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Complex elliptic curve

Over C: an elliptic curve is a torus E=C/Λ, where Λ is a lattice
Λ=Z+τZ (τ �H1).

Let ℘(z,Λ)=
∑

w�Λ\{0E}

�

1
(z−w)2 −

1
w2

�

be the Weierstrass ℘-function and

E2k(Λ)=λk
∑

w�Λ\{0E}
1

w2k be the (normalised) Eisenstein series of weight
2k.

Then C/Λ→ E,z 7→ (℘′(z,Λ),℘(z,Λ)) is an analytic isomorphism to the
elliptic curve

y2 = 4x3−60E4(Λ)− 140E6(Λ).
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Isogenies between elliptic curves

Definition

An isogeny is a (non trivial) algebraic map f : E1→ E2 between two elliptic
curves such that f(P+Q)= f(P)+ f(Q) for all geometric points P,Q � E1.

Theorem

An algebraic map f : E1→ E2 is an isogeny if and only if f(0E1)= f(0E2)

Corollary

An algebraic map between two elliptic curves is either

trivial (i.e. constant)

or the composition of a translation with an isogeny.

Remark

Isogenies are surjective (on the geometric points). In particular, if E is
ordinary, any curve isogenous to E is also ordinary.



Isogenies on elliptic curves Abelian varieties and polarisations Maximal isotropic isogenies Cyclic isogenies Isogeny graphs in dimension 2

Destructive cryptographic applications

An isogeny f : E1→ E2 transports the DLP problem from E1 to E2. This can
be used to attack the DLP on E1 if there is a weak curve on its isogeny
class (and an efficient way to compute an isogeny to it).

Example

extend attacks using Weil descent [GHS02]

Transfert the DLP from the Jacobian of an hyperelliptic curve of genus 3 to the
Jacobian of a quartic curve [Smi09].
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Constructive cryptographic applications

One can recover informations on the elliptic curve E modulo ` by
working over the `-torsion.

But by computing isogenies, one can work over a cyclic subgroup of
cardinal ` instead.

Since thus a subgroup is of degree `, whereas the full `-torsion is of
degree `2, we can work faster over it.

Example

The SEA point counting algorithm [Sch95; Mor95; Elk97];

The CRT algorithms to compute class polynomials [Sut11; ES10];

The CRT algorithms to compute modular polynomials [BLS12].
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Further applications of isogenies

Splitting the multiplication using isogenies can improve the arithmetic
[DIK06; Gau07];

The isogeny graph of a supersingular elliptic curve can be used to
construct secure hash functions [CLG09];

Construct public key cryptosystems by hiding vulnerable curves by an
isogeny (the trapdoor) [Tes06], or by encoding informations in the
isogeny graph [RS06];

Take isogenies to reduce the impact of side channel attacks [Sma03];

Construct a normal basis of a finite field [CL09];

Improve the discrete logarithm in F∗q by finding a smoothness basis
invariant by automorphisms [CL08].
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Computing explicit isogenies

If E1 and E2 are two elliptic curves given by Weierstrass equations, a
morphism of curve f : E1→ E2 is of the form

f(x,y)= (R1(x,y),R2(x,y))

where R1 and R2 are rational functions, whose degree in y is less than 2
(using the equation of the curve E1).
If f is an isogeny, f(−P)=−f(P). If chark> 3 so we can assume that E1
and E2 are given by reduced Weierstrass forms, this mean that R1
depends only on x, and R2 is y time a rational function depending only
on x.
Let wE = dx/2y be the canonical differential. Then f∗wE′ = cwE, with c in
k.
This shows that f is of the form

f(x,y)=

�

g(x)
h(x)

,cy

�

g(x)
h(x)

�′�

.

h(x) gives (the x coordinates of the points in) the kernel of f (if we take
it prime to g).
If c= 1, we say that f is normalized.
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Vélu’s formula

Let E/k be an elliptic curve. Let G= 〈P〉 be a rational finite subgroup of E.

Vélu constructs the isogeny E→ E/G as

X(P)= x(P)+
∑

Q�G\{0E}

(x(P+Q)−x(Q))

Y(P)= y(P)+
∑

Q�G\{0E}

(y(P+Q)− y(Q)) .

