Arithmetic on abelian varieties and related topics 2014/03/03 - Neuchâtel

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest

Discrete logarithm

Definition (DLP)

Let $G=\langle g\rangle$ be a cyclic group of prime order. Let $x \in \mathbb{N}$ and $h=g^{x}$. The discrete logarithm $\log _{g}(h)$ is x.

- Exponentiation: $O(\log p)$. DLP: $\widetilde{O}(\sqrt{p})$ (in a generic group). So we can use the DLP for public key cryptography.
\Rightarrow We want to find secure groups with efficient addition law and compact representation.

Elliptic curves

Definition (char $k \neq 2,3$)
An elliptic curve is a plane curve with equation

$$
y^{2}=x^{3}+a x+b \quad 4 a^{3}+27 b^{2} \neq 0 .
$$

Exponentiation:

$$
(\ell, P) \mapsto \ell P
$$

Discrete logarithm:

$$
(P, \ell P) \mapsto \ell
$$

Scalar multiplication on an elliptic curve

Scalar multiplication on an elliptic curve

Scalar multiplication on an elliptic curve

ECC (Elliptic curve cryptography)

Example (NIST-p-256)

- E elliptic curve $y^{2}=x^{3}-3 x+$ 41058363725152142129326129780047268409114441015993725554835256314039467401291 Over $\mathbb{F}_{115792089210356248762697446949407573530086143415290314195533631308867097853951}$
- Public key:
$P=(48439561293906451759052585252797914202762949526041747995844080717082404635286$, $36134250956749795798585127919587881956611106672985015071877198253568414405109)$,
$Q=(76028141830806192577282777898750452406210805147329580134802140726480409897389$, 85583728422624684878257214555223946135008937421540868848199576276874939903729)
- Private key: ℓ such that $Q=\ell P$.
- Used by the NSA;
- Used in Europeans biometric passports.

Pairing-based cryptography

Definition

A pairing is a bilinear application $e: G_{1} \times G_{1} \rightarrow G_{2}$.

Example

- If the pairing e can be computed easily, the difficulty of the DLP in G_{1} reduces to the difficulty of the DLP in G_{2}.
\Rightarrow MOV attacks on supersingular elliptic curves.
- One way tripartite Diffie-Hellman [Jou00].
- Identity-based cryptography [BF03].
- Short signature [BLS04].
- Self-blindable credential certificates [Ver01].
- Attribute based cryptography [SW05].
- Broadcast encryption [GPS+06].
C a smooth irreducible projective curve of genus g.
- Divisor: formal sum $D=\sum n_{i} P_{i}, \quad P_{i} \in C(\bar{k})$. $\operatorname{deg} D=\sum n_{i}$.
- Principal divisor: $\sum_{P \in C(\bar{k})} \nu_{P}(f) . P ; \quad f \in \bar{k}(C)$.

Jacobian of $C=$ Divisors of degree 0 modulo principal divisors

- + Galois action
= Abelian variety of dimension g.
- Divisor class of a divisor $D \in \operatorname{Jac}(C)$ is generically represented by a sum of g points.

Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:

$$
y^{2}=f(x), \operatorname{deg} f=5
$$

$$
\begin{aligned}
& D=P_{1}+P_{2}-2 \infty \\
& D^{\prime}=Q_{1}+Q_{2}-2 \infty
\end{aligned}
$$

Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:

$$
y^{2}=f(x), \operatorname{deg} f=5
$$

Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:

$$
y^{2}=f(x), \operatorname{deg} f=5
$$

Example of Jacobians

Dimension 3

Jacobians of hyperelliptic curves of genus 3 .
Jacobians of quartics.

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.

Example

- Elliptic curves= Abelian varieties of dimension 1 ;
- If C is a (smooth) curve of genus g, its Jacobian is an abelian variety of dimension g;
- In dimension $g \geqslant 4$, not every abelian variety is a Jacobian.

Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \hookleftarrow H
\end{aligned}
$$

- Example: Multiplication by $\ell(\Rightarrow \ell$-torsion), Frobenius (non separable).

Polarised abelian varieties over \mathbb{C}

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie group V / Λ with

- A complex vector space V of dimension g;
- A \mathbb{Z}-lattice Λ in V (of rank $2 g$);
such that there exists an Hermitian form H on V with $E(\Lambda, \Lambda) \subset \mathbb{Z}$ where $E=\operatorname{Im} H$ is symplectic.
- Such an Hermitian form H is called a polarisation on A. Conversely, any symplectic form E on V such that $E(\Lambda, \Lambda) \subset \mathbb{Z}$ and $E(i x, i y)=E(x, y)$ for all $x, y \in V$ gives a polarisation H with $E=\operatorname{Im} H$.
- Over a symplectic basis of Λ, E is of the form.

$$
\left(\begin{array}{cc}
0 & D_{\delta} \\
-D_{\delta} & 0
\end{array}\right)
$$

where D_{δ} is a diagonal positive integer matrix $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{g}\right)$, with $\delta_{1}\left|\delta_{2}\right| \cdots \mid \delta_{g}$.

- The product $\prod \delta_{i}$ is the degree of the polarisation; H is a principal polarisation if this degree is 1.
- Let E_{0} be the canonical principal symplectic form on $\mathbb{R}^{2 g}$ given by $E_{0}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)={ }^{t} x_{1} \cdot y_{2}-{ }^{t} y_{1} \cdot x_{2}$;
- If E is a principal polarisation on $A=V / \Lambda$, there is an isomorphism $j: \mathbb{Z}^{2 g} \rightarrow \Lambda$ such that $E(j(x), j(y))=E_{0}(x, y)$;
- There exists a basis of V such that $j\left(\left(x_{1}, x_{2}\right)\right)=\Omega x_{1}+x_{2}$ for a matrix Ω;
- In particular $E\left(\Omega x_{1}+x_{2}, \Omega y_{1}+y_{2}\right)={ }^{t} x_{1} \cdot y_{2}-{ }^{t} y_{1} \cdot x_{2}$;
- The matrix Ω is in \mathfrak{H}_{g}, the Siegel space of symmetric matrices Ω with $\operatorname{Im} \Omega$ positive definite;
- In this basis, $\Lambda=\Omega \mathbb{Z}^{g}+\mathbb{Z}^{g}$ and H is given by the matrix $(\operatorname{Im} \Omega)^{-1}$.

