Pairings on abelian varieties and the Discrete Logarithm Problem 2014/05 – Ascona

David Lubicz, Damien Robert

Inria Bordeaux Sud-Ouest

- A/\mathbb{F}_q is a principally polarized abelian variety of small dimension defined over a field of small characteristic and of size 256 bits;
- We want to attack the DLP on A;
- $#A(\mathbb{F}_q)$ is divisible by a large prime ℓ ;
- But there exists a small d such that $\ell \mid q^d 1 \dots$

Pairings on abelian varieties

2 Miller's algorithm

Theta functions

Pairings with theta functions

Pairings on abelian varieties	
000000000000	

Miller's algorithm

Theta functions

Pairings with theta functions

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

• Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.

Example

- Elliptic curves= Abelian varieties of dimension 1;
- If C is a (smooth) curve of genus g, its Jacobian is an abelian variety of dimension g;
- In dimension $g \ge 4$, not every abelian variety is a Jacobian.

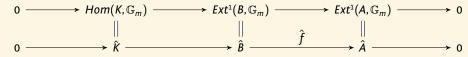
Pairings on abelian varieties	Miller's algorithm	Theta functions	Pairings with theta functions
0000000000			
The dual Abelian va	ariety		

- We have $\hat{A}(\overline{k}) = \operatorname{Pic}^{0}(A)$;
- Let $\mathscr{L} \in \operatorname{Pic}^{0}(A)$, since \mathscr{L} is algebraically equivalent to 0, $t_{p}^{*}\mathscr{L} \otimes \mathscr{L}^{-1}$ is linearly equivalent to 0 for all $P \in A(\overline{k})$, so it corresponds to a function $g_{\mathscr{L},P}$;
- The application $\mathscr{L} \mapsto (A \times A \to \mathbb{G}_m, (P,Q) \mapsto g_{\mathscr{L},P}(Q)/g_{\mathscr{L},P}(0))$ gives a natural isomorphism $\operatorname{Pic}^0(A) \xrightarrow{\sim} \operatorname{Ext}^1(A, \mathbb{G}_m)$.

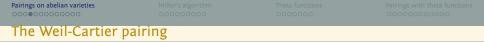
- Let $f: A \rightarrow B$ be a separable isogeny with kernel K between two abelian varieties defined over k;
- Applying the functor Ext to the short exact sequence

$$0 \longrightarrow K \longrightarrow A \xrightarrow{f} B \longrightarrow 0$$

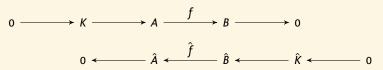
gives the long sequence



• \hat{K} is then naturally identified with Hom (K, \mathbb{G}_m) , the Cartier dual of K.



• The isogeny f and its dual \hat{f} fit into the diagram



- Since \hat{K} is the Cartier dual of K we have a non degenerate pairing $e_f: K \times \hat{K} \to \mathbb{G}_m$;
- Unravelling the identification, we can compute the Weil-Cartier pairing as follows:
 - If $Q \in \hat{K}(\overline{k})$, Q defines a divisor D_Q on B;
 - (2) $\hat{f}(Q) = 0$ means that f^*D_Q is equal to a principal divisor (g_Q) on A;
 - $e_f(P,Q) = g_Q(x)/g_Q(x+P)$. (This last function being constant in its definition domain).
- The Weil pairing $e_{W,\ell}$ is the pairing associated to the isogeny $[\ell]: A \rightarrow A$

$$e_{W,\ell}$$
: $A[\ell] \times \hat{A}[\ell] \to \mu_{\ell}$.

Pairings on abelian varieties		
00000000000		
Reformulation		

$$\begin{array}{ccc} f^* D_Q & \xrightarrow{\psi_Q} & \mathcal{O}_A \\ & & \downarrow \psi_P & & \\ \tau_P^* f^* D_Q & \xrightarrow{\tau_P^* \psi_Q} & \tau_P^* \mathcal{O}_A \end{array}$$

 $(\psi_P \text{ is normalized via } A(P) \simeq A(0).)$

• Since f^*D_Q is trivial, by descent theory D_Q is the quotient of $A \times \mathbb{A}^1$ by an action of K:

$$g_x.(t,\lambda) = (t+x,\chi_Q(x)\lambda)$$

where χ_0 is a character on *K*;

$$e_f(P,Q) = \chi_Q(P).$$

Pairings on abelian varieties		
Polarizations		

If \mathscr{L} is an ample line bundle, the polarization $\varphi_{\mathscr{L}}$ is a morphism $A \to \widehat{A}, x \mapsto t_x^* \mathscr{L} \otimes \mathscr{L}^{-1}$.

Definition (Weil pairing)

Let \mathscr{L} be a principal polarization on *A*. The (polarized) Weil pairing $e_{W,\mathscr{L},\ell}$ is the pairing

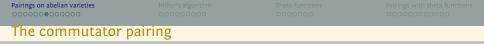
$$\begin{array}{ccc} e_{W,\mathscr{L},\ell} \colon A[\ell] \times A[\ell] & \longrightarrow & \mu_{\ell} \\ (P,Q) & \longmapsto & e_{W,\ell}(P,\varphi_{\mathscr{L}}(Q)) \end{array}$$

associated to the polarization $\varphi_{\mathscr{L}^{\ell}}$:

$$A \xrightarrow{[\ell]} A \xrightarrow{\mathscr{L}} \hat{A}$$

Definition (Embedding degree)

If A is defined over a finite field \mathbb{F}_q , the Weil pairing has image in $\mu_{\ell}(\overline{\mathbb{F}}_q) \subset \mathbb{F}_{q^d}^*$ where d is the embedding degree.