The choices are made so that the formulas give a normalized isogeny.

Moreover by looking at the expression of X and Y in the formal group of
E, Vélu recovers the equations for E/G.

For instance if E : y2 = x3+ax+b= fE(x) then E/G is

y2 = x3+(a−5t)x+b−7w

where t=
∑

Q�G\{0E}

f′E(Q), u= 2
∑

Q�G\{0E}

fE(Q) and w=
∑

Q�G\{0E}

x(Q)f′E(Q).
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Complexity of Vélu’s formula

Even if G is rational, the points in G may live to an extension of degree
up to #G− 1.
Thus summing over the points in the kernel G can be expensive.

Let h(x)=
∏

Q�G\{0E}(x−x(Q)). The symmetry of X and Y allows us to
express everything in term of h.

For instance is E is given by a reduced Weierstrass equation y2 = fE(x),
we have

f(x,y)=

�

g(x)
h(x)

,y

�

g(x)
h(x)

�′�

, with

g(x)
h(x)

=#G.x−σ− f′E(x)
h′(x)
h(x)
−2fE(x)
�

h′(x)
h(x)

�′

,

where σ is the first power sum of h (i.e. the sum of the x-coordinates of
the points in the kernel).

When #G is odd, h(x) is a square, so we can replace it by its square
root.

The complexity of computing the isogeny is then O(M(#G)) operations
in k.
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Modular polynomials

Here k= k.

Definition (Modular polynomial)

The modular polynomial ϕ`(x,y) � Z[x,y] is a bivariate polynomial such that
ϕ`(x,y)= 0⇔ x= j(E1) and y= j(E2) with E1 and E2 `-isogeneous.

Roots of ϕ`(j(E1), .)⇔ elliptic curves `-isogeneous to E1.
There are `+ 1=#P1(F`) such roots if ` is prime.

ϕ` is symmetric.

The height of ϕ` grows as O(`).
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Finding an isogeny between two isogenous elliptic curves

Let E1 and E2 be `-isogenous abelian varieties (we can check that
ϕ`(jE1 , jE2)= 0). We want to compute the isogeny f : E1→ E2.

The explicit forms of isogenies are given by Vélu’s formula, which give
normalized isogenies. We first need to normalize E2.

Over C, the equation of the normalized curve E2 is given by the
Eisenstein series E4(`τ) and E6(`τ). We have
j′(`τ)/j(`τ)=−E6(`τ)/E4(`τ). By differencing the modular polynomial,
we recover the differential logarithms.

We obtain that from E1 : y2 = x3+ax+b, a normalized model of E2 is
given by the Weierstrass equation

y2 = x3+Ax+B

where A=− 1
48

J2

jE2 (jE2−1728)
, B=− 1

864
J3

j2E2
(jE2−1728)

and J=− 18
`

b
a
ϕ′

(X)
` (jE1 ,jE2 )

ϕ′
(Y)
` (jE1 ,jE2 )

jE1 .

Remark

E2(τ) is the differential logarithm of the discriminant. Similar methods
allow to recover E2(`τ), and from it σ=

∑

P�K\{0E} x(K).
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Finding the isogeny between the normalized models (Elkie’s method)

We need to find the rational function I(x)= g(x)/h(x) giving the isogeny
f : (x,y) 7→ (I(x),yI′(x)) between E1 and E2.

Plugging f into the equation of E2 shows that I satisfy the differential
equation

(x3+ax+b)I′(x)2 = I(x)3+AI(x)+B.

Using an asymptotically fast algorithm to solve this equation yields I(x)
in time quasi-linear (eO(`)).

Knowing σ gains a logarithmic factor.
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A 3-isogeny graph in dimension 1
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Polarised abelian varieties over C

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie
group V/Λ with

A complex vector space V of dimension g;

A Z-lattice Λ in V (of rank 2g);

such that there exists an Hermitian form H on V with E(Λ,Λ)⊂Z where
E= ImH is symplectic.

Such an Hermitian form H is called a polarisation on A. Conversely, any
symplectic form E on V such that E(Λ,Λ)⊂Z and E(ix, iy)= E(x,y) for all
x,y �V gives a polarisation H with E= ImH.

