

Computing optimal pairings on abelian varieties with theta functions 23/05/2013 – EPFL

David Lubicz, Damien Robert

- 1. Curves, pairings and cryptography
- 2. Abelian varieties
- 3. Theta functions
- 4. Pairings with theta functions
- 5. Performance

Curves, pairings and cryptography

Ínría

Elliptic curves

Definition (char $k \neq 2, 3$)

An elliptic curve is a plane curve with equation

Pairing-based cryptography

Definition

A pairing is a non-degenerate bilinear application $e: G_1 \times G_1 \rightarrow G_2$ between finite abelian groups.

Example

- If the pairing e can be computed easily, the difficulty of the DLP in G_1 reduces to the difficulty of the DLP in G_2 .
- ⇒ MOV attacks on supersingular elliptic curves.
 - Identity-based cryptography (BF03).
 - Short signature (BLSO4).
 - One way tripartite Diffie-Hellman (JouO4).
 - Self-blindable credential certificates (Ver01).
 - Attribute based cryptography (SW05).
 - Broadcast encryption (Goy+06).

The Weil pairing on elliptic curves

- Let $E: y^2 = x^3 + ax + b$ be an elliptic curve over k (char $k \neq 2, 3$).
- Let $P, Q \in E[\ell]$ be points of ℓ -torsion.
- Let f_P be a function associated to the principal divisor $\ell(P) \ell(0)$, and f_Q to $\ell(Q) \ell(0)$. We define:

$$e_{W,\ell}(P,Q) = \frac{f_P((Q) - (0))}{f_Q((P) - (0))}$$

• The application $e_{w,\ell}: E[\ell] \times E[\ell] \to \mu_\ell(\overline{k})$ is a non degenerate pairing: the Weil pairing.

Definition (Embedding degree)

The embedding degree d is the smallest number thus that $\ell \mid q^d - 1$; \mathbb{F}_{q^d} is then the smallest extension containing $\mu_{\ell}(\overline{k})$.

The Tate pairing on elliptic curves over \mathbb{F}_q

Definition

The Tate pairing is a non degenerate (on the right) bilinear application given by

$$e_T: E_0[\ell] \times E(\mathbb{F}_q) / \ell E(\mathbb{F}_q) \longrightarrow \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*\ell}$$

$$(P, Q) \longmapsto f_P((Q) - (0))$$

where

$$E_0[\ell] = \{P \in E[\ell](\mathbb{F}_{q^d}) \mid \pi(P) = [q]P\}.$$

• On \mathbb{F}_{q^d} , the Tate pairing is a non degenerate pairing

$$e_T: E[\ell](\mathbb{F}_{q^d}) \times E(\mathbb{F}_{q^d}) / \ell E(\mathbb{F}_{q^d}) \to \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*\ell} \simeq \mu_{\ell};$$

- If $\ell^2 \nmid E(\mathbb{F}_{q^d})$ then $E(\mathbb{F}_{q^d})/\ell E(\mathbb{F}_{q^d}) \simeq E[\ell](\mathbb{F}_{q^d})$;
- We normalise the Tate pairing by going to the power of $(q^d-1)/\ell$.
- This final exponentiation allows to save some computations. For instance if d = 2d' is even, we can suppose that $Q = (x_2, y_2)$ with $x_2 \in E(\mathbb{F}_{q^{d'}})$. Then the denominators of $\mathfrak{f}_{\lambda,\mu,P}(Q)$ are ℓ -th powers and are killed by the final exponentiation.

Miller's functions

• We need to compute the functions f_P and f_Q . More generally, we define the Miller's functions:

Definition

Let $\lambda \in \mathbb{N}$ and $X \in E[\ell]$, we define $f_{\lambda,X} \in k(E)$ to be a function thus that:

$$(f_{\lambda,X}) = \lambda(X) - ([\lambda]X) - (\lambda - 1)(0).$$

• We want to compute (for instance) $f_{\ell,p}((Q) - (0))$.

