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Polarised abelian varieties over C

Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie
group V /Λ with

A complex vector space V of dimension g ;

A Z-lattice Λ in V (of rank 2g );

such that there exists an Hermitian form H on V with E (Λ,Λ)⊂Z where
E = Im H is symplectic.

Such an Hermitian form H is called a polarisation on A. Conversely, any
symplectic form E on V such that E (Λ,Λ)⊂Z and E (i x , i y ) = E (x , y ) for
all x , y �V gives a polarisation H with E = Im H .

Over a symplectic basis of Λ, E is of the form.
�

0 Dδ
−Dδ 0

�

where Dδ is a diagonal positive integer matrix δ= (δ1,δ2, . . . ,δg ), with
δ1 |δ2| · · · |δg .

The product
∏

δi is the degree of the polarisation; H is a principal
polarisation if this degree is 1.
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Principal polarisations

Let E0 be the canonical principal symplectic form on R2g given by
E0((x1,x2), (y1, y2)) = t x1 · y2− t y1 ·x2;

If E is a principal polarisation on A =V /Λ, there is an isomorphism
j :Z2g →Λ such that E (j (x ), j (y )) = E0(x , y );

There exists a basis of V such that j ((x1,x2)) = Ωx1+x2 for a matrix Ω;

In particular E (Ωx1+x2,Ωy1+ y2) = t x1 · y2− t y1 ·x2;

The matrix Ω is in Hg , the Siegel space of symmetric matrices Ω with
ImΩ positive definite;

In this basis, Λ=ΩZg +Zg ; and H is given by the matrix (ImΩ)−1.
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Action of the symplectic group

Every principal symplectic form (hence symplectic basis) on Z2g comes
from the action of M =

�

a b
c d

� � Sp2g (Z) on (Z2g , E0);

This action gives a new equivariant bijection jM :Z2g →Λ via
jM ((x1,x2)) = (AΩx1+ Bx2,CΩx1+Dx2);

Normalizing this embedding via the action of (CΩ+D)−1 on Cg , we get
that jM ((x1,x2)) = ΩM x1+x2 with ΩM = (AΩ+ B )(CΩ+D)−1 �Hg ;

The moduli space of principally polarised abelian varieties is then
isomorphic to Hg /Sp2g (Z).
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Isogenies

Let A =V /Λ and B =V ′/Λ′.

Definition

An isogeny f : A→ B is a bijective linear map f : V →V ′ such that f (Λ)⊂Λ′.
The kernel of the isogeny is f −1(Λ′)/Λ⊂ A and its degree is the cardinal of the
kernel.

Remark

Up to a renormalization, we can always assume that V =V ′ =Cg , f = Id and the
isogeny is simply Cg /Λ→Cg /Λ′ for Λ⊂Λ′.
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The dual abelian variety

Definition

If A =V /Λ is an abelian variety, its dual is bA =HomC(V,C)/Λ∗. Here HomC(V,C)
is the space of antilinear forms and Λ∗ = { f | f (Λ)⊂Z} is the orthogonal of Λ.

There is a canonical polarisation on A × bA (the Poincaré bundle):

(x , f ) 7→ f (x ).

If H is a polarisation on A, its dual H ∗ is a polarisation on bA. Moreover,
there is an isogeny ΦH : A→ bA:

x 7→H (x , ·)

of degree deg H . We note K (H ) its kernel.

If f : A→ B is an isogeny, then its dual is an isogeny bf : bB→ bA of the same
degree.
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Isogenies and polarisations

Definition

An isogeny f : (A, H1)→ (B , H2) between polarised abelian varieties is an
isogeny such that

f ∗H2 :=H2( f (·), f (·)) =H1.

By abuse of notations, we say that f is an ℓ-isogeny between principally
polarised abelian varieties if H1 and H2 are principal and f ∗H2 = ℓH1.

An isogeny f : (A, H1)→ (B , H2) respect the polarisations iff the following
diagram commutes

A B

bA bB

f

bf

ΦH1 ΦH2
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Isogenies and polarisations

Definition

An isogeny f : (A, H1)→ (B , H2) between polarised abelian varieties is an
isogeny such that

f ∗H2 :=H2( f (·), f (·)) =H1.

