On isogenies and polarisations 2013/10/08 - Geocrypt - Tahiti

Gaëtan Bisson, Romain Cosset, Alina Dudeanu, Dimitar Jetchev, David Lubicz, **Damien Robert**

- Abelian varieties and polarisations
- Theta functions
- Maximal isotropic isogenies
- Cyclic isogenies

Polarised abelian varieties over C

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie group V/Λ with

- A complex vector space V of dimension g;
- A \mathbb{Z} -lattice Λ in V (of rank 2g);

such that there exists an Hermitian form H on V with $E(\Lambda, \Lambda) \subset \mathbb{Z}$ where $E = \operatorname{Im} H$ is symplectic.

- Such an Hermitian form H is called a polarisation on A. Conversely, any symplectic form E on V such that $E(\Lambda, \Lambda) \subset \mathbb{Z}$ and E(ix, iy) = E(x, y) for all $x, y \in V$ gives a polarisation H with $E = \operatorname{Im} H$.
- Over a symplectic basis of Λ , E is of the form.

$$\begin{pmatrix}
0 & D_{\delta} \\
-D_{\delta} & 0
\end{pmatrix}$$

where D_{δ} is a diagonal positive integer matrix $\delta = (\delta_1, \delta_2, ..., \delta_g)$, with $\delta_1 | \delta_2 | \cdots | \delta_g$.

• The product $\prod \delta_i$ is the degree of the polarisation; H is a principal polarisation if this degree is 1.

Principal polarisations

- Let E_0 be the canonical principal symplectic form on \mathbb{R}^{2g} given by $E_0((x_1, x_2), (y_1, y_2)) = {}^t x_1 \cdot y_2 {}^t y_1 \cdot x_2;$
- If E is a principal polarisation on $A = V/\Lambda$, there is an isomorphism $j: \mathbb{Z}^{2g} \to \Lambda$ such that $E(j(x), j(y)) = E_0(x, y)$;
- There exists a basis of V such that $j((x_1, x_2)) = \Omega x_1 + x_2$ for a matrix Ω ;
- In particular $E(\Omega x_1 + x_2, \Omega y_1 + y_2) = {}^t x_1 \cdot y_2 {}^t y_1 \cdot x_2;$
- The matrix Ω is in \mathfrak{H}_g , the Siegel space of symmetric matrices Ω with $\mathrm{Im}\Omega$ positive definite;
- In this basis, $\Lambda = \Omega \mathbb{Z}^g + \mathbb{Z}^g$ and H is given by the matrix $(\operatorname{Im}\Omega)^{-1}$.

Action of the symplectic group

- Every principal symplectic form (hence symplectic basis) on \mathbb{Z}^{2g} comes from the action of $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}_{2g}(\mathbb{Z})$ on (\mathbb{Z}^{2g}, E_0) ;
- This action gives a new equivariant bijection $j_M : \mathbb{Z}^{2g} \to \Lambda$ via $j_M((x_1, x_2)) = (A\Omega x_1 + Bx_2, C\Omega x_1 + Dx_2);$
- Normalizing this embedding via the action of $(C\Omega + D)^{-1}$ on \mathbb{C}^g , we get that $j_M((x_1, x_2)) = \Omega_M x_1 + x_2$ with $\Omega_M = (A\Omega + B)(C\Omega + D)^{-1} \in \mathfrak{H}_g$;
- The moduli space of principally polarised abelian varieties is then isomorphic to $\mathfrak{H}_g/\mathrm{Sp}_{2g}(\mathbb{Z})$.

Isogenies

Let $A = V/\Lambda$ and $B = V'/\Lambda'$.

Definition

An isogeny $f:A\to B$ is a bijective linear map $f:V\to V'$ such that $f(\Lambda)\subset \Lambda'$. The kernel of the isogeny is $f^{-1}(\Lambda')/\Lambda\subset A$ and its degree is the cardinal of the kernel.

