Arithmetic on abelian varieties and related topics 2014/03/03 – Neuchâtel

Damien ROBERT

Équipe LFANT, Inria Bordeaux Sud-Ouest

Cryptography				
Discrete	logarithm		 	

Definition (DLP)

Let $G = \langle g \rangle$ be a cyclic group of prime order. Let $x \in \mathbb{N}$ and $h = g^x$. The discrete logarithm $\log_g(h)$ is x.

- Exponentiation: O(log p). DLP: Õ(√p) (in a generic group). So we can use the DLP for public key cryptography.
- ⇒ We want to find secure groups with efficient addition law and compact representation.

Cryptography				
Elliptic c	urves			

Definition (char $k \neq 2, 3$)

An elliptic curve is a plane curve with equation

$$y^2 = x^3 + ax + b$$
 $4a^3 + 27b^2 \neq 0.$

Scalar multiplication on an elliptic curve

Cryptography				
ECC (Ell	iptic curve cry	/ptography		

Example (NIST-p-256)

• *E* elliptic curve $y^2 = x^3 - 3x + x^3 + x^3 - 3x + x^3 + x^3$

 $\begin{array}{l} {}^{41058363725152142129326129780047268409114441015993725554835256314039467401291} \text{ over}\\ {}^{F_{115792089210356248762697446949407573530086143415290314195533631308867097853951}\end{array}$

- Public key:
 - $P = (48439561293906451759052585252797914202762949526041747995844080717082404635286, \\ 36134250956749795798585127919587881956611106672985015071877198253568414405109),$
 - $\label{eq:Q} Q = (76028141830806192577282777898750452406210805147329580134802140726480409897389, \\85583728422624684878257214555223946135008937421540868848199576276874939903729)$
- Private key: ℓ such that $Q = \ell P$.
- Used by the NSA;
- Used in Europeans biometric passports.

Cryptography				
00000				
Pairing-b	ased cryptog	raphy		

A pairing is a bilinear application $e: G_1 \times G_1 \rightarrow G_2$.

Example

- If the pairing e can be computed easily, the difficulty of the DLP in G_1 reduces to the difficulty of the DLP in G_2 .
- \Rightarrow MOV attacks on supersingular elliptic curves.
- One way tripartite Diffie-Hellman [Jou00].
- Identity-based cryptography [BF03].
- Short signature [BLS04].
- Self-blindable credential certificates [Ver01].
- Attribute based cryptography [SW05].
- Broadcast encryption [GPS+06].

	Curves and Jacobians			
Jacobian	of curves			

 ${\it C}$ a smooth irreducible projective curve of genus ${\it g}.$

• Divisor: formal sum
$$D = \sum n_i P_i$$
, $P_i \in C(\overline{k})$.
deg $D = \sum n_i$.

• Principal divisor:
$$\sum_{P \in C(\overline{k})} v_P(f).P; \quad f \in \overline{k}(C).$$

Jacobian of C = Divisors of degree 0 modulo principal divisors

+ Galois action

= Abelian variety of dimension g.

• Divisor class of a divisor $D \in Jac(C)$ is generically represented by a sum of g points.

Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:

 $y^2 = f(x), \deg f = 5.$

Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:

$$y^2 = f(x), \deg f = 5.$$

Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:

$$y^2 = f(x), \deg f = 5.$$

	Curves and Jacobians			
Example	of Jacobians			

Dimension 3

Jacobians of hyperelliptic curves of genus 3.

Jacobians of quartics.

	Curves and Jacobians					
Abelian	varieties	_	_	_	_	

An Abelian variety is a complete connected group variety over a base field k.

• Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.

Example

- Elliptic curves= Abelian varieties of dimension 1;
- If C is a (smooth) curve of genus g, its Jacobian is an abelian variety of dimension g;
- In dimension $g \ge 4$, not every abelian variety is a Jacobian.

	Curves and Jacobians			
Isogenie	S			

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies ⇔ Finite subgroups.

```
(f: A \to B) \mapsto \operatorname{Ker} f(A \to A/H) \leftrightarrow H
```

• *Example:* Multiplication by $\ell \iff \ell$ -torsion), Frobenius (non separable).

A complex abelian variety A of dimension g is isomorphic to a compact Lie group V/Λ with

- A complex vector space V of dimension g;
- A \mathbb{Z} -lattice Λ in V (of rank 2g);

such that there exists an Hermitian form H on V with $E(\Lambda, \Lambda) \subset \mathbb{Z}$ where $E = \operatorname{Im} H$ is symplectic.

- Such an Hermitian form H is called a polarisation on A. Conversely, any symplectic form E on V such that $E(\Lambda, \Lambda) \subset \mathbb{Z}$ and E(ix, iy) = E(x, y) for all $x, y \in V$ gives a polarisation H with $E = \operatorname{Im} H$.
- Over a symplectic basis of Λ , *E* is of the form.

$$egin{pmatrix} 0 & D_\delta \ -D_\delta & 0 \end{pmatrix}$$

where D_{δ} is a diagonal positive integer matrix $\delta = (\delta_1, \delta_2, \dots, \delta_g)$, with $\delta_1 | \delta_2 | \cdots | \delta_g$.

The product Πδ_i is the degree of the polarisation; H is a principal polarisation if this degree is 1.