Over a symplectic basis of Λ, E is of the form.
�

0 Dδ
−Dδ 0

�

where Dδ is a diagonal positive integer matrix δ=(δ1,δ2, . . . ,δg), with
δ1 |δ2| · · · |δg.
The product
∏

δi is the degree of the polarisation; H is a principal
polarisation if this degree is 1.
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Principal polarisations

Let E0 be the canonical principal symplectic form on R2g given by
E0((x1,x2),(y1,y2))= tx1 · y2− ty1 ·x2;
If E is a principal polarisation on A=V/Λ, there is an isomorphism
j :Z2g→Λ such that E(j(x), j(y))= E0(x,y);

There exists a basis of V such that j((x1,x2))=Ωx1+x2 for a matrix Ω;

In particular E(Ωx1+x2,Ωy1+ y2)= tx1 · y2− ty1 ·x2;
The matrix Ω is in Hg, the Siegel space of symmetric matrices Ω with
ImΩ positive definite;

In this basis, Λ=ΩZg+Zg and H is given by the matrix (ImΩ)−1.
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Isogenies

Let A=V/Λ and B=V′/Λ′.

Definition

An isogeny f : A→ B is a bijective linear map f :V→V′ such that f(Λ)⊂Λ′. The
kernel of the isogeny is f−1(Λ′)/Λ⊂ A and its degree is the cardinal of the
kernel.

Two abelian varieties over a finite field are isogenous iff they have the
same zeta function (Tate);

A morphism of abelian varieties f : A→ B (seen as varieties) is a group
morphism iff f(0A)= 0B.
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The dual abelian variety

Definition

If A=V/Λ is an abelian variety, its dual is bA=HomC(V,C)/Λ∗. Here
HomC(V,C) is the space of anti-linear forms and Λ∗= {f | f(Λ)⊂Z} is the
orthogonal of Λ.

If H is a polarisation on A, its dual H∗ is a polarisation on bA. Moreover,
there is an isogeny ΦH : A→ bA:

x 7→H(x, ·)

of degree degH. We note K(H) its kernel.

If f : A→ B is an isogeny, then its dual is an isogeny bf : bB→ bA of the same
degree.

Remark

There is a canonical polarisation on A×bA (the Poincaré bundle):

(x, f) 7→ f(x).
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Isogenies and polarisations

Definition

An isogeny f : (A,H1)→ (B,H2) between polarised abelian varieties is an
isogeny such that

f∗H2 :=H2(f(·), f(·))=H1.

By abuse of notations, we say that f is an `-isogeny between principally
polarised abelian varieties if H1 and H2 are principal and f∗H2 = `H1.

An isogeny f : (A,H1)→ (B,H2) respect the polarisations iff the following
diagram commutes

A B

bA bB

f

bf

ΦH1 ΦH2
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Isogenies and polarisations

Definition

An isogeny f : (A,H1)→ (B,H2) between polarised abelian varieties is an
isogeny such that

f∗H2 :=H2(f(·), f(·))=H1.

By abuse of notations, we say that f is an `-isogeny between principally
polarised abelian varieties if H1 and H2 are principal and f∗H2 = `H1.

f : (A,H1)→ (B,H2) is an `-isogeny between principally polarised abelian
varieties iff the following diagram commutes

A B

A bA bB

f

bf

Φ`H1 ΦH2

[`]

ΦH1
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Jacobians

Let C be a curve of genus g;
Let V be the dual of the space V∗ of holomorphic differentials of the
first kind on C;
Let Λ'H1(C,Z)⊂V be the set of periods (integration of differentials on
loops);
The intersection pairing gives a symplectic form E on Λ;
Let H be the associated hermitian form on V;

H∗(w1,w2)=

∫

C

w1 ∧w2;

Then (V/Λ,H) is a principally polarised abelian variety: the Jacobian of
C.

Theorem (Torelli)

JacC with the associated principal polarisation uniquely determines C.

Remark (Howe)

There exists an hyperelliptic curve H of genus 3 and a quartic curve C such
that JacC' JacH as non polarised abelian varieties!
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Theta functions

Let (A,H0) be a principally polarised abelian variety over C:
A=Cg/(ΩZg+Zg) with Ω �Hg.