Remark

Up to a renormalization, we can always assume that $V=V'=\mathbb{C}^g$, $f=\mathrm{Id}$ and the isogeny is simply $\mathbb{C}^g/\Lambda \to \mathbb{C}^g/\Lambda'$ for $\Lambda\subset \Lambda'$.

The dual abelian variety

Definition

If $A = V/\Lambda$ is an abelian variety, its dual is $\widehat{A} = \operatorname{Hom}_{\overline{\mathbb{C}}}(V, \mathbb{C})/\Lambda^*$. Here $\operatorname{Hom}_{\overline{\mathbb{C}}}(V, \mathbb{C})$ is the space of anti-linear forms and $\Lambda^* = \{f \mid f(\Lambda) \subset \mathbb{Z}\}$ is the orthogonal of Λ .

• If H is a polarisation on A, its dual H^* is a polarisation on \widehat{A} . Moreover, there is an isogeny $\Phi_H: A \to \widehat{A}$:

$$x \mapsto H(x, \cdot)$$

of degree $\deg H$. We note K(H) its kernel.

• If $f:A\to B$ is an isogeny, then its dual is an isogeny $\widehat{f}:\widehat{B}\to\widehat{A}$ of the same degree.

Remark

There is a canonical polarisation on $A \times \widehat{A}$ (the Poincaré bundle):

$$(x, f) \mapsto f(x)$$
.

Isogenies and polarisations

Definition

• An isogeny $f:(A, H_1) \rightarrow (B, H_2)$ between polarised abelian varieties is an isogeny such that

$$f^*H_2 := H_2(f(\cdot), f(\cdot)) = H_1.$$

• By abuse of notations, we say that f is an ℓ -isogeny between principally polarised abelian varieties if H_1 and H_2 are principal and $f^*H_2 = \ell H_1$.

An isogeny $f:(A,H_1) \rightarrow (B,H_2)$ respect the polarisations iff the following diagram commutes

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow \Phi_{H_1} & & \downarrow \Phi_{H_2} \\
\widehat{A} & \xrightarrow{\widehat{f}} & \widehat{B}
\end{array}$$

Isogenies and polarisations

Definition

• An isogeny $f:(A, H_1) \rightarrow (B, H_2)$ between polarised abelian varieties is an isogeny such that

$$f^*H_2 := H_2(f(\cdot), f(\cdot)) = H_1.$$

• By abuse of notations, we say that f is an ℓ -isogeny between principally polarised abelian varieties if H_1 and H_2 are principal and $f^*H_2 = \ell H_1$.

 $f:(A,H_1)\to (B,H_2)$ is an ℓ -isogeny between principally polarised abelian varieties iff the following diagram commutes

Jacobians

- Let C be a curve of genus g;
- Let V be the dual of the space V* of holomorphic differentials of the first kind on C;
- Let $\Lambda \simeq H^1(C,\mathbb{Z}) \subset V$ be the set of periods (integration of differentials on loops);
- The intersection pairing gives a symplectic form E on Λ ;
- Let H be the associated hermitian form on V;

$$H^*(w_1, w_2) = \int_C w_1 \wedge w_2;$$

• Then $(V/\Lambda, H)$ is a principally polarised abelian variety: the Jacobian of C.

Theorem (Torelli)

 $\operatorname{Jac} C$ with the associated principal polarisation uniquely determines C.

Remark (Howe)

There exists an hyperelliptic curve H of genus A and a quartic curve A such that Jac A as non polarised abelian varieties!

Projective embeddings

Proposition

Let $\Phi: A = V/\Lambda \mapsto \mathbb{P}^{m-1}$ be a projective embedding. Then the linear functions f associated to this embedding are Λ -automorphics:

$$f(x + \lambda) = a(\lambda, x) f(x)$$
 $x \in V, \lambda \in \Lambda$;

for a fixed automorphy factor a:

$$a(\lambda + \lambda', x) = a(\lambda, x + \lambda')a(\lambda', x).$$

Theorem (Appell-Humbert)

All automorphy factors are of the form

$$a(\lambda, x) = \pm e^{\pi(H(x,\lambda) + \frac{1}{2}H(\lambda,\lambda))}$$

for a polarisation H on A.