- Let E_0 be the canonical principal symplectic form on \mathbb{R}^{2g} given by $E_0((x_1, x_2), (y_1, y_2)) = {}^t x_1 \cdot y_2 {}^t y_1 \cdot x_2;$
- If *E* is a principal polarisation on $A = V/\Lambda$, there is an isomorphism $j : \mathbb{Z}^{2g} \to \Lambda$ such that $E(j(x), j(y)) = E_0(x, y)$;
- There exists a basis of V such that $j((x_1, x_2)) = \Omega x_1 + x_2$ for a matrix Ω ;
- In particular $E(\Omega x_1 + x_2, \Omega y_1 + y_2) = {}^t x_1 \cdot y_2 {}^t y_1 \cdot x_2;$
- The matrix Ω is in \mathfrak{H}_g , the Siegel space of symmetric matrices Ω with $\operatorname{Im}\Omega$ positive definite;
- In this basis, $\Lambda = \Omega \mathbb{Z}^g + \mathbb{Z}^g$ and H is given by the matrix $(\operatorname{Im} \Omega)^{-1}$.

- Every principal symplectic form (hence symplectic basis) on \mathbb{Z}^{2g} comes from the action of $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}_{2g}(\mathbb{Z})$ on (\mathbb{Z}^{2g}, E_0) ;
- This action gives a new equivariant bijection $j_M : \mathbb{Z}^{2g} \to \Lambda$ via $j_M((x_1, x_2)) = (A\Omega x_1 + B x_2, C\Omega x_1 + D x_2);$
- Normalizing this embedding via the action of (CΩ + D)⁻¹ on C^g, we get that j_M((x₁, x₂)) = Ω_M x₁ + x₂ with Ω_M = (AΩ + B)(CΩ + D)⁻¹ ∈ ℑ_g;
- The moduli space of principally polarised abelian varieties is then isomorphic to $\mathfrak{H}_g/\operatorname{Sp}_{2g}(\mathbb{Z})$.

		Abelian varieties		
Isogenie	S			

Let $A = V/\Lambda$ and $B = V'/\Lambda'$.

Definition

An isogeny $f: A \to B$ is a bijective linear map $f: V \to V'$ such that $f(\Lambda) \subset \Lambda'$. The kernel of the isogeny is $f^{-1}(\Lambda')/\Lambda \subset A$ and its degree is the cardinal of the kernel.

Remark

Up to a renormalization, we can always assume that $V = V' = \mathbb{C}^g$, f = Id and the isogeny is simply $\mathbb{C}^g / \Lambda \to \mathbb{C}^g / \Lambda'$ for $\Lambda \subset \Lambda'$.

		Abelian varieties		
The dual	abelian varie	ety		

If $A = V/\Lambda$ is an abelian variety, its dual is $\widehat{A}_k = \operatorname{Hom}_{\overline{\mathbb{C}}}(V, \mathbb{C})/\Lambda^*$. Here Hom_{$\overline{\mathbb{C}}$} (V, \mathbb{C}) is the space of anti-linear forms and $\Lambda^* = \{f \mid f(\Lambda) \subset \mathbb{Z}\}$ is the orthogonal of Λ .

• If *H* is a polarisation on *A*, its dual H^* is a polarisation on \widehat{A} . Moreover, there is an isogeny $\Phi_H : A \to \widehat{A}$:

$$x \mapsto H(x, \cdot)$$

of degree deg *H*. We note K(H) its kernel.

• If $f: A \to B$ is an isogeny, then its dual is an isogeny $\hat{f}: \hat{B}_k \to \hat{A}$ of the same degree.

Remark

There is a canonical polarisation on $A \times \widehat{A}$ (the Poincaré bundle):

 $(x, f) \mapsto f(x).$

			Arithmetic ••••••		
Projectiv	e embedding	S			

Proposition

Let $\Phi: A = V/\Lambda \mapsto \mathbb{P}^{m-1}$ be a projective embedding. Then the linear functions f associated to this embedding are Λ -automorphics:

 $f(x + \lambda) = a(\lambda, x)f(x)$ $x \in V, \lambda \in \Lambda;$

for a fixed automorphy factor a:

$$a(\lambda + \lambda', x) = a(\lambda, x + \lambda')a(\lambda', x).$$

Theorem (Appell-Humbert)

All automorphy factors are of the form

$$a(\lambda, x) = \pm e^{\pi (H(x,\lambda) + \frac{1}{2}H(\lambda,\lambda))}$$

for a polarisation H on A.

		Arithmetic		
Theta fu	nctions			

- Let (A, H_0) be a principally polarised abelian variety over \mathbb{C} : $A = \mathbb{C}^g / (\Omega \mathbb{Z}^g + \mathbb{Z}^g)$ with $\Omega \in \mathfrak{H}_g$.
- All automorphic forms corresponding to a multiple \mathcal{L} of H_0 come from the theta functions with characteristics:

$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z, \Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i^{t} (n+a)\Omega(n+a) + 2\pi i^{t} (n+a)(z+b)} \quad a, b \in \mathbb{Q}^g$$

Automorphic property:

$$\vartheta\left[\begin{smallmatrix}a\\b\end{smallmatrix}\right](z+m_1\Omega+m_2,\Omega)=e^{2\pi i\left(\begin{smallmatrix}ta\cdot m_2-tb\cdot m_1\right)-\pi i\,t\,m_1\Omega m_1-2\pi i\,t\,m_1\cdot z}\vartheta\left[\begin{smallmatrix}a\\b\end{smallmatrix}\right](z,\Omega).$$