Action of the symplectic group

- Every principal symplectic form (hence symplectic basis) on $\mathbb{Z}^{2 g}$ comes from the action of $M=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \operatorname{Sp}_{2 g}(\mathbb{Z})$ on $\left(\mathbb{Z}^{2 g}, E_{0}\right)$;
- This action gives a new equivariant bijection $j_{M}: \mathbb{Z}^{2 g} \rightarrow \Lambda$ via $j_{M}\left(\left(x_{1}, x_{2}\right)\right)=\left(A \Omega x_{1}+B x_{2}, C \Omega x_{1}+D x_{2}\right)$;
- Normalizing this embedding via the action of $(C \Omega+D)^{-1}$ on \mathbb{C}^{g}, we get that $j_{M}\left(\left(x_{1}, x_{2}\right)\right)=\Omega_{M} x_{1}+x_{2}$ with $\Omega_{M}=(A \Omega+B)(C \Omega+D)^{-1} \in \mathfrak{H}_{g}$;
- The moduli space of principally polarised abelian varieties is then isomorphic to $\mathfrak{H}_{g} / \mathrm{Sp}_{2 g}(\mathbb{Z})$.

Isogenies

Let $A=V / \Lambda$ and $B=V^{\prime} / \Lambda^{\prime}$.

Definition

An isogeny $f: A \rightarrow B$ is a bijective linear map $f: V \rightarrow V^{\prime}$ such that $f(\Lambda) \subset \Lambda^{\prime}$. The kernel of the isogeny is $f^{-1}\left(\Lambda^{\prime}\right) / \Lambda \subset A$ and its degree is the cardinal of the kernel.

Remark

Up to a renormalization, we can always assume that $V=V^{\prime}=\mathbb{C}^{g}, f=\mathrm{Id}$ and the isogeny is simply $\mathbb{C}^{g} / \Lambda \rightarrow \mathbb{C}^{g} / \Lambda^{\prime}$ for $\Lambda \subset \Lambda^{\prime}$.

The dual abelian variety

Definition

If $A=V / \Lambda$ is an abelian variety, its dual is $\widehat{A}_{k}=\operatorname{Hom}_{\overline{\mathbb{C}}}(V, \mathbb{C}) / \Lambda^{*}$. Here $\operatorname{Hom}_{\overline{\mathbb{C}}}(V, \mathbb{C})$ is the space of anti-linear forms and $\Lambda^{*}=\{f \mid f(\Lambda) \subset \mathbb{Z}\}$ is the orthogonal of Λ.

- If H is a polarisation on A, its dual H^{*} is a polarisation on \widehat{A}. Moreover, there is an isogeny $\Phi_{H}: A \rightarrow \widehat{A}$:

$$
x \mapsto H(x, \cdot)
$$

of degree $\operatorname{deg} H$. We note $K(H)$ its kernel.

- If $f: A \rightarrow B$ is an isogeny, then its dual is an isogeny $\widehat{f}: \widehat{B}_{k} \rightarrow \widehat{A}$ of the same degree.

Remark

There is a canonical polarisation on $A \times \widehat{A}$ (the Poincaré bundle):

$$
(x, f) \mapsto f(x)
$$

Projective embeddings

Proposition

Let $\Phi: A=V / \Lambda \mapsto \mathbb{P}^{m-1}$ be a projective embedding. Then the linear functions f associated to this embedding are Λ-automorphics:

$$
f(x+\lambda)=a(\lambda, x) f(x) \quad x \in V, \lambda \in \Lambda ;
$$

for a fixed automorphy factor a :

$$
a\left(\lambda+\lambda^{\prime}, x\right)=a\left(\lambda, x+\lambda^{\prime}\right) a\left(\lambda^{\prime}, x\right)
$$

Theorem (Appell-Humbert)

All automorphy factors are of the form

$$
a(\lambda, x)= \pm e^{\pi\left(H(x, \lambda)+\frac{1}{2} H(\lambda, \lambda)\right)}
$$

for a polarisation H on A.

- Let $\left(A, H_{0}\right)$ be a principally polarised abelian variety over \mathbb{C} :
$A=\mathbb{C}^{g} /\left(\Omega \mathbb{Z}^{g}+\mathbb{Z}^{g}\right)$ with $\Omega \in \mathfrak{H}_{g}$.
- All automorphic forms corresponding to a multiple \mathscr{L} of H_{0} come from the theta functions with characteristics:

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=\sum_{n \in \mathbb{Z}} e^{\pi i^{t}(n+a) \Omega(n+a)+2 \pi i^{i}(n+a)(z+b)} \quad a, b \in \mathbb{Q}^{g}
$$

- Automorphic property:

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right]\left(z+m_{1} \Omega+m_{2}, \Omega\right)=e^{\left.2 \pi i i^{t} a \cdot m_{2}-^{t} b \cdot m_{1}\right)-\pi i^{t} m_{1} \Omega m_{1}-2 \pi i^{t} m_{1} \cdot z} \vartheta\left[\begin{array}{c}
a \\
b
\end{array}\right](z, \Omega) .
$$

- Define $\vartheta_{i}=\vartheta\left[\begin{array}{c}0 \\ i \\ n\end{array}\right]$ (., $\left.\frac{\Omega}{n}\right)$ for $i \in Z(\bar{n})=\mathbb{Z}^{g} / n \mathbb{Z}^{g}$;
- This is a basis of the automorphic functions for $H=n H_{0}$ (theta functions of level n);
- This is the unique basis such that in the projective coordinates:

$$
\begin{array}{rll}
A & \longrightarrow & \mathbb{P}_{\mathrm{C}}^{n^{g}-1} \\
z & \longmapsto & \left(\vartheta_{i}(z)\right)_{i \in Z(\bar{n})}
\end{array}
$$

the translation by a point of n-torsion is normalized by

$$
\vartheta_{i}\left(z+\frac{m_{1}}{n} \Omega+\frac{m_{2}}{n}\right)=e^{-\frac{2 \pi i}{n} t_{i \cdot m_{1}}} \vartheta_{i+m_{2}}(z) .
$$