- Let (A, H_0) be a principally polarised abelian variety over \mathbb{C} : $A = \mathbb{C}^g/(\Omega \mathbb{Z}^g + \mathbb{Z}^g)$ with $\Omega \in \mathfrak{H}_p$.
- All automorphic forms corresponding to a multiple of H₀ come from the theta functions with characteristics:

$$\vartheta\begin{bmatrix} a \\ b \end{bmatrix}(z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i t(n+a)\Omega(n+a) + 2\pi i t(n+a)(z+b)} \quad a,b \in \mathbb{Q}^g$$

• Automorphic property:

$$\vartheta\left[\begin{smallmatrix} a\\b \end{smallmatrix}\right](z+m_1\Omega+m_2,\Omega)=e^{2\pi i(^ta\cdot m_2-^tb\cdot m_1)-\pi i\,^tm_1\Omega m_1-2\pi i\,^tm_1\cdot z}\vartheta\left[\begin{smallmatrix} a\\b \end{smallmatrix}\right](z,\Omega).$$

Theta functions of level $\it n$

- Define $\vartheta_i = \vartheta \begin{bmatrix} 0 \\ \frac{i}{n} \end{bmatrix} (., \frac{\Omega}{n})$ for $i \in Z(\overline{n}) = \mathbb{Z}^g / n \mathbb{Z}^g$ and
- This is a basis of the automorphic functions for $H = nH_0$ (theta functions of level n);
- This is the unique basis such that in the projective coordinates:

$$\begin{array}{ccc} A & \longrightarrow & \mathbb{P}^{n^g-1}_{\mathbb{C}} \\ z & \longmapsto & (\vartheta_i(z))_{i \in Z(\overline{n})} \end{array}$$

the translation by a point of *n*-torsion is normalized by

$$\vartheta_i(z+\frac{m_1}{n}\Omega+\frac{m_2}{n})=e^{-\frac{2\pi i}{n}t_{i\cdot m_1}}\vartheta_{i+m_2}(z).$$

- $\bullet \ (\vartheta_i)_{i \in Z(\overline{n})} = \begin{cases} \text{coordinates system} & n \geqslant 3 \\ \text{coordinates on the Kummer variety } A/\pm 1 & n = 2 \end{cases}$
- $(\vartheta_i)_{i \in Z(\overline{n})}$: basis of the theta functions of level n $\Leftrightarrow A[n] = A_1[n] \oplus A_2[n]$: symplectic decomposition.
- Theta null point: $\vartheta_i(0)_{i \in Z(\overline{n})} = \text{modular invariant.}$

The differential addition law $(k = \mathbb{C})$

$$\begin{split} \big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{i+t}(x+y)\vartheta_{j+t}(x-y)\big). \big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k+t}(0)\vartheta_{l+t}(0)\big) = \\ \big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{-i'+t}(y)\vartheta_{j'+t}(y)\big). \big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k'+t}(x)\vartheta_{l'+t}(x)\big). \end{split}$$

- Transfer the Discrete Logarithm Problem from one Abelian variety to another:
- Point counting algorithms (ℓ -adic or p-adic) \Rightarrow Verify an abelian variety is secure;

Maximal isotropic isogenies

- Compute the class field polynomials (CM-method) ⇒ Construct a secure abelian variety;
- Compute the modular polynomials ⇒ Compute isogenies;
- Determine $End(A) \Rightarrow CRT$ method for class field polynomials;
- Speed up the arithmetic;
- Hash functions and cryptosystems based on isogeny graphs.