Miller's algorithm

naín

The key idea in Miller's algorithm is that

$$f_{\lambda+\mu, {\rm X}}=f_{\lambda, {\rm X}}f_{\mu, {\rm X}}{\mathfrak f}_{\lambda, \mu, {\rm X}}$$

where $\mathfrak{f}_{\lambda,\mu,X}$ is a function associated to the divisor

$$([\lambda+\mu]X)-([\lambda]X)-([\mu]X)+(0).$$

• We can compute $f_{\lambda,\mu,X}$ using the addition law in *E*: if $[\lambda]X = (x_1, y_1)$ and $[\mu]X = (x_2, y_2)$ and $\alpha = (y_1 - y_2)/(x_1 - x_2)$, we have

$$f_{\lambda,\mu,X} = \frac{y - \alpha(x - x_1) - y_1}{x + (x_1 + x_2) - \alpha^2}.$$

Miller's algorithm on elliptic curves

Algorithm (Computing the Tate pairing)

Input: $\ell \in \mathbb{N}$, $P = (x_1, y_1) \in E[\ell](\mathbb{F}_q)$, $Q = (x_2, y_2) \in E(\mathbb{F}_{q^d})$. Output: $e_T(P,Q)$.

- **1.** Compute the binary decomposition: $\ell := \sum_{i=0}^{l} b_i 2^i$. Let $T = P, f_1 = 1, f_2 = 1$.
- 2. For *i* in [*I*.0] compute 2.1 α , the slope of the tangent of *E* at *T*. 2.2 T = 2T. $T = (x_3, y_3)$. 2.3 $f_1 = f_1^2(y_2 - \alpha(x_2 - x_3) - y_3)$, $f_2 = f_2^2(x_2 + (x_1 + x_3) - \alpha^2)$. 2.4 If $b_i = 1$, then compute 2.4.1 α , the slope of the line going through *P* and *T*. 2.4.2 T = T + Q. $T = (x_3, y_3)$. 2.4.3 $f_1 = f_1^2(y_2 - \alpha(x_2 - x_3) - y_3)$, $f_2 = f_2(x_2 + (x_1 + x_3) - \alpha^2)$.

Return

$$\left(\frac{f_1}{f_2}\right)^{\frac{q^d-1}{\ell}}$$

Jacobian of curves

C a smooth irreducible projective curve of genus g.

• Divisor: formal sum
$$D = \sum n_i P_i$$
, $P_i \in C(\overline{k})$.
deg $D = \sum n_i$.

• Principal divisor:
$$\sum_{P \in C(\overline{k})} v_P(f).P; \quad f \in \overline{k}(C).$$

Jacobian of C = Divisors of degree 0 modulo principal divisors

- + Galois action
 - = Abelian variety of dimension g.
- Divisor class of a divisor D ∈ Jac(C) is generically represented by a sum of g points.

DIMENSION 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2: $y^2 = f(x), \deg f = 5.$

DIMENSION 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2: $y^2 = f(x), \deg f = 5.$

DIMENSION 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2: $y^2 = f(x), \deg f = 5.$

DIMENSION 3

Jacobians of hyperelliptic curves of genus 3.

Jacobians of quartics.

Pairings on Jacobians

- Let $P \in \text{Jac}(C)[\ell]$ and D_P a divisor on C representing P;
- By definition of Jac(C), ℓD_p corresponds to a principal divisor (f_p) on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

 $e_W(P,Q) = f_P(D_Q)/f_Q(D_P)$ $e_T(P,Q) = f_P(D_Q).$

Pairings on Jacobians

- Let $P \in Jac(C)[\ell]$ and D_P a divisor on C representing P;
- By definition of Jac(C), ℓD_p corresponds to a principal divisor (f_p) on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

 $e_W(P,Q) = f_P(D_Q)/f_Q(D_P)$ $e_T(P,Q) = f_P(D_Q).$

• A key ingredient for evaluating $f_p(D_Q)$ comes from Weil reciprocity theorem.