- $\left(\vartheta_{i}\right)_{i \in Z(\bar{n})}= \begin{cases}\text { coordinates system } & n \geqslant 3 \\ \text { coordinates on the Kummer variety } A / \pm 1 & n=2\end{cases}$
- $\left(\vartheta_{i}\right)_{i \in Z(n)}$: basis of the theta functions of level n $\Leftrightarrow A[n]=A_{1}[n] \oplus A_{2}[n]$: symplectic decomposition.
- Theta null point: $\vartheta_{i}(0)_{i \in Z(\bar{n})}=$ modular invariant.

The duplication formula

Theorem

Let $\xi: A \times A \rightarrow A \times A,(x, y) \mapsto(x+y, x-y)$. The isogeny theorem applied to ξ gives for $x, y \in \mathbb{C}^{g}$

$$
\begin{gathered}
\vartheta_{i+j}^{\mathscr{L}}(x+y) \vartheta_{i-j}^{\mathscr{L}}(x-y)=\frac{1}{2^{g}} \sum_{\chi \in \hat{Z}(\overline{(})} U_{\chi, i}^{\mathscr{L}^{2}}(x) U_{\chi, j}^{\mathscr{L}^{2}}(x) \\
U_{\chi, i}^{\mathscr{L}^{2}}(x) U_{\chi, j}^{\mathscr{L}^{2}}(y)=\sum_{t \in \hat{Z}(\overline{2})} \chi(t) \vartheta_{i+j+t}^{\mathscr{U}}(x+y) \vartheta_{i-j+t}^{\mathscr{L}}(x-y)
\end{gathered}
$$

where $\vartheta_{i}^{\mathscr{L}}(x)=\vartheta\left[\begin{array}{l}0 \\ \frac{i}{n}\end{array}\right]\left(x, \frac{\Omega}{n}\right)$ is a theta function of level n and $U_{\chi, i}^{\mathscr{L}^{2}}(x)=\vartheta\left[\begin{array}{c}\frac{\chi}{2} \\ \frac{i}{n}\end{array}\right]\left(2 x, \frac{2 \Omega}{n}\right)$ is a theta function of level $2 n$ on A.

Multiplication of sections

- Let $\Delta: X \rightarrow X \times X$ be the diagonal;
- Δ induces the multiplication map $\Delta^{*}: \Gamma(A, \mathscr{L}) \otimes \Gamma(A, \mathscr{L}) \rightarrow \Gamma\left(X, \mathscr{L}^{2}\right), \vartheta_{i}^{\mathscr{L}} \star \vartheta_{j}^{\mathscr{L}} \mapsto\left(\vartheta_{i}^{\mathscr{L}} \otimes \vartheta_{j}^{\mathscr{L}}\right) ;$
- if $S: A \rightarrow A \times A$ is the inclusion map $x \mapsto(x, 0)$ then Δ fits into the commutative diagram

so $\Delta^{*}=S^{*} \xi^{*}$ where ξ^{*} is given by the duplication formula and $S^{*}: \Gamma\left(A, \mathscr{L}^{2}\right) \otimes \Gamma\left(A, \mathscr{L}^{2}\right) \rightarrow \Gamma\left(A, \mathscr{L}^{2}\right)$ is given by $\vartheta_{i}^{\mathscr{L}^{2}} \star \vartheta_{j}^{\mathscr{L}^{2}} \mapsto \vartheta_{i}^{\mathscr{L}^{2}} \vartheta_{j}^{\mathscr{L}^{2}}(0)$;
- We thus have that $\Gamma(A, \mathscr{L}) \otimes \Gamma(A, \mathscr{L}) \rightarrow \Gamma\left(X, \mathscr{L}^{2}\right)$ is given by

$$
\sum_{t \in \hat{Z}(\overline{2})} \chi(t)\left(\vartheta_{i+t}^{\mathscr{L}} \star \vartheta_{j+t}^{\mathscr{L}}\right) \mapsto U_{\chi, \frac{i+j}{2}}^{\mathscr{L}^{2}} U_{\chi, \frac{i-j}{2}}^{\mathscr{L}^{2}}(0)
$$

Projective normality

Theorem (Mumford-Kempf)

If \mathscr{L}_{0} is a principal polarisation, then $\Gamma\left(A, \mathscr{L}_{0}^{m}\right) \otimes \Gamma\left(A, \mathscr{L}_{0}^{n}\right) \rightarrow \Gamma\left(A, \mathscr{L}_{0}^{n+m}\right)$ is surjective whenever $m \geqslant 2$ and $n \geqslant 3$.

Corollary

If $\mathscr{L}=\mathscr{L}_{0}^{n}$ with $n \geqslant 3$, then $S^{m} \Gamma(A, \mathscr{L}) \rightarrow \Gamma\left(A, \mathscr{L}^{m}\right)$ is surjective for all m. Equivalently the homogeneous ring associated to \mathscr{L} is integrally closed, we say that A is projectively normal.

Corollary (Restatement)

If $\mathscr{L}=\mathscr{L}_{0}^{n}$ with $n \geqslant 3$, then for every $u \in Z(2 \bar{n}), \chi \in \hat{Z}(\overline{2})$, there exists $v \in Z(2 \bar{n})$ congruent to u modulo $Z(\bar{n})$ such that $U_{\chi, v}^{\mathscr{L}^{2}}(0) \neq 0$.

