Computing optimal pairings on abelian varieties with theta functions
 06/06/2013 - AGCT

David Lubicz, Damien Robert

June 6, 2013

Outline

(1) Pairings on curves
2) Abelian varieties
(3) Theta functions

4 Pairings with theta functions
(5) Performance

The Weil pairing on elliptic curves

- Let $E: y^{2}=x^{3}+a x+b$ be an elliptic curve over k (char $k \neq 2,3$).
- Let $P, Q \in E[\ell]$ be points of ℓ-torsion.
- Let f_{P} be a function associated to the principal divisor $\ell(P)-\ell(0)$, and f_{Q} to $\ell(Q)-\ell(0)$. We define:

$$
e_{W, \ell}(P, Q)=\frac{f_{P}((Q)-(0))}{f_{Q}((P)-(0))} .
$$

- The application $e_{W, \ell}: E[\ell] \times E[\ell] \rightarrow \mu_{\ell}(\bar{k})$ is a non degenerate pairing: the Weil pairing.

Definition (Embedding degree)

The embedding degree d is the smallest number thus that $\ell \mid q^{d}-1 ; \mathbb{F}_{q^{d}}$ is then the smallest extension containing $\mu_{\ell}(\bar{k})$.

The Tate pairing on elliptic curves over \mathbb{F}_{q}

Definition

The Tate pairing is a non degenerate (on the right) bilinear application given by

$$
\begin{aligned}
& \boldsymbol{e}_{T}: E_{0}[\ell] \times E\left(\mathbb{F}_{q}\right) / \ell E\left(\mathbb{F}_{q}\right) \longrightarrow \mathbb{F}_{q^{d}}^{*} / \mathbb{F}_{q^{d}}{ }^{\ell} \\
&(P, Q) \longrightarrow \\
& f_{P}((Q)-(0))
\end{aligned}
$$

where

$$
E_{0}[\ell]=\left\{P \in E[\ell]\left(\mathbb{F}_{q^{d}}\right) \mid \pi(P)=[q] P\right\} .
$$

- On $\mathbb{F}_{q^{d}}$, the Tate pairing is a non degenerate pairing

$$
e_{T}: E[\ell]\left(\mathbb{F}_{q^{d}}\right) \times E\left(\mathbb{F}_{q^{d}}\right) / \ell E\left(\mathbb{F}_{q^{d}}\right) \rightarrow \mathbb{F}_{q^{d}}^{*} / \mathbb{F}_{q^{d}}^{*} \simeq \mu_{\ell} ;
$$

- We normalise the Tate pairing by going to the power of $\left(q^{d}-1\right) / \ell$.

Miller's functions

- We need to compute the functions f_{P} and f_{Q}. More generally, we define the Miller's functions:

Definition

Let $\lambda \in \mathbb{N}$ and $X \in E[\ell]$, we define $f_{\lambda, X} \in k(E)$ to be a function thus that:

$$
\left(f_{\lambda, X}\right)=\lambda(X)-([\lambda] X)-(\lambda-1)(0)
$$

- We want to compute (for instance) $f_{\ell, P}((Q)-(0))$.

Miller's algorithm

- The key idea in Miller's algorithm is that

$$
f_{\lambda+\mu, X}=f_{\lambda, X} f_{\mu, X} f_{\lambda, \mu, X}
$$

where $\mathfrak{f}_{\lambda, \mu, X}$ is a function associated to the divisor

$$
([\lambda+\mu] X)-([\lambda] X)-([\mu] X)+(0)
$$

- We can compute $\mathfrak{f}_{\lambda, \mu, X}$ using the addition law in E : if $[\lambda] X=\left(x_{1}, y_{1}\right)$ and [μ] $X=\left(x_{2}, y_{2}\right)$ and $\alpha=\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right)$, we have

$$
\mathfrak{f}_{\lambda, \mu, X}=\frac{y-\alpha\left(x-x_{1}\right)-y_{1}}{x+\left(x_{1}+x_{2}\right)-\alpha^{2}} .
$$