By abuse of notations, we say that f is an ℓ-isogeny between principally
polarised abelian varieties if H1 and H2 are principal and f ∗H2 = ℓH1.

f : (A, H1)→ (B , H2) is an ℓ-isogeny between principally polarised abelian
varieties iff the following diagram commutes

A B

A bA bB

f

bf

ΦℓH1 ΦH2

[ℓ]

ΦH1
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Jacobians

Let C be a curve of genus g ;
Let V be the dual of the space of holomorphic differentials of the first
kind on C ;
Let Λ≃H 1(C ,Z)⊂V be the set of periods (integration of differentials on
loops);
The intersection pairing gives a symplectic form E on Λ;
Let H be the associated hermitian form on V ;

H ∗(w1, w2) =

∫

C

w1 ∧w2;

Then (V /Λ, H ) is a principally polarised abelian variety: the Jacobian of C .

Theorem (Torelli)

JacC with the associated principal polarisation uniquely determines C .

Remark (Howe)

There exists an hyperelliptic curve H of genus 3 and a quartic curve C such that
JacC ≃ Jac H as non polarised abelian varieties!
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Projective embeddings

Proposition

Let Φ : A =V /Λ 7→Pm−1 be a projective embedding; Then the linear functions f
associated to this embedding are Λ-automorphics:

f (x +λ) = a (λ,x ) f (x ) x �V,λ �Λ;

for a fixed automorphy factor a :

a (λ+λ′,x ) = a (λ,x +λ′)a (λ′,x ).

Theorem (Appell-Humbert)

All automorphy factors are of the form

a (λ,x ) =±e π(H (x ,λ)+ 1
2 H (λ,λ))

for a polarisation H on A.
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Theta functions

Let (A, H0) be a principally polarised abelian variety: C: A =Cg / (ΩZg +Zg )
with Ω �Hg .

All automorphic forms corresponding to a multiple of H0 come from the
theta functions with characteristics:

ϑ
� a

b

�

(z ,Ω)=
∑

n�Zg

e πi t (n+a )Ω(n+a )+2πi t (n+a )(z+b ) a ,b �Qg

Automorphic property:

ϑ
� a

b

�

(z +m1Ω+m2,Ω)= e 2πi (t a ·m2−t b ·m1)−πi t m1Ωm1−2πi t m1 ·zϑ
� a

b

�

(z ,Ω).
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Theta functions of level n

Define Z (n ) =Zg /nZg and ϑi = ϑ
h

0
i
n

i

(., Ω
n
); this is a basis of the

automorphic functions for H = nH0 (theta functions of level n);

This is the unique basis such that in the projective coordinates:

A −→ Pn g −1
C

z 7−→ (ϑi (z ))i�Z (n )
the translation by a point of n-torsion is normalized by

ϑi (z +
m1

n
Ω+

m2

n
) = e−

2πi
n

t i ·m1ϑi+m2 (z ).

(ϑi )i�Z (n ) =
(

coordinates system n ⩾ 3

coordinates on the Kummer variety A/±1 n = 2

(ϑi )i�Z (n ): basis of the theta functions of level n
⇔ A[n ] = A1[n ]⊕A2[n ]: symplectic decomposition.

Theta null point: ϑi (0)i�Z (n ) =modular invariant.



Abelian varieties and polarisations Theta functions Isogenies (geometry) Isogenies (rationality) Cyclic isogenies

The differential addition law (k =C)

�

∑

t �Z (2)
χ(t )ϑi+t (x + y )ϑj+t (x − y )

�

.
�

∑

t �Z (2)
χ(t )ϑk+t (0)ϑl+t (0)

�

=

�

∑

t �Z (2)
χ(t )ϑ−i ′+t (y )ϑj ′+t (y )

�

.
�

∑

t �Z (2)
χ(t )ϑk ′+t (x )ϑl ′+t (x )

�

.

where χ � Ẑ (2), i , j , k , l �Z (n )
(i ′, j ′, k ′, l ′) = A(i , j , k , l )

A =
1

2











1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
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Cryptographic usage of isogenies

Transfer the Discrete Logarithm Problem from one Abelian variety to
another;

Point counting algorithms (ℓ-adic or p -adic) ⇒ Verify an abelian varietyis
secure;

Compute the class field polynomials (CM-method) ⇒ Construct a secure
abelian variety;

Compute the modular polynomials ⇒ Compute isogenies;

Determine End(A) ⇒ CRT method for class field polynomials;

Speed up the arithmetic;

Hash functions and cryptosystems based on isogeny graphs.
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The isogeny theorem

Theorem

Let ϕ : Z (n )→Z (ℓn ),x 7→ ℓ.x be the canonical embedding.
Let K = A2[ℓ]⊂ A2[ℓn ].

Let (ϑA
i )i�Z (ℓn ) be the theta functions of level ℓn on A =Cg /(Zg +ΩZg ).

