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1
Curves, pairings and cryptography



Elliptic curves

Definition (char k ̸= 2,3)
An elliptic curve is a plane curve with equation

y2 = x3 + ax + b 4a3 + 27b2 ̸= 0.
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Exponentiation:

(ℓ, P) 7→ ℓP

Discrete logarithm:

(P,ℓP) 7→ ℓ
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Pairing-based cryptography

Definition
A pairing is a non-degenerate bilinear application e : G1 × G1→ G2 between finite
abelian groups.

Example
• If the pairing e can be computed easily, the difficulty of the DLP in G1

reduces to the difficulty of the DLP in G2.
⇒ MOV attacks on supersingular elliptic curves.

• Identity-based cryptography [BF03].
• Short signature [BLS04].
• One way tripartite Diffie–Hellman [Jou04].
• Self-blindable credential certificates [Ver01].
• Attribute based cryptography [SW05].
• Broadcast encryption [Goy+06].
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The Weil pairing on elliptic curves

• Let E : y2 = x3 + ax + b be an elliptic curve over k (char k ̸= 2,3).
• Let P,Q � E[ℓ] be points of ℓ-torsion.
• Let fP be a function associated to the principal divisor ℓ(P)− ℓ(0), and fQ to
ℓ(Q)− ℓ(0). We define:

eW,ℓ(P,Q) =
fP((Q)− (0))
fQ((P)− (0))

.

• The application eW,ℓ : E[ℓ]× E[ℓ]→ µℓ(k) is a non degenerate pairing: the
Weil pairing.

Definition (Embedding degree)

The embedding degree d is the smallest number thus that ℓ | qd − 1; Fqd is then
the smallest extension containing µℓ(k).
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The Tate pairing on elliptic curves over Fq

Definition
The Tate pairing is a non degenerate (on the right) bilinear application given by

eT : E0[ℓ]× E(Fq)/ℓE(Fq) −→ F∗
qd /F∗qd

ℓ

(P,Q) 7−→ fP ((Q)− (0))
.

where
E0[ℓ] = {P � E[ℓ](Fqd ) | π(P) = [q]P}.

• On Fqd , the Tate pairing is a non degenerate pairing

eT : E[ℓ](Fqd )× E(Fqd )/ℓE(Fqd )→ F∗
qd /F∗qd

ℓ ≃ µℓ;

• If ℓ2 - E(Fqd ) then E(Fqd )/ℓE(Fqd )≃ E[ℓ](Fqd );
• We normalise the Tate pairing by going to the power of (qd − 1)/ℓ.
• This final exponentiation allows to save some computations.
For instance if d = 2d ′ is even, we can suppose that Q = (x2, y2) with
x2 � E(Fqd′ ). Then the denominators of fλ,µ,P(Q) are ℓ-th powers and are
killed by the final exponentiation.
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Miller’s functions

• We need to compute the functions fP and fQ. More generally, we define the
Miller’s functions:

Definition
Let λ � N and X � E[ℓ], we define fλ,X � k(E) to be a function thus that:

( fλ,X ) = λ(X )− ([λ]X )− (λ− 1)(0).

• We want to compute (for instance) fℓ,P((Q)− (0)).
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Miller’s algorithm

• The key idea in Miller’s algorithm is that

fλ+µ,X = fλ,X fµ,X fλ,µ,X

where fλ,µ,X is a function associated to the divisor

([λ+µ]X )− ([λ]X )− ([µ]X ) + (0).

• We can compute fλ,µ,X using the addition law in E: if [λ]X = (x1, y1) and
[µ]X = (x2, y2) and α= (y1 − y2)/(x1 − x2), we have

fλ,µ,X =
y −α(x − x1)− y1

x + (x1 + x2)−α2 .
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Miller’s algorithm on elliptic curves

Algorithm (Computing the Tate pairing)

Input: ℓ � N, P = (x1, y1) � E[ℓ](Fq),Q = (x2, y2) � E(Fqd ).
Output: eT (P,Q).