Theta functions with characteristics a,b �Qg:

ϑ [ ab ] (z,Ω)=
∑

n�Zg
eπi

t(n+a)Ω(n+a)+2πi t(n+a)(z+b) a,b �Qg

Define ϑi = ϑ
�

0
i
n

�

(., Ωn ) for i � Z(n)=Zg/nZg

(ϑi)i�Z(n) =

�

coordinates system n¾ 3
coordinates on the Kummer variety A/± 1 n= 2
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The isogeny theorem

Theorem

Let ϕ : Z(n)→ Z(`n),x 7→ `.x be the canonical embedding.
Let K= A2[`]⊂ A2[`n].

Let (ϑAi )i�Z(`n) be the theta functions of level `n on A=Cg/(Zg+ `ΩZg).

Let (ϑBi )i�Z(n) be the theta functions of level n of B= A/K=Cg/(Zg+ΩZg).
We have:

(ϑBi (x))i�Z(n) =(ϑAϕ(i)(x))i�Z(n)

Example

f : (x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11) 7→ (x0,x3,x6,x9) is a 3-isogeny between
elliptic curves.
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Changing level

Theorem (Koizumi–Kempf)

Let F be a matrix of rank r such that tFF= ` Idr. Let X � (Cg)r and Y= F(X) � (Cg)r.
Let j � (Qg)r and i= F(j). Then we have

ϑ
�

0
i1

�

(Y1,
Ω

n
) . . .ϑ
�

0
ir

�

(Yr,
Ω

n
)=

∑

t1 ,...,tr� 1` Z
g/Zg

F(t1 ,...,tr)=(0,...,0)

ϑ
� 0
j1

�

(X1+ t1,
Ω

`n
) . . .ϑ
� 0
jr

�

(Xr+ tr,
Ω

`n
),

(This is the isogeny theorem applied to FA : Ar→ Ar.)

If `= a2+b2, we take F=
�

a b
−b a

�

, so r= 2.

In general, `= a2+b2+ c2+d2, we take F to be the matrix of
multiplication by a+bi+ cj+dk in the quaternions, so r= 4.
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The isogeny formula

`∧n= 1, B=Cg/(Zg+ΩZg), A=Cg/(Zg+ `ΩZg)

ϑBb := ϑ
�

0
b
n

�

�

·,
Ω

n

�

, ϑAb := ϑ
�

0
b
n

�

�

·,
`Ω

n

�

Proposition

Let F be a matrix of rank r such that tFF= ` Idr. Let Y=(`x,0, ...,0) in (Cg)r and
X= YF−1 =(x,0, . . . ,0)tF � (Cg)r. Let i � (Z(n))r and j= iF−1. Then we have

ϑAi1(`z) . . .ϑAir(0)=
∑

t1 ,...,tr� 1` Z
g/Zg

F(t1 ,...,tr)=(0,...,0)

ϑBj1(X1+ t1) . . .ϑBjr(Xr+ tr),

Corollary

ϑAk (0)ϑ
A
0(0) . . .ϑA0(0)=

∑

t1 ,...,tr�K
(t1 ,...,tr)F=(0,...,0)

ϑBj1(t1) . . .ϑBjr(tr), (j=(k,0, . . . ,0)F−1 � Z(n))



Isogenies on elliptic curves Abelian varieties and polarisations Maximal isotropic isogenies Cyclic isogenies Isogeny graphs in dimension 2

The Algorithm [Cosset, R.]

x � (A,`H1) (x,0, . . . ,0) � (Ar,`H1 ? · · · ? `H1)

y � (B,H2)
tF(x,0, . . . ,0) � (Ar,`H1 ? · · · ? `H1)

ef(y) � (A,H1) F ◦ tF(x,0, . . . ,0) � (Ar,H1 ? · · · ?H1)

f

ef

[`]

tF

F

Theorem ([Lubicz, R.])

We can compute the isogeny directly given the equations (in a suitable form) of
the kernel K of the isogeny. When K is rational, this gives a complexity of eO(`g)
or eO(`2g) operations in Fq according to whether ` ∼= 1 or 3 modulo 4.
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The case `≡ 1 (mod 4)

The isogeny formula assumes that the points are in affine coordinates.
In practice, given A/Fq we only have projective coordinates⇒ we need
to normalize the coordinates;
We suppose that we have (projective) equations of K in diagonal form
over the base field k:

P1(X0,X1)= 0

. . .