Pairings on Jacobians

- Let C be a curve of genus g;
- Let $P \in \operatorname{Jac}(C)[\ell]$ and D_{P} a divisor of degree 0 on C representing P;
- By definition of $\operatorname{Jac}(C), \ell D_{P}$ corresponds to a principal divisor $\left(f_{P}\right)$ on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$
\begin{gathered}
e_{W}(P, Q)=f_{P}\left(D_{Q}\right) / f_{Q}\left(D_{P}\right) \\
e_{T}(P, Q)=f_{P}\left(D_{Q}\right) .
\end{gathered}
$$

Pairings on Jacobians

- Let C be a curve of genus g;
- Let $P \in \operatorname{Jac}(C)[\ell]$ and D_{P} a divisor of degree 0 on C representing P;
- By definition of $\operatorname{Jac}(C), \ell D_{P}$ corresponds to a principal divisor $\left(f_{P}\right)$ on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$
\begin{gathered}
e_{W}(P, Q)=f_{P}\left(D_{Q}\right) / f_{Q}\left(D_{P}\right) \\
e_{T}(P, Q)=f_{P}\left(D_{Q}\right) .
\end{gathered}
$$

- A key ingredient for evaluating $f_{P}\left(D_{Q}\right)$ comes from Weil reciprocity theorem.

Theorem (Weil)

Let D_{1} and D_{2} be two divisors with disjoint support linearly equivalent to (0) on a smooth curve C. Then

$$
f_{D_{1}}\left(D_{2}\right)=f_{D_{2}}\left(D_{1}\right) .
$$

Pairings on Jacobians

- Let C be a curve of genus g;
- Let $P \in \operatorname{Jac}(C)[\ell]$ and D_{P} a divisor of degree 0 on C representing P;
- By definition of $\operatorname{Jac}(C), \ell D_{P}$ corresponds to a principal divisor $\left(f_{P}\right)$ on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$
\begin{gathered}
e_{W}(P, Q)=f_{P}\left(D_{Q}\right) / f_{Q}\left(D_{P}\right) \\
e_{T}(P, Q)=f_{P}\left(D_{Q}\right) .
\end{gathered}
$$

- The extension of Miller's algorithm to Jacobians is "straightforward";
- For instance if $g=2$, the function $\mathfrak{f}_{\lambda, \mu, P}$ is of the form

$$
\frac{y-l(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)}
$$

where l is of degree 3 .

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

Example

- Elliptic curves= Abelian varieties of dimension 1 ;
- If C is a (projective smooth absolutely irreducible) curve of genus g, its Jacobian is an abelian variety of dimension g;
- In dimension $g \geqslant 4$, not every abelian variety is a Jacobian.

Isogenies and pairings

Let $f: A \rightarrow B$ be a separable isogeny with kernel K between two abelian varieties defined over k :

- \hat{K} is the Cartier dual of K, and we have a non degenerate pairing $e_{f}: K \times \hat{K} \rightarrow \bar{k}^{*}:$
(3) If $Q \in \hat{K}(\bar{k}), Q$ defines a divisor D_{Q} on B;

2) $\hat{f}(Q)=0$ means that $f^{*} D_{Q}$ is equal to a principal divisor $\left(g_{Q}\right)$ on A;
(3) $e_{f}(P, Q)=g_{Q}(x) / g_{Q}(x+P)$. (This last function being constant in its definition domain).

- The Weil pairing $e_{W, \ell}$ is the pairing associated to the isogeny $[\ell]: A \rightarrow A$.

If \mathscr{L} is an ample line bundle, the polarisation $\varphi_{\mathscr{L}}$ is a morphism $A \rightarrow \widehat{A}, x \mapsto t_{x}^{*} \mathscr{L} \otimes \mathscr{L}^{-1}$.

