# Computing optimal pairings on abelian varieties with theta functions

06/06/2013 — AGCT

David Lubicz, Damien Robert

June 6, 2013

### Outline

- Pairings on curves
- Abelian varieties
- Theta functions
- Pairings with theta functions
- Performance

# The Weil pairing on elliptic curves

- Let  $E: y^2 = x^3 + ax + b$  be an elliptic curve over k (char  $k \neq 2,3$ ).
- Let  $P,Q \in E[\ell]$  be points of  $\ell$ -torsion.
- Let  $f_P$  be a function associated to the principal divisor  $\ell(P)-\ell(0)$ , and  $f_Q$  to  $\ell(Q)-\ell(0)$ . We define:

$$e_{W,\ell}(P,Q) = \frac{f_P((Q) - (0))}{f_Q((P) - (0))}.$$

• The application  $e_{W,\ell}: E[\ell] \times E[\ell] \to \mu_{\ell}(\overline{k})$  is a non degenerate pairing: the Weil pairing.

### Definition (Embedding degree)

The embedding degree d is the smallest number thus that  $\ell \mid q^d - 1$ ;  $\mathbb{F}_{q^d}$  is then the smallest extension containing  $\mu_{\ell}(\overline{k})$ .

# The Tate pairing on elliptic curves over $\mathbb{F}_q$

#### Definition

The Tate pairing is a non degenerate (on the right) bilinear application given by

$$e_T \colon E_0[\ell] \times E(\mathbb{F}_q) / \ell E(\mathbb{F}_q) \longrightarrow \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^* \ell$$
.  
 $(P,Q) \longmapsto f_P((Q) - (0))$ 

where

$$E_0[\ell] = \{ P \in E[\ell](\mathbb{F}_{q^d}) \mid \pi(P) = [q]P \}.$$

ullet On  $\mathbb{F}_{a^d}$ , the Tate pairing is a non degenerate pairing

$$e_T: E[\ell](\mathbb{F}_{q^d}) \times E(\mathbb{F}_{q^d}) / \ell E(\mathbb{F}_{q^d}) \to \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*\ell} \simeq \mu_{\ell};$$

• We normalise the Tate pairing by going to the power of  $(q^d - 1)/\ell$ .

### Miller's functions

• We need to compute the functions  $f_P$  and  $f_Q$ . More generally, we define the Miller's functions:

#### Definition

Let  $\lambda \in \mathbb{N}$  and  $X \in E[\ell]$ , we define  $f_{\lambda,X} \in k(E)$  to be a function thus that:

$$(f_{\lambda,X}) = \lambda(X) - ([\lambda]X) - (\lambda - 1)(0).$$

• We want to compute (for instance)  $f_{\ell,P}(Q) - (0)$ ).

# Miller's algorithm

• The key idea in Miller's algorithm is that

$$f_{\lambda+\mu,X} = f_{\lambda,X} f_{\mu,X} \mathfrak{f}_{\lambda,\mu,X}$$

where  $\mathfrak{f}_{\lambda,\mu,X}$  is a function associated to the divisor

$$([\lambda + \mu]X) - ([\lambda]X) - ([\mu]X) + (0).$$

• We can compute  $\mathfrak{f}_{\lambda,\mu,X}$  using the addition law in E: if  $[\lambda]X = (x_1,y_1)$  and  $[\mu]X = (x_2,y_2)$  and  $\alpha = (y_1 - y_2)/(x_1 - x_2)$ , we have

$$\mathfrak{f}_{\lambda,\mu,X} = \frac{y - \alpha(x - x_1) - y_1}{x + (x_1 + x_2) - \alpha^2}.$$

# Pairings on Jacobians

- Let C be a curve of genus g;
- Let  $P \in Jac(C)[\ell]$  and  $D_P$  a divisor of degree 0 on C representing P;
- By definition of Jac(C),  $\ell D_P$  corresponds to a principal divisor  $(f_P)$  on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$e_W(P,Q) = f_P(D_Q)/f_Q(D_P)$$
  
$$e_T(P,Q) = f_P(D_Q).$$

# Pairings on Jacobians

Pairings on curves

- Let C be a curve of genus g;
- Let  $P \in Jac(C)[\ell]$  and  $D_P$  a divisor of degree 0 on C representing P;
- By definition of Jac(C),  $\ell D_P$  corresponds to a principal divisor  $(f_P)$  on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$e_W(P,Q) = f_P(D_Q)/f_Q(D_P)$$
  
$$e_T(P,Q) = f_P(D_Q).$$

ullet A key ingredient for evaluating  $f_P(D_Q)$  comes from Weil reciprocity theorem.