1. Compute the binary decomposition: ℓ :=
∑I

i=0 bi2
i . Let T = P, f1 = 1, f2 = 1.

2. For i in [I ..0] compute
2.1 α, the slope of the tangent of E at T .
2.2 T = 2T . T = (x3, y3).
2.3 f1 = f 2

1 (y2 −α(x2 − x3)− y3), f2 = f 2
2 (x2 + (x1 + x3)−α2).

2.4 If bi = 1, then compute
2.4.1 α, the slope of the line going through P and T .
2.4.2 T = T +Q. T = (x3, y3).
2.4.3 f1 = f 2

1 (y2 −α(x2 − x3)− y3), f2 = f2(x2 + (x1 + x3)−α2).

Return
�

f1

f2

�

qd−1
ℓ

.
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Jacobian of curves

C a smooth irreducible projective curve of genus g.

• Divisor: formal sum D =
∑

ni Pi ,
deg D =

∑

ni .
Pi � C(k).

• Principal divisor:
∑

P�C(k) vP( f ).P; f � k(C).

•

Jacobian of C =Divisors of degree 0modulo principal divisors
+ Galois action
=Abelian variety of dimension g.

• Divisor class of a divisor D � Jac(C) is generically represented by a sum of g
points.
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Example of Jacobians
Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:

y2 = f (x), deg f = 5.
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Example of Jacobians

Dimension 3
Jacobians of hyperelliptic curves of genus 3. Jacobians of quartics.
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Pairings on Jacobians

• Let P � Jac(C)[ℓ] and DP a divisor on C representing P;
• By definition of Jac(C), ℓDP corresponds to a principal divisor ( fP) on C ;
• The same formulas as for elliptic curve define the Weil and Tate pairings:

eW (P,Q) = fP(DQ)/ fQ(DP)

eT (P,Q) = fP(DQ).
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Pairings on Jacobians

• Let P � Jac(C)[ℓ] and DP a divisor on C representing P;
• By definition of Jac(C), ℓDP corresponds to a principal divisor ( fP) on C ;
• The same formulas as for elliptic curve define the Weil and Tate pairings:

eW (P,Q) = fP(DQ)/ fQ(DP)

eT (P,Q) = fP(DQ).

• A key ingredient for evaluating fP(DQ) comes fromWeil reciprocity theorem.

Theorem (Weil)
Let D1 and D2 be two divisors with disjoint support linearly equivalent to (0) on a
smooth curve C . Then

fD1
(D2) = fD2

(D1).
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Pairings on Jacobians

• Let P � Jac(C)[ℓ] and DP a divisor on C representing P;
• By definition of Jac(C), ℓDP corresponds to a principal divisor ( fP) on C ;
• The same formulas as for elliptic curve define the Weil and Tate pairings:

eW (P,Q) = fP(DQ)/ fQ(DP)

eT (P,Q) = fP(DQ).

• The extension of Miller’s algorithm to Jacobians is “straightforward”;
• For instance if g = 2, the function fλ,µ,P is of the form

y − l(x)
(x − x1)(x − x2)

where l is of degree 3.
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Abelian varieties

Definition
An Abelian variety is a complete connected group variety over a base field k.

• Abelian variety = points on a projective space (locus of homogeneous
polynomials) + an abelian group law given by rational functions.

Example
• Elliptic curves= Abelian varieties of dimension 1;
• If C is a (smooth) curve of genus g, its Jacobian is an abelian variety of
dimension g;

• In dimension g ¾ 4, not every abelian variety is a Jacobian.
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Isogenies and pairings

Let f : A→ B be a separable isogeny with kernel K between two abelian varieties
defined over k:

0 K A B 0

0 Â B̂ K̂ 0

f

f̂

• K̂ is the Cartier dual of K , and we have a non degenerate pairing
e f : K × K̂ → k

∗
:

1. If Q � K̂(k), Q defines a divisor DQ on B;
2. f̂ (Q) = 0means that f ∗DQ is equal to a principal divisor (gQ) on A;
3. e f (P,Q) = gQ(x)/gQ(x + P). (This last function being constant in its definition
domain).