Definition

Let \mathscr{L} be a principal polarization on A. The (polarized) Weil pairing $e_{W, \mathscr{L}, \ell}$ is the pairing

$$
\begin{aligned}
e_{W, \mathscr{L}, \ell}: A[\ell] \times A[\ell] & \longrightarrow \mu_{\ell}(\bar{k}) \\
(P, Q) & \longmapsto e_{W, \ell}\left(P, \varphi_{\mathscr{L}}(Q)\right)
\end{aligned}
$$

associated to the polarization \mathscr{L}^{ℓ} :

$$
A \xrightarrow{[\ell]} A \xrightarrow{\mathscr{L}} \hat{A}
$$

The Tate pairings on abelian varieties over finite fields

- From the exact sequence

$$
0 \rightarrow A[\ell]\left(\overline{\mathbb{F}}_{q^{d}}\right) \rightarrow A\left(\overline{\mathbb{F}}_{q^{d}}\right) \rightarrow \rightarrow^{[\ell]} A\left(\overline{\mathbb{F}}_{q^{d}}\right) \rightarrow 0
$$

we get from Galois cohomology a connecting morphism

$$
\delta: A\left(\mathbb{F}_{q^{d}}\right) / \ell A\left(\mathbb{F}_{q^{d}}\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(\overline{\mathbb{F}}_{q^{d}} / \mathbb{F}_{q^{d}}\right), A[\ell]\right) ;
$$

- Composing with the Weil pairing, we get a bilinear application

$$
A[\ell]\left(\mathbb{F}_{q^{d}}\right) \times A\left(\mathbb{F}_{q^{d}}\right) / \ell A\left(\mathbb{F}_{q^{d}}\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(\overline{\mathbb{F}}_{q^{d}} / \mathbb{F}_{q^{d}}\right), \mu_{\ell}\right) \simeq \mathbb{F}_{q^{d}}^{*} / \mathbb{F}_{q^{d}}^{*} \simeq \mu_{\ell}
$$

where the last isomorphism comes from the Kummer sequence

$$
1 \rightarrow \mu_{\ell} \rightarrow \overline{\mathbb{F}}_{q^{d}}^{*} \rightarrow \overline{\mathbb{F}}_{q^{d}}^{*} \rightarrow 1
$$

and Hilbert 90;

- Explicitely, if $P \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ and $Q \in A\left(\mathbb{F}_{q^{d}}\right)$ then the (reduced) Tate pairing is given by

$$
e_{T}(P, Q)=e_{W}\left(P, \pi\left(Q_{0}\right)-Q_{0}\right)
$$

where Q_{0} is any point such that $Q=[\ell] Q_{0}$ and π is the Frobenius of $\mathbb{F}_{q^{d}}$.

Cycles and Lang reciprocity

- Let (A, \mathscr{L}) be a principally polarized abelian variety;
- To a degree 0 cycle $\sum\left(P_{i}\right)$ on A, we can associate the line bundle $\otimes t_{P_{i}}^{*} \mathscr{L}$ on A;
- The cycle $\sum\left(P_{i}\right)$ corresponds to a trivial line bundle iff $\sum P_{i}=0$ in A;
- If f is a function on A and $D=\sum\left(P_{i}\right)$ a cycle whose support does not contain a zero or pole of f, we let

$$
f(D)=\prod f\left(P_{i}\right)
$$

(In the following, when we write $f(D)$ we will always assume that we are in this situation.)

Theorem ([Lan58])

Let D_{1} and D_{2} be two cycles equivalent to 0 , and $f_{D_{1}}$ and $f_{D_{2}}$ be the corresponding functions on A. Then

$$
f_{D_{1}}\left(D_{2}\right)=f_{D_{2}}\left(D_{1}\right)
$$

The Weil and Tate pairings on abelian varieties

Theorem

Let $P, Q \in A[\ell]$. Let D_{P} and D_{Q} be two cycles equivalent to $(P)-(0)$ and $(Q)-(0)$. The Weil pairing is given by

$$
e_{W}(P, Q)=\frac{f_{\ell D_{P}}\left(D_{Q}\right)}{f_{\ell D_{Q}}\left(D_{P}\right)}
$$

