On isogenies and polarisations 2013/10/08 - Geocrypt - Tahiti

Gaëtan Bisson, Romain Cosset, Alina Dudeanu, Dimitar Jetchev, David Lubicz, Damien Robert

Outline

(1) Abelian varieties and polarisations

2 Theta functions
(3) Maximal isotropic isogenies
4. Cyclic isogenies

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie group V / Λ with

- A complex vector space V of dimension g;
- A \mathbb{Z}-lattice Λ in V (of rank $2 g$);
such that there exists an Hermitian form H on V with $E(\Lambda, \Lambda) \subset \mathbb{Z}$ where $E=\operatorname{Im} H$ is symplectic.
- Such an Hermitian form H is called a polarisation on A. Conversely, any symplectic form E on V such that $E(\Lambda, \Lambda) \subset \mathbb{Z}$ and $E(i x, i y)=E(x, y)$ for all $x, y \in V$ gives a polarisation H with $E=\operatorname{Im} H$.
- Over a symplectic basis of Λ, E is of the form.

$$
\left(\begin{array}{cc}
0 & D_{\delta} \\
-D_{\bar{\delta}} & 0
\end{array}\right)
$$

where D_{δ} is a diagonal positive integer matrix $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{g}\right)$, with $\delta_{1}\left|\delta_{2}\right| \cdots \mid \delta_{g}$.

- The product $\prod \delta_{i}$ is the degree of the polarisation; H is a principal polarisation if this degree is 1.

Principal polarisations

- Let E_{0} be the canonical principal symplectic form on $\mathbb{R}^{2 g}$ given by $E_{0}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)={ }^{t} x_{1} \cdot y_{2}-{ }^{t} y_{1} \cdot x_{2}$;
- If E is a principal polarisation on $A=V / \Lambda$, there is an isomorphism $j: \mathbb{Z}^{2 g} \rightarrow \Lambda$ such that $E(j(x), j(y))=E_{0}(x, y)$;
- There exists a basis of V such that $j\left(\left(x_{1}, x_{2}\right)\right)=\Omega x_{1}+x_{2}$ for a matrix Ω;
- In particular $E\left(\Omega x_{1}+x_{2}, \Omega y_{1}+y_{2}\right)={ }^{t} x_{1} \cdot y_{2}-{ }^{t} y_{1} \cdot x_{2}$;
- The matrix Ω is in \mathfrak{H}_{g}, the Siegel space of symmetric matrices Ω with $\operatorname{Im} \Omega$ positive definite;
- In this basis, $\Lambda=\Omega \mathbb{Z}^{g}+\mathbb{Z}^{g}$ and H is given by the matrix $(\operatorname{Im} \Omega)^{-1}$.

Action of the symplectic group

- Every principal symplectic form (hence symplectic basis) on $\mathbb{Z}^{2 g}$ comes from the action of $M=\left(\begin{array}{ccc}a & b \\ c & d\end{array}\right) \in \operatorname{Sp}_{2 g}(\mathbb{Z})$ on $\left(\mathbb{Z}^{2 g}, E_{0}\right)$;
- This action gives a new equivariant bijection $j_{M}: \mathbb{Z}^{2 g} \rightarrow \Lambda$ via $j_{M}\left(\left(x_{1}, x_{2}\right)\right)=\left(A \Omega x_{1}+B x_{2}, C \Omega x_{1}+D x_{2}\right) ;$
- Normalizing this embedding via the action of $(C \Omega+D)^{-1}$ on \mathbb{C}^{g}, we get that $j_{M}\left(\left(x_{1}, x_{2}\right)\right)=\Omega_{M} x_{1}+x_{2}$ with $\Omega_{M}=(A \Omega+B)(C \Omega+D)^{-1} \in \mathfrak{H}_{g}$;
- The moduli space of principally polarised abelian varieties is then isomorphic to $\mathfrak{H}_{g} / \operatorname{Sp}_{2 g}(\mathbb{Z})$.

Isogenies

Let $A=V / \Lambda$ and $B=V^{\prime} / \Lambda^{\prime}$.

Definition

An isogeny $f: A \rightarrow B$ is a bijective linear map $f: V \rightarrow V^{\prime}$ such that $f(\Lambda) \subset \Lambda^{\prime}$. The kernel of the isogeny is $f^{-1}\left(\Lambda^{\prime}\right) / \Lambda \subset A$ and its degree is the cardinal of the kernel.