Theorem

- Let $\varphi: Z(\overline{n}) \to Z(\overline{\ell n}), x \mapsto \ell.x$ be the canonical embedding. Let $K = A_2[\ell] \subset A_2[\ell n]$.
- Let $(\vartheta_i^A)_{i\in Z(\ell n)}$ be the theta functions of level ℓn on $A = \mathbb{C}^g/(\mathbb{Z}^g + \ell\Omega\mathbb{Z}^g)$.
- Let $(\vartheta_i^B)_{i \in Z(\overline{n})}$ be the theta functions of level n of $B = A/K = \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g)$.
- We have:

$$(\vartheta_i^B(x))_{i\in Z(\overline{n})} = (\vartheta_{\varphi(i)}^A(x))_{i\in Z(\overline{n})}$$

Maximal isotropic isogenies 0000000

Example

 $f:(x_0,x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9,x_{10},x_{11}) \mapsto (x_0,x_3,x_6,x_9)$ is a 3-isogeny between elliptic curves.

An example with g = 1, n = 2, $\ell = 3$

An example with g = 1, n = 2, $\ell = 3$

An example with g = 1, n = 2, $\ell = 3$

Maximal isotropic isogenies 00000000

Theorem (Koizumi-Kempf)

Let F be a matrix of rank r such that ${}^tFF = \ell \operatorname{Id}_r$. Let $X \in (\mathbb{C}^g)^r$ and $Y = F(X) \in (\mathbb{C}^g)^r$. Let $j \in (\mathbb{Q}^g)^r$ and i = F(j). Then we have

$$\vartheta\begin{bmatrix} 0 \\ i_1 \end{bmatrix}(Y_1, \frac{\Omega}{n}) \dots \vartheta\begin{bmatrix} 0 \\ i_r \end{bmatrix}(Y_r, \frac{\Omega}{n}) = \sum_{\substack{t_1, \dots, t_r \in \frac{1}{\ell} \mathbb{Z}^g / \mathbb{Z}^g \\ F(t_1, \dots, t_r) = (0, \dots, 0)}} \vartheta\begin{bmatrix} 0 \\ j_1 \end{bmatrix}(X_1 + t_1, \frac{\Omega}{\ell n}) \dots \vartheta\begin{bmatrix} 0 \\ j_r \end{bmatrix}(X_r + t_r, \frac{\Omega}{\ell n}),$$

(This is the isogeny theorem applied to $F_A: A^r \to A^r$.)

- If $\ell = a^2 + b^2$, we take $F = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, so r = 2.
- In general, $\ell = a^2 + b^2 + c^2 + d^2$, we take F to be the matrix of multiplication by a + bi + cj + dk in the quaternions, so r = 4.

$$\begin{split} \ell \wedge n &= 1, \quad B = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g), \quad A = \mathbb{C}^g / (\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g) \\ \vartheta_b^B &\coloneqq \vartheta \left[\begin{smallmatrix} 0 \\ \frac{b}{n} \end{smallmatrix} \right] \left(\cdot, \frac{\Omega}{n} \right), \quad \vartheta_b^A \coloneqq \vartheta \left[\begin{smallmatrix} 0 \\ \frac{b}{n} \end{smallmatrix} \right] \left(\cdot, \frac{\ell \Omega}{n} \right) \end{split}$$

Proposition

Let F be a matrix of rank r such that ${}^tFF = \ell \operatorname{Id}_r$. Let X in $(\mathbb{C}^g)^r$ and $Y = XF^{-1} \in (\mathbb{C}^g)^r$. Let $i \in (Z(\overline{n}))^r$ and $j = iF^{-1}$. Then we have

$$\vartheta_{i_1}^A(Y_1) \dots \vartheta_{i_r}^A(Y_r) = \sum_{\substack{t_1, \dots, t_r \in \frac{1}{\ell} \mathbb{Z}^g / \mathbb{Z}^g \\ (t_1, \dots, t_r) F = (0, \dots, 0)}} \vartheta_{j_1}^B(X_1 + t_1) \dots \vartheta_{j_r}^B(X_r + t_r),$$

Corollary

Maximal isotropic isogenies

The Algorithm [Cosset, R.]