Theorem (Weil)

Let D_1 and D_2 be two divisors with disjoint support linearly equivalent to (0) on a smooth curve C . Then

$$f_{D_1}(D_2) = f_{D_2}(D_1).$$

Pairings on Jacobians

- Let $P \in Jac(C)[\ell]$ and D_P a divisor on C representing P;
- By definition of Jac(C), ℓD_p corresponds to a principal divisor (f_p) on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

 $e_W(P,Q) = f_P(D_Q)/f_Q(D_P)$ $e_T(P,Q) = f_P(D_Q).$

- The extension of Miller's algorithm to Jacobians is "straightforward";
- For instance if g = 2, the function $f_{\lambda,\mu,P}$ is of the form

$$\frac{y-l(x)}{(x-x_1)(x-x_2)}$$

where l is of degree 3.

Abelian varieties

Inría

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

• Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.

Example

- Elliptic curves= Abelian varieties of dimension 1;
- If *C* is a (smooth) curve of genus *g*, its Jacobian is an abelian variety of dimension *g*;
- In dimension $g \ge 4$, not every abelian variety is a Jacobian.

Isogenies and pairings

Let $f : A \rightarrow B$ be a separable isogeny with kernel K between two abelian varieties defined over k:

- \hat{K} is the Cartier dual of K, and we have a non degenerate pairing $e_f : K \times \hat{K} \to \overline{k}^*$:
 - **1.** If $Q \in \hat{K}(\overline{k})$, Q defines a divisor D_Q on B;
 - **2**. $\hat{f}(Q) = 0$ means that f^*D_Q is equal to a principal divisor (g_Q) on *A*;
 - **3.** $e_f(P,Q) = g_Q(x)/g_Q(x+P)$. (This last function being constant in its definition domain).
- The Weil pairing e_{ℓ} is the pairing associated to the isogeny $[\ell]: A \rightarrow A$.

Reformulations

 Since f^{*}D_Q is trivial, by Grothendieck descent theory D_Q (seen as a line bundle) is the quotient of A × A¹ by an action of K:

$$g_x(t,\lambda) = (t+x,g_x^0(t)(\lambda))$$

where the cocycle g_x^0 is a character χ (Appell-Humbert).

 $e_f(P,Q) = \chi(P).$

• The following diagram is commutative:

(ψ_P is the normalized isomorphism)

Pairings and polarisations

- If \mathscr{L} is an ample line bundle corresponding to a divisor Θ , the polarisation $\varphi_{\mathscr{L}}$ is a morphism $A \to \widehat{A}, x \mapsto t_x^* \mathscr{L} \otimes \mathscr{L}^{-1}$.
- We note $K(\mathcal{L})$ the kernel of the polarization.
- Since $\hat{\varphi}_{\mathscr{L}} = \varphi_{\mathscr{L}}$, $e_{\mathscr{L}}$ is defined on $K(\mathscr{L}) \times K(\mathscr{L})$.
- The following diagram is commutative up to a multiplication by $e_{\mathscr{L}}(P,Q)$:

Pairings and polarisations

• The Theta group $G(\mathcal{L})$ is the group $\{(x, \psi_x)\}$ where $x \in K(\mathcal{L})$ and ψ_x is an isomorphism

$$\psi_x: \mathscr{L} \to \tau_x^* \mathscr{L}.$$

The composition is given by $(y, \psi_y).(x, \psi_x) = (y + x, \tau_x^* \psi_y \circ \psi_x).$

• $G(\mathcal{L})$ is an Heisenberg group:

naín

$$1 \longrightarrow k^* \longrightarrow G(\mathscr{L}) \longrightarrow K(\mathscr{L}) \longrightarrow 0$$

• Let
$$g_p = (P, \psi_p) \in G(\mathcal{L})$$
 and $g_Q = (Q, \psi_Q) \in G(\mathcal{L})$.

