Arithmetic on Abelian and Kummer varieties

 2014/12/18 - Séminaire de Théorie des Nombres - CaenDavid Lubicz, Damien Robert

Differential addition

- Notations: $x, y, X=x+y, Y=x-y, 0_{A}=\left(a_{i}\right)$;
-

$$
z_{i}^{\chi}=\left(\sum_{t \in Z(\overline{2})} \chi(t) x_{i+t} x_{t}\right)\left(\sum_{t \in Z(\overline{2})} \chi(t) y_{i+t} y_{t}\right) /\left(\sum_{t \in Z(\overline{2})} \chi(t) a_{i+t} a_{t}\right)
$$

$$
\begin{aligned}
& 4 X_{00} Y_{00}=z_{00}^{00}+z_{00}^{01}+z_{00}^{10}+z_{00}^{11} ; \\
& 4 X_{01} Y_{01}=z_{00}^{00}-z_{00}^{01}+z_{00}^{10}+z_{00}^{11} ; \\
& 4 X_{10} Y_{10}=z_{00}^{00}+z_{00}^{01}-z_{00}^{10}-z_{00}^{11} ; \\
& 4 X_{11} Y_{11}=z_{00}^{00}-z_{00}^{01}-z_{00}^{10}+z_{00}^{11} ;
\end{aligned}
$$

$\Rightarrow 7 M+12 S+9 M_{0}$ for the differential addition (here we neglect multiplications by constants).

Remark

$\left(\sum_{t} \chi(t) a_{i+t} a_{t}\right)$ is simply the classical theta null point $\vartheta\left[\begin{array}{l}\chi / 2 \\ i / 2\end{array}\right](0, \Omega)^{2}$.

Normal additions

$$
\begin{gathered}
2\left(X_{10} Y_{00}+X_{00} Y_{10}\right)=z_{10}^{00}+z_{10}^{01} ; \\
2\left(X_{11} Y_{01}+X_{01} Y_{11}\right)=z_{10}^{00}-z_{10}^{01} ; \\
2\left(X_{01} Y_{00}+X_{00} Y_{01}\right)=z_{01}^{00}+z_{01}^{10} ; \\
2\left(X_{11} Y_{10}+X_{10} Y_{11}\right)=z_{01}^{00}-z_{01}^{10} ; \\
2\left(X_{11} Y_{00}+X_{00} Y_{11}\right)=z_{11}^{00}+z_{11}^{11} ; \\
2\left(X_{01} Y_{10}+X_{10} Y_{01}\right)=z_{11}^{00}-z_{11}^{11} ; \\
\Rightarrow\left(4 M+8 S+3 M_{0}\right)+3 \times\left(2 M+4 S+2 M_{0}\right)=10 M+20 S+9 M_{0} \text { to compute all the } \kappa_{i j} .
\end{gathered}
$$

Normal additions, explicit coordinates

- $\mathfrak{P}_{\alpha}(Z)=Z^{2}-2 \frac{\kappa_{\alpha 0}}{K_{00}} Z+\frac{\kappa_{\alpha \alpha}}{\kappa_{00}}$ whose roots are $\left\{\frac{X_{\alpha}}{X_{0}}, \frac{Y_{\alpha}}{Y_{0}}\right\} ;$
- We can recover the coordinates X_{i}, Y_{i} by solving the equation

$$
\left(\begin{array}{cc}
1 & 1 \\
Z & Z^{\prime}
\end{array}\right)\binom{Y_{i} / Y_{0}}{X_{i} / X_{0}}=\binom{2 \kappa_{0 i} / \kappa_{00}}{2 \kappa_{\alpha i} / \kappa_{00}} ;
$$

- We find

$$
X_{i}=\frac{X_{\alpha} \kappa_{0 i}-X_{0} \kappa_{\alpha i}}{X_{\alpha} \kappa_{00}-X_{0} \kappa_{\alpha 0}} .
$$

$\Rightarrow\left(10 M+20 S+9 M_{0}\right)+8 M=18 M+20 S+9 M_{0}$ to compute X once we know Z.

Compatible additions

- Let $P_{1}=X^{2}+a X+b$ and $P_{2}=X^{2}+c X+d$. Then P_{1} and P_{2} have a common root iff $(a d-b c)(c-a)=(d-b)^{2}$, in this case this root is $(d-b) /(a-c)$.
- A compatible addition amount to computing a normal addition $x+y$, and finding a root of \mathfrak{P}_{α} as a common root of the polynomial $\mathfrak{P}_{\alpha}^{\prime}$ coming from the addition of $(x+t, y+t)$;
- So for a compatible addition we need the extra computation of $\mathfrak{P}_{\alpha}^{\prime}$ $\Rightarrow 6 M+12 S+5 M_{0}$;
- The common root is

$$
\frac{\kappa_{\alpha \alpha}^{\prime} \kappa_{00}^{\prime}-\kappa_{\alpha \alpha} \kappa_{00}}{2\left(\kappa_{\alpha 0}^{\prime}-\kappa_{\alpha 0}\right)}
$$

$\Rightarrow 28 M+32 S+14 M_{0} ;$

- In the $(x, x+t)$ representation, once we have computed $x+y$ via a compatible addition, we can reuse some operations in the computation of $x+y+t$;
- Still, it is more efficient to use a three way addition to compute $x+y+t$ rather than another compatible addition.
- Possible improvements: find better normalisations, use the equation of the Kummer surface ...