Remark

Up to a renormalization, we can always assume that $V=V^{\prime}=\mathbb{C}^{g}, f=\mathrm{Id}$ and the isogeny is simply $\mathbb{C}^{g} / \Lambda \rightarrow \mathbb{C}^{g} / \Lambda^{\prime}$ for $\Lambda \subset \Lambda^{\prime}$.

The dual abelian variety

Definition

If $A=V / \Lambda$ is an abelian variety, its dual is $\widehat{A}=\operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C}) / \Lambda^{*}$. Here $\operatorname{Hom}_{\mathbb{C}}(V, \mathbb{C})$ is the space of anti-linear forms and $\Lambda^{*}=\{f \mid f(\Lambda) \subset \mathbb{Z}\}$ is the orthogonal of Λ.

- If H is a polarisation on A, its dual H^{*} is a polarisation on \widehat{A}. Moreover, there is an isogeny $\Phi_{H}: A \rightarrow \widehat{A}$:

$$
x \mapsto H(x, \cdot)
$$

of degree $\operatorname{deg} H$. We note $K(H)$ its kernel.

- If $f: A \rightarrow B$ is an isogeny, then its dual is an isogeny $\widehat{f}: \widehat{B} \rightarrow \widehat{A}$ of the same degree.

Remark

There is a canonical polarisation on $A \times \widehat{A}$ (the Poincaré bundle):

$$
(x, f) \mapsto f(x)
$$

Isogenies and polarisations

Definition

- An isogeny $f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ between polarised abelian varieties is an isogeny such that

$$
f^{*} H_{2}:=H_{2}(f(\cdot), f(\cdot))=H_{1} .
$$

- By abuse of notations, we say that f is an ℓ-isogeny between principally polarised abelian varieties if H_{1} and H_{2} are principal and $f^{*} H_{2}=\ell H_{1}$.

An isogeny $f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ respect the polarisations iff the following diagram commutes

Isogenies and polarisations

Definition

- An isogeny $f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ between polarised abelian varieties is an isogeny such that

$$
f^{*} H_{2}:=H_{2}(f(\cdot), f(\cdot))=H_{1} .
$$

- By abuse of notations, we say that f is an ℓ-isogeny between principally polarised abelian varieties if H_{1} and H_{2} are principal and $f^{*} H_{2}=\ell H_{1}$.
$f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ is an ℓ-isogeny between principally polarised abelian varieties iff the following diagram commutes

Jacobians

- Let C be a curve of genus g;
- Let V be the dual of the space V^{*} of holomorphic differentials of the first kind on C;
- Let $\Lambda \simeq H^{1}(C, \mathbb{Z}) \subset V$ be the set of periods (integration of differentials on loops);
- The intersection pairing gives a symplectic form E on Λ;
- Let H be the associated hermitian form on V;

$$
H^{*}\left(w_{1}, w_{2}\right)=\int_{C} w_{1} \wedge w_{2}
$$

- Then $(V / \Lambda, H)$ is a principally polarised abelian variety: the Jacobian of C.

Theorem (Torelli)

Jac C with the associated principal polarisation uniquely determines C.

Remark (Howe)

There exists an hyperelliptic curve H of genus 3 and a quartic curve C such that Jac $C \simeq \mathrm{Jac} H$ as non polarised abelian varieties!

Projective embeddings

Proposition

Let $\Phi: A=V / \Lambda \mapsto \mathbb{P}^{m-1}$ be a projective embedding. Then the linear functions f associated to this embedding are Λ-automorphics:

$$
f(x+\lambda)=a(\lambda, x) f(x) \quad x \in V, \lambda \in \Lambda ;
$$

for a fixed automorphy factor a :

$$
a\left(\lambda+\lambda^{\prime}, x\right)=a\left(\lambda, x+\lambda^{\prime}\right) a\left(\lambda^{\prime}, x\right)
$$

Theorem (Appell-Humbert)

All automorphy factors are of the form

$$
a(\lambda, x)= \pm e^{\pi\left(H(x, \lambda)+\frac{1}{2} H(\lambda, \lambda)\right)}
$$

for a polarisation H on A.