Let (ϑB
i )i�Z (n ) be the theta functions of level n of B = A/K =Cg /(Zg + Ω

ℓ
Zg ).

We have:
(ϑB

i (x ))i�Z (n ) = (ϑA
ϕ(i )(x ))i�Z (n )

Example

f : (x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11) 7→ (x0,x3,x6,x9) is a 3-isogeny between
elliptic curves.
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

f

ℓz �Cg /(Zg + ℓΩZg ), level ℓn

ef

[ℓ]

1

Ω 3Ω
0

x
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

f

ℓz �Cg /(Zg + ℓΩZg ), level ℓn

ef

[ℓ]

1

Ω 3Ω
0

xy
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

f

ℓz �Cg /(Zg + ℓΩZg ), level ℓn

ef

[ℓ]

1

Ω 3Ω
R0

R1

R2
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

f

ℓz �Cg /(Zg + ℓΩZg ), level ℓn

ef

[ℓ]

1

Ω 3Ω
R0

R1

R2

y
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

f
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[ℓ]

1

Ω 3Ω
R0

R1
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

f

ℓz �Cg /(Zg + ℓΩZg ), level ℓn

ef

[ℓ]

1

Ω 3Ω
R0

R1

R2

y
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

f

ℓz �Cg /(Zg + ℓΩZg ), level ℓn

ef

[ℓ]

1

Ω 3Ω
R0

R1

R2

y x
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Changing level

Theorem (Koizumi–Kempf)

Let F be a matrix of rank r such that t F F = ℓ Idr . Let X � (Cg )r and
Y = F (X ) � (Cg )r . Let j � (Qg )r and i = F (j ). Then we have

ϑ
�

0
i 1

�

(Y1,
Ω
n
) . . .ϑ
�

0
i r

�

(Yr ,
Ω
n
) =

∑

t1 ,...,tr � 1
ℓ Z

g /Zg

F (t1 ,...,tr )=(0,...,0)

ϑ
�

0
j1

�

(X1+ t1,
Ω
ℓn
) . . .ϑ
�

0
jr

�

(Xr + tr ,
Ω
ℓn
),

(This is the isogeny theorem applied to FA : Ar → Ar .)

If ℓ= a 2+b 2, we take F =
�

a b
−b a

�

, so r = 2.

In general, ℓ= a 2+b 2+ c 2+d 2, we take F to be the matrix of
multiplication by a +b i + c j +d k in the quaternions, so r = 4.
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The isogeny formula

ℓ∧n = 1, B =Cg /(Zg +ΩZg ), A =Cg /(Zg + ℓΩZg )

ϑB
b

:= ϑ
h

0
b
n

i

�

·,
Ω
n

�

, ϑA
b

:= ϑ
h

0
b
n

i

�

·,
ℓΩ
n

�

Proposition

Let F be a matrix of rank r such that t F F = ℓ Idr . Let X in (Cg )r and
Y =X F−1 � (Cg )r . Let i � (Z (n ))r and j = i F−1. Then we have

ϑA
i 1
(Y1) . . .ϑA

i r
(Yr ) =
∑

t1 ,...,tr � 1
ℓ Z

g /Zg

(t1 ,...,tr )F=(0,...,0)

ϑB
j1
(X1+ t1) . . .ϑB

jr
(Xr + tr ),

Corollary

ϑA
k (0)ϑ

A
0 (0) . . .ϑA

0 (0) =
∑

t1 ,...,tr �K
(t1 ,...,tr )F=(0,...,0)

ϑB
j1
(t1) . . .ϑB

jr
(tr ), (j = (k , 0, . . . , 0)F−1 �Z (n ))
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The Algorithm

x � (A,ℓH1) (x , 0, . . . , 0) � (Ar ,ℓH1 ⋆ · · · ⋆ ℓH1)

y � (B , H2) t F (x , 0, . . . , 0) � (Ar ,ℓH1 ⋆ · · · ⋆ ℓH1)

ef (y ) � (A, H1) F ◦ t F (x , 0, . . . , 0) � (Ar , H1 ⋆ · · · ⋆H1)

f

ef

[ℓ]

t F

F
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Complexity over Fq

The geometric points of the kernel live in a extension k ′ of degree at
most ℓg −1 over k =Fq ;

The isogeny formula assumes that the points are in affine coordinates.
In practice, given A/Fq we only have projective coordinates ⇒ we use
differential additions to normalize the coordinates;

Computing the normalization factors takes O(logℓ) operations in k ′;

Computing the points of the kernel via differential additions take O(ℓg )
operations in k ′;

If ℓ≡ 1 (mod 4), applying the isogeny formula take O(ℓg ) operations in k ′;

If ℓ≡ 3 (mod 4), applying the isogeny formula take O(ℓ2g ) operations in k ′;

⇒ The total cost is eO(ℓ2g ) or eO(ℓ3g ) operations in Fq .