			Arithmetic		
Theta fu	nctions of lev	vel n			

- Define $\vartheta_i = \vartheta \begin{bmatrix} 0 \\ \frac{i}{n} \end{bmatrix} (., \frac{\Omega}{n})$ for $i \in Z(\overline{n}) = \mathbb{Z}^g / n \mathbb{Z}^g$;
- This is a basis of the automorphic functions for $H = nH_0$ (theta functions of level *n*);
- This is the unique basis such that in the projective coordinates:

$$\begin{array}{cccc} A & \longrightarrow & \mathbb{P}^{n^g - 1}_{\mathbb{C}} \\ z & \longmapsto & (\vartheta_i(z))_{i \in Z(\overline{n})} \end{array}$$

the translation by a point of n-torsion is normalized by

$$\vartheta_i(z+\frac{m_1}{n}\Omega+\frac{m_2}{n})=e^{-\frac{2\pi i}{n}t\cdot m_1}\vartheta_{i+m_2}(z).$$

• $(\vartheta_i)_{i \in Z(\overline{n})} = \begin{cases} \text{coordinates system} & n \ge 3\\ \text{coordinates on the Kummer variety } A/\pm 1 & n = 2 \end{cases}$

- $(\vartheta_i)_{i \in \mathbb{Z}(\overline{n})}$: basis of the theta functions of level $n \Leftrightarrow A[n] = A_1[n] \oplus A_2[n]$: symplectic decomposition.
- Theta null point: $\vartheta_i(0)_{i \in Z(\overline{n})} = \text{modular invariant.}$

			Arithmetic		
			0000000000		
The dup	lication form	ula			

Theorem

Let $\xi: A \times A \rightarrow A \times A$, $(x, y) \mapsto (x + y, x - y)$. The isogeny theorem applied to ξ gives for $x, y \in \mathbb{C}^g$

$$\vartheta_{i+j}^{\mathscr{L}}(x+y)\vartheta_{i-j}^{\mathscr{L}}(x-y) = \frac{1}{2^g} \sum_{\chi \in \hat{\mathbb{Z}}(\bar{2})} U_{\chi,i}^{\mathscr{L}^2}(x) U_{\chi,j}^{\mathscr{L}^2}(x)$$
$$U_{\chi,i}^{\mathscr{L}^2}(x) U_{\chi,j}^{\mathscr{L}^2}(y) = \sum_{t \in \hat{\mathbb{Z}}(\bar{2})} \chi(t)\vartheta_{i+j+t}^{\mathscr{L}}(x+y)\vartheta_{i-j+t}^{\mathscr{L}}(x-y)$$

where $\vartheta_i^{\mathscr{L}}(x) = \vartheta \begin{bmatrix} 0 \\ \frac{i}{n} \end{bmatrix} (x, \frac{\Omega}{n})$ is a theta function of level n and $U_{\chi,i}^{\mathscr{L}^2}(x) = \vartheta \begin{bmatrix} \frac{\chi}{2} \\ \frac{i}{n} \end{bmatrix} (2x, \frac{2\Omega}{n})$ is a theta function of level 2n on A.

			Arithmetic		
Multiplic	cation of sect	ions			

- Let $\Delta: X \to X \times X$ be the diagonal;
- Δ induces the multiplication map $\Delta^*: \Gamma(A, \mathscr{L}) \otimes \Gamma(A, \mathscr{L}) \to \Gamma(X, \mathscr{L}^2), \ \vartheta_i^{\mathscr{L}} \star \vartheta_j^{\mathscr{L}} \mapsto (\vartheta_i^{\mathscr{L}} \otimes \vartheta_j^{\mathscr{L}});$
- if $S: A \rightarrow A \times A$ is the inclusion map $x \mapsto (x, 0)$ then Δ fits into the commutative diagram

so $\Delta^* = S^*\xi^*$ where ξ^* is given by the duplication formula and $S^* : \Gamma(A, \mathscr{L}^2) \otimes \Gamma(A, \mathscr{L}^2) \to \Gamma(A, \mathscr{L}^2)$ is given by $\vartheta_i^{\mathscr{L}^2} \star \vartheta_i^{\mathscr{L}^2} \mapsto \vartheta_i^{\mathscr{L}^2} \vartheta_i^{\mathscr{L}^2}(0)$;

• We thus have that $\Gamma(A, \mathscr{L}) \otimes \Gamma(A, \mathscr{L}) \rightarrow \Gamma(X, \mathscr{L}^2)$ is given by

$$\sum_{t\in\hat{Z}(\overline{2})}\chi(t)\Big(\vartheta_{i+t}^{\mathscr{L}}\star\vartheta_{j+t}^{\mathscr{L}}\Big)\mapsto U_{\chi,\frac{i+j}{2}}^{\mathscr{L}}U_{\chi,\frac{i-j}{2}}^{\mathscr{L}^{2}}(0).$$

		Arithmetic		
Projectiv	e normality			

Theorem (Mumford-Kempf)

If \mathscr{L}_0 is a principal polarisation, then $\Gamma(A, \mathscr{L}_0^m) \otimes \Gamma(A, \mathscr{L}_0^n) \rightarrow \Gamma(A, \mathscr{L}_0^{n+m})$ is surjective whenever $m \ge 2$ and $n \ge 3$.

Corollary

If $\mathscr{L} = \mathscr{L}_0^n$ with $n \ge 3$, then $S^m \Gamma(A, \mathscr{L}) \to \Gamma(A, \mathscr{L}^m)$ is surjective for all m. Equivalently the homogeneous ring associated to \mathscr{L} is integrally closed, we say that A is projectively normal.