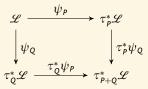
 $\bullet\,$ In general for an ample line bundle $\mathscr{L},$ the polarization $\varphi_{\mathscr{L}}$ gives an isogeny

$$0 \longrightarrow K(\mathscr{L}) \longrightarrow A \longrightarrow \hat{A} \longrightarrow 0$$

and thus a pairing

$$\mathbf{e}_{\mathscr{L}}:\mathbf{K}(\mathscr{L})\times\mathbf{K}(\mathscr{L})\to\mathbb{G}_m.$$

• The following diagram is commutative up to a multiplication by $e_{\mathscr{L}}(P,Q)$:



Pairings on abelian varieties		
The commutator p	pairing	

• The Theta group $G(\mathcal{L})$ is the group $\{(x, \psi_x)\}$ where $x \in K(\mathcal{L})$ and ψ_x is an isomorphism

$$\psi_{\mathbf{x}}: \mathscr{L} \to \tau_{\mathbf{x}}^* \mathscr{L}$$

The composition is given by $(y, \psi_y).(x, \psi_x) = (y + x, \tau_x^* \psi_y \circ \psi_x).$

• $G(\mathcal{L})$ is an Heisenberg group:

$$0 \longrightarrow k^* \longrightarrow G(\mathscr{L}) \longrightarrow K(\mathscr{L}) \longrightarrow 0$$

• Let
$$g_P = (P, \psi_P) \in G(\mathscr{L})$$
 and $g_Q = (Q, \psi_Q) \in G(\mathscr{L})$,
 $e_{\mathscr{L}}(P, Q) = g_P g_Q g_P^{-1} g_Q^{-1}$;

• If $\psi: K(\mathcal{L}) \times K(\mathcal{L}) \rightarrow k^*$ is the 2-cocycle associated to $G(\mathcal{L})$, we also have

$$e_{\mathscr{L}}(P,Q)=\frac{\psi(P,Q)}{\psi(Q,P)}.$$

Pairings on abelian varieties

Miller's algorithm

Theta functions

Pairings with theta functions

The Tate-Lichtenbaum-Frey-Rück pairing [FR94]

• If A is a principally polarised abelian variety over a *p*-adic field, the Tate pairing is a non degenerate pairing

 $H^1(G,A) \times A(k) \rightarrow Br(k)$

where G is the absolute Galois group and $Br(k) = H^2(G, \overline{k}^*) \simeq \mathbb{Q}/\mathbb{Z} \simeq \mu$.

Frey and Rück then reduces this pairing modulo p to obtain that on an abelian variety A/F_q, there is a non degenerate pairing

$$e_T: A_0[\ell](\mathbb{F}_{q^d}) \times A(\mathbb{F}_q) / \ell A(\mathbb{F}_q) \to \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*,\ell},$$

where *d* is the embedding degree and $A_0[\ell] = \{P \in A[\ell] \mid \pi P = [q]P\}$.

• To compute the pairing on a Jacobian Jac(C), they use a version of the Tate pairing given by Lichtenbaum using the exact sequence

$$1 \longrightarrow \operatorname{Princ}_{C_{\overline{k}}} \longrightarrow \operatorname{Div}^{0}_{C_{\overline{k}}} \longrightarrow \operatorname{Pic}^{0}_{C_{\overline{k}}} \longrightarrow 0$$

which gives the connection $\delta: H^1(G, \operatorname{Pic}^0_{C_{\overline{k}}}) \to H^2(G, \operatorname{Princ}_{C_{\overline{k}}})$ and a pairing

$$\begin{array}{rcl} H^1(G,\operatorname{Pic}^0_{C_{\overline{k}}}) \times \operatorname{Pic}^0_C & \longrightarrow & H^2(G,\mathbb{G}_m) \\ (\gamma,D) & \longmapsto & (\sigma \mapsto (\delta(\gamma)(\sigma)(D))) \end{array}$$

• Thus $e_T(D_1, D_2) = f_{\ell, D_1}(D_2)$ where f_{ℓ, D_1} is a function with divisor ℓD_1 .

Pairings on abelian varieties		Pairings with theta functions
Galois cohomology		

- Let G be a finite group; the functor $M \mapsto M^G$ defined on G-modules is left exact but not right exact. This defines the cohomology groups $H^i(G, M)$;
- If G is the absolute Galois group of a field K, we will also note the cohomology groups as $H^i(K, M)$;
- If L/K is Galoisian, there is an inflation restriction exact sequence

$$0 \longrightarrow H^{1}(\operatorname{Gal}(L/K), M(L)) \xrightarrow[\inf]{} H^{1}(K, M) \xrightarrow[\operatorname{res}]{} H^{1}(L, M)^{\operatorname{Gal}(L/K)} \longrightarrow H^{2}(\operatorname{Gal}(L/K), M(L))$$

• If $k = \mathbb{F}_q$, one can use Tate's cohomology groups to show that $H^1(k, M) = M/(\pi - 1)M$ and $\#H^1(k, M) = \#H^0(k, M) = \#M(k)$ (for a finitely generated module M).

Pairings on abelian varieties	
00000000000000	

Miller's algorithm

Theta functions

Pairings with theta functions

Kummer exact sequence

• The exact sequence

$$1 \to \mu_{\ell} \to \overline{k}^* \to \overline{k}^* \to 1$$

induces a connecting map

$$\delta:\overline{k}^*/\overline{k}^{*,\ell}\simeq H^1(k,\mu_\ell)$$

(the isomorphism comes from Hilbert 90: $H^1(k, k^*) = 0$).

• Thus for a finite field $k = \mathbb{F}_q$

$$\mathbb{F}_{q^d}^*/\mathbb{F}_{q^d}^{*,\ell} \simeq H^1(\mathbb{F}_{q^d},\mu_\ell) \simeq \mu_\ell(\mathbb{F}_{q^d});$$

• The isomorphism is given by the exponentiation $x \mapsto x^{\frac{q^d-1}{\ell}}$.

Pairings with theta functions

The Tate-Cartier pairing on abelian varieties over finite fields

- Let $f: A \rightarrow B$ be an isogeny with Ker $f \subset A[\ell]$;
- From the exact sequence

$$0 \to \operatorname{Ker} f \to A \to B \to 0$$

we get from Galois cohomology a connecting morphism

$$\delta : \mathcal{A}(\mathbb{F}_{q^d})/f(\mathcal{B}(\mathbb{F}_{q^d})) \simeq H^1(\mathbb{F}_{q^d}, \operatorname{Ker} f)$$

(this is an isomorphism since $H^1(\mathbb{F}_{q^d}, A) = 0$ for an abelian variety over a finite field);

• Composing with the Weil-Cartier pairing, we get a bilinear application

$$\operatorname{Ker} \widehat{f}(\mathbb{F}_{q^d}) \times A(\mathbb{F}_{q^d}) / f(B(\mathbb{F}_{q^d})) \to H^1(\mathbb{F}_{q^d}, \mu_\ell) \simeq \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^* ^\ell \simeq \mu_\ell;$$

• Explicitely, if $P \in \text{Ker} \hat{f}(\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$ then the (reduced) Tate pairing is given by

$$\boldsymbol{e}_{T}(\boldsymbol{P},\boldsymbol{Q}) = \boldsymbol{e}_{W}(\pi^{d}(\boldsymbol{Q}_{0}) - \boldsymbol{Q}_{0},\boldsymbol{P})$$

where $Q_0 \in A$ is any point such that $Q = f(Q_0)$ and π is the Frobenius of \mathbb{F}_q ;

Miller's algorithm

Theta functions

Pairings with theta functions

The Tate-Cartier pairing on abelian varieties over finite fields

Theorem

The Tate pairing

$$\operatorname{Ker} \hat{f}(\mathbb{F}_{q^d}) \times A(\mathbb{F}_{q^d}) / f(B(\mathbb{F}_{q^d})) \to H^1(\mathbb{F}_{q^d}, \mu_\ell) \simeq \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*\ell} \simeq \mu_\ell$$

is non degenerate.