### Theorem (Weil)

Let  $D_1$  and  $D_2$  be two divisors with disjoint support linearly equivalent to (0) on a smooth curve C. Then

$$f_{D_1}(D_2) = f_{D_2}(D_1).$$

# Pairings on Jacobians

Pairings on curves

- Let C be a curve of genus g;
- Let  $P \in Jac(C)[\ell]$  and  $D_P$  a divisor of degree 0 on C representing P;
- By definition of Jac(C),  $\ell D_P$  corresponds to a principal divisor  $(f_P)$  on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$e_W(P,Q) = f_P(D_Q)/f_Q(D_P)$$
  
$$e_T(P,Q) = f_P(D_Q).$$

- The extension of Miller's algorithm to Jacobians is "straightforward";
- For instance if g = 2, the function  $f_{\lambda,\mu,P}$  is of the form

$$\frac{y-l(x)}{(x-x_1)(x-x_2)}$$

where l is of degree 3.

### Abelian varieties

#### Definition

An Abelian variety is a complete connected group variety over a base field k.

### Example

- Elliptic curves= Abelian varieties of dimension 1;
- If C is a (projective smooth absolutely irreducible) curve of genus g, its Jacobian is an abelian variety of dimension g;
- In dimension  $g \ge 4$ , not every abelian variety is a Jacobian.

# Isogenies and pairings

Let  $f:A \rightarrow B$  be a separable isogeny with kernel K between two abelian varieties defined over k:

$$0 \longrightarrow K \longrightarrow A \xrightarrow{f} B \longrightarrow 0$$

$$0 \longleftarrow \hat{A} \xleftarrow{\hat{f}} \hat{B} \longleftarrow \hat{K} \longleftarrow 0$$

- $\hat{K}$  is the Cartier dual of K, and we have a non degenerate pairing  $e_f: K \times \hat{K} \to \overline{k}^*$ :
  - If  $Q \in \hat{K}(\overline{k})$ , Q defines a divisor  $D_Q$  on B;
  - $\hat{f}(Q) = 0$  means that  $f^*D_Q$  is equal to a principal divisor  $(g_Q)$  on A;
  - $e_f(P,Q) = g_Q(x)/g_Q(x+P)$ . (This last function being constant in its definition domain).
- The Weil pairing  $e_{W,\ell}$  is the pairing associated to the isogeny  $[\ell]: A \rightarrow A$ .

### **Polarisations**

If  $\mathcal{L}$  is an ample line bundle, the polarisation  $\varphi_{\mathcal{L}}$  is a morphism  $A \to \widehat{A}, x \mapsto t_x^* \mathcal{L} \otimes \mathcal{L}^{-1}$ .

#### Definition

Let  $\mathcal{L}$  be a principal polarization on A. The (polarized) Weil pairing  $e_{W,\mathcal{L},\ell}$  is the pairing

$$e_{W,\mathscr{L},\ell} \colon A[\ell] \times A[\ell] \longrightarrow \mu_{\ell}(\overline{k})$$

$$(P,Q) \longmapsto e_{W,\ell}(P,\varphi_{\mathscr{L}}(Q))$$

associated to the polarization  $\mathcal{L}^{\ell}$ :

$$A \xrightarrow{[\ell]} A \xrightarrow{\mathcal{L}} \hat{A}$$

From the exact sequence

$$0 \mathop{\rightarrow} A[\ell](\overline{\mathbb{F}}_{q^d}) \mathop{\rightarrow} A(\overline{\mathbb{F}}_{q^d}) \mathop{\rightarrow}^{[\ell]} A(\overline{\mathbb{F}}_{q^d}) \mathop{\rightarrow} 0$$

we get from Galois cohomology a connecting morphism

$$\delta: A(\mathbb{F}_{q^d})/\ell A(\mathbb{F}_{q^d}) \to H^1(Gal(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d}), A[\ell]);$$