Projective normality

Corollary (Restatement)

If $\mathscr{L}=\mathscr{L}_{0}^{n}$ with $n \geqslant 3$, then for every $u \in Z(2 \bar{n}), \chi \in \hat{Z}(\overline{2})$, there exists $v \in Z(2 \bar{n})$ congruent to u modulo $Z(\bar{n})$ such that $U_{\chi, v}^{\mathscr{L}^{2}}(0) \neq 0$.

Proof (Mumford).

For simplicity we assume here that $4 \mid n$. Let $F=\sum_{t \in Z(\overline{2})} \vartheta_{2 u+t}^{\mathscr{L}^{2}}$ and $G=\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{t}^{\mathscr{L}^{2}}$. By the duplication formula, $F \star G=\sum_{v \in u+Z(\overline{4})} U_{\chi, v}^{\mathscr{L}^{2}}(0) \vartheta_{v}^{\mathscr{L}^{2}}$. Since the homogeneous ring is integral, $F \star G \neq 0$. Hence there exist $v \equiv u$ $(\bmod 4)$ such that $U_{\chi, v}^{\mathscr{L}^{2}}(0) \neq 0$.

The differential addition law $(k=\mathbb{C})$

$$
\begin{aligned}
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right) .
\end{aligned}
$$

where n is even and $\chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\bar{n})$

$$
\begin{gathered}
\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=A(i, j, k, l) \\
A=\frac{1}{2}\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right)
\end{gathered}
$$

Proof.

Let $i_{0}, j_{0}, k_{0}, l_{0}$ be such that $i_{0}+j_{0}=i, i_{0}-j_{0}=j, k_{0}+l_{0}=k, k_{0}-l_{0}=l$; then (up to a change of variable) $i_{0}+l_{0}=i^{\prime}, i_{0}-l_{0}=j^{\prime}, k_{0}+j_{0}=k^{\prime}, k_{0}-j_{0}=l^{\prime}$. Thus both terms are equal to $U_{\chi, i_{0}}^{\mathscr{L}^{2}}(x) U_{\chi, j_{0}}^{\mathscr{L}^{2}}(y) U_{\chi, k_{0}}^{\mathscr{X}^{2}}(0) U_{\chi, l_{0}}^{\mathscr{L}^{2}}(0)$.

The differential addition law $(k=\mathbb{C})$

$$
\begin{aligned}
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in Z \overline{(\overline{2}})} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right) .
\end{aligned}
$$

where n is even and $\chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\bar{n})$

$$
\begin{gathered}
\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=A(i, j, k, l) \\
A=\frac{1}{2}\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right)
\end{gathered}
$$

Remark

By the projective normality above, when $n \geqslant 4$, for all $\chi \in \hat{Z}(\overline{2}), k, l \in Z(\bar{n})$; there exists $k_{1}, l_{1} \in Z(\bar{n})$ with $k_{1}+l_{1} \in 2 Z(\bar{n})$ such that $\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k_{2}}^{\mathscr{L}}(0) \vartheta_{l_{2}}^{\mathscr{L}}(0) \neq 0$ where $k_{2}=k+k_{1}, l_{2}=l+l_{1}$. Hence it is always possible to compute the addition law.

Example: addition in genus 1 and in level 2

Differential Addition Algorithm:
Input: $P=\left(x_{1}: z_{1}\right), Q=\left(x_{2}: z_{2}\right)$
and $R=P-Q=\left(x_{3}: z_{3}\right)$ with $x_{3} z_{3} \neq 0$.
Output: $P+Q=\left(x^{\prime}: z^{\prime}\right)$.
(1) $x_{0}=\left(x_{1}^{2}+z_{1}^{2}\right)\left(x_{2}^{2}+z_{2}^{2}\right)$;
(2) $z_{0}=\frac{A^{2}}{B^{2}}\left(x_{1}^{2}-z_{1}^{2}\right)\left(x_{2}^{2}-z_{2}^{2}\right)$;
(3) $x^{\prime}=\left(x_{0}+z_{0}\right) / x_{3}$;
(4) $z^{\prime}=\left(x_{0}-z_{0}\right) / z_{3}$;
(5) Return $\left(x^{\prime}: z^{\prime}\right)$.

Kummer varieties

- If the level $n=2$, then the theta coordinates give an embedding of the Kummer variety $\mathscr{K}=A / \pm 1$;
- If \mathscr{L} is totally symmetric, it descends to a section \mathscr{M} on \mathscr{K}, and the sections of \mathscr{M}^{n} are the symmetric sections $\Gamma\left(A, \mathscr{L}^{n}\right)^{+}$of \mathscr{L}^{n} (sections invariant under the action of $[-1]$);
- The functions $U_{\chi, i}$ appearing in the duplication and addition formulae corresponds to the classical theta functions of level four $\vartheta\left[\begin{array}{l}\frac{a}{2} \\ \frac{b}{2}\end{array}\right](2 x, \Omega)$. They are even (resp. odd) when $\chi(2 i)=1$ (resp. $\chi(2 i)=-1$).

Theorem (Mumford-Koizumi)

The even theta null points $\left\{\left.\vartheta\left[\begin{array}{c}\frac{a}{2} \\ \frac{b}{2}\end{array}\right](0, \Omega) \right\rvert\,(-1)^{t} a b=1\right\}$ are non null if and only if $\Gamma(A, \mathscr{L})^{2} \rightarrow \Gamma\left(A, \mathscr{L}^{2}\right)^{+}$is surjective, if and only if $(\mathscr{K}, \mathscr{M})$ is projectively normal.

Corollary ([Lubicz-R.])

- In this case, from the theta coordinates of x and y we can recover all elements of the form $\vartheta_{i}(x+y) \vartheta_{j}(x-y)+\vartheta_{j}(x+y) \vartheta_{i}(x-y)$;
- While it is not possible to compute additions on the Kummer variety, it is always possible to compute differential additions.