Corollary (Restatement)

If $\mathscr{L} = \mathscr{L}_0^n$ with $n \ge 3$, then for every $u \in Z(2\overline{n})$, $\chi \in \hat{Z}(\overline{2})$, there exists $v \in Z(2\overline{n})$ congruent to u modulo $Z(\overline{n})$ such that $U_{\chi,v}^{\mathscr{L}^2}(0) \ne 0$.

		Arithmetic		
Projectiv	e normality			

Corollary (Restatement)

If $\mathscr{L} = \mathscr{L}_0^n$ with $n \ge 3$, then for every $u \in Z(2\overline{n})$, $\chi \in \hat{Z}(\overline{2})$, there exists $v \in Z(2\overline{n})$ congruent to u modulo $Z(\overline{n})$ such that $U_{\chi,v}^{\mathscr{L}^2}(0) \ne 0$.

Proof (Mumford).

For simplicity we assume here that $4 \mid n$. Let $F = \sum_{t \in Z(\overline{2})} \vartheta_{2u+t}^{\mathscr{L}^2}$ and $G = \sum_{t \in Z(\overline{2})} \chi(t) \vartheta_t^{\mathscr{L}^2}$. By the duplication formula, $F \star G = \sum_{v \in u+Z(\overline{4})} U_{\chi,v}^{\mathscr{L}^2}(0) \vartheta_v^{\mathscr{L}^2}$. Since the homogeneous ring is integral, $F \star G \neq 0$. Hence there exist $v \equiv u \pmod{4}$ such that $U_{\chi,v}^{\mathscr{L}^2}(0) \neq 0$.

$$\begin{split} \big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{i+t}(x+y)\vartheta_{j+t}(x-y)\big).\big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k+t}(0)\vartheta_{l+t}(0)\big) = \\ \big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{-i'+t}(y)\vartheta_{j'+t}(y)\big).\big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k'+t}(x)\vartheta_{l'+t}(x)\big). \end{split}$$

where *n* is even and
$$\chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\overline{n})$$

 $(i', j', k', l') = A(i, j, k, l)$
$$A = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 & 1\\ 1 & -1 & 1 & 1\\ 1 & 1 & -1 & 1\\ 1 & 1 & 1 & -1 \end{pmatrix}$$

Proof.

Let i_0, j_0, k_0, l_0 be such that $i_0 + j_0 = i$, $i_0 - j_0 = j$, $k_0 + l_0 = k$, $k_0 - l_0 = l$; then (up to a change of variable) $i_0 + l_0 = i'$, $i_0 - l_0 = j'$, $k_0 + j_0 = k'$, $k_0 - j_0 = l'$. Thus both terms are equal to $U_{\chi,i_0}^{\mathscr{L}^2}(x)U_{\chi,k_0}^{\mathscr{L}^2}(y)U_{\chi,k_0}^{\mathscr{L}^2}(0)$.

$$\left(\sum_{t\in Z(\overline{2})} \chi(t)\vartheta_{i+t}(x+y)\vartheta_{j+t}(x-y)\right) \cdot \left(\sum_{t\in Z(\overline{2})} \chi(t)\vartheta_{k+t}(0)\vartheta_{l+t}(0)\right) = \left(\sum_{t\in Z(\overline{2})} \chi(t)\vartheta_{-i'+t}(y)\vartheta_{j'+t}(y)\right) \cdot \left(\sum_{t\in Z(\overline{2})} \chi(t)\vartheta_{k'+t}(x)\vartheta_{l'+t}(x)\right).$$
where *n* is even and $\chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\overline{n})$

$$(i', j', k', l') = A(i, j, k, l)$$

$$A = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 & 1\\ 1 & -1 & 1 & 1\\ 1 & 1 & -1 & 1 \end{pmatrix}$$

1

1

-1/

Remark

By the projective normality above, when $n \ge 4$, for all $\chi \in \hat{Z}(\overline{2})$, $k, l \in Z(\overline{n})$; there exists $k_1, l_1 \in Z(\overline{n})$ with $k_1 + l_1 \in 2Z(\overline{n})$ such that $\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k_2}^{\mathscr{L}}(0) \vartheta_{l_2}^{\mathscr{L}}(0) \neq 0$ where $k_2 = k + k_1$, $l_2 = l + l_1$. Hence it is always possible to compute the addition law.

 $\backslash 1$

Differential Addition Algorithm:

Input: $P = (x_1 : z_1), Q = (x_2 : z_2)$ and $R = P - Q = (x_3 : z_3)$ with $x_3 z_3 \neq 0$. **Output:** P + Q = (x' : z').

- $x_0 = (x_1^2 + z_1^2)(x_2^2 + z_2^2);$ • $z_0 = \frac{A^2}{B^2}(x_1^2 - z_1^2)(x_2^2 - z_2^2);$ • $x' = (x_0 + z_0)/x_3;$ • $z' = (x_0 - z_0)/z_3;$
- Seturn (x':z').

		Arithmetic ○○○○○○○●		
Kumme	r varieties			

- If the level n = 2, then the theta coordinates give an embedding of the Kummer variety $\mathcal{H} = A/\pm 1$;
- If \mathscr{L} is totally symmetric, it descends to a section \mathscr{M} on \mathscr{K} , and the sections of \mathscr{M}^n are the symmetric sections $\Gamma(A, \mathscr{L}^n)^+$ of \mathscr{L}^n (sections invariant under the action of [-1]);
- The functions $U_{\chi,i}$ appearing in the duplication and addition formulae corresponds to the classical theta functions of level four $\vartheta \begin{bmatrix} \frac{a}{2} \\ \frac{b}{2} \end{bmatrix} (2x, \Omega)$. They are even (resp. odd) when $\chi(2i) = 1$ (resp. $\chi(2i) = -1$).