 $e_{\mathscr{L}}(P,Q) = g_P g_Q g_P^{-1} g_Q^{-1}.$

The Weil pairing

Definition

Let ${\mathcal L}$ be a principal polarization on A. The (polarized) Weil pairing $e_{W,{\mathcal L},\ell}$ is the pairing

$$e_{W,\mathcal{L},\ell}: A[\ell] \times A[\ell] \to \mu_{\ell}(\overline{k}).$$

associated to the polarization

$$A \xrightarrow{[\ell]} A \xrightarrow{\mathscr{L}} \hat{A}$$

We have the following diagram:

So
$$e_{W,\mathcal{L},\ell}(P,Q) = e_{\mathcal{L}^{\ell}}(P,Q) = e_{\ell}(P,\varphi_{\mathcal{L}}(Q)).$$

The Tate pairings on abelian varieties over finite fields

• From the exact sequence

$$0 \to A[\ell](\overline{\mathbb{F}}_{q^d}) \to A(\overline{\mathbb{F}}_{q^d}) \to^{[\ell]} A(\overline{\mathbb{F}}_{q^d}) \to 0$$

we get from Galois cohomology a connecting morphism

$$\delta: A(\mathbb{F}_{q^d})/\ell A(\mathbb{F}_{q^d}) \to H^1(\operatorname{Gal}(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d}), A[\ell]);$$

• Composing with the Weil pairing, we get a bilinear application

$$A[\ell](\mathbb{F}_{q^d}) \times A(\mathbb{F}_{q^d}) / \ell A(\mathbb{F}_{q^d}) \to H^1(\text{Gal}(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d}), \mu_\ell) \simeq \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*\ell} \cong \mu_\ell$$

where the last isomorphism comes from the Kummer sequence

$$1 \to \mu_{\ell} \to \overline{\mathbb{F}}_{q^d}^* \to \overline{\mathbb{F}}_{q^d}^* \to 1$$

and Hilbert 90;

• Explicitely, if $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$ then the (reduced) Tate pairing is given by

$$e_T(P,Q) = e_W(\pi(P_0) - P_0,Q)$$

where P_0 is any point such that $P = [\ell]P_0$ and π is the Frobenius of \mathbb{F}_{q^d} .

Cycles and Lang reciprocity

- Let (A, Θ) be a principally polarized abelian variety;
- To a degree 0 cycle $\sum(P_i)$ on A, we can associate the divisor $\sum t_{P_i}^* \Theta$ on A;
- The cycle $\sum(P_i)$ corresponds to a trivial divisor iff $\sum P_i = 0$ in A;
- If *f* is a function on *A* and $D = \sum (P_i)$ a cycle whose support does not contain a zero or pole of *f*, we let

$$f(D) = \prod f(P_i).$$

(In the following, when we write f(D) we will always assume that we are in this situation.)

Theorem ([Lan58])

Let D_1 and D_2 be two cycles equivalent to 0, and f_{D_1} and f_{D_2} be the corresponding functions on A. Then

$$f_{D_1}(D_2) = f_{D_2}(D_1)$$

The Weil and Tate pairings on abelian varieties

Theorem

Let $P, Q \in A[\ell]$. Let D_P and D_Q be two cycles equivalent to (P) - (0) and (Q) - (0). The Weil pairing is given by

$$e_W(P,Q) = \frac{f_{\ell D_P}(D_Q)}{f_{\ell D_Q}(D_P)}$$

Theorem

Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$, and let D_P and D_Q be two cycles equivalent to (P) - (0) and (Q) - (0). The (non reduced) Tate pairing is given by

 $e_T(P,Q) = f_{\ell D_P}(D_Q).$

Cryptographic usage of pairings on abelian varieties

- The moduli space of abelian varieties of dimension g is a space of dimension g(g+1)/2. We have more liberty to find optimal abelian varieties in function of the security parameters.
- Supersingular elliptic curves have a too small embedding degree. (RSO9) says that for the current security parameters, optimal supersingular abelian varieties of small dimension are of dimension 4.
- If A is an abelian variety of dimension g, A[ℓ] is a (Z/ℓZ)-module of dimension 2g ⇒ the structure of pairings on abelian varieties is richer.