Complexity over \mathbb{F}_q

- The geometric points of the kernel live in a extension k' of degree at most $\ell^g 1$ over $k = \mathbb{F}_q$;
- The isogeny formula assumes that the points are in affine coordinates. In practice, given A/\mathbb{F}_q we only have projective coordinates \Rightarrow we use differential additions to normalize the coordinates;
- Computing the normalization factors takes $O(\log \ell)$ operations in k';
- Computing the points of the kernel via differential additions take $O(\ell^g)$ operations in k';
- If $\ell \equiv 1 \pmod{4}$, applying the isogeny formula take $O(\ell^g)$ operations in k';
- If $\ell \equiv 3 \pmod{4}$, applying the isogeny formula take $O(\ell^{2g})$ operations in k';
- \Rightarrow The total cost is $\widetilde{O}(\ell^{2g})$ or $\widetilde{O}(\ell^{3g})$ operations in \mathbb{F}_q .

Remark

The complexity is much worse over a number field because we need to work with extensions of much higher degree.

Complexity over \mathbb{F}_q

- The geometric points of the kernel live in a extension k' of degree at most $\ell^g 1$ over $k = \mathbb{F}_q$;
- The isogeny formula assumes that the points are in affine coordinates. In practice, given A/\mathbb{F}_q we only have projective coordinates \Rightarrow we use differential additions to normalize the coordinates;
- Computing the normalization factors takes $O(\log \ell)$ operations in k';
- Computing the points of the kernel via differential additions take $O(\ell^g)$ operations in k';
- If $\ell \equiv 1 \pmod{4}$, applying the isogeny formula take $O(\ell^g)$ operations in k';
- If $\ell \equiv 3 \pmod{4}$, applying the isogeny formula take $O(\ell^{2g})$ operations in k';
- \Rightarrow The total cost is $\widetilde{O}(\ell^{2g})$ or $\widetilde{O}(\ell^{3g})$ operations in \mathbb{F}_q .

Theorem ([Lubicz, R.])

We can compute the isogeny directly given the equations (in a suitable form) of the kernel K of the isogeny. When K is rational, this gives a complexity of $\widetilde{O}(\ell^g)$ or $\widetilde{O}(\ell^{2g})$ operations in \mathbb{F}_q .

Maximal isotropic isogenies 0000000

Maximal isotropic isogenies 0000000

Non principal polarisations

- Let $f:(A, H_1) \rightarrow (B, H_2)$ be an isogeny between principally polarised abelian varieties:
- When Ker f is not maximal isotropic in $A[\ell]$ then f^*H_2 is not of the form ℓH_1 ;
- How can we go from the principal polarisation H_1 to f^*H_1 ?

Non principal polarisations

Theorem (Birkenhake-Lange, Th. 5.2.4)

Let A be an abelian variety with a principal polarisation \mathcal{L}_1 ;

- Let $O_0 = \operatorname{End}(A)^s$ be the real algebra of endomorphisms symmetric under the Rosati involution;
- Let NS(A) be the Néron-Severi group of line bundles modulo algebraic equivalence.

Then

- NS(A) is a torsor under the action of O_0 ;
- This induces a bijection between polarisations of degree d in NS(A) and totally positive symmetric endomorphisms of norm d in O_0 ;
- The isomorphic class of a polarisation $\mathcal{L}_f \in NS(A)$ for $f \in O_0^+$ correspond to the action $\varphi \mapsto \varphi^* f \varphi$ of the automorphisms of A.

- Let $f:(A, H_1) \rightarrow (B, H_2)$ be an isogeny between principally polarised abelian varieties with cyclic kernel of degree ℓ ;
- There exists φ such that the following diagram commutes:

- φ is an $(\ell,0,\ldots,\ell,0,\ldots)$ -isogeny whose kernel is not isotropic for the H_1 -Weil pairing on $A[\ell]!$
- \bullet φ commutes with the Rosatti involution so is a real endomorphism (φ is H_1 -symmetric);
- $\bullet \varphi$ is totally positive.