Remark

The complexity is much worse over a number field because we need to work with
extensions of much higher degree.
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Equations of the Kernel

We suppose that we have (projective) equations of K in diagonal form
over the base field k :

P1(X0, X1) = 0

X2X d
0 = P2(X0, X1)

. . .

Xn X d
0 = Pn (X0, X1)

By setting X0 = 1 we can work with affine coordinates. The projective
solutions can be written (x0,x0x1, . . . ,x0xn ) so X0 can be seen as the
normalization factor.

Note: I don’t know how to obtain equations of K without computing the
geometric points of K as we don’t have modular polynomials in higher
dimension (yet).
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Operations on generic points

We can work in the algebra A= k [X1]/(P1(X1)), each operation takes eO(ℓg )
operations in k (this is also “true” for number fields).

A generic point is η= (X0, X0X1, X0P2(X1), . . . , X0Pn (X1));

By computing differential additions over the algebra A, one can recover
a generic normalization X ℓ0 =µ �A;
We assume here that none of the coordinates of the geometric points
are zero, otherwise computing generic differential additions get tricky;

If we suppose P1 irreducible, the Galois action on η give “linearly free
generic points”.
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The generic algorithm (first version)

Use the Galois action to compute g “linearly independent generic
points” η1, . . . ,ηg ;

Compute the ηi +ηj over A;

Normalize each of these points;

Use differential additions to formally compute each points of the kernel;

Apply the isogeny formula. The result is computed in A but will actually
be in k .

Remark

This look nice, but in fact this is just a fancy way of working over the splitting
field of P1. In this case we can as well work directly with the geometric points of
K so we gain nothing!
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Uniform normalization

Normalizing the basis and using differential additions to compute the
rest of the kernel assure that we have a uniform normalization;

But in the equation

ϑB
k (0)ϑ

B
0 (0) . . .ϑB

0 (0) =
∑

t1 ,...,tr �K
(t1 ,...,tr )F=(0,...,0)

ϑA
j1
(t1) . . .ϑA

jr
(tr ), (j = (k , 0, . . . , 0)F−1 �Z (n ))

we only need to normalize uniformly between the points t1, . . . , tr (ie do a
local normalization);

When we work with the geometric points, it’s better to normalize only
the basis and then use differential addition (which is faster than normal
addition) than normalize the points in the kernel independently;

However here since we do a generic normalization we only need to do it
once!
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The case ℓ≡ 1 (mod 4)

Let F =
�

a b
−b a

�

. Let c =−a/b (mod ℓ). The points in the kernel of F are of
the form (x , c x ) for each x � K .

So we normalize the generic point η, compute c .η and then
R := ϑA

j1
(η)ϑA

j2
(c .η) �A.

We then just have to compute
∑

x�K R(x1) � k ;
In the euclidean division X RP ′1 = P1Q +S, the result is given by Q(0);

This last operation is quasi-linear in the degree of A.



Abelian varieties and polarisations Theta functions Isogenies (geometry) Isogenies (rationality) Cyclic isogenies

The case ℓ≡ 3 (mod 4)

Essentially the same as before, except the tuple in the kernel of F are of
the form (x1,x2, a x1+bx2, c x1+d x2) for (x1,x2) � k 2;

we have to work on a plane rather than on a line;

we need two “independent” generic points, so we work in A⊗2;

we need three normalizations;

To evaluate the sum of the final polynomial on the couple of points in
the kernel we can apply the preceding formula twice.
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Complexity over k

An operation in A is eO(ℓg ) operations in k .

Computing the generic normalization factor takes eO(logℓ) operations in
A;

If ℓ≡ 1 (mod 4), working in the line take O(logℓ) operations in A;

If ℓ≡ 3 (mod 4), working in the plane take O(logℓ) operations in A⊗2;

The final reduction step is quasi-linear in the degree of the algebra.

⇒ The total cost is eO(ℓg ) or eO(ℓ2g ) operations in k .

Remark

If k =Fq and ℓ≡ 3 (mod 4), it is actually faster to generate equations of the
kernel from the geometric point (costing eO(ℓ2g )) and apply the generic
algorithm than to use the isogeny formula directly!