Composing with the Weil pairing, we get a bilinear application

$$A[\ell](\mathbb{F}_{q^d}) \times A(\mathbb{F}_{q^d}) / \ell A(\mathbb{F}_{q^d}) \to H^1(\operatorname{Gal}(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d}), \mu_\ell) \simeq \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*^{-\ell}} \simeq \mu_\ell$$

where the last isomorphism comes from the Kummer sequence

$$1 \to \mu_{\ell} \to \overline{\mathbb{F}}_{q^d}^* \to \overline{\mathbb{F}}_{q^d}^* \to 1$$

and Hilbert 90;

• Explicitely, if  $P \in A[\ell](\mathbb{F}_{q^d})$  and  $Q \in A(\mathbb{F}_{q^d})$  then the (reduced) Tate pairing is given by

$$e_T(P,Q) = e_W(P,\pi(Q_0) - Q_0)$$

where  $Q_0$  is any point such that  $Q = [\ell]Q_0$  and  $\pi$  is the Frobenius of  $\mathbb{F}_{a^d}$ .

- Let  $(A, \mathcal{L})$  be a principally polarized abelian variety;
- To a degree 0 cycle  $\sum (P_i)$  on A, we can associate the line bundle  $\otimes t_{P_i}^* \mathcal{L}$ on A;
- The cycle  $\sum (P_i)$  corresponds to a trivial line bundle iff  $\sum P_i = 0$  in A;
- If f is a function on A and  $D = \sum_{i} (P_i)$  a cycle whose support does not contain a zero or pole of f, we let

$$f(D) = \prod f(P_i).$$

(In the following, when we write f(D) we will always assume that we are in this situation.)

### Theorem ([Lan58])

Let  $D_1$  and  $D_2$  be two cycles equivalent to 0, and  $f_{D_1}$  and  $f_{D_2}$  be the corresponding functions on A. Then

$$f_{D_1}(D_2) = f_{D_2}(D_1)$$

### The Weil and Tate pairings on abelian varieties

#### Theorem

Let  $P, Q \in A[\ell]$ . Let  $D_P$  and  $D_Q$  be two cycles equivalent to (P) - (0) and (Q) - (0). The Weil pairing is given by

$$e_W(P,Q) = \frac{f_{\ell D_P}(D_Q)}{f_{\ell D_Q}(D_P)}.$$

#### **Theorem**

Let  $P \in A[\ell](\mathbb{F}_{q^d})$  and  $Q \in A(\mathbb{F}_{q^d})$ , and let  $D_P$  and  $D_Q$  be two cycles equivalent to (P) - (0) and (Q) - (0). The (non reduced) Tate pairing is given by

$$e_T(P,Q) = f_{\ell D_P}(D_Q).$$

# Cryptographic usage of pairings on abelian varieties

- The moduli space of abelian varieties of dimension g is a space of dimension g(g+1)/2. We have more liberty to find optimal abelian varieties in function of the security parameters.
- If A is an abelian variety of dimension g,  $A[\ell]$  is a  $(\mathbb{Z}/\ell\mathbb{Z})$ -module of dimension  $2g \Rightarrow$  the structure of pairings on abelian varieties is richer.
- Supersingular abelian varieties can have larger embedding degree than supersingular elliptic curves.
- Over a Jacobian, we can use twists even if they are not coming from twists of the underlying curve.