- Let $\left(A, H_{0}\right)$ be a principally polarised abelian variety over \mathbb{C} : $A=\mathbb{C}^{g} /\left(\Omega \mathbb{Z}^{g}+\mathbb{Z}^{g}\right)$ with $\Omega \in \mathfrak{H}_{g}$.
- All automorphic forms corresponding to a multiple of H_{0} come from the theta functions with characteristics:

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i^{t}(n+a) \Omega(n+a)+2 \pi i^{t}(n+a)(z+b)} \quad a, b \in \mathbb{Q}^{g}
$$

- Automorphic property:

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right]\left(z+m_{1} \Omega+m_{2}, \Omega\right)=e^{\left.2 \pi i i^{t} a \cdot m_{2}-t b \cdot m_{1}\right)-\pi i^{t} m_{1} \Omega m_{1}-2 \pi i^{t} m_{1} \cdot z} \vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega) .
$$

- Define $\vartheta_{i}=\vartheta \vartheta\left[\begin{array}{c}0 \\ \frac{i}{n}\end{array}\right]\left(., \frac{\Omega}{n}\right)$ for $i \in Z(\bar{n})=\mathbb{Z}^{g} / n \mathbb{Z}^{g}$ and
- This is a basis of the automorphic functions for $H=n H_{0}$ (theta functions of level n);
- This is the unique basis such that in the projective coordinates:

$$
\begin{array}{rll}
A & \longrightarrow & \mathbb{P}_{\mathbb{C}}^{n^{g}-1} \\
z & \longmapsto & \left(\vartheta_{i}(z)\right)_{i \in Z(\bar{n})}
\end{array}
$$

the translation by a point of n-torsion is normalized by

$$
\vartheta_{i}\left(z+\frac{m_{1}}{n} \Omega+\frac{m_{2}}{n}\right)=e^{-\frac{2 \pi i}{n} t_{i \cdot m_{1}}} \vartheta_{i+m_{2}}(z) .
$$

- $\left(\vartheta_{i}\right)_{i \in Z(\bar{n})}= \begin{cases}\text { coordinates system } & n \geqslant 3 \\ \text { coordinates on the Kummer variety } A / \pm 1 & n=2\end{cases}$
- $\left(\vartheta_{i}\right)_{i \in Z(n)}$: basis of the theta functions of level n $\Leftrightarrow A[n]=A_{1}[n] \oplus A_{2}[n]$: symplectic decomposition.
- Theta null point: $\vartheta_{i}(0)_{i \in Z(n)}=$ modular invariant.

The differential addition law $(k=\mathbb{C})$

$$
\begin{aligned}
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
&\left(\sum_{t \in Z \overline{(2)}} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right) .
\end{aligned}
$$

where $\quad \chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\bar{n})$

$$
\begin{gathered}
\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=A(i, j, k, l) \\
A=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
\end{gathered}
$$

- Transfer the Discrete Logarithm Problem from one Abelian variety to another;
- Point counting algorithms (ℓ-adic or p-adic) \Rightarrow Verify an abelian variety is secure;
- Compute the class field polynomials (CM-method) \Rightarrow Construct a secure abelian variety;
- Compute the modular polynomials \Rightarrow Compute isogenies;
- Determine $\operatorname{End}(A) \Rightarrow$ CRT method for class field polynomials;
- Speed up the arithmetic;
- Hash functions and cryptosystems based on isogeny graphs.

The isogeny theorem

Theorem

- Let $\varphi: Z(\bar{n}) \rightarrow Z(\overline{\ell n}), x \mapsto \ell . x$ be the canonical embedding. Let $K=A_{2}[\ell] \subset A_{2}[\ell n]$.
- Let $\left(\vartheta_{i}^{A}\right)_{i \in Z(\overline{\ell n})}$ be the theta functions of level ℓn on $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\vartheta_{i}^{B}\right)_{i \in Z(n)}$ be the theta functions of level n of $B=A / K=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\vartheta_{i}^{B}(x)\right)_{i \in Z(\bar{n})}=\left(\vartheta_{\varphi(i)}^{A}(x)\right)_{i \in Z(\bar{n})}
$$

Example

$f:\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}\right) \mapsto\left(x_{0}, x_{3}, x_{6}, x_{9}\right)$ is a 3-isogeny between elliptic curves.