Theorem (Mumford-Koizumi)

The even theta null points $\left\{\vartheta \begin{bmatrix} \frac{a}{2} \\ \frac{b}{2} \end{bmatrix} (0,\Omega) \mid (-1)^{tab} = 1\right\}$ are non null if and only if $\Gamma(A, \mathscr{L})^2 \to \Gamma(A, \mathscr{L}^2)^+$ is surjective, if and only if $(\mathscr{K}, \mathscr{M})$ is projectively normal.

Corollary ([Lubicz-R.])

- In this case, from the theta coordinates of x and y we can recover all elements of the form $\vartheta_i(x+y)\vartheta_j(x-y) + \vartheta_j(x+y)\vartheta_i(x-y)$;
- While it is not possible to compute additions on the Kummer variety, it is always possible to compute differential additions.

Let $f : A \rightarrow B$ be a separable isogeny with kernel K between two abelian varieties defined over k:

• Since $\hat{B} \simeq \operatorname{Ext}^1(B, \mathbb{G}_m)$, \hat{K} is the Cartier dual of K, and we have a non degenerate pairing $e_f : K \times \hat{K} \to \overline{k}^*$:

- If $Q \in \hat{K}(\overline{k})$, Q defines a divisor D_Q on B;
- (2) $\hat{f}(Q) = 0$ means that f^*D_Q is equal to a principal divisor (g_Q) on A;
- $e_f(P,Q) = g_Q(x)/g_Q(x+P)$. (This last function being constant in its definition domain).

• The Weil pairing $e_{W,\ell}$ is the pairing associated to the isogeny $[\ell]: A \rightarrow A$:

$$e_{W,\ell}$$
: $A[\ell] \times \hat{A}[\ell] \to \mu_{\ell}(\overline{k}).$

			Pairings	
Polarizat	tions			

If \mathscr{L} is an ample line bundle, the polarization $\varphi_{\mathscr{L}}$ is a morphism $A \to \widehat{A}, x \mapsto t_x^* \mathscr{L} \otimes \mathscr{L}^{-1}$.

Definition

Let $\mathscr L$ be a principal polarization on A. The (polarized) Weil pairing $e_{W,\mathscr L,\ell}$ is the pairing

$$\begin{array}{cccc} e_{W,\mathscr{L},\ell} \colon A[\ell] \times A[\ell] & \longrightarrow & \mu_{\ell}(\overline{k}) \\ (P,Q) & \longmapsto & e_{W,\ell}(P,\varphi_{\mathscr{L}}(Q)) \end{array}$$

associated to the polarization $\varphi_{\mathscr{L}^{\ell}}$:

$$A \xrightarrow{[\ell]} A \xrightarrow{\mathscr{L}} \widehat{A}_k$$

• From the exact sequence

$$0 \to A[\ell](\overline{\mathbb{F}}_{q^d}) \to A(\overline{\mathbb{F}}_{q^d}) \to^{[\ell]} A(\overline{\mathbb{F}}_{q^d}) \to 0$$

we get from Galois cohomology a connecting morphism

$$\delta: A(\mathbb{F}_{q^d})/\ell A(\mathbb{F}_{q^d}) \to H^1(\operatorname{Gal}(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d}), A[\ell]);$$

• Composing with the Weil pairing, we get a bilinear application

$$A[\ell](\mathbb{F}_{q^d}) \times A(\mathbb{F}_{q^d}) / \ell A(\mathbb{F}_{q^d}) \to H^1(\operatorname{Gal}(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d}), \mu_\ell) \simeq \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*\ell} \simeq \mu_\ell$$

where the last isomorphism comes from the Kummer sequence

$$1 \mathop{\rightarrow} \mu_\ell \mathop{\rightarrow} \overline{\mathbb{F}}_{q^d}^* \mathop{\rightarrow} \overline{\mathbb{F}}_{q^d}^* \mathop{\rightarrow} 1$$

and Hilbert 90;

• Explicitely, if $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$ then the (reduced) Tate pairing is given by

$$e_T(P,Q) = e_W(P,\pi(Q_0) - Q_0)$$

where Q_0 is any point such that $Q = [\ell]Q_0$ and π is the Frobenius of \mathbb{F}_{q^d} .

- Let (A, \mathcal{L}) be a principally polarized abelian variety;
- To a degree 0 cycle ∑n_i(P_i) on A, we can associate the divisor ∑t^{*}_{Pi} ℒⁿⁱ on A;
- The cycle $\sum n_i(P_i)$ corresponds to a trivial divisor iff $\sum n_i P_i = 0$ in A;
- If f is a function on A and $D = \sum (P_i)$ a cycle whose support does not contain a zero or pole of f, we let

$$f(D) = \prod f(P_i)^{n_i}.$$

(In the following, when we write f(D) we will always assume that we are in this situation.)