• The Weil pairing eℓ is the pairing associated to the isogeny [ℓ] : A→ A.
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Reformulations

• Since f ∗DQ is trivial, by Grothendieck descent theory DQ (seen as a line
bundle) is the quotient of A×A1 by an action of K :

gx .(t,λ) = (t + x , g0
x(t)(λ))

where the cocycle g0
x is a character χ (Appell-Humbert).

e f (P,Q) = χ(P).

• The following diagram is commutative:

f ∗DQ OA

τ∗P f ∗DQ τ∗POA

ψQ

τ∗PψQ

ψP e f (P,Q)

(ψP is the normalized isomorphism)
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Pairings and polarisations

• If L is an ample line bundle corresponding to a divisor Θ, the polarisation
ϕL is a morphism A→ bA, x 7→ t∗xL ⊗L

−1.
• We note K(L ) the kernel of the polarization.
• Since ϕ̂L = ϕL , eL is defined on K(L )× K(L ).
• The following diagram is commutative up to a multiplication by eL (P,Q):

L τ∗PL

τ∗QL τ∗P+QL

ψP

τ∗QψP

ψQ τ∗PψQ
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Pairings and polarisations

• The Theta group G(L ) is the group {(x ,ψx)} where x � K(L ) and ψx is an
isomorphism

ψx :L → τ∗xL .

The composition is given by (y,ψy).(x ,ψx) = (y + x ,τ∗xψy ◦ψx).
• G(L ) is an Heisenberg group:

1 k∗ G(L ) K(L ) 0

• Let gP = (P,ψP) � G(L ) and gQ = (Q,ψQ) � G(L ).

eL (P,Q) = gP gQ g−1
P g−1

Q .
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The Weil pairing

Definition
Let L be a principal polarization on A. The (polarized) Weil pairing eW,L ,ℓ is the
pairing

eW,L ,ℓ : A[ℓ]× A[ℓ]→ µℓ(k).

associated to the polarization

A A Â
[ℓ] L

We have the following diagram:

A A

Â

[ℓ]

ϕL ℓ
ϕL

So eW,L ,ℓ(P,Q) = eL ℓ(P,Q) = eℓ(P,ϕL (Q)).
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The Tate pairings on abelian varieties over finite fields

• From the exact sequence

0→ A[ℓ](Fqd )→ A(Fqd )→[ℓ] A(Fqd )→ 0

we get from Galois cohomology a connecting morphism

δ : A(Fqd )/ℓA(Fqd )→ H1(Gal(Fqd /Fqd ), A[ℓ]);

• Composing with the Weil pairing, we get a bilinear application

A[ℓ](Fqd )× A(Fqd )/ℓA(Fqd )→ H1(Gal(Fqd /Fqd ),µℓ)≃ F∗qd /F∗qd
ℓ ≃ µℓ

where the last isomorphism comes from the Kummer sequence

1→ µℓ→ F
∗
qd → F

∗
qd → 1

and Hilbert 90;
• Explicitely, if P � A[ℓ](Fqd ) and Q � A(Fqd ) then the (reduced) Tate pairing is
given by

eT (P,Q) = eW (π(P0)− P0,Q)

where P0 is any point such that P = [ℓ]P0 and π is the Frobenius of Fqd .
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Cycles and Lang reciprocity

• Let (A,Θ) be a principally polarized abelian variety;
• To a degree 0 cycle

∑

(Pi) on A, we can associate the divisor
∑

t∗Pi
Θ on A;

• The cycle
∑

(Pi) corresponds to a trivial divisor iff
∑

Pi = 0 in A;
• If f is a function on A and D =

∑

(Pi) a cycle whose support does not contain
a zero or pole of f , we let

f (D) =
∏

f (Pi).

