Arithmetic on Abelian and Kummer varieties 2014/04/16 - Institut Fourier - Grenoble

David Lubicz, Damien Robert

Differential addition

- Notations: $x, y, X=x+y, Y=x-y, 0_{A}=\left(a_{i}\right)$;
-

$$
z_{\chi}^{i}=\left(\sum_{t} \chi(t) x_{i+t} x_{t}\right)\left(\sum_{t} \chi(t) y_{i+t} y_{t}\right) /\left(\sum_{t} \chi(t) a_{i+t} a_{t}\right)
$$

$$
\begin{aligned}
& 4 X_{00} Y_{00}=z_{00}^{00}+z_{01}^{00}+z_{10}^{00}+z_{11}^{00} \\
& 4 X_{01} Y_{01}=z_{00}^{00}-z_{01}^{00}+z_{10}^{00}+z_{11}^{00} \\
& 4 X_{10} Y_{10}=z_{00}^{00}+z_{01}^{00}-z_{10}^{00}-z_{11}^{00} \\
& 4 X_{11} Y_{11}=z_{00}^{00}-z_{01}^{00}-z_{10}^{00}+z_{11}^{00}
\end{aligned}
$$

$\Rightarrow 8 S+4 M+4 I=14 M+8 S$ for the differential addition (here we neglect multiplications by constants).

Remark

$\left(\sum_{t} \chi(t) a_{i+t} a_{t}\right)$ is simply the classical theta null point $\vartheta\left[\begin{array}{l}x / 2 \\ i / 2\end{array}\right](0, \Omega)^{2}$.

Normal additions

$$
\begin{aligned}
& 2\left(X_{10} Y_{00}+X_{00} Y_{10}\right)=z_{00}^{10}+z_{01}^{10} ; \\
& 2\left(X_{11} Y_{01}+X_{01} Y_{11}\right)=z_{00}^{10}-z_{01}^{10} ; \\
& 2\left(X_{01} Y_{00}+X_{00} Y_{01}\right)=z_{00}^{01}+z_{10}^{01} ; \\
& 2\left(X_{11} Y_{10}+X_{10} Y_{11}\right)=z_{00}^{01}-z_{10}^{01} ; \\
& 2\left(X_{11} Y_{00}+X_{00} Y_{11}\right)=z_{00}^{11}+z_{11}^{11} ; \\
& 2\left(X_{01} Y_{10}+X_{10} Y_{01}\right)=z_{00}^{11}-z_{11}^{11} ;
\end{aligned}
$$

$\Rightarrow(8 S+4 M)+3 \times(4 M+2 M)=22 M+8 S$ to compute all the $\kappa_{i j}$.

Normal additions, explicit coordinates

- We work with the polynomial $\mathfrak{P}_{\alpha}=Z^{2}-2 \kappa_{\alpha 0} Z+\kappa_{\alpha \alpha} \kappa_{00}$, whose roots are $Z=X_{\alpha} Y_{0}$ and $Z^{\prime}=X_{0} Y_{a}$;
- We can as well assume that $Y_{0}=1$ (projective coordinates);
- The equation to solve is then

$$
\left(\begin{array}{cc}
\kappa_{00} & 1 \\
Z & Z^{\prime} / \kappa_{00}
\end{array}\right)\binom{Y_{i}}{X_{i}}=\binom{\kappa_{0 i}}{\kappa_{\alpha i}} ;
$$

- We get $X_{i}=\left(-\kappa_{0 i}+\kappa_{00} \kappa_{\alpha i}\right) /\left(Z^{\prime}-Z\right)$;
$\Rightarrow 24 M+8 S+I=26 M+8 S$ to compute X once we know Z.

Compatible additions

- Let $P_{1}=X^{2}+a X+b$ and $P_{2}=X^{2}+c X+d$. Then P_{1} and P_{2} have a common root iff $(a d-b c)(c-a)=(d-b)^{2}$, in this case this root is $(d-b) /(a-c)$.
- A compatible addition amount to computing a normal addition $x+y$, and finding a root of \mathfrak{P}_{α} as a common root of the polynomial $\mathfrak{P}_{\alpha}^{\prime}$ coming from the addition of $(x+t, y+t)$;
- So for a compatible addition we need the extra computation of $\mathfrak{P}_{\alpha}^{\prime} \Rightarrow 10 M+8 S$;
- The common root is

$$
\frac{\kappa_{\alpha \alpha}^{\prime} \kappa_{00}^{\prime}-\kappa_{\alpha \alpha} \kappa_{00}}{2\left(\kappa_{\alpha 0}^{\prime}-\kappa_{\alpha 0}\right)} ;
$$

$\Rightarrow 36 M+16 S+2 M+1 I=41 M+16 S$;

- In the $(x, x+t)$ representation, once we have computed $x+y$ via a compatible addition, we can reuse some operations in the computation of $x+y+t$, we gain $-4 S-6 M-4 S-2 M$ for a cost of $33 M+8 S$;
- Still, it may be more efficient to use a three way addition to compute $x+y+t$ rather than another compatible addition, since this cost $12 M+8 I=32 M$;
- I have not used the projectivity all the time, probably a lot to gain...