Theorem ([Lan58])

Let $D_{\rm l}$ and $D_{\rm 2}$ be two cycles equivalent to 0, and $f_{D_{\rm l}}$ and $f_{D_{\rm 2}}$ be the corresponding functions on A. Then

 $f_{D_1}(D_2) = f_{D_2}(D_1)$

Theorem

Let $P, Q \in A[\ell]$. Let D_P and D_Q be two cycles equivalent to (P)-(0) and (Q)-(0). The Weil pairing is given by

$$e_W(P,Q) = \frac{f_{\ell D_P}(D_Q)}{f_{\ell D_Q}(D_P)}.$$

Theorem

Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$, and let D_P and D_Q be two cycles equivalent to (P)-(0) and (Q)-(0). The (non reduced) Tate pairing is given by

 $e_T(P,Q) = f_{\ell D_P}(D_Q).$

- The moduli space of abelian varieties of dimension g is a space of dimension g(g+1)/2. We have more liberty to find optimal abelian varieties in function of the security parameters.
- Supersingular abelian varieties can have larger embedding degree than supersingular elliptic curves.
- Over a Jacobian, we can use twists even if they are not coming from twists of the underlying curve.
- If A is an abelian variety of dimension g, A[ℓ] is a (Z/ℓZ)-module of dimension 2g ⇒ the structure of pairings on abelian varieties is richer.

Cryptography Curves and Jacobians Abelian varieties Arithmetic Pairings Isogenies Socio-Coordinates (Lubicz-R. [LR10])

P and Q points of $\ell\text{-torsion}.$

۲

$$\begin{aligned} z_0 & z_P & 2z_P & \dots & \ell z_P = \lambda_P^0 z_0 \\ z_Q & z_P \oplus z_Q & 2z_P + z_Q & \dots & \ell z_P + z_Q = \lambda_P^1 z_Q \\ 2z_Q & z_P + 2z_Q & \dots & \ell z_P + \ell z_Q = \lambda_Q^1 z_P \\ \dots & \dots & \dots \\ \ell Q &= \lambda_Q^0 0_A & z_P + \ell z_Q = \lambda_Q^1 z_P \\ e_{W,\ell}(P,Q) &= \frac{\lambda_P^1 \lambda_Q^0}{\lambda_P^0 \lambda_Q^1}. \\ e_{T,\ell}(P,Q) &= \frac{\lambda_P^1}{\lambda_Q^0}. \end{aligned}$$

$$z_{0} \qquad \alpha z_{P} \qquad \alpha^{4}(2z_{P}) \qquad \dots \qquad \alpha^{\ell^{2}}(\ell z_{P}) = \lambda_{P}^{\prime 0} z_{0}$$

$$\beta z_{Q} \qquad \gamma(z_{P} \oplus z_{Q}) \qquad \frac{\gamma^{2} \alpha^{2}}{\beta}(2z_{P} + z_{Q}) \qquad \dots \qquad \frac{\gamma^{\ell} \alpha^{\ell(\ell-1)}}{\beta^{\ell-1}}(\ell z_{P} + z_{Q}) = \lambda_{P}^{\prime 1} \beta z_{Q}$$

$$\beta^{4}(2z_{Q}) \qquad \frac{\gamma^{2} \beta^{2}}{\alpha}(z_{P} + 2z_{Q})$$

$$\dots \qquad \dots$$

$$\beta^{\ell^{2}}(\ell z_{Q}) = \lambda_{Q}^{\prime 0} z_{0} \qquad \frac{\gamma^{\ell} \beta^{\ell(\ell-1)}}{\alpha^{\ell-1}}(z_{P} + \ell z_{Q}) = \lambda_{Q}^{\prime 1} \alpha z_{P}$$

We then have

$$\begin{split} \lambda'_{P}^{0} &= \alpha^{\ell^{2}} \lambda_{P}^{0}, \quad \lambda'_{Q}^{0} = \beta^{\ell^{2}} \lambda_{Q}^{0}, \quad \lambda'_{P}^{1} = \frac{\gamma^{\ell} \alpha^{\ell(\ell-1)}}{\beta^{\ell}} \lambda_{P}^{1}, \quad \lambda'_{Q}^{1} = \frac{\gamma^{\ell} \beta^{\ell(\ell-1)}}{\alpha^{\ell}} \lambda_{Q}^{1}, \\ &e'_{W,\ell}(P,Q) = \frac{\lambda'_{P}^{1} \lambda'_{Q}^{0}}{\lambda_{P}^{0} \lambda'_{Q}^{1}} = \frac{\lambda_{P}^{1} \lambda_{Q}^{0}}{\lambda_{P}^{0} \lambda_{Q}^{1}} = e_{W,\ell}(P,Q), \\ &e'_{T,\ell}(P,Q) = \frac{\lambda'_{P}^{1}}{\lambda'_{P}^{0}} = \frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} \frac{\lambda_{P}^{1}}{\lambda_{P}^{0}} = \frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} e_{T,\ell}(P,Q). \end{split}$$

- Let $P \in G_2 = A[\ell] \bigcap \operatorname{Ker}(\pi_q [q])$ and $Q \in G_1 = A[\ell] \bigcap \operatorname{Ker}(\pi_q 1)$; $\lambda \equiv q \mod \ell$.
- In projective coordinates, we have $\pi_q^d(P+Q) = \lambda^d P + Q = P + Q$;
- Of course, in affine coordinates, $\pi_q^d(z_{P+Q}) \neq \lambda^d z_P + z_Q$.
- But if $\pi_q(z_{P+Q}) = C * (\lambda z_P + z_Q)$, then C is exactly the (non reduced) ate pairing (up to a renormalisation)!

```
Algorithm (Computing the ate pairing)
```

Input $P \in G_2$, $Q \in G_1$;

- **Outpute** $z_Q + \lambda z_P$, λz_P using differential additions;
- Sind the projective factors C_1 and C_0 such that $z_Q + \lambda z_P = C_1 * \pi(z_{P+Q})$ and $\lambda z_P = C_0 * \pi(z_P)$ respectively;

Return $(C_1/C_0)^{\frac{q^d-1}{\ell}}$.