An example with $g=1, n=2, \ell=3$

$$
z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right) \text {, level } \ell n \longrightarrow \ell z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right) \text {, level } \ell n
$$

An example with $g=1, n=2, \ell=3$

Changing level

Theorem (Koizumi-Kempf)

Let F be a matrix of rank r such that ${ }^{t} F F=\ell \operatorname{Id}_{r}$. Let $X \in\left(\mathbb{C}^{g}\right)^{r}$ and $Y=F(X) \in\left(\mathbb{C}^{g}\right)^{r}$. Let $j \in\left(\mathbb{Q}^{g}\right)^{r}$ and $i=F(j)$. Then we have

$$
\begin{aligned}
& \vartheta\left[\begin{array}{c}
0 \\
i_{1}
\end{array}\right]\left(Y_{1}, \frac{\Omega}{n}\right) \ldots \vartheta\left[\begin{array}{c}
0 \\
i_{r}
\end{array}\right]\left(Y_{r}, \frac{\Omega}{n}\right)= \\
& \sum_{\substack{t_{1}, \ldots, t_{r} \in \frac{1}{\ell_{2}} \mathbb{Z}^{g} / \mathbb{Z}^{g} \\
F\left(t_{1}, \ldots, t_{r}\right)=(0, \ldots, 0)}} \vartheta\left[\begin{array}{c}
0 \\
j_{1}
\end{array}\right]\left(X_{1}+t_{1}, \frac{\Omega}{\ell n}\right) \ldots \vartheta\left[\begin{array}{c}
0 \\
j_{r}
\end{array}\right]\left(X_{r}+t_{r}, \frac{\Omega}{\ell n}\right),
\end{aligned}
$$

(This is the isogeny theorem applied to $F_{A}: A^{r} \rightarrow A^{r}$.)

- If $\ell=a^{2}+b^{2}$, we take $F=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$, so $r=2$.
- In general, $\ell=a^{2}+b^{2}+c^{2}+d^{2}$, we take F to be the matrix of multiplication by $a+b i+c j+d k$ in the quaternions, so $r=4$.

The isogeny formula

$$
\begin{gathered}
\ell \wedge n=1, \quad B=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right), \quad A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right) \\
\vartheta_{b}^{B}:=\vartheta\left[\begin{array}{c}
0 \\
\frac{b}{n}
\end{array}\right]\left(\cdot, \frac{\Omega}{n}\right), \quad \vartheta_{b}^{A}:=\vartheta\left[\begin{array}{c}
0 \\
\frac{b}{n}
\end{array}\right]\left(\cdot, \frac{\ell \Omega}{n}\right)
\end{gathered}
$$

Proposition

Let F be a matrix of rank r such that ${ }^{t} F F=\ell \operatorname{Id}_{r}$. Let X in $\left(\mathbb{C}^{g}\right)^{r}$ and $Y=X F^{-1} \in\left(\mathbb{C}^{g}\right)^{r}$. Let $i \in(Z(\bar{n}))^{r}$ and $j=i F^{-1}$. Then we have

$$
\vartheta_{i_{1}}^{A}\left(Y_{1}\right) \ldots \vartheta_{i_{r}}^{A}\left(Y_{r}\right)=\sum_{\substack{t_{1}, \ldots, t_{r} \in \frac{1}{\mathbb{Z}} \mathbb{Z}^{g} / \mathbb{Z}^{g} \\\left(t_{1}, \ldots, t_{r}\right) F=(0, \ldots, 0)}} \vartheta_{j_{1}}^{B}\left(X_{1}+t_{1}\right) \ldots \vartheta_{j_{r}}^{B}\left(X_{r}+t_{r}\right),
$$

Corollary

$$
\vartheta_{k}^{A}(0) \vartheta_{0}^{A}(0) \ldots \vartheta_{0}^{A}(0)=\sum_{\substack{t_{1}, \ldots, t_{r} \in K \\\left(t_{1}, \ldots, t_{r}\right) F=(0, \ldots, 0)}} \vartheta_{j_{1}}^{B}\left(t_{1}\right) \ldots \vartheta_{j_{r}}^{B}\left(t_{r}\right), \quad\left(j=(k, 0, \ldots, 0) F^{-1} \in Z(\bar{n})\right)
$$

The Algorithm [Cosset, R.]

- The geometric points of the kernel live in a extension k^{\prime} of degree at most $\ell^{g}-1$ over $k=\mathbb{F}_{q}$;
- The isogeny formula assumes that the points are in affine coordinates. In practice, given A / \mathbb{F}_{q} we only have projective coordinates \Rightarrow we use differential additions to normalize the coordinates;
- Computing the normalization factors takes $O(\log \ell)$ operations in k^{\prime};
- Computing the points of the kernel via differential additions take $O\left(\ell^{g}\right)$ operations in k^{\prime};
- If $\ell \equiv 1(\bmod 4)$, applying the isogeny formula take $O\left(\ell^{g}\right)$ operations in k^{\prime};
- If $\ell \equiv 3(\bmod 4)$, applying the isogeny formula take $O\left(\ell^{2 g}\right)$ operations in k^{\prime};
\Rightarrow The total cost is $\widetilde{O}\left(\ell^{2 g}\right)$ or $\widetilde{O}\left(\ell^{3 g}\right)$ operations in \mathbb{F}_{q}.