# Complex abelian variety

- A complex abelian variety is of the form  $A = V/\Lambda$  where V is a  $\mathbb{C}$ -vector space and  $\Lambda$  a lattice, with a polarization (actually an ample line bundle)  $\mathcal{L}$  on it:
- The Chern class of  $\mathcal{L}$  corresponds to a symplectic real form E on V such that E(ix, iy) = E(x, y) and  $E(\Lambda, \Lambda) \subset \mathbb{Z}$ ;
- The commutator pairing  $e_{\varphi}$  is then given by  $\exp(2i\pi E(\cdot,\cdot))$ ;
- A principal polarization on A corresponds to a decomposition  $\Lambda = \Omega \mathbb{Z}^g + \mathbb{Z}^g$  with  $\Omega \in \mathfrak{H}_g$  the Siegel space;
- The associated Riemann form on A is then given by  $E(\Omega x_1 + x_2, \Omega y_1 + y_2) = {}^t x_1 \cdot y_2 - {}^t y_1 \cdot x_2.$

### Theta coordinates

• The theta functions of level *n* give a system of projective coordinates:

$$\vartheta\left[\begin{smallmatrix} a\\b\end{smallmatrix}\right](z,\Omega) = \sum_{n\in\mathbb{Z}^g} e^{\pi i \, {}^t(n+a)\Omega(n+a) + 2\pi i \, {}^t(n+a)(z+b)} \qquad a,b \in \mathbb{Q}^g$$

• If n = 2, we get (in the generic case) an embedding of the Kummer variety  $A/\pm 1$ .

#### Remark

Working on level n mean we take a n-th power of the principal polarisation. So in the following we will compute the n-th power of the usual Weil and Tate pairings.

$$\begin{split} \big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{i+t}(x+y)\vartheta_{j+t}(x-y)\big).\big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k+t}(0)\vartheta_{l+t}(0)\big) = \\ \big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{-i'+t}(y)\vartheta_{j'+t}(y)\big).\big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k'+t}(x)\vartheta_{l'+t}(x)\big). \end{split}$$

00000000

### Algorithm

Input 
$$z_P = (x_0, x_1)$$
,  $z_Q = (y_0, y_1)$  and  $z_{P-Q} = (z_0, z_1)$  with  $z_0 z_1 \neq 0$ ;  $z_0 = (a, b)$  and  $A = 2(a^2 + b^2)$ ,  $B = 2(a^2 - b^2)$ .

Output 
$$z_{P+Q} = (t_0, t_1)$$
.

$$2 t_1' = (x_0^2 - x_1^2)(y_0^2 - y_1^2)/B$$

$$0 t_1 = (t_0' - t_1')/z_1$$

Return  $(t_0, t_1)$ 

### Proposition (Lubicz-R. [LR13])

- For  $P \in A$  we note  $z_P$  a lift to  $\mathbb{C}^g$ . We call P a projective point and  $z_P$  an affine point (because we describe them via their projective, resp affine, theta coordinates);
- We have (up to a constant)

$$f_{\lambda,P}(z) = \frac{\vartheta(z)}{\vartheta(z+\lambda z_P)} \left(\frac{\vartheta(z+z_P)}{\vartheta(z)}\right)^{\lambda};$$

So (up to a constant)

$$\mathfrak{f}_{\lambda,\mu,P}(z) = \frac{\vartheta(z+\lambda z_P)\vartheta(z+\mu z_P)}{\vartheta(z)\vartheta(z+(\lambda+\mu)z_P)}.$$

### Proposition (Lubicz-R. [LR13])

From the affine points  $z_P$ ,  $z_Q$ ,  $z_R$ ,  $z_{P+Q}$ ,  $z_{P+R}$  and  $z_{Q+R}$  one can compute the affine point  $z_{P+Q+R}$ .

(In level 2, the proposition is only valid for "generic" points).