- Transfer the Discrete Logarithm Problem from one Abelian variety to another;
- Point counting algorithms (ℓ-adic or p-adic) ⇒ Verify an abelian variety is secure;
- Compute the class field polynomials (CM-method) ⇒ Construct a secure abelian variety;
- Compute the modular polynomials ⇒ Compute isogenies;
- Determine $End(A) \Rightarrow CRT$ method for class field polynomials;
- Speed up the arithmetic;
- Hash functions and cryptosystems based on isogeny graphs.

			Isogenies	
The isog	eny theorem			

Theorem

- Let φ : Z(n) → Z(ln), x → l.x be the canonical embedding.
 Let K = A₂[l] ⊂ A₂[ln].
- Let $(\vartheta_i^A)_{i \in \mathbb{Z}(\overline{\ell n})}$ be the theta functions of level ℓn on $A = \mathbb{C}^g / (\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g)$.
- Let $(\vartheta_i^B)_{i \in \mathbb{Z}(\overline{n})}$ be the theta functions of level n of $B = A/K = \mathbb{C}^g/(\mathbb{Z}^g + \Omega\mathbb{Z}^g)$.

• We have:

$$(\vartheta_i^B(x))_{i \in Z(\overline{n})} = (\vartheta_{\varphi(i)}^A(x))_{i \in Z(\overline{n})}$$

Example

 $f:(x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}) \mapsto (x_0, x_3, x_6, x_9)$ is a 3-isogeny between elliptic curves.

×

×

×

			Isogenies	
Changing	g level			

Theorem (Koizumi–Kempf)

Let *F* be a matrix of rank *r* such that ${}^tFF = \ell \operatorname{Id}_r$. Let $X \in (\mathbb{C}^g)^r$ and $Y = F(X) \in (\mathbb{C}^g)^r$. Let $j \in (\mathbb{Q}^g)^r$ and i = F(j). Then we have

$$\vartheta \begin{bmatrix} 0\\ i_1 \end{bmatrix} (Y_1, \frac{\Omega}{n}) \dots \vartheta \begin{bmatrix} 0\\ i_r \end{bmatrix} (Y_r, \frac{\Omega}{n}) = \sum_{\substack{t_1, \dots, t_r \in \frac{1}{\ell} \mathbb{Z}^S / \mathbb{Z}^S \\ F(t_1, \dots, t_r) \models [0, \dots, 0]}} \vartheta \begin{bmatrix} 0\\ j_1 \end{bmatrix} (X_1 + t_1, \frac{\Omega}{\ell n}) \dots \vartheta \begin{bmatrix} 0\\ j_r \end{bmatrix} (X_r + t_r, \frac{\Omega}{\ell n}),$$

(This is the isogeny theorem applied to $F_A: A^r \to A^r$.)

- If $\ell = a^2 + b^2$, we take $F = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, so r = 2.
- In general, ℓ = a² + b² + c² + d², we take F to be the matrix of multiplication by a + bi + cj + dk in the quaternions, so r = 4.

			Isogenies	
The isog	eny formula	 	 	

$$\begin{split} \ell \wedge n &= 1, \quad B = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g), \quad A = \mathbb{C}^g / (\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g) \\ \vartheta_b^B &\coloneqq \vartheta \Big[\frac{0}{\underline{h}} \Big] \Big(\cdot, \frac{\Omega}{n} \Big), \quad \vartheta_b^A &\coloneqq \vartheta \Big[\frac{0}{\underline{h}} \Big] \Big(\cdot, \frac{\ell \Omega}{n} \Big) \end{split}$$

Proposition

Let *F* be a matrix of rank *r* such that ${}^tFF = \ell \operatorname{Id}_r$. Let *X* in $(\mathbb{C}^g)^r$ and $Y = XF^{-1} \in (\mathbb{C}^g)^r$. Let $i \in (Z(\overline{n}))^r$ and $j = iF^{-1}$. Then we have

$$\vartheta_{i_1}^A(Y_1)\dots\vartheta_{i_r}^A(Y_r) = \sum_{\substack{t_1,\dots,t_r \in \frac{1}{\ell}\mathbb{Z}^g/\mathbb{Z}^g \\ (t_1,\dots,t_r)F = (0,\dots,0)}} \vartheta_{j_1}^B(X_1 + t_1)\dots\vartheta_{j_r}^B(X_r + t_r),$$

Corollary

$$\vartheta_k^A(0)\vartheta_0^A(0)\dots\vartheta_0^A(0) = \sum_{\substack{t_1,\dots,t_r \in K \\ (t_1,\dots,t_r)F = (0,\dots,0)}} \vartheta_{j_r}^B(t_1)\dots\vartheta_{j_r}^B(t_r), \quad (j = (k, 0, \dots, 0)F^{-1} \in Z(\overline{n}))$$

			Isogenies	
Complex	ity over \mathbb{F}_q			

- The geometric points of the kernel live in a extension k' of degree at most $\ell^g 1$ over $k = \mathbb{F}_q$;
- The isogeny formula assumes that the points are in affine coordinates. In practice, given A/𝔽_q we only have projective coordinates ⇒ we use differential additions to normalize the coordinates;
- Computing the normalization factors takes $O(\log \ell)$ operations in k';
- Computing the points of the kernel via differential additions take $O(\ell^g)$ operations in k';
- If $\ell \equiv 1 \pmod{4}$, applying the isogeny formula take $O(\ell^g)$ operations in k';
- If $\ell \equiv 3 \pmod{4}$, applying the isogeny formula take $O(\ell^{2g})$ operations in k';
- \Rightarrow The total cost is $\widetilde{O}(\ell^{2g})$ or $\widetilde{O}(\ell^{3g})$ operations in \mathbb{F}_q .