Isogenies and pairings

Let $f: A \rightarrow B$ be a separable isogeny with kernel K between two abelian varieties defined over k :
$0 \longrightarrow K \longrightarrow B \longrightarrow 0$

- Since $\hat{B} \simeq \operatorname{Ext}^{1}\left(B, \mathbb{G}_{m}\right), \hat{K}$ is the Cartier dual of K, and we have a non degenerate pairing $e_{f}: K \times \hat{K} \rightarrow \bar{k}^{*}$:
(2) If $Q \in \hat{K}(\bar{k}), Q$ defines a divisor D_{Q} on B;
(2) $\widehat{f}(Q)=0$ means that $f^{*} D_{Q}$ is equal to a principal divisor $\left(g_{Q}\right)$ on A;
(3) $e_{f}(P, Q)=g_{Q}(x) / g_{Q}(x+P)$. (This last function being constant in its definition domain).
- The Weil pairing $e_{W, \ell}$ is the pairing associated to the isogeny $[\ell]: A \rightarrow A$:

$$
e_{W, \ell}: A[\ell] \times \hat{A}[\ell] \rightarrow \mu_{\ell}(\bar{k}) .
$$

If \mathscr{L} is an ample line bundle, the polarization $\varphi_{\mathscr{L}}$ is a morphism $A \rightarrow \widehat{A}, x \mapsto t_{x}^{*} \mathscr{L} \otimes \mathscr{L}^{-1}$.

Definition

Let \mathscr{L} be a principal polarization on A. The (polarized) Weil pairing $e_{W, \mathscr{L}, \ell}$ is the pairing

$$
\begin{aligned}
e_{W, \mathscr{L}, \ell}: A[\ell] \times A[\ell] & \longrightarrow \mu_{\ell}(\bar{k}) \\
(P, Q) & \longmapsto e_{W, \ell}\left(P, \varphi_{\mathscr{L}}(Q)\right)
\end{aligned}
$$

associated to the polarization $\varphi_{\mathscr{L}}$:

$$
A \xrightarrow{[\ell]} A \xrightarrow{\mathscr{L}} \widehat{A}_{k}
$$

The Tate pairings on abelian varieties over finite fields

- From the exact sequence

$$
0 \rightarrow A[\ell]\left(\overline{\mathbb{F}}_{q^{d}}\right) \rightarrow A\left(\overline{\mathbb{F}}_{q^{d}}\right) \rightarrow^{[\ell]} A\left(\overline{\mathbb{F}}_{q^{d}}\right) \rightarrow 0
$$

we get from Galois cohomology a connecting morphism

$$
\delta: A\left(\mathbb{F}_{q^{d}}\right) / \ell A\left(\mathbb{F}_{q^{d}}\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(\overline{\mathbb{F}}_{q^{d}} / \mathbb{F}_{q^{d}}\right), A[\ell]\right) ;
$$

- Composing with the Weil pairing, we get a bilinear application

$$
A[\ell]\left(\mathbb{F}_{q^{d}}\right) \times A\left(\mathbb{F}_{q^{d}}\right) / \ell A\left(\mathbb{F}_{q^{d}}\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(\overline{\mathbb{F}}_{q^{d}} / \mathbb{F}_{q^{d}}\right), \mu_{\ell}\right) \simeq \mathbb{F}_{q^{d}}^{*} / \mathbb{F}_{q^{d}}^{*} \simeq \mu_{\ell}
$$

where the last isomorphism comes from the Kummer sequence

$$
1 \rightarrow \mu_{\ell} \rightarrow \overline{\mathbb{F}}_{q^{d}}^{*} \rightarrow \overline{\mathbb{F}}_{q^{d}}^{*} \rightarrow 1
$$

and Hilbert 90;

- Explicitely, if $P \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ and $Q \in A\left(\mathbb{F}_{q^{d}}\right)$ then the (reduced) Tate pairing is given by

$$
e_{T}(P, Q)=e_{W}\left(P, \pi\left(Q_{0}\right)-Q_{0}\right)
$$

where Q_{0} is any point such that $Q=[\ell] Q_{0}$ and π is the Frobenius of $\mathbb{F}_{q^{d}}$.

- Let (A, \mathscr{L}) be a principally polarized abelian variety;
- To a degree 0 cycle $\sum n_{i}\left(P_{i}\right)$ on A, we can associate the divisor $\sum t_{P_{i}^{*}}^{*} \mathscr{L}^{n_{i}}$ on A;
- The cycle $\sum n_{i}\left(P_{i}\right)$ corresponds to a trivial divisor iff $\sum n_{i} P_{i}=0$ in A;
- If f is a function on A and $D=\sum\left(P_{i}\right)$ a cycle whose support does not contain a zero or pole of f, we let

$$
f(D)=\prod f\left(P_{i}\right)^{n_{i}} .
$$

(In the following, when we write $f(D)$ we will always assume that we are in this situation.)

Theorem ([Lan58])

Let D_{1} and D_{2} be two cycles equivalent to 0 , and $f_{D_{1}}$ and $f_{D_{2}}$ be the corresponding functions on A. Then

$$
f_{D_{1}}\left(D_{2}\right)=f_{D_{2}}\left(D_{1}\right)
$$

The Weil and Tate pairings on abelian varieties

Theorem

Let $P, Q \in A[\ell]$. Let D_{P} and D_{Q} be two cycles equivalent to $(P)-(0)$ and $(Q)-(0)$. The Weil pairing is given by

$$
e_{W}(P, Q)=\frac{f_{\ell D_{P}}\left(D_{Q}\right)}{f_{\ell D_{Q}}\left(D_{P}\right)}
$$

Theorem

Let $P \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ and $Q \in A\left(\mathbb{F}_{q^{d}}\right)$, and let D_{P} and D_{Q} be two cycles equivalent to $(P)-(0)$ and $(Q)-(0)$. The (non reduced) Tate pairing is given by

$$
e_{T}(P, Q)=f_{\ell D_{P}}\left(D_{Q}\right)
$$

- The moduli space of abelian varieties of dimension g is a space of dimension $g(g+1) / 2$. We have more liberty to find optimal abelian varieties in function of the security parameters.
- Supersingular abelian varieties can have larger embedding degree than supersingular elliptic curves.
- Over a Jacobian, we can use twists even if they are not coming from twists of the underlying curve.
- If A is an abelian variety of dimension $g, A[\ell]$ is a $(\mathbb{Z} / \ell \mathbb{Z})$-module of dimension $2 g \Rightarrow$ the structure of pairings on abelian varieties is richer.
P and Q points of ℓ-torsion.