XnX
d
0 = Pn(X0,X1)

By setting X0 = 1 we can work with affine coordinates. The projective
solutions can be written (x0,x0x1, . . . ,x0xn) so X0 can be seen as the
normalization factor.
We work in the algebra A= k[X1]/(P1(X1)); each operation takes eO(`g)
operations in k
Let F=
�

a b
−b a

�

where `= a2+b2. Let c=−a/b (mod `). The couples in the
kernel of F are of the form (x,cx) for each x � K.
So we normalize the generic point η, compute c.η and then
R := ϑAj1(η)ϑ

A
j2
(c.η) �A.

We need
∑

x�KR(x1) � k. In the euclidean division XRP′1 = PQ+ S; this is
simply Q(0).
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An (`,`)-isogeny graph in dimension 2 [Bisson, Cosset, R.]
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Non principal polarisations

Let f : (A,H1)→ (B,H2) be an isogeny between principally polarised
abelian varieties;

When Ker f is not maximal isotropic in A[`] then f∗H2 is not of the form
`H1;

How can we go from the principal polarisation H1 to f∗H1?
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Non principal polarisations

Theorem (Birkenhake-Lange, Th. 5.2.4)

Let A be an abelian variety with a principal polarisation L1;

Let O0 = End(A)s be the real algebra of endomorphisms symmetric under
the Rosati involution;

Let NS(A) be the Néron-Severi group of line bundles modulo algebraic
equivalence.

Then

NS(A) is a torsor under the action of O0;

This induces a bijection between polarisations of degree d in NS(A) and
totally positive symmetric endomorphisms of norm d in O0;

The isomorphic class of a polarisation Lf �NS(A) for f �O
+
0 correspond to

the action ϕ 7→ϕ∗fϕ of the automorphisms of A.
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Cyclic isogeny

Let f : (A,H1)→ (B,H2) be an isogeny between principally polarised
abelian varieties with cyclic kernel of degree `;

There exists ϕ such that the following diagram commutes:

A B

A bA bB

f

bf

Φf∗H2 ΦH2

ϕ

ΦH1

ϕ is an (`,0, . . . ,`,0, . . .)-isogeny whose kernel is not isotropic for the
H1-Weil pairing on A[`]!

ϕ commutes with the Rosatti involution so is a real endomorphism (ϕ
is H1-symmetric). Since H1 is Hermitian, ϕ is totally positive.

Ker f is maximal isotropic for ϕH1; conversely if K is a maximal isotropic
kernel in A[ϕ] then f : A→ A/K fits in the diagram above.
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Descending a polarisation via ϕ

The isogeny f induces a compatible isogeny between ϕH1 = f∗H2 and H2

where ϕH1 is given by the following diagram

A A

bA

ϕ

ΦH1ΦϕH1

ϕ plays the same role as [`] for `-isogenies;
We then define the ϕ-contragredient isogeny ef as the isogeny making
the following diagram commute

x � (A,ϕ∗H1)

y � (B,ϕH2)

ef(y) � (A,H1)

f

ef

ϕ
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ϕ-change of level

We can use the isogeny theorem to compute f from (A,ϕH1) down to
(B,H2) or ef from (B,H2) up to (A,ϕH1) as before;

What about changing level between (A,ϕH1) and (A,H1)?

ϕH1 fits in the following diagram:

A A

bA bA

ϕ

ϕ̂

ΦH1

ΦϕH1Φϕ∗H1

Applying the isogeny theorem on ϕ allows to find relations between
ϕ∗H1 and H1 but we want ϕH1.
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ϕ-change of level

ϕ is a totally positive element of a totally positive order O0;

A theorem of Siegel show that ϕ is a sum of m squares in K0 =O0⊗Q;
Clifford’s algebras give a matrix F �Matr(K0) such that diag(ϕ)= F∗F;

We can use this matrix F to change level as before: If X � (Cg)r and
Y= F(X) � (Cg)r, j � (Qg)r and i= F(j), we have (up to a modular
automorphism)

ϑ
�

0
i1

�

(Y1,
Ω

n
) . . .ϑ
�

0
ir

�

(Yr,
Ω

n
)=

∑

t1 ,...,tr�K(ϕH1)
F(t1 ,...,tr)=(0,...,0)

ϑ
� 0
j1

�

(X1+ t1,
ϕ−1Ω

n
) . . .ϑ
� 0
jr

�

(Xr+ tr,
ϕ−1Ω

n
),

Remark

In general r can be larger than m;

The matrix F acts by real endomorphism rather than by integer
multiplication;

There may be denominators in the coefficients of F.
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The Algorithm for cyclic isogenies [Dudeanu, Jetchev, R.]