Theorem

Let $P \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ and $Q \in A\left(\mathbb{F}_{q^{d}}\right)$, and let D_{P} and D_{Q} be two cycles equivalent to $(P)-(0)$ and $(Q)-(0)$. The (non reduced) Tate pairing is given by

$$
e_{T}(P, Q)=f_{\ell D_{P}}\left(D_{Q}\right)
$$

- The moduli space of abelian varieties of dimension g is a space of dimension $g(g+1) / 2$. We have more liberty to find optimal abelian varieties in function of the security parameters.
- If A is an abelian variety of dimension $g, A[\ell]$ is a $(\mathbb{Z} / \ell \mathbb{Z})$-module of dimension $2 g \Rightarrow$ the structure of pairings on abelian varieties is richer.
- Supersingular abelian varieties can have larger embedding degree than supersingular elliptic curves.
- Over a Jacobian, we can use twists even if they are not coming from twists of the underlying curve.
- A complex abelian variety is of the form $A=V / \Lambda$ where V is a \mathbb{C}-vector space and Λ a lattice, with a polarization (actually an ample line bundle) \mathscr{L} on it;
- The Chern class of \mathscr{L} corresponds to a symplectic real form E on V such that $E(i x, i y)=E(x, y)$ and $E(\Lambda, \Lambda) \subset \mathbb{Z}$;
- The commutator pairing $e_{\mathscr{L}}$ is then given by $\exp (2 i \pi E(\cdot, \cdot))$;
- A principal polarization on A corresponds to a decomposition $\Lambda=\Omega \mathbb{Z}^{g}+\mathbb{Z}^{g}$ with $\Omega \in \mathfrak{H}_{g}$ the Siegel space;
- The associated Riemann form on A is then given by

$$
E\left(\Omega x_{1}+x_{2}, \Omega y_{1}+y_{2}\right)={ }^{t} x_{1} \cdot y_{2}-{ }^{t} y_{1} \cdot x_{2} .
$$

- The theta functions of level n give a system of projective coordinates:

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i^{t}(n+a) \Omega(n+a)+2 \pi i^{t}(n+a)(z+b)} \quad a, b \in \mathbb{Q}^{g}
$$

- If $n=2$, we get (in the generic case) an embedding of the Kummer variety $A / \pm 1$.

Remark

Working on level n mean we take a n-th power of the principal polarisation. So in the following we will compute the n-th power of the usual Weil and Tate pairings.

The differential addition law $(k=\mathbb{C})$

$$
\begin{gathered}
\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right) \\
\text { where } \chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\bar{n}) \\
\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=A(i, j, k, l) \\
A=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
\end{gathered}
$$

Example: differential addition in dimension 1 and in level 2

Algorithm

$$
\begin{aligned}
\text { Input } & z_{P}=\left(x_{0}, x_{1}\right), z_{Q}=\left(y_{0}, y_{1}\right) \text { and } z_{P-Q}=\left(z_{0}, z_{1}\right) \text { with } z_{0} z_{1} \neq 0 ; \\
& z_{0}=(a, b) \text { and } A=2\left(a^{2}+b^{2}\right), B=2\left(a^{2}-b^{2}\right) .
\end{aligned}
$$

Output $z_{P+Q}=\left(t_{0}, t_{1}\right)$.
(2) $t_{0}^{\prime}=\left(x_{0}^{2}+x_{1}^{2}\right)\left(y_{0}^{2}+y_{2}^{2}\right) / A$
(2) $t_{1}^{\prime}=\left(x_{0}^{2}-x_{1}^{2}\right)\left(y_{0}^{2}-y_{1}^{2}\right) / B$
(3) $t_{0}=\left(t_{0}^{\prime}+t_{1}^{\prime}\right) / z_{0}$
(4) $t_{1}=\left(t_{0}^{\prime}-t_{1}^{\prime}\right) / z_{1}$

Return $\left(t_{0}, t_{1}\right)$

Miller functions with theta coordinates

Proposition (Lubicz-R. [LR13])

- For $P \in A$ we note z_{P} a lift to \mathbb{C}^{g}. We call P a projective point and z_{P} an affine point (because we describe them via their projective, resp affine, theta coordinates);
- We have (up to a constant)

$$
f_{\lambda, P}(z)=\frac{\vartheta(z)}{\vartheta\left(z+\lambda z_{P}\right)}\left(\frac{\vartheta\left(z+z_{P}\right)}{\vartheta(z)}\right)^{\lambda}
$$