$$
\begin{array}{ccccr}
z_{0} & z_{P} & 2 z_{P} & \ldots & \ell z_{P}=\lambda_{P}^{0} z_{0} \\
z_{Q} & z_{P} \oplus z_{Q} & 2 z_{P}+z_{Q} & \ldots & \ell z_{P}+z_{Q}=\lambda_{P}^{1} z \\
2 z_{Q} & z_{P}+2 z_{Q} & & & \\
\ldots & \ldots & & & \\
\ell Q=\lambda_{Q}^{0} 0_{A} & z_{P}+\ell z_{Q}=\lambda_{Q}^{1} z_{P} & & & \\
\text { - } e_{W, \ell}(P, Q)=\frac{\lambda_{P}^{1} \lambda_{0}^{0}}{\lambda_{P}^{0} l_{Q}^{1}} . \\
\text { - } e_{T, \ell}(P, Q)=\frac{\lambda_{p}^{p}}{\lambda_{P}^{0}} .
\end{array}
$$

Why does it work?

$$
\begin{array}{ccccc}
z_{0} & \alpha z_{P} & \alpha^{4}\left(2 z_{P}\right) & \ldots & \alpha^{\ell^{2}}\left(\ell z_{P}\right)=\lambda_{P}^{\prime 0} z_{0} \\
\beta z_{Q} & \gamma\left(z_{P} \oplus z_{Q}\right) & \frac{\gamma^{2} \alpha^{2}}{\beta}\left(2 z_{P}+z_{Q}\right) & \ldots & \frac{r^{\ell} \alpha^{\ell(\ell-1)}}{\beta^{\ell-1}}\left(\ell z_{P}+z_{Q}\right)=\lambda_{P}^{\prime 1} \beta z_{Q} \\
\beta^{4}\left(2 z_{Q}\right) & \frac{\gamma^{2} \beta^{2}}{\alpha}\left(z_{P}+2 z_{Q}\right) & & & \\
\ldots & \ldots & & & \\
\beta^{\ell^{2}}\left(\ell z_{Q}\right)=\lambda_{Q}^{\prime 0} z_{0} & \frac{r^{\ell} \beta^{\ell \ell(l-1)}}{\alpha^{\ell-1}}\left(z_{P}+\ell z_{Q}\right)=\lambda_{Q}^{1} \alpha z_{P} & &
\end{array}
$$

We then have

$$
\begin{gathered}
\lambda_{P}^{\prime 0}=\alpha^{\ell^{2}} \lambda_{P}^{0}, \quad \lambda_{Q}^{\prime 0}=\beta^{\ell^{2}} \lambda_{Q}^{0}, \quad \lambda_{P}^{\prime 1}=\frac{\gamma^{\ell} \alpha^{(\ell(\ell-1)}}{\beta^{\ell}} \lambda_{P}^{1}, \quad \lambda_{Q}^{1}=\frac{r^{\ell} \beta^{(\ell(\ell-1)}}{\alpha^{\ell}} \lambda_{Q}^{1}, \\
e_{W, \ell}^{\prime}(P, Q)=\frac{\lambda_{P}^{1} \lambda_{Q}^{\prime 0}}{\lambda_{P}^{0} \lambda_{Q}^{1}}=\frac{\lambda_{P}^{1} \lambda_{Q}^{0}}{\lambda_{P}^{0} \lambda_{Q}^{1}}=e_{W, \ell}(P, Q), \\
e_{T, \ell}^{\prime}(P, Q)=\frac{\lambda_{P}^{\prime 1}}{\lambda_{P}^{\prime 0}}=\frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} \frac{\lambda_{P}^{1}}{\lambda_{P}^{0}}=\frac{r^{\ell}}{\alpha^{\ell} \beta^{\ell}} e_{T, \ell}(P, Q) .
\end{gathered}
$$

Ate pairing [LR13]

- Let $P \in G_{2}=A[\ell] \bigcap \operatorname{Ker}\left(\pi_{q}-[q]\right)$ and $Q \in G_{1}=A[\ell] \bigcap \operatorname{Ker}\left(\pi_{q}-1\right) ; \lambda \equiv q$ $\bmod \ell$.
- In projective coordinates, we have $\pi_{q}^{d}(P+Q)=\lambda^{d} P+Q=P+Q$;
- Of course, in affine coordinates, $\pi_{q}^{d}\left(z_{P+Q}\right) \neq \lambda^{d} z_{P}+z_{Q}$.
- But if $\pi_{q}\left(z_{P+Q}\right)=C *\left(\lambda z_{P}+z_{Q}\right)$, then C is exactly the (non reduced) ate pairing (up to a renormalisation)!

Algorithm (Computing the ate pairing)

$$
\text { Input } P \in G_{2}, Q \in G_{1} \text {; }
$$

(1) Compute $z_{Q}+\lambda z_{P}, \lambda z_{P}$ using differential additions;
(3) Find the projective factors C_{1} and C_{0} such that $z_{Q}+\lambda z_{P}=C_{1} * \pi\left(z_{P+Q}\right)$ and $\lambda z_{P}=C_{0} * \pi\left(z_{P}\right)$ respectively;
Return $\left(C_{1} / C_{0}\right)^{q^{d}-1}$.

- Transfer the Discrete Logarithm Problem from one Abelian variety to another;
- Point counting algorithms (ℓ-adic or p-adic) \Rightarrow Verify an abelian variety is secure;
- Compute the class field polynomials (CM-method) \Rightarrow Construct a secure abelian variety;
- Compute the modular polynomials \Rightarrow Compute isogenies;
- Determine $\operatorname{End}(A) \Rightarrow$ CRT method for class field polynomials;
- Speed up the arithmetic;
- Hash functions and cryptosystems based on isogeny graphs.