Remark

The complexity is much worse over a number field because we need to work with extensions of much higher degree.

			Isogenies	
Complex	tity over \mathbb{F}_{q}			

- The geometric points of the kernel live in a extension k' of degree at most ℓ^g−1 over k = F_q;
- The isogeny formula assumes that the points are in affine coordinates. In practice, given A/\mathbb{F}_q we only have projective coordinates \Rightarrow we use differential additions to normalize the coordinates;
- Computing the normalization factors takes $O(\log \ell)$ operations in k';
- Computing the points of the kernel via differential additions take $O(\ell^g)$ operations in k';
- If $\ell \equiv 1 \pmod{4}$, applying the isogeny formula take $O(\ell^g)$ operations in k';
- If $\ell \equiv 3 \pmod{4}$, applying the isogeny formula take $O(\ell^{2g})$ operations in k';
- \Rightarrow The total cost is $\widetilde{O}(\ell^{2g})$ or $\widetilde{O}(\ell^{3g})$ operations in \mathbb{F}_q .

Theorem ([Lubicz-R.])

We can compute the isogeny directly given the equations (in a suitable form) of the kernel K of the isogeny. When K is rational, this gives a complexity of $\widetilde{O}(\ell^g)$ or $\widetilde{O}(\ell^{2g})$ operations in \mathbb{F}_q .

Hoi	rizontal	isogeny gra	phs: $\ell = q =$	$O\overline{Q}$	(ℚ ↦	$K_0 \mapsto K$)
						00000000
						Isogeny graphs

Horizontal isogeny graphs: $\ell = q^2 = Q^2 \overline{Q}^2$

Isogeny graphs in dimension 1

hy Curves and 0000 Abelian varie

withmetic

Pairings 000000000 Isogenies 0000000 Isogeny graphs

Isogeny graphs in dimension 2 ($\ell = q_1q_2 = Q_1\overline{Q}_1Q_2\overline{Q}_2$)

Isogeny graphs

Isogeny graphs and lattice of orders (Bisson-Cosset-R. [BCR10])

Cryptography 00000 urves and Jacobians

Abelian varieties

Arithmetic 000000000

Pairings 000000000 sogeniesIsogeny graphs000000000000000

Bibliography

G. Bisson, R. Cosset, and D. Robert. "AVIsogenies (Abelian Varieties and Isogenies)". Magma package for explicit isogenies computation between abelian varieties. 2010. URL: http://avisogenies.gforge.inria.fr. Free software (LGPLv2+), registered to APP (reference IDDN.FR.001.440011.000.R.22010.000.1000) (cit. on p. 65).

D. Boneh and M. Franklin. "Identity-based encryption from the Weil pairing". In: SIAM Journal on Computing 32.3 (2003), pp. 586–615 (cit. on p. 8).

D. Boneh, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: Journal of Cryptology 17.4 (2004), pp. 297-319 (cit. on p. 8).

R. Cosset and D. Robert. "An algorithm for computing (*l*,*l*)-isogenies in polynomial time on Jacobians of hyperelliptic curves of genus 2". Accepted for publication at Mathematics of computation. Oct. 2013. URL: http://www.normalesup.org/~robert/pro/publications/articles/niveau.pdf. HAL: hal-00578991. eprint: 2011/143 (cit. on p. 52).

V. Goyal, O. Pandey, A. Sahai, and B. Waters. "Attribute-based encryption for fine-grained access control of encrypted data". In: Proceedings of the 13th ACM conference on Computer and communications security. ACM. 2006, p. 98 (cit. on p. 8).

A. Joux. "A one round protocol for tripartite Diffie-Hellman". In: Algorithmic number theory (ANTS IV (2000), pp. 385-393 (cit. on p. 8).

S. Lang. "Reciprocity and Correspondences". In: American Journal of Mathematics 80.2 (1958), pp. 431–440 (cit. on p. 35).

					Isogeny graphs			
D. Lubicz and E G. Hanrot, F. M Symposium, Na 10.1007/978 http://www.m Slides http:// (cit. on p. 38).	with theta function Notes in Comput. S roceedings. Springe cations/article ications/slides	ns". In: ed. by ici. 9th Internati r-Verlag, July 20 es/pairings.p 5/2010-07-ant	ional 10. DOI: df. :s.pdf					
D. Lubicz and D computations o http://www.n hal-00806923, e	D. Lubicz and D. Robert. "A generalisation of Miller's algorithm and applications to pairing computations on abelian varieties". Mar. 2013. URL: http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf. HAL: hal-00806923, eprint: 2013/192 (cit. on p. 40).							
A. Sahai and B. <i>2005</i> (2005), pp.	Waters. "Fuzzy iden 457–473 (cit. on p. 8	tity-based encryptio 3).	n". In: Advances in	Cryptology–EUR	OCRYPT			
E. Verheul. "Sel Cryptology—ASI	f-blindable credentia 4 <i>CRYPT 2001</i> (2001), p	al certificates from t p. 533–551 (cit. on p	he Weil pairing".	n: Advances in				