B=Cg/(Zg+ΩZg), A=Cg/(Zg+ϕΩZn), ϑBb := ϑ
�

0
b
n

�

�

·,
Ω

n

�

, ϑAb := ϑ
�

0
b
n

�

�

·,
ϕΩ

n

�

Theorem

Let Y in (Cg)r and X= YF−1 � (Cg)r. Let i � (Z(n))r and j= iF−1. Up to a modular
automorphism:

ϑAi1(Y1) . . .ϑAir(Yr)=
∑

t1 ,...,tr�K(ϕH2)
(t1 ,...,tr)F=(0,...,0)

ϑBj1(X1+ t1) . . .ϑBjr(Xr+ tr),

x � (A,ϕH1) (x,0, . . . ,0) � (Ar,ϕH1 ? · · · ?ϕH1)

y � (B,H2)
tF(x,0, . . . ,0) � (Ar,ϕH1 ? · · · ?ϕH1)

ef(y) � (A,H1) F ◦ tF(x,0, . . . ,0) � (Ar,H1 ? · · · ?H1)

f

ef

ϕ

tF

F
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Hidden details

We normalize the coordinates by using multi-way additions;

The real endomorphisms are codiagonalisables (in the ordinary case),
this is important to apply the isogeny theorem;

If g= 2, K0 =Q(
p

d), the action of
p

d is given by a standard
(d,d)-isogeny, so we can compute it using the previous algorithm for
d-isogenies!

The important point is that this algorithm is such that we can keep
track of the projective factors when computing the action of

p

d.

Unlike the case of maximal isotropic kernels for the Weil pairing, for
cyclic isogenies the Koizumi formula does not yield a product theta
structure. We compute the action of the modular automorphism
coming from F that gives a product theta structure.

Remark

Computing the action of
p

d directly may be expensive if d is big. If possible
we replace it with Frobeniuses.
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Abelian varieties with real and complex multiplication

Let K be a CM field (a totally imaginary quadratic extension of a totally
real field K0 of dimension g);

An abelian variety with RM by K0 is of the form Cg/(Λ1⊕Λ2τ) where Λi is
a lattice in K0, K0 is embedded into Cg via K0⊗QR=Rg ⊂Cg, and τ �H

g
1 ;

Furthermore the polarisations are of the form

H(z1,z2)=
∑

ϕi:K→C

ϕi(λz1z2)/ℑτi

for a totally positive element λ � K++
0 . In other words if xi,yi � K0, then

E(x1+ y1τ,x2+ y2τ)= TrK0/Q(λ(x2y1−x1y2)).
An abelian variety with CM by K is of the form Cg/Φ(Λ) where Λ is a
lattice in K and Φ is a CM-type.

Furthermore, the polarisations are of the form

E(z1,z2)= TrK/Q(ξz1z2)

for a totally imaginary element ξ � K. The polarisation is principal iff
ξΛ=Λ? where Λ? is the dual of Λ for the trace.
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Cyclic isogenies in dimension 2 [IT14]

Let A be a principally polarised abelian surface over Fq with CM by
O⊂OK and RM by O0 ⊂OK0 ;

Cyclic isogenies (between ppav) of degree ` correspond to kernels
inside A[ϕ] for an endomorphism ϕ �O++

0 of degree `. They preserve
the real multiplication.

Let’s assume that O0 is maximal and that we are in the split case:
(`)= (ϕ1)(ϕ2) in O0 (where ϕi is totally positive). Then
A[`] = A[ϕ1]⊕A[ϕ2]. We have two kind of cyclic isogenies: the
ϕ1-isogenies and the ϕ2-isogenies.
When we look only at ϕ1 isogenies, we recover the structure of a
volcano: we have O=O0+ IOK for a certain O0-ideal I such that the
conductor of O is IOK.