The isogeny theorem

Theorem

- Let $\varphi: Z(\bar{n}) \rightarrow Z(\overline{\ell n}), x \mapsto \ell . x$ be the canonical embedding. Let $K=A_{2}[\ell] \subset A_{2}[\ell n]$.
- Let $\left(\vartheta_{i}^{A}\right)_{i \in Z(\overline{\ell n})}$ be the theta functions of level ℓn on $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\vartheta_{i}^{B}\right)_{i \in Z(\bar{n})}$ be the theta functions of level n of $B=A / K=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\boldsymbol{\vartheta}_{i}^{B}(x)\right)_{i \in Z(\bar{n})}=\left(\vartheta_{\varphi(i)}^{A}(x)\right)_{i \in Z(\bar{n})}
$$

Example

$f:\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}\right) \mapsto\left(x_{0}, x_{3}, x_{6}, x_{9}\right)$ is a 3-isogeny between elliptic curves.

An example with $g=1, n=2, \ell=3$

$$
z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right) \text {, level } \ell n \xrightarrow{[\ell]} \ell z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right) \text {, level } \ell n
$$

$$
z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right), \text { level } n
$$

An example with $g=1, n=2, \ell=3$

Changing level

Theorem (Koizumi-Kempf)

Let F be a matrix of rank r such that ${ }^{t} F F=\ell \operatorname{Id}_{r}$. Let $X \in\left(\mathbb{C}^{g}\right)^{r}$ and $Y=F(X) \in\left(\mathbb{C}^{g}\right)^{r}$. Let $j \in\left(\mathbb{Q}^{g}\right)^{r}$ and $i=F(j)$. Then we have

$$
\begin{aligned}
\vartheta\left[\begin{array}{c}
0 \\
i_{1}
\end{array}\right]\left(Y_{1}, \frac{\Omega}{n}\right) \ldots \vartheta\left[\begin{array}{c}
0 \\
i_{r}
\end{array}\right]\left(Y_{r}, \frac{\Omega}{n}\right)= & \sum_{\substack{t_{1}, \ldots, t_{r} \in \frac{1}{\mathbb{Z}^{g}} \mathbb{Z}_{/ \mathbb{Z}^{g}} \\
F\left(t_{1}, \ldots, t_{r}\right)=(0, \ldots, 0)}} \vartheta\left[\begin{array}{c}
0 \\
j_{1}
\end{array}\right]\left(X_{1}+t_{1}, \frac{\Omega}{\ell n}\right) \ldots \vartheta\left[\begin{array}{c}
0 \\
j_{r}
\end{array}\right]\left(X_{r}+t_{r}, \frac{\Omega}{\ell n}\right),
\end{aligned}
$$

(This is the isogeny theorem applied to $F_{A}: A^{r} \rightarrow A^{r}$.)

- If $\ell=a^{2}+b^{2}$, we take $F=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$, so $r=2$.
- In general, $\ell=a^{2}+b^{2}+c^{2}+d^{2}$, we take F to be the matrix of multiplication by $a+b i+c j+d k$ in the quaternions, so $r=4$.

The isogeny formula

$$
\begin{gathered}
\ell \wedge n=1, \quad B=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right), \quad A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right) \\
\vartheta_{b}^{B}:=\vartheta\left[\begin{array}{c}
0 \\
\frac{b}{n}
\end{array}\right]\left(\cdot, \frac{\Omega}{n}\right), \quad \vartheta_{b}^{A}:=\vartheta\left[\begin{array}{c}
0 \\
\frac{b}{n}
\end{array}\right]\left(\cdot, \frac{\ell \Omega}{n}\right)
\end{gathered}
$$

Proposition

Let F be a matrix of rank r such that ${ }^{t} F F=\ell \operatorname{Id}_{r}$. Let X in $\left(\mathbb{C}^{g}\right)^{r}$ and $Y=X F^{-1} \in\left(\mathbb{C}^{g}\right)^{r}$. Let $i \in(Z(\bar{n}))^{r}$ and $j=i F^{-1}$. Then we have

$$
\vartheta_{i_{1}}^{A}\left(Y_{1}\right) \ldots \vartheta_{i_{r}}^{A}\left(Y_{r}\right)=\sum_{\substack{t_{1}, \ldots, t_{r} \in \frac{1}{\mathbb{Z}} \mathbb{Z}^{g} / \mathbb{Z}^{g} \\\left(t_{1}, \ldots, t_{r}\right) F=(0, \ldots, 0)}} \vartheta_{j_{1}}^{B}\left(X_{1}+t_{1}\right) \ldots \vartheta_{j_{r}}^{B}\left(X_{r}+t_{r}\right)
$$

Corollary

$$
\vartheta_{k}^{A}(0) \vartheta_{0}^{A}(0) \ldots \vartheta_{0}^{A}(0)=\sum_{\substack{t_{1}, \ldots, t_{r} \in K \\\left(t_{1}, \ldots, t_{r}\right) F=(0, \ldots, 0)}} \vartheta_{j_{1}}^{B}\left(t_{1}\right) \ldots \vartheta_{j_{r}}^{B}\left(t_{r}\right), \quad\left(j=(k, 0, \ldots, 0) F^{-1} \in Z(\bar{n})\right)
$$

The Algorithm (Cosset-R. [CR13])

- The geometric points of the kernel live in a extension k^{\prime} of degree at most $\ell^{g}-1$ over $k=\mathbb{F}_{q}$;
- The isogeny formula assumes that the points are in affine coordinates. In practice, given A / \mathbb{F}_{q} we only have projective coordinates \Rightarrow we use differential additions to normalize the coordinates;
- Computing the normalization factors takes $O(\log \ell)$ operations in k^{\prime};
- Computing the points of the kernel via differential additions take $O\left(\ell^{g}\right)$ operations in k^{\prime};
- If $\ell \equiv 1(\bmod 4)$, applying the isogeny formula take $O\left(\ell^{g}\right)$ operations in k^{\prime};
- If $\ell \equiv 3(\bmod 4)$, applying the isogeny formula take $O\left(\ell^{2 g}\right)$ operations in k^{\prime};
\Rightarrow The total cost is $\widetilde{O}\left(\ell^{2 g}\right)$ or $\widetilde{O}\left(\ell^{3 g}\right)$ operations in \mathbb{F}_{q}.