Remark

The complexity is much worse over a number field because we need to work with extensions of much higher degree.

- The geometric points of the kernel live in a extension k^{\prime} of degree at most $\ell^{g}-1$ over $k=\mathbb{F}_{q}$;
- The isogeny formula assumes that the points are in affine coordinates. In practice, given A / \mathbb{F}_{q} we only have projective coordinates \Rightarrow we use differential additions to normalize the coordinates;
- Computing the normalization factors takes $O(\log \ell)$ operations in k^{\prime};
- Computing the points of the kernel via differential additions take $O\left(\ell^{g}\right)$ operations in k^{\prime};
- If $\ell \equiv 1(\bmod 4)$, applying the isogeny formula take $O\left(\ell^{g}\right)$ operations in k^{\prime};
- If $\ell \equiv 3(\bmod 4)$, applying the isogeny formula take $O\left(\ell^{2 g}\right)$ operations in k^{\prime};
\Rightarrow The total cost is $\widetilde{O}\left(\ell^{2 g}\right)$ or $\widetilde{O}\left(\ell^{3 g}\right)$ operations in \mathbb{F}_{q}.

Theorem ([Lubicz, R.])

We can compute the isogeny directly given the equations (in a suitable form) of the kernel K of the isogeny. When K is rational, this gives a complexity of $\widetilde{O}\left(\ell^{g}\right)$ or $\widetilde{O}\left(\ell^{2 g}\right)$ operations in \mathbb{F}_{q}.

An (ℓ, ℓ)-isogeny graph in dimension 2 [Bisson, Cosset, R.]

An (ℓ, ℓ)-isogeny graph in dimension 2 [Bisson, Cosset, R.]

An (ℓ, ℓ)-isogeny graph in dimension 2 [Bisson, Cosset, R.]

- Let $f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ be an isogeny between principally polarised abelian varieties;
- When $\operatorname{Ker} f$ is not maximal isotropic in $A[\ell]$ then $f^{*} H_{2}$ is not of the form ℓH_{1};
- How can we go from the principal polarisation H_{1} to $f^{*} H_{1}$?

Theorem (Birkenhake-Lange, Th. 5.2.4)

Let A be an abelian variety with a principal polarisation \mathscr{L}_{1};

- Let $O_{0}=\operatorname{End}(A)^{s}$ be the real algebra of endomorphisms symmetric under the Rosati involution;
- Let $\operatorname{NS}(A)$ be the Néron-Severi group of line bundles modulo algebraic equivalence.
Then
- $\operatorname{NS}(A)$ is a torsor under the action of O_{0};
- This induces a bijection between polarisations of degree d in $\operatorname{NS}(A)$ and totally positive symmetric endomorphisms of norm d in O_{0};
- The isomorphic class of a polarisation $\mathscr{L}_{f} \in \mathrm{NS}(A)$ for $f \in O_{0}^{+}$correspond to the action $\varphi \mapsto \varphi^{*} f \varphi$ of the automorphisms of A.
- Let $f:\left(A, H_{1}\right) \rightarrow\left(B, H_{2}\right)$ be an isogeny between principally polarised abelian varieties with cyclic kernel of degree ℓ;
- There exists φ such that the following diagram commutes:

- φ is an $(\ell, 0, \ldots, \ell, 0, \ldots)$-isogeny whose kernel is not isotropic for the H_{1}-Weil pairing on $A[\ell]$!
- φ commutes with the Rosatti involution so is a real endomorphism (φ is H_{1}-symmetric);
- φ is totally positive.

Descending a polarisation via φ

- The isogeny f induces a compatible isogeny between $\varphi H_{1}=f^{*} H_{2}$ and H_{2} where φH_{1} is given by the following diagram

- φ plays the same role as [ℓ] for ℓ-isogenies;
- We then define the φ-contragredient isogeny \tilde{f} as the isogeny making the following diagram commute

φ-change of level

- We can use the isogeny theorem to compute f from $\left(A, \varphi H_{1}\right)$ down to $\left(B, H_{2}\right)$ or \widetilde{f} from $\left(B, H_{2}\right)$ up to $\left(A, \varphi H_{1}\right)$ as before;
- What about changing level between $\left(A, \varphi H_{1}\right)$ and $\left(A, H_{1}\right)$?
- φH_{1} fits in the following diagram:

- Applying the isogeny theorem on φ allows to find relations between $\varphi^{*} H_{1}$ and H_{1} but we want φH_{1}.