(In the following, when we write f (D) we will always assume that we are in
this situation.)

Theorem ([Lan58])
Let D1 and D2 be two cycles equivalent to 0, and fD1

and fD2
be the

corresponding functions on A. Then

fD1
(D2) = fD2

(D1)
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The Weil and Tate pairings on abelian varieties

Theorem
Let P,Q � A[ℓ]. Let DP and DQ be two cycles equivalent to (P)− (0) and (Q)− (0).
The Weil pairing is given by

eW (P,Q) =
fℓDP
(DQ)

fℓDQ
(DP)

.

Theorem

Let P � A[ℓ](Fqd ) and Q � A(Fqd ), and let DP and DQ be two cycles equivalent to
(P)− (0) and (Q)− (0). The (non reduced) Tate pairing is given by

eT (P,Q) = fℓDP
(DQ).
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Cryptographic usage of pairings on abelian varieties

• The moduli space of abelian varieties of dimension g is a space of dimension
g(g + 1)/2. We have more liberty to find optimal abelian varieties in
function of the security parameters.

• Supersingular elliptic curves have a too small embedding degree. [RS09]
says that for the current security parameters, optimal supersingular
abelian varieties of small dimension are of dimension 4.

• If A is an abelian variety of dimension g, A[ℓ] is a (Z/ℓZ)-module of
dimension 2g ⇒ the structure of pairings on abelian varieties is richer.
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Complex abelian variety

• A complex abelian variety is of the form A= V/Λ where V is a C-vector
space and Λ a lattice, with a polarization (actually an ample line bundle) L
on it;

• The Chern class of L corresponds to a symplectic real form E on V such
that E(i x , i y) = E(x , y) and E(Λ,Λ)⊂ Z;

• The commutator pairing eL is then given by exp(2iπE(·, ·));
• A principal polarization on A corresponds to a decomposition Λ = ΩZg +Zg

with Ω � Hg the Siegel space;
• The associated Riemann form on A is then given by

E(Ωx1 + x2,Ωy1 + y2) = t x1 · y2 − t y1 · x2.
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Theta coordinates on abelian varieties

• Every abelian variety (over an algebraically closed field) can be described
by theta coordinates of level n> 2 even. (The level n encodes information
about the n-torsion).

• The theta coordinates of level 2 on A describe the Kummer variety of A.
• For instance if A= Cg/ (Zg +ΩZg) is an abelian variety over C, the theta
coordinates on A come from the analytic theta functions with characteristic:

ϑ [ a
b ] (z,Ω) =

∑

n�Zg

eπi t (n+a)Ω(n+a)+2πi t (n+a)(z+b) a, b �Qg

Remark
Working on level nmean we take a n-th power of the principal polarisation. So in
the following we will compute the n-th power of the usual Weil and Tate pairings.
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The differential addition law (k = C)

�

∑

t�Z(2)
χ(t)ϑi+t(x + y)ϑ j+t(x − y)

�

.
�

∑

t�Z(2)
χ(t)ϑk+t(0)ϑl+t(0)

�

=

�

∑

t�Z(2)
χ(t)ϑ−i′+t(y)ϑ j′+t(y)

�

.
�

∑

t�Z(2)
χ(t)ϑk′+t(x)ϑl′+t(x)

�

.

where χ � Ẑ(2), i, j, k, l � Z(n)

(i′, j′, k′, l ′) = A(i, j, k, l)

A=
1

2











1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
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Example: differential addition in dimension 1 and in level 2

Algorithm

Input zP = (x0, x1), zQ = (y0, y1) and zP−Q = (z0, z1) with z0z1 ̸= 0;
z0 = (a, b) and A= 2(a2 + b2), B = 2(a2 − b2).

Output zP+Q = (t0, t1).