- So (up to a constant)

$$
\mathfrak{f}_{\lambda, \mu, P}(z)=\frac{\vartheta\left(z+\lambda z_{P}\right) \vartheta\left(z+\mu z_{P}\right)}{\vartheta(z) \vartheta\left(z+(\lambda+\mu) z_{P}\right)} .
$$

Three way addition

Proposition (Lubicz-R. [LR13])

From the affine points $z_{P}, z_{Q}, z_{R}, z_{P+Q}, z_{P+R}$ and z_{Q+R} one can compute the affine point z_{P+Q+R}.
(In level 2, the proposition is only valid for "generic" points).

Proof.

We can compute the three way addition using a generalised version of Riemann's relations:

$$
\begin{aligned}
& \left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}\left(z_{P+Q+R}\right) \vartheta_{j+t}\left(z_{P}\right)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}\left(z_{Q}\right) \vartheta_{l+t}\left(z_{R}\right)\right)= \\
& \quad\left(\sum_{t \in Z \overline{(\overline{2}})} \chi(t) \vartheta_{-i^{\prime}+t}\left(z_{0}\right) \vartheta_{j^{\prime}+t}\left(z_{Q+R}\right)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}\left(z_{P+R}\right) \vartheta_{l^{\prime}+t}\left(z_{P+Q}\right)\right) .
\end{aligned}
$$

Computing the Miller function $\mathfrak{f}_{\lambda, \mu, P}((Q)-(0))$

Algorithm

$$
\text { Input } \lambda P, \mu P \text { and } Q ;
$$

Output $\mathfrak{f}_{\lambda, \mu, P}((Q)-(0))$
(1) Compute $(\lambda+\mu) P, Q+\lambda P, Q+\mu P$ using normal additions and take any affine lifts $z_{(\lambda+\mu) P}, z_{Q+\lambda P}$ and $z_{Q+\mu P}$;
(2) Use a three way addition to compute $z_{Q+(\lambda+\mu) P}$;

Return

$$
\mathfrak{f}_{\lambda, \mu, P}((Q)-(0))=\frac{\vartheta\left(z_{Q}+\lambda z_{P}\right) \vartheta\left(z_{Q}+\mu z_{P}\right)}{\vartheta\left(z_{Q}\right) \vartheta\left(z_{Q}+(\lambda+\mu) z_{P}\right)} \cdot \frac{\vartheta\left((\lambda+\mu) z_{P}\right) \vartheta\left(z_{P}\right)}{\vartheta\left(\lambda z_{P}\right) \vartheta\left(\mu z_{P}\right)} .
$$

Lemma

The result does not depend on the choice of affine lifts in Step 2.
() This allow us to evaluate the Weil and Tate pairings and derived pairings;
(2) Not possible a priori to apply this algorithm in level 2.

The Tate pairing with Miller's functions and theta coordinates

- Let $P \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ and $Q \in A\left(\mathbb{F}_{q^{d}}\right)$; choose any lift z_{P}, z_{Q} and z_{P+Q}.
- The algorithm loop over the binary expansion of ℓ, and at each step does a doubling step, and if necessary an addition step.

Given $z_{\lambda P}, z_{\lambda P+Q}$;
Doubling Compute $z_{2 \lambda P}, z_{2 \lambda P+Q}$ using two differential additions;
Addition Compute $(2 \lambda+1) P$ and take an arbitrary lift $z_{(2 \lambda+1) P}$. Use a three way addition to compute $z_{(2 \lambda+1) P+Q}$.

- At the end we have computed affine points $z_{\ell P}$ and $z_{\ell P+Q}$. Evaluating the Miller function then gives exactly the quotient of the projective factors between $z_{\ell P}, z_{0}$ and $z_{\ell P+Q}, z_{Q}$.
() Described this way can be extended to level 2 by using compatible additions;
(3) Can we get rid of three way additions?