#### Proof.

We can compute the three way addition using a generalised version of Riemann's relations:

$$\begin{split} & \big(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(z_{P+Q+R}) \vartheta_{j+t}(z_P) \big). \big(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(z_Q) \vartheta_{l+t}(z_R) \big) = \\ & \quad \big(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i'+t}(z_0) \vartheta_{j'+t}(z_{Q+R}) \big). \big(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k'+t}(z_{P+R}) \vartheta_{l'+t}(z_{P+Q}) \big). \end{split}$$

# Computing the Miller function $f_{\lambda,\mu,P}(Q) - f_{\lambda,\mu,P}(Q) - f_{\lambda,\mu,P}(Q)$

## Algorithm

Input 
$$\lambda P$$
,  $\mu P$  and  $Q$ ;  
Output  $f_{\lambda,\mu,P}((Q)-(0))$ 

- **②** Compute  $(\lambda + \mu)P$ ,  $Q + \lambda P$ ,  $Q + \mu P$  using normal additions and take any affine lifts  $z_{(\lambda + \mu)P}$ ,  $z_{Q + \lambda P}$  and  $z_{Q + \mu P}$ ;
- **②** Use a three way addition to compute  $z_{Q+(\lambda+\mu)P}$ ;

#### Return

$$\mathfrak{f}_{\lambda,\mu,P}((Q)-(0))=\frac{\vartheta(z_Q+\lambda z_P)\vartheta(z_Q+\mu z_P)}{\vartheta(z_Q)\vartheta(z_Q+(\lambda+\mu)z_P)}\cdot\frac{\vartheta((\lambda+\mu)z_P)\vartheta(z_P)}{\vartheta(\lambda z_P)\vartheta(\mu z_P)}.$$

#### Lemma

The result does not depend on the choice of affine lifts in Step 2.

- © This allow us to evaluate the Weil and Tate pairings and derived pairings;
- Not possible a priori to apply this algorithm in level 2.



# The Tate pairing with Miller's functions and theta coordinates

- Let  $P \in A[\ell](\mathbb{F}_{q^d})$  and  $Q \in A(\mathbb{F}_{q^d})$ ; choose any lift  $z_P$ ,  $z_Q$  and  $z_{P+Q}$ .
- The algorithm loop over the binary expansion of  $\ell$ , and at each step does a doubling step, and if necessary an addition step.

```
Given z_{\lambda P}, z_{\lambda P+Q};
Doubling Compute z_{2\lambda P}, z_{2\lambda P+Q} using two differential additions;
Addition Compute (2\lambda+1)P and take an arbitrary lift z_{(2\lambda+1)P}. Use a three way addition to compute z_{(2\lambda+1)P+Q}.
```

- At the end we have computed affine points  $z_{\ell P}$  and  $z_{\ell P+Q}$ . Evaluating the Miller function then gives exactly the quotient of the projective factors between  $z_{\ell P}$ ,  $z_0$  and  $z_{\ell P+Q}$ ,  $z_Q$ .
- Described this way can be extended to level 2 by using compatible additions;
- © Can we get rid of three way additions?

# The Weil and Tate pairing with theta coordinates (Lubicz-R. [LR10])

P and Q points of  $\ell$ -torsion.

$$\bullet \ e_{W,\ell}(P,Q) = \frac{\lambda_P^1 \lambda_Q^0}{\lambda_P^0 \lambda_Q^1}.$$

 $\ell Q = \lambda_Q^0 0_A \qquad z_P + \ell z_Q = \lambda_Q^1 z_P$ 

$$\bullet e_{T,\ell}(P,Q) = \frac{\lambda_P^1}{\lambda_P^0}.$$

- Let  $P \in G_2 = A[\ell] \bigcap \operatorname{Ker}(\pi_q [q])$  and  $Q \in G_1 = A[\ell] \bigcap \operatorname{Ker}(\pi_q 1)$ ;  $\lambda \equiv q \mod \ell$ .
- In projective coordinates, we have  $\pi_q^d(P+Q) = \lambda^d P + Q = P + Q$ ;
- Of course, in affine coordinates,  $\pi_q^d(z_{P+Q}) \neq \lambda^d z_P + z_Q$ .
- But if  $\pi_q(z_{P+Q}) = C*(\lambda z_P + z_Q)$ , then C is exactly the (non reduced) ate pairing (up to a renormalisation)!