• The isogeny f induces a compatible isogeny between $\varphi H_1 = f^*H_2$ and H_2 where φH_1 is given by the following diagram

- φ plays the same role as $[\ell]$ for ℓ -isogenies;
- We then define the φ -contragredient isogeny \tilde{f} as the isogeny making the following diagram commute

- We can use the isogeny theorem to compute f from $(A, \varphi H_1)$ down to (B, H_2) or \widetilde{f} from (B, H_2) up to $(A, \varphi H_1)$ as before;
- What about changing level between $(A, \varphi H_1)$ and (A, H_1) ?
- φH_1 fits in the following diagram:

• Applying the isogeny theorem on φ allows to find relations between φ^*H_1 and H_1 but we want φH_1 .

- φ is a totally positive element of a totally positive order O_0 ;
- A theorem of Siegel show that φ is a sum of m squares in $K_0 = O_0 \otimes \mathbb{Q}$;
- Clifford's algebras give a matrix $F \in \operatorname{Mat}_r(K_0)$ such that $\operatorname{diag}(\varphi) = F^*F$;
- We can use this matrix F to change level as before: If $X \in (\mathbb{C}^g)^r$ and $Y = F(X) \in (\mathbb{C}^g)^r$, $i \in (\mathbb{O}^g)^r$ and i = F(i), we have

$$\vartheta\begin{bmatrix} {0 \atop i_1} \end{bmatrix}(Y_1, \frac{\Omega}{n}) \dots \vartheta\begin{bmatrix} {0 \atop i_r} \end{bmatrix}(Y_r, \frac{\Omega}{n}) = \sum_{\substack{t_1, \dots, t_r \in K(\varphi H_1) \\ F(t_1, \dots, t_r) = (0, \dots, 0)}} \vartheta\begin{bmatrix} {0 \atop j_1} \end{bmatrix}(X_1 + t_1, \frac{\varphi^{-1}\Omega}{n}) \dots \vartheta\begin{bmatrix} {0 \atop j_r} \end{bmatrix}(X_r + t_r, \frac{\varphi^{-1}\Omega}{n}),$$

Remark

- In general r can be larger than m;
- The matrix F acts by real endomorphism rather than by integer multiplication;
- There may be denominators in the coefficients of F.

The Algorithm for cyclic isogenies [Dudeanu, Jetchev, R.]

$$B = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g), \quad A = \mathbb{C}^g / (\mathbb{Z}^g + \varphi \Omega \mathbb{Z}^n)$$

$$\vartheta_b^B := \vartheta \begin{bmatrix} 0 \\ \frac{b}{n} \end{bmatrix} \left(\cdot, \frac{\Omega}{n} \right), \quad \vartheta_b^A := \vartheta \begin{bmatrix} 0 \\ \frac{b}{n} \end{bmatrix} \left(\cdot, \frac{\varphi \Omega}{n} \right)$$

Theorem

Let X in $(\mathbb{C}^g)^r$ and $Y = XF^{-1} \in (\mathbb{C}^g)^r$. Let $i \in (Z(\overline{n}))^r$ and $j = iF^{-1}$.

$$\vartheta_{i_1}^A(Y_1) \dots \vartheta_{i_r}^A(Y_r) = \sum_{\substack{t_1, \dots, t_r \in K(\varphi H_2) \\ (t_1, \dots, t_r) F = (0, \dots, 0)}} \vartheta_{j_1}^B(X_1 + t_1) \dots \vartheta_{j_r}^B(X_r + t_r),$$

- We normalize the coordinates by using multi-way additions;
- The real endomorphisms are codiagonalisables (in the ordinary case), this is important to apply the isogeny theorem;
- If g = 2, $K_0 = \mathbb{Q}(\sqrt{d})$, the action of \sqrt{d} is given by a standard (d,d)-isogeny, so we can compute it using the previous algorithm for d-isogenies!
- The important point is that this algorithm is such that we can keep track of the projective factors when computing the action of \sqrt{a} .

Remark

Computing the action of \sqrt{d} directly may be expensive if d is big.

AVIsogenies [Bisson, Cosset, R.]

- AVIsogenies: Magma code written by Bisson, Cosset and R. http://avisogenies.gforge.inria.fr
- Released under LGPL 2+.
- Implement isogeny computation (and applications thereof) for abelian varieties using theta functions.
- Current release 0.6.
- Cyclic isogenies coming "soon"!