φ-change of level

- φ is a totally positive element of a totally positive order O_{0};
- A theorem of Siegel show that φ is a sum of m squares in $K_{0}=O_{0} \otimes \mathbb{Q}$;
- Clifford's algebras give a matrix $F \in \operatorname{Mat}_{r}\left(K_{0}\right)$ such that $\operatorname{diag}(\varphi)=F^{*} F$;
- We can use this matrix F to change level as before: If $X \in\left(\mathbb{C}^{g}\right)^{r}$ and $Y=F(X) \in\left(\mathbb{C}^{g}\right)^{r}, j \in\left(\mathbb{Q}^{g}\right)^{r}$ and $i=F(j)$, we have

$$
\begin{aligned}
& \vartheta\left[\begin{array}{l}
0 \\
i_{1}
\end{array}\right]\left(Y_{1}, \frac{\Omega}{n}\right) \ldots \vartheta\left[\begin{array}{c}
0 \\
i_{r}
\end{array}\right]\left(Y_{r}, \frac{\Omega}{n}\right)= \\
& \sum_{\substack{t_{1}, \ldots, t_{t} \in K\left(\varphi H_{1}\right) \\
F\left(t_{1}, \ldots, t_{r}\right)=(0, \ldots, 0)}} \vartheta\left[\begin{array}{l}
0 \\
j_{1}
\end{array}\right]\left(X_{1}+t_{1}, \frac{\varphi^{-1} \Omega}{n}\right) \ldots \vartheta\left[\begin{array}{c}
0 \\
j_{r}
\end{array}\right]\left(X_{r}+t_{r}, \frac{\varphi^{-1} \Omega}{n}\right),
\end{aligned}
$$

Remark

- In general r can be larger than m;
- The matrix F acts by real endomorphism rather than by integer multiplication;
- There may be denominators in the coefficients of F.

The Algorithm for cyclic isogenies [Dudeanu, Jetchev, R.]

$$
\begin{array}{ll}
B=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right), \quad A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\varphi \Omega \mathbb{Z}^{n}\right) \\
\vartheta_{b}^{B}:=\vartheta\left[\begin{array}{l}
0 \\
\frac{b}{n}
\end{array}\right]\left(\cdot, \frac{\Omega}{n}\right), \quad \vartheta_{b}^{A}:=\vartheta\left[\begin{array}{l}
0 \\
\frac{b}{n}
\end{array}\right]\left(\cdot, \frac{\varphi \Omega}{n}\right)
\end{array}
$$

Theorem

Let X in $\left(\mathbb{C}^{g}\right)^{r}$ and $Y=X F^{-1} \in\left(\mathbb{C}^{g}\right)^{r}$. Let $i \in(Z(\bar{n}))^{r}$ and $j=i F^{-1}$.

$$
\vartheta_{i_{1}}^{A}\left(Y_{1}\right) \ldots \vartheta_{i_{r}}^{A}\left(Y_{r}\right)=\sum_{\substack{t_{1}, \ldots, t_{\in} \in K\left(\varphi H_{2}\right) \\\left(t_{1}, \ldots, t_{r}\right) F=(0, \ldots, 0)}} \vartheta_{j_{1}}^{B}\left(X_{1}+t_{1}\right) \ldots \vartheta_{j_{r}}^{B}\left(X_{r}+t_{r}\right),
$$

- We normalize the coordinates by using multi-way additions;
- The real endomorphisms are codiagonalisables (in the ordinary case), this is important to apply the isogeny theorem;
- If $g=2, K_{0}=\mathbb{Q}(\sqrt{d})$, the action of \sqrt{d} is given by a standard (d, d)-isogeny, so we can compute it using the previous algorithm for d-isogenies!
- The important point is that this algorithm is such that we can keep track of the projective factors when computing the action of \sqrt{d}.

Remark

Computing the action of \sqrt{d} directly may be expensive if d is big.

- AVIsogenies: Magma code written by Bisson, Cosset and R. http://avisogenies.gforge.inria.fr
- Released under LGPL $2+$.
- Implement isogeny computation (and applications thereof) for abelian varieties using theta functions.
- Current release 0.6.
- Cyclic isogenies coming "soon"!