### Algorithm (Computing the ate pairing)

Input 
$$P \in G_2$$
,  $Q \in G_1$ ;

- **1** Compute  $z_Q + \lambda z_P$ ,  $\lambda z_P$  using differential additions;
- **②** Find the projective factors  $C_1$  and  $C_0$  such that  $z_Q + \lambda z_P = C_1 * \pi(z_{P+Q})$  and  $\lambda z_P = C_0 * \pi(z_P)$  respectively;

Return 
$$(C_1/C_0)^{\frac{q^d-1}{\ell}}$$
.

# Optimal ate pairing

- Let  $\lambda = m\ell = \sum c_i q^i$  be a multiple of  $\ell$  with small coefficients  $c_i$ .  $(\ell \nmid m)$
- The pairing

$$a_{\lambda} \colon G_{2} \times G_{1} \longrightarrow \mu_{\ell}$$

$$(P,Q) \longmapsto \left( \prod_{i} f_{c_{i},P}(Q)^{q^{i}} \prod_{i} \mathfrak{f}_{\sum_{j>i} c_{j} q^{j}, c_{i} q^{i}, P}(Q) \right)^{(q^{d}-1)/\ell}$$

is non degenerate when  $m dq^{d-1} \not\equiv (q^d - 1)/r \sum_i i c_i q^{i-1} \mod \ell$ .

- Since  $\varphi_d(q) = 0 \mod \ell$  we look at powers  $q, q^2, ..., q^{\varphi(d)-1}$ .
- We can expect to find  $\lambda$  such that  $c_i \approx \ell^{1/\varphi(d)}$ .

# Optimal ate pairing with theta functions

### Algorithm (Computing the optimal ate pairing)

Input 
$$\pi_q(P) = [q]P$$
,  $\pi_q(Q) = Q$ ,  $\lambda = m\ell = \sum c_i q^i$ ;

- **①** Compute the  $z_Q + c_i z_P$  and  $c_i z_P$ ;
- **2** Apply Frobeniuses to obtain the  $z_Q + c_i q^i z_P$ ,  $c_i q^i z_P$ ;
- **Ompute**  $c_i q^i z_P \oplus \sum_j c_j q^j z_P$  (up to a constant) and then do a three way addition to compute  $z_Q + c_i q^i z_P + \sum_j c_j q^j z_P$  (up to the same constant);
- **Q** Recurse until we get  $\lambda z_P = C_0 * z_P$  and  $z_Q + \lambda z_P = C_1 * z_Q$ ;

Return 
$$(C_1/C_0)^{\frac{q^d-1}{\ell}}$$
.

## One step of the pairing computation

### Algorithm (A step of the Miller loop with differential additions)

Input 
$$nP = (x_n, z_n)$$
;  $(n+1)P = (x_{n+1}, z_{n+1})$ ,  $(n+1)P + Q = (x'_{n+1}, z'_{n+1})$ .  
Output  $2nP = (x_{2n}, z_{2n})$ ;  $(2n+1)P = (x_{2n+1}, z_{2n+1})$ ;  $(2n+1)P + Q = (x'_{2n+1}, z'_{2n+1})$ .

② 
$$X_n = \alpha^2$$
;  $X_{n+1} = \alpha(x_{n+1}^2 + z_{n+1}^2)$ ;  $X'_{n+1} = \alpha(x'_{n+1}^2 + z'_{n+1}^2)$ ;

Return 
$$(x_{2n}, z_{2n})$$
;  $(x_{2n+1}, z_{2n+1})$ ;  $(x'_{2n+1}, z'_{2n+1})$ .

# Weil and Tate pairing over $\mathbb{F}_{q^d}$

$$g = 1$$
  $4M + 2m + 8S + 3m_0$   
 $g = 2$   $8M + 6m + 16S + 9m_0$ 

Tate pairing with theta coordinates,  $P,Q \in A[\ell](\mathbb{F}_{q^d})$  (one step)

Operations in  $\mathbb{F}_q$ : M: multiplication, S: square, m multiplication by a coordinate of P or Q,  $m_0$  multiplication by a theta constant;

Mixed operations in  $\mathbb{F}_q$  and  $\mathbb{F}_{q^d}$ : M, m and m<sub>0</sub>;

Operations in  $\mathbb{F}_{q^d}$ : **M**, **m** and **S**.