If I is prime to ϕ1, we have 2, 1, or 0 horizontal-isogenies according to
whether ϕ1 splits, is ramified or is inert in O, and the rest are descending to
O0+ Iϕ1OK;
If I is not prime to ϕ1 we have one ascending isogeny (to O0+ I/ϕ1OK) and `
descending ones;
We are at the bottom when the ϕ1-valuation of I is equal to the valuation
of the conductor of Z[π,π].

(`,`)-isogenies preserving O0 are a composition of a ϕ1-isogeny with a
ϕ2-isogeny.
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Changing the real multiplication

Cyclic isogenies (that preserve principal polarisations) preserve real
multiplication; so we need to look at (`,`)-isogenies.

Example

Let O` be the order of conductor ` inside OK0 . (`,`)-isogenies going from
O` to OK0 are of the form

Cg/(O`⊕O`τ)→Cg/(OK0 ⊕OK0τ).

Indeed we have an action of
Sl2(OK0)/Sl2(O`)' Sl2(OK0/`OK0)/Sl2(O`/`O`)' SL2(F

2
l )/Sl2(Fl)' Sl2(Fl) on

such isogenies, so we find `3− ` (`,`)-isogenies changing the real
multiplication. On the other end there is (`+ 1)2 (`,`)-isogenies
preserving the real multiplication and in total we find all `3+ `2+ `+ 1
(`,`)-isogenies.
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Isogenies between Jacobians of hyperelliptic curves of genus 2 [CE14]

In Mumford coordinate (using the canonical divisor as base point), the
restriction of an isogeny f : Jac(C1)→ Jac(C2) to C1 is of the form
(u,v) 7→ (X2+XR1(u)+R0(u),XvR2(u)+ vR3(u)), where the Ri are rational
functions;

Jac(C2) is birationally equivalent to the symmetric product C2×C2. A
basis of section of Ω1

C1
is given by (du/v,udu/v) and a basis of Ω2

JC2
is

given by (dx1/y1+dx2/y2,x1dx1/y1+x2dx2/y2). The pullback
f∗ : Γ (Ω1

JC2
)→ Γ (Ω1

C1
) is given by a matrix

�m1,1 m1,2
m2,1 m2,2

�

;

If f(u,v)=Q1+Q2−KC2 , then one can recover the rational functions Ri
by solving the differential equations (in the formal completion)

ẋ1
y1

+
ẋ2
y2

=
(m1,1+m2,1u)u̇

v

x1ẋ1
y1

+
x2ẋ2
y2

=
(m1,2+m2,2u)u̇

v

(x1,y1) �C2,(x2,y2) �C2

where Qi =(xi,yi) and mi,j.
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Modular polynomials in dimension 2

Modular polynomials for (`,`)-isogenies can be computed via an
evaluation-interpolation approach using the action of Γ/Γ0(`) where
Γ = Sp2g(Z);
A quasi-linear algorithm exists [Mil14] which uses a generalized version
of the AGM to compute theta functions in quasi-linear time in the
precision. They are very big: once the invariant of the abelian variety
are plugged in, we have a polynomial of total degree `3+ `2+ `+ 1;

If we fix the real multiplication OK0 , one can also define modular
polynomial for cyclic isogenies by working on symmetric invariants for
the Hilbert surface H1;

We use an evaluation-interpolation approach via the action of
Sl2(OK0)/Γ0(ϕi) (by symmetry, to get a rational polynomial we need to
take the product of the polynomial computed via the action of ϕ1 and
the one obtained via the action of ϕ2);

They are much smaller (the total degree is 2(`+ 1) once the invariants
are plugged in), but for now we need a precomputation for each K0.
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AVIsogenies [Bisson, Cosset, R.]

AVIsogenies: Magma code written by Bisson, Cosset and R.
http://avisogenies.gforge.inria.fr

Released under LGPL 2+.

Implement isogeny computation (and applications thereof) for abelian
varieties using theta functions.

Current release 0.6.

Cyclic isogenies coming “soon”!

http://avisogenies.gforge.inria.fr
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