1. t ′0 = (x
2
0 + x2

1)(y
2
0 + y2

2 )/A

2. t ′1 = (x
2
0 − x2

1)(y
2
0 − y2

1 )/B

3. t0 = (t ′0 + t ′1)/z0

4. t1 = (t ′0 − t ′1)/z1

Return (t0, t1)
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Cost of the arithmetic with low level theta functions (char k ̸= 2)

Montgomery Level 2 Jacobians coordinates
Doubling 5M + 4S+ 1m0 3M + 6S+ 3m0

3M + 5S
Mixed Addition 7M + 6S+ 1m0

Multiplication cost in genus 1 (one step).

Mumford Level 2 Level 4

Doubling 34M + 7S 7M + 12S+ 9m0 49M + 36S+ 27m0Mixed Addition 37M + 6S

Multiplication cost in genus 2 (one step).
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Pairings with theta functions



Miller functions with theta coordinates

Proposition ([LR13])
• For P � Awe note zP a lift to Cg . We call P a projective point and zP an affine
point (because we describe them via their projective, resp affine, theta
coordinates);

• We have (up to a constant)

fλ,P(z) =
ϑ(z)

ϑ(z+λzP)

�

ϑ(z+ zP)
ϑ(z)

�λ

;

• So (up to a constant)

fλ,µ,P(z) =
ϑ(z+λzP)ϑ(z+µzP)
ϑ(z)ϑ(z+ (λ+µ)zP)

.
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Three way addition

Proposition ([LR13])

From the affine points zP , zQ, zR, zP+Q, zP+R and zQ+R one can compute the affine
point zP+Q+R.
(In level 2, the proposition is only valid for “generic” points).

Proof.
We can compute the three way addition using a generalised version of Riemann’s
relations:

�

∑

t�Z(2)
χ(t)ϑi+t(zP+Q+R)ϑ j+t(zP)

�

.
�

∑

t�Z(2)
χ(t)ϑk+t(zQ)ϑl+t(zR)

�

=

�

∑

t�Z(2)
χ(t)ϑ−i′+t(z0)ϑ j′+t(zQ+R)

�

.
�

∑

t�Z(2)
χ(t)ϑk′+t(zP+R)ϑl′+t(zP+Q)

�

.
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Three way addition in dimension 1 level 2

Algorithm

Input The points x , y, z, X = y + z, Y = x + z, Z = x + y;
Output T = x + y + z.

Return

T0 =
(aX0 + bX1)(Y0Z0 + Y1Z1)

x0(y0z0 + y1z1)
+
(aX0 − bX1)(Y0Z0 − Y1Z1)

x0(y0z0 − y1z1)

T1 =
(aX0 + bX1)(Y0Z0 + Y1Z1)

x1(y0z0 + y1z1)
−
(aX0 − bX1)(Y0Z0 − Y1Z1)

x1(y0z0 − y1z1)
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Computing the Miller function fλ,µ,P((Q)− (0))

Algorithm

Input λP, µP and Q;
Output fλ,µ,P((Q)− (0))

1. Compute (λ+µ)P, Q+λP, Q+µP using normal additions and take any
affine lifts z(λ+µ)P , zQ+λP and zQ+µP ;

2. Use a three way addition to compute zQ+(λ+µ)P ;

Return

fλ,µ,P((Q)− (0)) =
ϑ(zQ +λzP)ϑ(zQ +µzP)
ϑ(zQ)ϑ(zQ + (λ+µ)zP)

.
ϑ((λ+µ)zP)ϑ(zP)
ϑ(λzP)ϑ(µzP)

.

Lemma
The result does not depend on the choice of affine lifts in Step 2.

, This allow us to evaluate the Weil and Tate pairings and derived pairings;
/ Not possible a priori to apply this algorithm in level 2.
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The Tate pairing with Miller’s functions and theta coordinates

• Let P � A[ℓ](Fqd ) and Q � A(Fqd ); choose any lift zP , zQ and zP+Q.
• The algorithm loop over the binary expansion of ℓ, and at each step does a
doubling step, and if necessary an addition step.