Remark

The complexity is much worse over a number field because we need to work with extensions of much higher degree.

- The geometric points of the kernel live in a extension k^{\prime} of degree at most $\ell^{g}-1$ over $k=\mathbb{F}_{q}$;
- The isogeny formula assumes that the points are in affine coordinates. In practice, given A / \mathbb{F}_{q} we only have projective coordinates \Rightarrow we use differential additions to normalize the coordinates;
- Computing the normalization factors takes $O(\log \ell)$ operations in k^{\prime};
- Computing the points of the kernel via differential additions take $O\left(\ell^{g}\right)$ operations in k^{\prime};
- If $\ell \equiv 1(\bmod 4)$, applying the isogeny formula take $O\left(\ell^{g}\right)$ operations in k^{\prime};
- If $\ell \equiv 3(\bmod 4)$, applying the isogeny formula take $O\left(\ell^{2 g}\right)$ operations in k^{\prime};
\Rightarrow The total cost is $\widetilde{O}\left(\ell^{2 g}\right)$ or $\widetilde{O}\left(\ell^{3 g}\right)$ operations in \mathbb{F}_{q}.

Theorem ([Lubicz-R.])

We can compute the isogeny directly given the equations (in a suitable form) of the kernel K of the isogeny. When K is rational, this gives a complexity of $\widetilde{O}\left(\ell^{g}\right)$ or $\widetilde{O}\left(\ell^{2 g}\right)$ operations in \mathbb{F}_{q}.

Horizontal isogeny graphs: $\ell=q_{1} q_{2}=Q_{1} Q_{1} Q_{2} Q_{2}$

Horizontal isogeny graphs: $\ell=q_{1} q_{2}=Q_{1} Q_{1} Q_{2} Q_{2} \quad\left(\mathbb{Q} \mapsto K_{0} \mapsto K\right)$

Horizontal isogeny graphs: $\ell=q=Q Q$
$\left(\mathbb{Q} \mapsto K_{0} \mapsto K\right)$

Horizontal isogeny graphs: $\ell=q_{1} q_{2}=\mathrm{Q}_{1} Q_{1} Q_{2}^{2}$
$\left(\mathbb{Q} \mapsto K_{0} \mapsto K\right)$

Horizontal isogeny graphs: $\ell=q^{2}=Q^{2} \bar{Q}^{2}$

0
0
0
0
0
0

Isogeny graphs in dimension $2\left(\ell=q_{1} q_{2}=Q_{1} Q_{1} Q_{2} Q_{2}\right)$

Isogeny graphs in dimension $2(\ell=q=Q Q)$

Isogeny graphs in dimension $2(\ell=q=Q Q)$

Isogeny graphs and lattice of orders (Bisson-Cosset-R. [BCR10])

Bibliography

G. Bisson, R. Cosset, and D. Robert. "AVIsogenies (Abelian Varieties and Isogenies)". Magma package for explicit isogenies computation between abelian varieties. 2010. URL: http://avisogenies.gforge.inria.fr. Free software (LGPLV2+), registered to APP (reference IDDN.FR.001.440011.000.R.P.2010.000.10000) (cit. on p. 65).
D. Boneh and M. Franklin. "Identity-based encryption from the Weil pairing". In: SIAM Journal on Computing 32.3 (2003), pp. 586-615 (cit. on p. 8).
D. Boneh, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: Journal of Cryptology 17.4 (2004), pp. 297-319 (cit. on p. 8).
R. Cosset and D. Robert. "An algorithm for computing (ℓ, ℓ)-isogenies in polynomial time on Jacobians of hyperelliptic curves of genus 2". Accepted for publication at Mathematics of computation. Oct. 2013. URL:
http://www.normalesup.org/~robert/pro/publications/articles/niveau.pdf. HAL: hal-00578991, eprint: 2011/143 (cit. on p. 52).
V. Goyal, O. Pandey, A. Sahai, and B. Waters. "Attribute-based encryption for fine-grained access control of encrypted data". In: Proceedings of the 13th ACM conference on Computer and communications security. ACM. 2006, p. 98 (cit. on p. 8).
A. Joux. "A one round protocol for tripartite Diffie-Hellman". In: Algorithmic number theory (ANTS IV (2000), pp. 385-393 (cit. on p. 8).
S. Lang. "Reciprocity and Correspondences". In: American Journal of Mathematics 80.2 (1958), pp. 431-440 (cit. on p. 35).
D. Lubicz and D. Robert. "Efficient pairing computation with theta functions". In: ed. by
G. Hanrot, F. Morain, and E. Thomé. Vol. 6197. Lecture Notes in Comput. Sci. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings. Springer-Verlag, July 2010. DOI: 10.1007/978-3-642-14518-6_21. URL:
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf.
Slides http://www.normalesup.org/~robert/publications/slides/2010-07-ants.pdf (cit. on p. 38).
D. Lubicz and D. Robert. "A generalisation of Miller's algorithm and applications to pairing computations on abelian varieties". Mar. 2013. URL: http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf. HAL: hal-00806923, eprint: 2013/192 (cit. on p. 40).
A. Sahai and B. Waters. "Fuzzy identity-based encryption". In: Advances in Cryptology-EUROCRYPT 2005 (2005), pp. 457-473 (cit. on p. 8).
E. Verheul. "Self-blindable credential certificates from the Weil pairing". In: Advances in

Cryptology-ASIACRYPT 2001 (2001), pp. 533-551 (cit. on p. 8).

