493. (Cit. on p. 40).
D. Lubicz and D. Robert. "A generalisation of Miller's algorithm and applications to pairing computations on abelian varieties". Mar. 2015. URL: http://www.normalesup.org/~robert/pro/ publications/articles/optimal.pdf. HAL: hal-00806923, eprint: 2013/192. (Cit. on p. 29).