Given zλP , zλP+Q;
Doubling Compute z2λP , z2λP+Q using two differential additions;
Addition Compute (2λ+ 1)P and take an arbitrary lift z(2λ+1)P . Use a

three way addition to compute z(2λ+1)P+Q.

• At the end we have computed affine points zℓP and zℓP+Q. Evaluating the
Miller function then gives exactly the quotient of the projective factors
between zℓP , z0 and zℓP+Q, zQ.

, Described this way can be extended to level 2 by using compatible additions;
/ Three way additions and normal (or compatible) additions are quite
cumbersome, is there a way to only use differential additions?
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The Weil and Tate pairing with theta coordinates [LR10]

P and Q points of ℓ-torsion.

z0 zP 2zP . . . ℓzP = λ0
Pz0

zQ zP ⊕ zQ 2zP + zQ . . . ℓzP + zQ = λ1
PzQ

2zQ zP + 2zQ

. . . . . .

ℓQ = λ0
Q0A zP + ℓzQ = λ1

QzP

• eW,ℓ(P,Q) =
λ1

Pλ
0
Q

λ0
Pλ

1
Q
.

• eT,ℓ(P,Q) =
λ1

P
λ0

P
.
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Why does it works?

z0 αzP α4(2zP) . . . αℓ
2
(ℓzP) = λ′

0
Pz0

βzQ γ(zP ⊕ zQ)
γ2α2

β
(2zP + zQ) . . . γℓαℓ(ℓ−1)

βℓ−1 (ℓzP + zQ) = λ′
1
PβzQ

β4(2zQ)
γ2β2

α
(zP + 2zQ)

. . . . . .

βℓ
2
(ℓzQ) = λ′

0
Qz0

γℓβℓ(ℓ−1)

αℓ−1 (zP + ℓzQ)= λ′
1
QαzP

We then have

λ′
0
P = α

ℓ2λ0
P , λ′

0
Q = β

ℓ2λ0
Q, λ′

1
P =

γℓα(ℓ(ℓ−1)

βℓ
λ1

P , λ′
1
Q =

γℓβ (ℓ(ℓ−1)

αℓ
λ1

Q,

e′W,ℓ(P,Q) =
λ′

1
Pλ
′0
Q

λ′0Pλ
′1
Q

=
λ1

Pλ
0
Q

λ0
Pλ

1
Q

= eW,ℓ(P,Q),

e′T,ℓ(P,Q) =
λ′

1
P

λ′0P
=

γℓ

αℓβℓ
λ1

P

λ0
P

=
γℓ

αℓβℓ
eT,ℓ(P,Q).
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The case n= 2

• If n= 2 we work over the Kummer variety K over k, so e(P,Q) � k
∗,±1
.

• We represent a class x � k
∗,±1

by x + 1/x � k
∗
. We want to compute the

symmetric pairing
es(P,Q) = e(P,Q) + e(−P,Q).

• From ±P and ±Q we can compute {±(P +Q),±(P −Q)} (need a square
root), and from these points the symmetric pairing.

• es is compatible with the Z-structure on K and k
∗,±1
.

• The Z-structure on k
∗,±
can be computed as follow:

(xℓ1+ℓ2 +
1

xℓ1+ℓ2
) + (xℓ1−ℓ2 +

1

xℓ1−ℓ2
) = (xℓ1 +

1

xℓ1
)(xℓ2 +

1

xℓ2
)
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Ate pairing

Definition
Ate pairing
• Let G1 = E[ℓ]

⋂

Ker(πq − 1) and G2 = E[ℓ]
⋂

Ker(πq − [q]).
• Let λ≡ q mod ℓ, the (reduced) ate pairing is defined by

aλ : G2 × G1→ µℓ, (P,Q) 7→ fλ,P(Q)
(qd−1)/ℓ.

• It is non degenerate if ℓ2 - (λk − 1).