The Weil and Tate pairing with theta coordinates (Lubicz-R. [LR10])

P and Q points of ℓ-torsion.

$$
\begin{array}{ccccc}
z_{0} & z_{P} & 2 z_{P} & \ldots & \ell z_{P}=\lambda_{P}^{0} z_{0} \\
z_{Q} & z_{P} \oplus z_{Q} & 2 z_{P}+z_{Q} & \ldots & \ell z_{P}+z_{Q}=\lambda_{P}^{1} z_{Q} \\
2 z_{Q} & z_{P}+2 z_{Q} & & & \\
\ldots & \ldots & & & \\
\ell Q=\lambda_{Q}^{0} 0_{A} & z_{P}+\ell z_{Q}=\lambda_{Q}^{1} z_{P} & & & \\
\text { - } e_{W, \ell}(P, Q)=\frac{\lambda_{P}^{1} \lambda_{D}^{0}}{\lambda_{P}^{0} \lambda_{0}^{1}} . \\
\text { - } e_{T, \ell}(P, Q)=\frac{\lambda_{p}^{1}}{\lambda_{P}^{0}} .
\end{array}
$$

Ate pairing

- Let $P \in G_{2}=A[\ell] \bigcap \operatorname{Ker}\left(\pi_{q}-[q]\right)$ and $Q \in G_{1}=A[\ell] \bigcap \operatorname{Ker}\left(\pi_{q}-1\right) ; \lambda \equiv q \bmod \ell$.
- In projective coordinates, we have $\pi_{q}^{d}(P+Q)=\lambda^{d} P+Q=P+Q$;
- Of course, in affine coordinates, $\pi_{q}^{d}\left(z_{P+Q}\right) \neq \lambda^{d} z_{P}+z_{Q}$.
- But if $\pi_{q}\left(z_{P+Q}\right)=C *\left(\lambda z_{P}+z_{Q}\right)$, then C is exactly the (non reduced) ate pairing (up to a renormalisation)!

Algorithm (Computing the ate pairing)

$$
\text { Input } P \in G_{2}, Q \in G_{1} \text {; }
$$

(1) Compute $z_{Q}+\lambda z_{P}, \lambda z_{P}$ using differential additions;
(2) Find the projective factors C_{1} and C_{0} such that $z_{Q}+\lambda z_{P}=C_{1} * \pi\left(z_{P+Q}\right)$ and $\lambda z_{P}=C_{0} * \pi\left(z_{P}\right)$ respectively;
Return $\left(C_{1} / C_{0}\right)^{\frac{q^{d}-1}{\ell}}$.

Optimal ate pairing

- Let $\lambda=m \ell=\sum c_{i} q^{i}$ be a multiple of ℓ with small coefficients c_{i}. ($\left.\ell \nmid m\right)$
- The pairing

$$
\begin{aligned}
a_{\lambda}: G_{2} \times G_{1} & \longrightarrow \mu_{\ell} \\
(P, Q) & \longmapsto\left(\prod_{i} f_{c_{i}, P}(Q)^{q^{i}} \prod_{i} f_{\sum_{j>i} c_{j} q^{j}, c_{i} q^{i}, P}(Q)\right)^{\left(q^{d}-1\right) / \ell}
\end{aligned}
$$

is non degenerate when $m d q^{d-1} \not \equiv\left(q^{d}-1\right) / r \sum_{i} i c_{i} q^{i-1} \bmod \ell$.

- Since $\varphi_{d}(q)=0 \bmod \ell$ we look at powers $q, q^{2}, \ldots, q^{\varphi(d)-1}$.
- We can expect to find λ such that $c_{i} \approx \ell^{1 / \varphi(d)}$.

Optimal ate pairing with theta functions

Algorithm (Computing the optimal ate pairing)

$$
\text { Input } \pi_{q}(P)=[q] P, \pi_{q}(Q)=Q, \lambda=m \ell=\sum c_{i} q^{i} \text {; }
$$

(1) Compute the $z_{Q}+c_{i} z_{P}$ and $c_{i} z_{P}$;
(2) Apply Frobeniuses to obtain the $z_{Q}+c_{i} q^{i} z_{P}, c_{i} q^{i} z_{P}$;
(3) Compute $c_{i} q^{i} z_{p} \oplus \sum_{j} c_{j} q^{j} z_{P}$ (up to a constant) and then do a three way addition to compute $z_{Q}+c_{i} q^{i} z_{P}+\sum_{j} c_{j} q^{j} z_{P}$ (up to the same constant);
(4) Recurse until we get $\lambda z_{P}=C_{0} * z_{P}$ and $z_{Q}+\lambda z_{P}=C_{1} * z_{Q}$;

Return $\left(C_{1} / C_{0}\right)^{\frac{q^{d}-1}{l}}$.