Still not quasi-linear in the degree of the isogeny when ℓ≡ 3 (mod 4)!



Abelian varieties and polarisations Theta functions Isogenies (geometry) Isogenies (rationality) Cyclic isogenies

Cyclic isogeny

Let f : (A, H1)→ (B , H2) be an isogeny between principally polarised
abelian varieties with cyclic kernel of degree ℓ;

There exists ϕ such that the following diagram commutes:

A B

A bA bB

f

bf

Φ f ∗H2 ΦH2

ϕ

ΦH1

ϕ is an (ℓ,0, . . . ,ℓ, 0, . . .)-isogeny whose kernel is not isotropic for the
H1-Weil pairing on A[ℓ]!

ϕ commutes with the Rosatti involution so is a real endomorphism (ϕ is
H1-symmetric).
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Descending a polarisation via ϕ

The isogeny f induces a compatible isogeny between ϕH1 = f ∗H2 and H2

where ϕH1 is given by the following diagram

A A

bA

ϕ

ΦH1ΦϕH1

ϕ plays the same role as [ℓ] for ℓ-isogenies;
We then define the ϕ-contragredient isogeny ef as the isogeny making
the following diagram commute

x � (A,ϕ∗H1)

y � (B ,ϕH2)

ef (y ) � (A, H1)

f

ef

ϕ

We can use the isogeny theorem to compute f from (A,ϕH1) down to
(B , H2) or ef from (B , H2) up to (A,ϕH1) as before;
What about changing level between (A,ϕH1) and (A, H1)?
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ϕ-change of level

ϕ is a totally positive element of a totally positive order OK0 ;

A theorem of Siegel show that ϕ is a sum of m squares in K0;

Clifford’s algebras give a matrix F � r (K0) such that diag(ϕ) = F ∗F ;

We can use this matrix F to change level as before: If X � (Cg )r and
Y = F (X ) � (Cg )r , j � (Qg )r and i = F (j ), we have

ϑ
�

0
i 1

�

(Y1,
Ω
n
) . . .ϑ
�

0
i r

�

(Yr ,
Ω
n
) =

∑

t1 ,...,tr �K (ϕH1)
F (t1 ,...,tr )=(0,...,0)

ϑ
�

0
j1

�

(X1+ t1,
ϕ−1Ω

n
) . . .ϑ
�

0
jr

�

(Xr + tr ,
ϕ−1Ω

n
),

Remark

In general r can be larger than m ;

The matrix F acts by real endomorphism rather than by integer
multiplication;

There may be denominators in the coefficients of F .
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The Algorithm for cyclic isogenies

B =Cg /(Zg +ΩZg ), A =Cg /(Zg +ϕΩZn )

ϑB
b

:= ϑ
h

0
b
n

i

�

·,
Ω
n

�

, ϑA
b

:= ϑ
h

0
b
n

i

�

·,
ϕΩ
n

�

Theorem

Let X in (Cg )r and Y =X F−1 � (Cg )r . Let i � (Z (n ))r and j = i F−1.

ϑA
i 1
(Y1) . . .ϑA

i r
(Yr ) =
∑

t1 ,...,tr �K (ϕH2)
(t1 ,...,tr )F=(0,...,0)

ϑB
j1
(X1+ t1) . . .ϑB

jr
(Xr + tr ),

x � (A,ϕH1) (x , 0, . . . , 0) � (Ar ,ϕH1 ⋆ · · · ⋆ϕH1)

y � (B , H2) t F (x , 0, . . . , 0) � (Ar ,ϕH1 ⋆ · · · ⋆ϕH1)

ef (y ) � (A, H1) F ◦ t F (x , 0, . . . , 0) � (Ar , H1 ⋆ · · · ⋆H1)

f

ef

ϕ

t F

F
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Hidden details

We normalize the coordinates by using multi-way additions;

The real endomorphisms are codiagonalisable, this is important to apply
the isogeny theorem;

If g = 2, K0 =Q(
p

d ), the action of
p

d is given by a standard
(d , d )-isogeny, so we can compute it using the previous algorithm for
d -isogenies!

The important point is that this algorithm is such that we can keep track
of the projective factors when computing the action of

p
d .
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AVIsogenies

AVIsogenies: Magma code written by Bisson, Cosset and R.
http://avisogenies.gforge.inria.fr

Released under LGPL 2+.

Implement isogeny computation (and applications thereof) for abelian
varieties using theta functions.

Current release 0.6.

http://avisogenies.gforge.inria.fr
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