, We expect the Miller loop to be half the length as for the Tate pairing;
/ We need to work over Fqd rather than Fq for computing Miller’s functions;

, Can use twists to alleviate the problem (this was not always possible with
non elliptic Jacobians).
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Ate pairing with theta functions

• Let P � G2 and Q � G1.
• In projective coordinates, we have πd

q (P +Q) = λd P +Q = P +Q;

• Unfortunately, in affine coordinates, πd
q (zP+Q) ̸= λdzP + zQ.

• But if πq(zP+Q) = C ∗ (λzP + zQ), then C is exactly the (non reduced) ate
pairing!

Algorithm (Computing the ate pairing)
Input P � G2, Q � G1;

1. Compute zQ +λzP , λzP using differential additions;
2. Find the projective factors C1 and C0 such that zQ +λzP = C1 ∗π(zP+Q) and
λzP = C0 ∗π(zP) respectively;

Return (C1/C0)
qd−1
ℓ .
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Optimal ate pairing

• Let λ= mℓ=
∑

ciq
i be a multiple of ℓ with small coefficients ci . (ℓ - m)

• The pairing

aλ : G2 × G1 −→ µℓ

(P,Q) 7−→

 

∏

i

fci ,P(Q)
qi
∏

i

f∑
j>i c j q j ,ci qi ,P(Q)

!(qd−1)/ℓ

is non degenerate when mdqd−1 ̸≡ (qd − 1)/r
∑

i iciq
i−1 mod ℓ.

• Since ϕd(q) = 0 mod ℓ we look at powers q, q2, . . . , qϕ(d)−1.
• We can expect to find λ such that ci ≈ ℓ1/ϕ(d).
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Optimal ate pairing with theta functions

Algorithm (Computing the optimal ate pairing)

Input πq(P) = [q]P, πq(Q) =Q, λ= mℓ=
∑

ciq
i ;

1. Compute the zQ + cizP and cizP ;
2. Apply Frobeniuses to obtain the zQ + ciq

izP , ciq
izP ;

3. Compute ciq
izP ⊕

∑

j c jq
jzP (up to a constant) and then do a three way

addition to compute zQ + ciq
izP +

∑

j c jq
jzP (up to the same constant);

4. Recurse until we get λzP = C0 ∗ zP and zQ +λzP = C1 ∗ zQ;

Return (C1/C0)
qd−1
ℓ .
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The case n= 2

• Computing ciq
izP ±

∑

j c jq
jzP requires a square root (very costly);

• And we need to recognize ciq
izP +

∑

j c jq
jzP from ciq

izP −
∑

j c jq
jzP .

• We will use compatible additions: if we know x , y , z and x + z, y + z, we can
compute x + y without a square root;

• We apply the compatible additions with x = ciq
izP , y =

∑

j c jq
jzP and z = zQ.
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Compatible additions

• Recall that we know x , y, z and x + z, y + z;
• From it we can compute (x + z)± (y + z) = {x + y + 2z, x − y} and of
course {x + y, x − y};

• Then x+ y is the element in {x+ y, x− y} not appearing in the preceding set;
• Since x − y is a common point, we can recover it without computing a
square root.
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The compatible addition algorithm in dimension 1

Algorithm
Input x , y , Y = x + z, X = y + z;

1. Computing x ± y:

α= (x2
0 + x2

1)(y
2
0 + y2

1 )/A

β = (x2
0 − x2

1)(y
2
0 − y2

1 )/B

κ00 = (α+ β),κ11 = (α− β)
κ10 := x0 x1 y0 y1/ab

2. Computing (x + z)± (y + z):

α′ = (Y 2
0 + Y 2

1 )(X
2
0 + X 2

1 )/A

β ′ = (Y 2
0 − Y 2

1 )(X
2
0 − X 2

1 )/B

κ′00 = α
′ + β ′,κ′11 = α

′ − β ′

κ′10 = Y1Y2X1X2/ab

Return x + y = [κ00(κ10κ
′
00 −κ

′
10κ00),κ10(κ10κ

′
00 −κ

′
10κ00) + κ00(κ11κ

′
00 −κ

′
11κ00)]
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One step of the pairing computation

Algorithm (A step of the Miller loop with differential additions)

Input nP = (xn, zn); (n+ 1)P = (xn+1, zn+1), (n+ 1)P +Q = (x ′n+1, z′n+1).
Output 2nP = (x2n, z2n); (2n+ 1)P = (x2n+1, z2n+1);

(2n+ 1)P +Q = (x ′2n+1, z′2n+1).