Proof.

We have canonically

$$\operatorname{Ker} \hat{f}(\mathbb{F}_{q^d}) = \operatorname{Hom}(\operatorname{Ker} f, \mathbb{G}_m)^{\operatorname{Gal}(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d})}$$
$$= \operatorname{Hom}(\operatorname{Ker} f/(\pi^d - 1), \mathbb{F}_{q^d}^*)$$
$$= \operatorname{Hom}(H^1(\mathbb{F}_{q^d}, \operatorname{Ker} f), \mathbb{F}_{q^d}^*)$$

and

$$A(\mathbb{F}_{q^d})/f(B(\mathbb{F}_{q^d}))\simeq H^1(\mathbb{F}_{q^d},\operatorname{Ker} f).$$

 Pairings on abelian varieties
 Miller's algorithm
 Theta functions
 Pairings with theta functions

 00000000000
 0000000000
 0000000000
 0000000000

 The Tate pairing on a principally polarised abelian variety

Let (A, ℒ) be a principally polarised abelian variety; applying the theory to the isogeny f = [ℓ] yields the usual Tate pairing

$$A[\ell](\mathbb{F}_{q^d}) \times A(\mathbb{F}_{q^d}) / \ell A(\mathbb{F}_{q^d}) \to \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*\ell} \simeq \mu_{\ell};$$

• If A is principally polarised over a finite field, the Weil-Cartier pairing associated to the isogeny $\pi^d - 1$ gives a non degenerate pairing

$$A(\mathbb{F}_{q^d}) \times \operatorname{Ker}(\widehat{\pi}^d - 1) \to \mathbb{G}_m$$

where $\hat{\pi}$ is the Verschiebung;

• Since $(\pi^d - 1)(\hat{\pi}^d - 1) = q^d - \pi^d - \hat{\pi}^d + 1$ we get by restriction a (possibly degenerate) pairing

$$A[\ell](\mathbb{F}_{q^d}) \times A[\ell](\mathbb{F}_{q^d}) \to \mu_{\ell};$$

• From the definition above, this is a special case of the Tate pairing (restricted to a subgroup).

The Tate pairing on a principally polarised abelian variety

 Let (A, ℒ) be a principally polarised abelian variety; applying the theory to the isogeny f = [ℓ] yields the usual Tate pairing

 $A[\ell](\mathbb{F}_{q^d}) \times A(\mathbb{F}_{q^d}) / \ell A(\mathbb{F}_{q^d}) \to \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*\ell} \simeq \mu_{\ell};$

- Over F_q, if we note G₁ = A[ℓ](F_q) of type (Z/ℓZ)^r, because π is a Weil number there is a subgroup G₂ ⊂ A[ℓ] of type μ^r_ℓ;
- Let $g: A \rightarrow A/G_2$, and $f: A/G_2 \rightarrow \hat{A} \simeq A$ be the dual isogeny; then we get that the restriction of the Tate pairing to

$$G_2(\mathbb{F}_{q^d}) \times A(\mathbb{F}_q) / \ell A(\mathbb{F}_q) \to \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^*$$

is non degenerate;

• If $A(\mathbb{F}_q)$ does not contain a point of ℓ^2 -torsion, we get a pairing

$$G_2(\mathbb{F}_{q^d}) \times G_1(\mathbb{F}_q) \longrightarrow \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*^\ell};$$

• Likewise, if $A(\mathbb{F}_{q^d})$ does not contain a point of ℓ^2 -torsion, we get by considering the isogeny $A \to A/G_1$ a pairing

$$G_1(\mathbb{F}_q) \times G_2(\mathbb{F}_{q^d}) \to \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*^{\ell}}.$$

Pairings on abelian varieties			
0000000000			00000000000
Pairings and the Dis	screte Logarithm	Problem	

- The Weil pairing was first used to transfer the DLP from an elliptic curve to \mathbb{F}^*_{nd} (the MOV attack [MOV91]);
- Unfortunately, to get a non degenerate pairing we need to work in the field of definition of the points of ℓ torsion which may be larger than \mathbb{F}_{q^d} ;
- Frey and Rück then introduced the Tate pairing to alleviate this problem: we can always find a non degenerate pairing by working over \mathbb{F}_{q^d} ;
- Moreover in the cryptographic case where $A(\mathbb{F}_q) = \langle P \rangle$ is cyclic with order a large prime, it is straightforward to find a point $Q \in A(\mathbb{F}_{q^d})$ such that $e_7(P,Q) \neq 1$;
- Computing the Tate (and Weil pairing) on elliptic curves (and Jacobians) can be done using Miller's algorithm [Mil86];
- What about abelian varieties?

- Let $E: y^2 = x^3 + ax + b$ be an elliptic curve over a field k (char $k \neq 2, 3, 4a^3 + 27b^2 \neq 0.$)
- Let $P, Q \in E[\ell]$ be points of ℓ -torsion; let $f_{\ell,P}$ be a function associated to the principal divisor $\ell(P) \ell(0)$, and $f_{\ell,Q}$ to $\ell(Q) \ell(0)$.
- The Weil pairing $e_{W,\ell} : E[\ell] \times E[\ell] \rightarrow \mu_{\ell}(\overline{k})$ is given by

$$e_{W,\ell}(P,Q) = \frac{f_{\ell,P}((Q)-(0))}{f_{\ell,Q}((P)-(0))}.$$

• The Tate pairing is given by

$$e_{T} \colon G_{2}(\mathbb{F}_{q^{d}}) \times E(\mathbb{F}_{q}) / \ell E(\mathbb{F}_{q}) \longrightarrow \mathbb{F}_{q^{d}}^{*} / \mathbb{F}_{q^{d}}^{*}$$

$$(P, Q) \longmapsto f_{\ell, P}((Q) - (0))$$

•

where

$$G_2(\mathbb{F}_{q^d}) = \{ P \in E[\ell](\mathbb{F}_{q^d}) \mid \pi(P) = [q]P \}.$$

	Miller's algorithm	
Miller's functions		

• We need to compute the functions $f_{\ell,P}$ and $f_{\ell,Q}$. More generally, we define the Miller's functions:

Definition

Let $\lambda \in \mathbb{N}$ and $X \in E[\ell]$, we define $f_{\lambda,X} \in k(E)$ to be a function thus that:

 $(f_{\lambda,X}) = \lambda(X) - ([\lambda]X) - (\lambda-1)(0).$

• We want to compute (for instance) $f_{\ell,P}((Q)-(0))$.