One step of the pairing computation

Algorithm (A step of the Miller loop with differential additions)

$$
\text { Input } n P=\left(x_{n}, z_{n}\right) ;(n+1) P=\left(x_{n+1}, z_{n+1}\right),(n+1) P+Q=\left(x_{n+1}^{\prime}, z_{n+1}^{\prime}\right)
$$

Output $2 n P=\left(x_{2 n}, z_{2 n}\right) ;(2 n+1) P=\left(x_{2 n+1}, z_{2 n+1}\right)$;

$$
(2 n+1) P+Q=\left(x_{2 n+1}^{\prime}, z_{2 n+1}^{\prime}\right)
$$

(1) $\alpha=\left(x_{n}^{2}+z_{n}^{2}\right) ; \beta=\frac{A}{B}\left(x_{n}^{2}-z_{n}^{2}\right)$.
(2) $X_{n}=\alpha^{2} ; X_{n+1}=\alpha\left(x_{n+1}^{2}+z_{n+1}^{2}\right) ; X_{n+1}^{\prime}=\alpha\left(x_{n+1}^{\prime 2}+z_{n+1}^{\prime 2}\right)$;
(3) $Z_{n}=\beta\left(x_{n}^{2}-z_{n}^{2}\right) ; Z_{n+1}=\beta\left(x_{n+1}^{2}-z_{n+1}^{2}\right) ; Z_{n+1}^{\prime}=\beta\left(x_{n+1}^{\prime 2}+{z^{\prime}}_{n+1}^{2}\right)$;
(4) $x_{2 n}=X_{n}+Z_{n} ; x_{2 n+1}=\left(X_{n+1}+Z_{n+1}\right) / x_{P} ; x_{2 n+1}^{\prime}=\left(X_{n+1}^{\prime}+Z_{n+1}^{\prime}\right) / x_{Q}$;
(5) $z_{2 n}=\frac{a}{b}\left(X_{n}-Z_{n}\right) ; z_{2 n+1}=\left(X_{n+1}-Z_{n+1}\right) / z_{p} ; z_{2 n+1}^{\prime}=\left(X_{n+1}^{\prime}-Z_{n+1}^{\prime}\right) / z_{Q}$;

Return $\left(x_{2 n}, z_{2 n}\right) ;\left(x_{2 n+1}, z_{2 n+1}\right) ;\left(x_{2 n+1}^{\prime}, z_{2 n+1}^{\prime}\right)$.

$$
\begin{array}{ll}
g=1 & 4 \mathbf{M}+2 \mathbf{m}+8 \mathbf{S}+3 m_{0} \\
g=2 & 8 \mathbf{M}+6 \mathbf{m}+16 \mathbf{S}+9 m_{0}
\end{array}
$$

Tate pairing with theta coordinates, $P, Q \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ (one step)

Operations in $\mathbb{F}_{q}: M$: multiplication, S : square, m multiplication by a coordinate of P or Q, m_{0} multiplication by a theta constant;
Mixed operations in \mathbb{F}_{q} and $\mathbb{F}_{q^{d}}: \mathrm{M}, \mathrm{m}$ and m_{0};
Operations in $\mathbb{F}_{q^{d}}: \mathbf{M}, \mathbf{m}$ and \mathbf{S}.