1. α= (x2
n + z2

n); β =
A
B
(x2

n − z2
n).

2. Xn = α2; Xn+1 = α(x2
n+1 + z2

n+1); X ′n+1 = α(x
′2
n+1 + z′2n+1);

3. Zn = β(x2
n − z2

n); Zn+1 = β(x2
n+1 − z2

n+1); Z ′n+1 = β(x
′2
n+1 + z′2n+1);

4. x2n = Xn + Zn; x2n+1 = (Xn+1 + Zn+1)/xP ; x ′2n+1 = (X
′
n+1 + Z ′n+1)/xQ;

5. z2n =
a
b
(Xn − Zn); z2n+1 = (Xn+1 − Zn+1)/zp; z′2n+1 = (X

′
n+1 − Z ′n+1)/zQ;

Return (x2n, z2n); (x2n+1, z2n+1); (x ′2n+1, z′2n+1).
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Weil and Tate pairing over Fqd

g = 1 4M+ 2m+ 8S+ 3m0

g = 2 8M+ 6m+ 16S+ 9m0

Tate pairing with theta coordinates, P,Q � A[ℓ](Fqd ) (one step)

Operations in Fq: M : multiplication, S: square, mmultiplication by a coordinate
of P or Q, m0 multiplication by a theta constant;

Mixed operations in Fq and Fqd : M, m and m0;
Operations in Fqd : M,m and S.

Remark
• Doubling step for a Miller loop with Edwards coordinates: 9M+ 7S+ 2m0;
• Just doubling a point in Mumford projective coordinates using the fastest
algorithm [Lan05]: 33M+ 7S+ 1m0;

• Asymptotically the final exponentiation is more expensive than Miller’s loop,
so the Weil’s pairing is faster than the Tate’s pairing!
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Tate pairing

g = 1 1m+ 2S+ 2M+ 2M + 1m+ 6S+ 3m0

g = 2 3m+ 4S+ 4M+ 4M + 3m+ 12S+ 9m0

Tate pairing with theta coordinates, P � A[ℓ](Fq),Q � A[ℓ](Fqd ) (one step)

Miller Theta coordinates

Doubling Addition One step

g = 1
d even 1M+ 1S+ 1M 1M+ 1M

1M+ 2S+ 2M
d odd 2M+ 2S+ 1M 2M+ 1M

g = 2
Q degenerate +
d even

1M+ 1S+ 3M 1M+ 3M
3M+ 4S+ 4M

General case 2M+ 2S+ 18M 2M+ 18M

P � A[ℓ](Fq), Q � A[ℓ](Fqd ) (counting only operations in Fqd ).
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Ate and optimal ate pairings

g = 1 4M+ 1m+ 8S+ 1m+ 3m0

g = 2 8M+ 3m+ 16S+ 3m+ 9m0

Ate pairing with theta coordinates, P � G2,Q � G1 (one step)

Remark
Using affine Mumford coordinates in dimension 2, the hyperelliptic ate pairing
costs [Gra+07]:

Doubling 1I+ 29M+ 9S+ 7M

Addition 1I+ 29M+ 5S+ 7M

(where I denotes the cost of an affine inversion in Fqd ).
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Perspectives

• Look at supersingular abelian varieties in characteristic 2 (Just for fun,
cryptographic applications are killed by the L(1/4, ·) index calculus in F∗2n

from A. Joux);
• Optimized implementations (FPGA, …);
• Look at special points (degenerate divisors, …).
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