	Miller's algorithm	Pairings with theta functions
Miller's algorithm		

• The key idea in Miller's algorithm is that

$$f_{\lambda+\mu,X} = f_{\lambda,X} f_{\mu,X} \mathfrak{f}_{\lambda,\mu,X}$$

where $f_{\lambda,\mu,X}$ is a function associated to the divisor

$$([\lambda]X)+([\mu]X)-([\lambda+\mu]X)-(0).$$

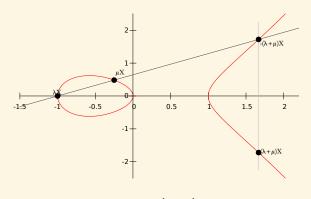
• We can compute $f_{\lambda,\mu,X}$ using the addition law in *E*: if $[\lambda]X = (x_1, y_1)$ and $[\mu]X = (x_2, y_2)$ and $\alpha = (y_1 - y_2)/(x_1 - x_2)$, we have

$$f_{\lambda,\mu,X} = \frac{y - \alpha(x - x_1) - y_1}{x + (x_1 + x_2) - \alpha^2}$$

Miller's algorithm	
00000000	

Miller's algorithm for elliptic curves

 $[\lambda]X = (x_1, y_1) \quad [\mu]X = (x_2, y_2)$



$$\mathfrak{f}_{\lambda,\mu,X}=\frac{y-\alpha(x-x_1)-y_1}{x+(x_1+x_2)-\alpha^2}.$$

Pairings on abelian varieties

Miller's algorithm

Theta functions

Pairings with theta functions

Miller's algorithm for the Tate pairing on elliptic curves

Algorithm (Computing the Tate pairing)

Input:
$$\ell \in \mathbb{N}$$
, $P = (x_1, y_1) \in E[\ell](\mathbb{F}_q)$, $Q = (x_2, y_2) \in E(\mathbb{F}_{q^d})$.
Dutput: $e_T(P, Q)$.

• Compute the binary decomposition: $\ell := \sum_{i=0}^{l} b_i 2^i$. Let $T = P, f_1 = 1, f_2 = 1$.

- For i in [I..0] compute
 - (1) α , the slope of the tangent of E at T.

2
$$T = 2T$$
. $T = (x_3, y_3)$.

$$f_1 = f_1^2(y_2 - \alpha(x_2 - x_3) - y_3), f_2 = f_2^2(x_2 + (x_1 + x_3) - \alpha^2).$$

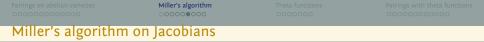
- If $b_i = 1$, then compute
 - (1) α , the slope of the line going through P and T.

2)
$$T = T + Q$$
. $T = (x_3, y_3)$.

• $f_1 = f_1^2(y_2 - \alpha(x_2 - x_3) - y_3), f_2 = f_2(x_2 + (x_1 + x_3) - \alpha^2).$

Return

$$\left(\frac{f_1}{f_2}\right)^{\frac{q^d-1}{\ell}}$$



- Let $P \in \text{Jac}(C)[\ell]$ and D_P a divisor on C representing P;
- By definition of Jac(C), ℓD_P corresponds to a principal divisor $(f_{\ell,P})$ on C;
- The same formulas as for elliptic curve define the Weil and Tate-Lichtenbaum pairings:

$$e_W(P,Q) = f_{\ell,P}(D_Q)/f_{\ell,Q}(D_P)$$

 $e_T(P,Q) = f_{\ell,P}(D_Q).$

 A key ingredient for evaluating f_P(D_Q) comes from Weil's reciprocity theorem.

Theorem (Weil)

Let D_1 and D_2 be two divisors with disjoint support linearly equivalent to (0) on a smooth curve C. Then

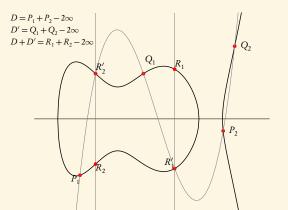
$$f_{D_1}(D_2) = f_{D_2}(D_1).$$

Miller's algorithm on Jacobians of genus 2 curves

- The extension of Miller's algorithm to Jacobians is "straightforward";
- For instance if g = 2, the function $f_{\lambda,\mu,P}$ is of the form

$$\frac{y-l(x)}{(x-x_1)(x-x_2)}$$

where *l* is of degree 3.



- Let (A, Θ) be a principally polarized abelian variety;
- To a degree 0 cycle $\sum n_i(P_i)$ on A, we can associate the divisor $\sum n_i t_{P_i}^* \Theta$ on A;
- The cycle $\sum n_i(P_i)$ corresponds to a trivial divisor iff $\sum n_i P_i = 0$ in A;
- If f is a function on A and $D = \sum_{i=1}^{n} (P_i)$ a cycle whose support does not contain a zero or pole of f, we let

$$f(D)=\prod f(P_i)^{n_i}.$$

(In the following, when we write f(D) we will always assume that we are in this situation.)

Theorem (Lang [Lan58])

Let D_1 and D_2 be two cycles equivalent to 0, and f_{D_1} and f_{D_2} be the corresponding functions on A. Then

 $f_{D_1}(D_2) = f_{D_2}(D_1)$

Pairings on abelian varieties

Miller's algorithm

Theta functions

Pairings with theta functions

The Weil and Tate pairings on abelian varieties

Theorem

Let $P, Q \in A[\ell]$. Let D_P and D_Q be two cycles equivalent to (P)-(0) and (Q)-(0). The Weil pairing is given by

$$e_W(P,Q) = \frac{f_{\ell D_P}(D_Q)}{f_{\ell D_Q}(D_P)}.$$

Theorem

Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$, and let D_P and D_Q be two cycles equivalent to (P)-(0) and (Q)-(0). The (non reduced) Tate pairing is given by

 $e_T(P,Q)=f_{\ell D_P}(D_Q).$

Polarised abelian varieties over $\mathbb C$

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie group V/Λ with

- A complex vector space V of dimension g;
- A \mathbb{Z} -lattice Λ in V (of rank 2g);

such that there exists an Hermitian form *H* on *V* with $E(\Lambda, \Lambda) \subset \mathbb{Z}$ where E = Im H is symplectic.