#### Remark

- Doubling step for a Miller loop with Edwards coordinates:  $9M + 7S + 2m_0$ ;
- Just doubling a point in Mumford projective coordinates using the fastest algorithm [Lan05]: 33M+7S+1m<sub>0</sub>;
- Asymptotically the final exponentiation is more expensive than Miller's loop, so the Weil's pairing is faster than the Tate's pairing!

### Tate pairing

$$\begin{array}{ll} g = 1 & 1\mathbf{m} + 2\mathbf{S} + 2\mathbf{M} + 2M + 1m + 6S + 3m_0 \\ g = 2 & 3\mathbf{m} + 4\mathbf{S} + 4\mathbf{M} + 4M + 3m + 12S + 9m_0 \end{array}$$

Tate pairing with theta coordinates,  $P \in A[\ell](\mathbb{F}_q), Q \in A[\ell](\mathbb{F}_{q^d})$  (one step)

|     |                                       | Mille                         | er                                  | Theta coordinates            |
|-----|---------------------------------------|-------------------------------|-------------------------------------|------------------------------|
|     |                                       | Doubling                      | Addition                            | One step                     |
| g=1 | d even<br>d odd                       | 1M+1S+1M $2M+2S+1M$           | 1 <b>M</b> + 1M<br>2 <b>M</b> + 1M  | 1M + 2S + 2M                 |
| g=2 | Q degenerate + d even<br>General case | 1M + 1S + 3M<br>2M + 2S + 18M | 1 <b>M</b> + 3M<br>2 <b>M</b> + 18M | 3 <b>M</b> + 4 <b>S</b> + 4M |

 $P \in A[\ell](\mathbb{F}_q)$ ,  $Q \in A[\ell](\mathbb{F}_{q^d})$  (counting only operations in  $\mathbb{F}_{q^d}$ ).

### Ate and optimal ate pairings

$$g = 1$$
  $4M + 1m + 8S + 1m + 3m_0$   
 $g = 2$   $8M + 3m + 16S + 3m + 9m_0$ 

At pairing with theta coordinates,  $P \in G_2$ ,  $Q \in G_1$  (one step)

#### Remark

Using affine Mumford coordinates in dimension 2, the hyperelliptic ate pairing costs [Gra+07]:

Doubling 1I + 29M + 9S + 7M

Addition 1I + 29M + 5S + 7M

(where I denotes the cost of an affine inversion in  $\mathbb{F}_{a^d}$ ).

### Bibliography



R. Granger, F. Hess, R. Oyono, N. Thériault, and F. Vercauteren. "Ate pairing on hyperelliptic curves". In: *Advances in cryptology—EUROCRYPT 2007*. Vol. 4515. Lecture Notes in Comput. Sci. Berlin: Springer, 2007, pp. 430–447 (cit. on p. 32).



S. Lang. "Reciprocity and Correspondences". In: American Journal of Mathematics 80.2 (1958), pp. 431–440 (cit. on p. 14).



T. Lange. "Formulae for arithmetic on genus 2 hyperelliptic curves". In: Applicable Algebra in Engineering, Communication and Computing 15.5 (2005), pp. 295–328 (cit. on p. 30).



D. Lubicz and D. Robert. "Efficient pairing computation with theta functions". In: Algorithmic Number Theory. Lecture Notes in Comput. Sci. 6197 (July 2010). Ed. by G. Hanrot, F. Morain, and E. Thomé. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings. DOI: 10.1007/978-3-642-14518-6\_21. Url: http://www.normalesup.org/probert/npg/publications/articles/pairings.pdf

http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf. Slides http://www.normalesup.org/~robert/publications/slides/2010-07-ants.pdf (cit. on p. 25).



D. Lubicz and D. Robert. "A generalisation of Miller's algorithm and applications to pairing computations on abelian varieties". Mar. 2013. Url: http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf. HAL: hal-00806923, eprint: 2013/192 (cit. on pp. 21, 22).