Remark

- Doubling step for a Miller loop with Edwards coordinates: $9 \mathbf{M}+7 \mathbf{S}+2 \mathrm{~m}_{0}$;
- Just doubling a point in Mumford projective coordinates using the fastest algorithm [Lan05]: 33M +7S + 1m ${ }_{0}$;
- Asymptotically the final exponentiation is more expensive than Miller's loop, so the Weil's pairing is faster than the Tate's pairing!

$$
\begin{array}{ll}
g=1 & 1 \mathbf{m}+2 \mathbf{S}+2 \mathrm{M}+2 M+1 m+6 S+3 m_{0} \\
g=2 & 3 \mathbf{m}+4 \mathbf{S}+4 \mathrm{M}+4 M+3 m+12 S+9 m_{0} \\
\hline
\end{array}
$$

Tate pairing with theta coordinates, $P \in A[\ell]\left(\mathbb{F}_{q}\right), Q \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ (one step)

		Miller		Theta coordinates
		Doubling	Addition	One step
$g=1$	d even	$1 \mathbf{M}+1 \mathbf{S}+1 \mathrm{M}$	$1 \mathbf{M}+1 \mathbf{M}$	$1 \mathbf{N}+2 \mathbf{S}+2 \mathrm{M}$
	d odd	$2 \mathbf{M}+2 \mathbf{S}+1 \mathrm{M}$	$2 \mathbf{M}+1 \mathrm{M}$	
$g=2$	Q degenerate +	$1 \mathbf{M}+1 \mathbf{S}+3 \mathrm{M}$	$1 \mathbf{M}+3 \mathrm{M}$	
	d even			
	General case	$2 \mathbf{M}+2 \mathbf{S}+18 \mathrm{M}$	$2 \mathbf{M}+18 \mathrm{M}$	
$P \in A[\ell]\left(\mathbb{F}_{q}\right), Q \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)\left(\right.$ counting only operations in $\left.\mathbb{F}_{q^{d}}\right)$				

Ate and optimal ate pairings

$$
\begin{array}{ll}
g=1 & 4 \mathbf{M}+1 \mathbf{m}+8 \mathbf{S}+1 \mathbf{m}+3 m_{0} \\
g=2 & 8 \mathbf{M}+3 \mathbf{m}+16 \mathbf{S}+3 \mathrm{~m}+9 \mathrm{~m}_{0} \\
\hline
\end{array}
$$

Ate pairing with theta coordinates, $P \in G_{2}, Q \in G_{1}$ (one step)

Remark

Using affine Mumford coordinates in dimension 2, the hyperelliptic ate pairing costs [Gra+07]:

Doubling $\mathbf{I I}+29 \mathbf{M}+9 \mathbf{S}+7 \mathrm{M}$
Addition $\mathbf{I I}+29 \mathbf{M}+5 \mathbf{S}+7 \mathbf{M}$
(where \mathbf{I} denotes the cost of an affine inversion in $\mathbb{F}_{q^{d}}$).

Bibliography

R. Granger, F. Hess, R. Oyono, N. Thériault, and F. Vercauteren. "Ate pairing on hyperelliptic curves". In: Advances in cryptology-EUROCRYPT 2007. Vol. 4515. Lecture Notes in Comput. Sci. Berlin: Springer, 2007, pp. 430-447 (cit. on p. 32).
S. Lang. "Reciprocity and Correspondences". In: American Journal of Mathematics 80.2 (1958), pp. 431-440 (cit. on p. 14).
T. Lange. "Formulae for arithmetic on genus 2 hyperelliptic curves". In: Applicable Algebra in Engineering, Communication and Computing 15.5 (2005), pp. 295-328 (cit. on p. 30).
D. Lubicz and D. Robert. "Efficient pairing computation with theta functions". In: Algorithmic

Number Theory. Lecture Notes in Comput. Sci. 6197 (July 2010). Ed. by G. Hanrot, F. Morain, and
E. Thomé. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings.

DOI: 10.1007/978-3-642-14518-6_21. Url:
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf Slides http://www. normalesup.org/~robert/publications/slides/2010-07-ants.pdf (cit. on p. 25).
D. Lubicz and D. Robert. "A generalisation of Miller's algorithm and applications to pairing computations on abelian varieties". Mar. 2013. Url:
http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf. HAL: hal-00806923, eprint: 2013/192 (cit. on pp. 21, 22).