- Such an Hermitian form *H* is called a polarisation on *A*. Conversely, any symplectic form *E* on *V* such that $E(\Lambda, \Lambda) \subset \mathbb{Z}$ and E(ix, iy) = E(x, y) for all $x, y \in V$ gives a polarisation *H* with E = Im H.
- Over a symplectic basis of Λ , *E* is of the form.

$$\begin{pmatrix} 0 & D_\delta \\ -D_\delta & 0 \end{pmatrix}$$

where D_{δ} is a diagonal positive integer matrix $\delta = (\delta_1, \delta_2, ..., \delta_g)$, with $\delta_1 | \delta_2 | \cdots | \delta_g$.

• The product $\prod \delta_i$ is the degree of the polarisation; *H* is a principal polarisation if this degree is 1.

		Theta functions	
Projective embedo	lings		

Proposition

Let $\Phi: A = V/\Lambda \mapsto \mathbb{P}^{m-1}$ be a projective embedding. Then the linear functions f associated to this embedding are Λ -automorphics:

$$f(x + \lambda) = a(\lambda, x)f(x)$$
 $x \in V, \lambda \in \Lambda;$

for a fixed automorphy factor a:

$$a(\lambda + \lambda', x) = a(\lambda, x + \lambda')a(\lambda', x).$$

Theorem (Appell-Humbert)

All automorphy factors are of the form

$$a(\lambda, x) = \pm e^{\pi (H(x,\lambda) + \frac{1}{2}H(\lambda,\lambda))}$$

for a polarisation H on A.

	Theta functions	
Theta functions		

- Let (A, H_0) be a principally polarised abelian variety over \mathbb{C} : $A = \mathbb{C}^g / (\Omega \mathbb{Z}^g + \mathbb{Z}^g)$ with $\Omega \in \mathfrak{H}_q$.
- The associated Riemann form on *A* is then given by $E_1(\Omega x_1 + x_2, \Omega y_1 + y_2) = {}^t x_1 \cdot y_2 {}^t y_1 \cdot x_2$; equivalently the matrix of H_0 is $\operatorname{Im} \Omega^{-1}$.
- The Weil pairing on $A[\ell]$ corresponds to the symplectic form E on $\frac{1}{\ell}\Lambda/\Lambda$.
- All automorphic forms corresponding to a multiple $H = nH_0$ of H_0 come from the theta functions with characteristics:

$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z, \Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i^t (n+a)\Omega(n+a) + 2\pi i^t (n+a)(z+b)} \quad a, b \in \mathbb{Q}^g$$

• Automorphic property:

$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (\mathbf{z} + m_1 \Omega + m_2, \Omega) = e^{2\pi i (t_a \cdot m_2 - t_b \cdot m_1) - \pi i t_m \Omega m_1 - 2\pi i t_m_1 \cdot \mathbf{z}} \vartheta \begin{bmatrix} a \\ b \end{bmatrix} (\mathbf{z}, \Omega).$$

Remark

Working on level n mean we take a n-th power of the principal polarization. So in the following we will compute the n-th power of the usual Weil and Tate pairings.

Pairings on abelian varieties	Miller's algorithm 000000000	Theta functions	Pairings with theta functions
Theta functions of lev	/el <i>n</i>		

- Define $\vartheta_i = \vartheta \begin{bmatrix} 0\\ \frac{i}{n} \end{bmatrix} (., \frac{\Omega}{n})$ for $i \in Z(\overline{n}) = \mathbb{Z}^g/n\mathbb{Z}^g$ and
- This is a basis of the automorphic functions for H = nH₀ (theta functions of level n);
- This is the unique basis such that in the projective coordinates:

$$\begin{array}{ccc} A & \longrightarrow & \mathbb{P}^{n^{g}-1}_{\mathbb{C}} \\ z & \longmapsto & (\vartheta_{i}(z))_{i \in \mathbb{Z}(\overline{n})} \end{array}$$

the translation by a point of *n*-torsion is normalized by

$$\vartheta_i(z+\frac{m_1}{n}\Omega+\frac{m_2}{n})=e^{-\frac{2\pi i}{n}t_{i+m_1}}\vartheta_{i+m_2}(z).$$

• $(\vartheta_i)_{i \in Z(\overline{n})} = \begin{cases} \text{coordinates system} & n \ge 3\\ \text{coordinates on the Kummer variety } A/\pm 1 & n = 2 \end{cases}$

- $(\vartheta_i)_{i \in \mathbb{Z}(\overline{n})}$: basis of the theta functions of level $n \Leftrightarrow A[n] = A_1[n] \oplus A_2[n]$: symplectic decomposition.
- Theta null point: $\vartheta_i(0)_{i \in \mathbb{Z}(\overline{n})} = \text{modular invariant.}$

	Theta functions	
lacobians		

- Let C be a curve of genus g;
- Let V be the dual of the space V^{*} = Ω¹(C, C) of holomorphic differentials of the first kind on C;
- Let $\Lambda \simeq H^1(C, \mathbb{Z}) \subset V$ be the set of periods (integration of differentials on loops);
- The intersection pairing gives a symplectic form *E* on Λ ;
- Let *H* be the associated hermitian form on *V*;

$$H^*(w_1,w_2)=\int_C w_1\wedge w_2;$$

• Then $(V/\Lambda, H)$ is a principally polarised abelian variety: the Jacobian of C.

Theorem (Torelli)

Jac C with the associated principal polarisation uniquely determines C.

Remark (Weil pairing)

In this setting, the Weil pairing can be seen as the intersection pairing on

$$\operatorname{Jac} C[\ell] \simeq \frac{1}{\ell} H_1(C, \mathbb{Z}) / H_1(C, \mathbb{Z}) \simeq H_1(C, \mathbb{Z}/\ell\mathbb{Z}).$$

		Theta functions	
The differential ad	ddition law ($k = \mathbb{C}$)		

$$\begin{split} \big(\sum_{t\in Z(\bar{2})}\chi(t)\vartheta_{i+t}(\mathbf{x}+\mathbf{y})\vartheta_{j+t}(\mathbf{x}-\mathbf{y})\big).\big(\sum_{t\in Z(\bar{2})}\chi(t)\vartheta_{k+t}(\mathbf{0})\vartheta_{l+t}(\mathbf{0})\big) = \\ \big(\sum_{t\in Z(\bar{2})}\chi(t)\vartheta_{-i'+t}(\mathbf{y})\vartheta_{j'+t}(\mathbf{y})\big).\big(\sum_{t\in Z(\bar{2})}\chi(t)\vartheta_{k'+t}(\mathbf{x})\vartheta_{l'+t}(\mathbf{x})\big). \end{split}$$

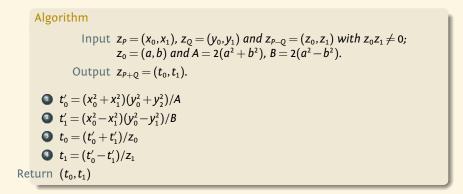
Pairings on abelian varieties

Miller's algorithm

Theta functions

Pairings with theta functions

Example: differential addition in dimension 1 and in level 2



Theta functions

Pairings with theta functions

Miller functions with theta coordinates

Proposition (Lubicz-R. [LR13])

- For P ∈ A we note z_p a lift to C^g. We call P a projective point and z_p an affine point (because we describe them via their projective, resp affine, theta coordinates);
- We have (up to a constant)

$$f_{\lambda,P}(z) = \frac{\vartheta(z)}{\vartheta(z+\lambda z_P)} \left(\frac{\vartheta(z+z_P)}{\vartheta(z)}\right)^{\lambda};$$

• So (up to a constant)

$$\mathfrak{f}_{\lambda,\mu,P}(z) = \frac{\vartheta(z+\lambda z_P)\vartheta(z+\mu z_P)}{\vartheta(z)\vartheta(z+(\lambda+\mu)z_P)}.$$

Pairings on abelian varieties	Miller's algorithm	Theta functions	Pairings with theta functions
Three way addition			

Proposition (Lubicz-R. [LR13])

From the affine points z_P , z_Q , z_R , z_{P+Q} , z_{P+R} and z_{Q+R} one can compute the affine point z_{P+Q+R} .

Proof.

We can compute the three way addition using a generalised version of Riemann's relations:

$$\begin{split} & (\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{i+t}(\mathsf{Z}_{P+Q+R})\vartheta_{j+t}(\mathsf{Z}_{P})).(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k+t}(\mathsf{Z}_{Q})\vartheta_{l+t}(\mathsf{Z}_{R})) = \\ & (\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{-i'+t}(\mathsf{Z}_{0})\vartheta_{j'+t}(\mathsf{Z}_{Q+R})).(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k'+t}(\mathsf{Z}_{P+R})\vartheta_{l'+t}(\mathsf{Z}_{P+Q})). \end{split}$$

Miller's algorithm

Theta functions

Pairings with theta functions

Three way addition in dimension 1 level 2

 T_1

Algorithm

Input The points x,y,z,X = y + z, Y = x + z, Z = x + y; Output T = x + y + z. Return $T_0 = \frac{(aX_0 + bX_1)(Y_0Z_0 + Y_1Z_1)}{x_0(y_0Z_0 + y_1Z_1)} + \frac{(aX_0 - bX_1)(Y_0Z_0 - Y_1Z_1)}{x_0(y_0Z_0 - y_1Z_1)}$

$$=\frac{(aX_0+bX_1)(Y_0Z_0+Y_1Z_1)}{X_1(y_0Z_0+y_1Z_1)}-\frac{(aX_0-bX_1)(Y_0Z_0-Y_1Z_1)}{X_1(y_0Z_0-y_1Z_1)}$$

 Pairings on abelian varieties
 Miller's algorithm
 Theta functions
 Pairings will occord occord

Pairings with theta functions

Computing the Miller function $f_{\lambda,\mu,P}((Q)-(0))$

Algorithm

Input λP , μP and Q; Output $f_{\lambda,\mu,P}((Q)-(0))$

- Compute $(\lambda + \mu)P$, $Q + \lambda P$, $Q + \mu P$ using normal additions and take any affine lifts $z_{(\lambda+\mu)P}$, $z_{Q+\lambda P}$ and $z_{Q+\mu P}$;
- Use a three way addition to compute $z_{Q+(\lambda+\mu)P}$;

Return

$$\mathfrak{f}_{\lambda,\mu,P}((Q)-(0))=\frac{\vartheta(z_Q+\lambda z_P)\vartheta(z_Q+\mu z_P)}{\vartheta(z_Q)\vartheta(z_Q+(\lambda+\mu)z_P)}\cdot\frac{\vartheta((\lambda+\mu)z_P)\vartheta(z_P)}{\vartheta(\lambda z_P)\vartheta(\mu z_P)}$$

Lemma

The result does not depend on the choice of affine lifts in Step 2.

- © This allows us to evaluate the Weil and Tate pairings and derived pairings;
- ③ Not possible *a priori* to apply this algorithm in level 2.

- Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$; choose any lift z_P , z_Q and z_{P+Q} .
- The algorithm loop over the binary expansion of ℓ , and at each step does a doubling step, and if necessary an addition step.

Given $z_{\lambda P}$, $z_{\lambda P+Q}$; Doubling Compute $z_{2\lambda P}$, $z_{2\lambda P+Q}$ using two differential additions; Addition Compute $(2\lambda + 1)P$ and take an arbitrary lift $z_{(2\lambda+1)P}$. Use a three way addition to compute $z_{(2\lambda+1)P+Q}$.

- At the end we have computed affine points z_l and z_l, Evaluating the Miller function then gives exactly the quotient of the projective factors between z_l, z₀ and z_l, z₀.
- © Described this way can be extended to level 2 by using compatible additions;
- © Three way additions and normal (or compatible) additions are quite cumbersome, is there a way to only use differential additions?

Pairings on abelian varieties Miller's algorithm Theta functions Concession C

Using directly the formula for $f_{\ell,P}(z)$ we get that the Weil and Tate pairings are given by

$$e_{W,\ell}(P,Q) = \frac{\vartheta(z_Q + \ell z_P)\vartheta(0)}{\vartheta(z_Q)\vartheta(\ell z_P)} \frac{\vartheta(z_P)\vartheta(\ell z_Q)}{\vartheta(z_P + \ell z_Q)\vartheta(0)}$$
$$e_{T,\ell}(P,Q) = \frac{\vartheta(z_Q + \ell z_P)\vartheta(0)}{\vartheta(z_Q)\vartheta(\ell z_P)}$$

			Pairings with theta functions
The Weil and Ta	te pairing with theta	coordinates (Lubicz-R. [LR10])

P and *Q* points of ℓ -torsion.

• e

$$Z_{0} \qquad Z_{p} \qquad 2Z_{p} \qquad \dots \qquad \ell Z_{p} = \lambda_{p}^{0} Z_{0}$$

$$Z_{Q} \qquad Z_{p} \oplus Z_{Q} \qquad 2Z_{p} + Z_{Q} \qquad \dots \qquad \ell Z_{p} + Z_{Q} = \lambda_{p}^{1} Z_{Q}$$

$$2Z_{Q} \qquad Z_{p} + 2Z_{Q}$$

$$\dots \qquad \dots$$

$$\ell Q = \lambda_{Q}^{0} 0_{A} \qquad Z_{p} + \ell Z_{Q} = \lambda_{Q}^{1} Z_{p}$$

$$\bullet e_{W,\ell}(P,Q) = \frac{\lambda_{p}^{1} \lambda_{Q}^{0}}{\lambda_{p}^{0} \lambda_{Q}^{0}}.$$

$$\bullet e_{T,\ell}(P,Q) = \frac{\lambda_{p}^{1}}{\lambda_{p}^{p}}.$$

		Pairings with theta functions
Why does it work?		

$$\begin{aligned} \mathbf{Z}_{0} & \boldsymbol{\alpha} \mathbf{Z}_{p} & \boldsymbol{\alpha}^{4}(2\mathbf{Z}_{p}) & \dots & \boldsymbol{\alpha}^{\ell^{2}}(\ell \mathbf{Z}_{p}) = \lambda_{p}^{\prime 0} \mathbf{Z}_{0} \\ \boldsymbol{\beta} \mathbf{Z}_{Q} & \boldsymbol{\gamma}(\mathbf{Z}_{p} \oplus \mathbf{Z}_{Q}) & \frac{\gamma^{2} \alpha^{2}}{\beta}(2\mathbf{Z}_{p} + \mathbf{Z}_{Q}) & \dots & \frac{\gamma^{\ell} \alpha^{\ell(\ell-1)}}{\beta^{\ell-1}}(\ell \mathbf{Z}_{p} + \mathbf{Z}_{Q}) = \lambda_{p}^{\prime 1} \boldsymbol{\beta} \mathbf{Z}_{Q} \\ \boldsymbol{\beta}^{4}(2\mathbf{Z}_{Q}) & \frac{\gamma^{2} \beta^{2}}{\alpha}(\mathbf{Z}_{p} + 2\mathbf{Z}_{Q}) & \dots & \frac{\gamma^{\ell} \alpha^{\ell(\ell-1)}}{\beta^{\ell-1}}(\ell \mathbf{Z}_{p} + \mathbf{Z}_{Q}) = \lambda_{p}^{\prime 1} \boldsymbol{\beta} \mathbf{Z}_{Q} \\ \dots & \dots & \\ \boldsymbol{\beta}^{\ell^{2}}(\ell \mathbf{Z}_{Q}) = \lambda_{Q}^{\prime 0} \mathbf{Z}_{0} & \frac{\gamma^{\ell} \beta^{\ell(\ell-1)}}{\alpha^{\ell-1}}(\mathbf{Z}_{p} + \ell \mathbf{Z}_{Q}) = \lambda_{Q}^{\prime 1} \boldsymbol{\alpha} \mathbf{Z}_{p} \end{aligned}$$

We then have

$$\begin{split} \lambda_{\rho}^{\prime 0} &= \alpha^{\ell^{2}} \lambda_{p}^{0}, \quad \lambda_{Q}^{\prime 0} = \beta^{\ell^{2}} \lambda_{Q}^{0}, \quad \lambda_{\rho}^{\prime 1} = \frac{\gamma^{\ell} \alpha^{(\ell(\ell-1)}}{\beta^{\ell}} \lambda_{p}^{1}, \quad \lambda_{Q}^{\prime 1} = \frac{\gamma^{\ell} \beta^{(\ell(\ell-1)}}{\alpha^{\ell}} \lambda_{Q}^{1}, \\ e_{W,\ell}^{\prime}(P,Q) &= \frac{\lambda_{p}^{\prime 1} \lambda_{Q}^{\prime 0}}{\lambda_{\rho}^{\rho} \lambda_{Q}^{\prime 1}} = \frac{\lambda_{p}^{1} \lambda_{Q}^{0}}{\lambda_{p}^{\rho} \lambda_{Q}^{1}} = e_{W,\ell}(P,Q), \\ e_{T,\ell}^{\prime}(P,Q) &= \frac{\lambda_{p}^{\prime 1}}{\lambda_{\rho}^{\prime 0}} = \frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} \frac{\lambda_{p}^{1}}{\lambda_{p}^{\rho}} = \frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} e_{T,\ell}(P,Q). \end{split}$$

		Pairings with theta functions
The case $n = 2$		

- If n = 2 we work over the Kummer variety K over k, so $e(P,Q) \in \overline{k}^{*,\pm 1}$.
- We represent a class $x \in \overline{k}^{*,\pm 1}$ by $x + 1/x \in \overline{k}^*$. We want to compute the symmetric pairing

$$e_s(P,Q) = e(P,Q) + e(-P,Q).$$

- From $\pm P$ and $\pm Q$ we can compute $\{\pm (P+Q), \pm (P-Q)\}$ (need a square root), and from these points the symmetric pairing.
- e_s is compatible with the \mathbb{Z} -structure on K and $\overline{k}^{*,\pm 1}$.
- The \mathbb{Z} -structure on $\overline{k}^{*,\pm}$ can be computed as follow:

$$(x^{\ell_1+\ell_2}+\frac{1}{x^{\ell_1+\ell_2}})+(x^{\ell_1-\ell_2}+\frac{1}{x^{\ell_1-\ell_2}})=(x^{\ell_1}+\frac{1}{x^{\ell_1}})(x^{\ell_2}+\frac{1}{x^{\ell_2}})$$

- Let $P \in G_2 = A[\ell] \bigcap \operatorname{Ker}(\pi_q [q])$ and $Q \in G_1 = A[\ell] \bigcap \operatorname{Ker}(\pi_q 1)$; $\lambda \equiv q \mod \ell$.
- In projective coordinates, we have $\pi_q^d(P+Q) = \lambda^d P + Q = P + Q$;
- Of course, in affine coordinates, $\pi_q^d(z_{P+Q}) \neq \lambda^d z_P + z_Q$.
- But if $\pi_q(z_{P+Q}) = C * (\lambda z_P + z_Q)$, then C is exactly the (non reduced) ate pairing (up to a renormalisation)!

Algorithm (Computing the ate pairing)

Input $P \in G_2$, $Q \in G_1$;

• Compute $z_Q + \lambda z_P$, λz_P using differential additions;

Find the projective factors C₁ and C₀ such that z_Q + λz_P = C₁ * π(z_{P+Q}) and λz_P = C₀ * π(z_P) respectively;

Return $(C_1/C_0)^{\frac{q^d-1}{\ell}}$.

Pairings on abelian varieties	Miller's algorithm 000000000	Theta functions 0000000	Pairings with theta functions
Optimal ate pairing			

• Let $\lambda = m\ell = \sum c_i q^i$ be a multiple of ℓ with small coefficients c_i . ($\ell \nmid m$) • The pairing

$$\begin{array}{cccc} a_{\lambda} \colon G_{2} \times G_{1} & \longrightarrow & \mu_{\ell} \\ (P,Q) & \longmapsto & \left(\prod_{i} f_{G_{i},P}(Q)^{q^{i}} \prod_{i} \mathfrak{f}_{\sum_{j>i} c_{j}q^{j}, c_{i}q^{i}, P}(Q) \right)^{(q^{d}-1)/\ell} \end{array}$$

is non degenerate when $mdq^{d-1} \not\equiv (q^d-1)/r\sum_i ic_i q^{i-1} \mod \ell$.

- Since $\varphi_d(q) = 0 \mod \ell$ we look at powers $q, q^2, \dots, q^{\varphi(d)-1}$.
- We can expect to find λ such that $c_i \approx \ell^{1/\varphi(d)}$.

Miller's algorithm

Theta functions

Pairings with theta functions

Optimal ate pairing with theta functions

Algorithm (Computing the optimal ate pairing) Input $\pi_q(P) = [q]P$, $\pi_q(Q) = Q$, $\lambda = m\ell = \sum c_i q^i$; Compute the $z_Q + c_i z_P$ and $c_i z_P$; Apply Frobeniuses to obtain the $z_Q + c_i q^i z_P$, $c_i q^i z_P$; Compute $c_i q^i z_P \oplus \sum_j c_j q^j z_P$ (up to a constant) and then do a three way addition to compute $z_Q + c_i q^i z_P + \sum_j c_j q^j z_P$ (up to the same constant); Recurse until we get $\lambda z_P = C_0 * z_P$ and $z_Q + \lambda z_P = C_1 * z_Q$; Return $(C_1/C_0)^{\frac{q^d-1}{\ell}}$.

Miller's algorithm

Theta functions

Pairings with theta functions

Cryptographic usage of pairings on abelian varieties

- The moduli space of abelian varieties of dimension g is a space of dimension g(g+1)/2. We have more liberty to find optimal abelian varieties in function of the security parameters.
- Supersingular abelian varieties can have larger embedding degree than supersingular elliptic curves.
- Over a Jacobian, we can use twists even if they are not coming from twists of the underlying curve.
- If A is an abelian variety of dimension g, A[ℓ] is a (ℤ/ℓℤ)-module of dimension 2g ⇒ the structure of pairings on abelian varieties is richer.

Bibliography

P. Bruin. "The Tate pairing for abelian varieties over finite fields". In: J. de theorie des nombres de Bordeaux 23.2 (2011), pp. 323-328.

Pairings with theta functions

H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren, eds. *Handbook of elliptic and hyperelliptic curve cryptography*. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. xxxiv+808. ISBN: 978-1-58488-518-1.

G. Frey, M. Muller, and H.-G. Ruck. "The Tate pairing and the discrete logarithm applied to elliptic curve cryptosystems". In: Information Theory, IEEE Transactions on 45.5 (1999), pp. 1717–1719.

G. Frey and H.-G. Rück. "A remark concerning -divisibility and the discrete logarithm in the divisor class group of curves". In: *Mathematics of computation* 62.206 (1994), pp. 865–874 (cit. on p. 12).

T. Garefalakis. "The generalized Weil pairing and the discrete logarithm problem on elliptic curves". In: *LATIN 2002: Theoretical Informatics.* Springer, 2002, pp. 118–130.

F. Heß. "A note on the Tate pairing of curves over finite fields". In: Archiv der Mathematik 82.1 (2004), pp. 28–32.

S. Lang. "Reciprocity and Correspondences". In: American Journal of Mathematics 80.2 (1958), pp. 431-440 (cit. on p. 27).

D. Lubicz and D. Robert. "Efficient pairing computation with theta functions". In: ed. by

G. Hanrot, F. Morain, and E. Thomé. Vol. 6197. Lecture Notes in Comput. Sci. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings. Springer-Verlag, July 2010. DOI: 10.1007/978-3-642-14518-6_21. URL:

http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf. Slides http://www.normalesup.org/~robert/publications/slides/2010-07-ants.pdf (cit. on pp. 41, 42).

D. Lubicz and D. Robert. "A generalisation of Miller's algorithm and applications to pairing computations on abelian varieties". Mar. 2013. URL: http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf. HAL: hal-00806923, eprint: 2013/192 (cit. on pp. 36, 37).

A. Menezes, T. Okamoto, and S. Vanstone. "Reducing elliptic curve logarithms to logarithms in a finite field". In: Proceedings of the twenty-third annual ACM symposium on Theory of computing. ACM. 1991, p. 89 (cit. on p. 19).

V. Miller. "Short programs for functions on curves". In: Unpublished manuscript 97 (1986), pp. 101–102 (cit. on p. 19).

V. S. Miller. "The Weil Pairing, and Its Efficient Calculation". In: J. Cryptology 17.4 (2004), pp. 235–261. DOI: 10.1007/s00145-004-0315-8.

E. F. Schaefer. "A new proof for the non-degeneracy of the Frey-Rück pairing and a connection to isogenies over the base field". In: *Computational aspects of algebraic curves* 13 (2005), pp. 1–12.