Theta functions

Complex abelian variety

- A complex abelian variety is of the form $A = V/\Lambda$ where V is a \mathbb{C} -vector space and Λ a lattice, with a polarization (actually an ample line bundle) \mathscr{L} on it;
- The Chern class of \mathscr{L} corresponds to a symplectic real form E on V such that E(ix, iy) = E(x, y) and $E(\Lambda, \Lambda) \subset \mathbb{Z}$;
- The commutator pairing $e_{\mathcal{L}}$ is then given by $\exp(2i\pi E(\cdot,\cdot))$;
- A principal polarization on *A* corresponds to a decomposition $\Lambda = \Omega \mathbb{Z}^g + \mathbb{Z}^g$ with $\Omega \in \mathfrak{H}_g$ the Siegel space;
- The associated Riemann form on *A* is then given by $E(\Omega x_1 + x_2, \Omega y_1 + y_2) = {}^t x_1 \cdot y_2 {}^t y_1 \cdot x_2.$

Theta coordinates on abelian varieties

- Every abelian variety (over an algebraically closed field) can be described by theta coordinates of level *n* > 2 even. (The level *n* encodes information about the *n*-torsion).
- The theta coordinates of level 2 on A describe the Kummer variety of A.
- For instance if A = C^g/(Z^g + ΩZ^g) is an abelian variety over C, the theta coordinates on A come from the analytic theta functions with characteristic:

$$\vartheta\left[\begin{smallmatrix}a\\b\end{smallmatrix}\right](z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i \, {}^t(n+a)\Omega(n+a) + 2\pi i \, {}^t(n+a)(z+b)} \quad a,b \in \mathbb{Q}^g$$

Remark

Working on level *n* mean we take a *n*-th power of the principal polarisation. So in the following we will compute the *n*-th power of the usual Weil and Tate pairings.

The differential addition law ($k = \mathbb{C}$)

$$\begin{split} \big(\sum_{t\in \mathbb{Z}(\overline{2})}\chi(t)\vartheta_{i+t}(x+y)\vartheta_{j+t}(x-y)\big).\big(\sum_{t\in \mathbb{Z}(\overline{2})}\chi(t)\vartheta_{k+t}(0)\vartheta_{l+t}(0)\big) = \\ \big(\sum_{t\in \mathbb{Z}(\overline{2})}\chi(t)\vartheta_{-i'+t}(y)\vartheta_{j'+t}(y)\big).\big(\sum_{t\in \mathbb{Z}(\overline{2})}\chi(t)\vartheta_{k'+t}(x)\vartheta_{l'+t}(x)\big). \end{split}$$

Example: differential addition in dimension 1 and in level 2

Algorithm

Input
$$z_{p} = (x_{0}, x_{1}), z_{Q} = (y_{0}, y_{1}) \text{ and } z_{p-Q} = (z_{0}, z_{1}) \text{ with } z_{0}z_{1} \neq 0;$$

 $z_{0} = (a, b) \text{ and } A = 2(a^{2} + b^{2}), B = 2(a^{2} - b^{2}).$
Output $z_{p+Q} = (t_{0}, t_{1}).$
1. $t'_{0} = (x_{0}^{2} + x_{1}^{2})(y_{0}^{2} + y_{2}^{2})/A$
2. $t'_{1} = (x_{0}^{2} - x_{1}^{2})(y_{0}^{2} - y_{1}^{2})/B$
3. $t_{0} = (t'_{0} + t'_{1})/z_{0}$
4. $t_{1} = (t'_{0} - t'_{1})/z_{1}$
Return (t_{0}, t_{1})

Cost of the arithmetic with low level theta functions (char $k \neq 2$)

	Montgomery	Level 2	Jacobians coordinates	
Doubling Mixed Addition	$5M + 4S + 1m_0$	$3M + 6S + 3m_0$	3M + 5S $7M + 6S + 1m_0$	

Multiplication cost in genus 1 (one step).

	Mumford	Level 2	Level 4
Doubling Mixed Addition	$\begin{array}{c} 34M+7S\\ 37M+6S \end{array}$	$7M + 12S + 9m_0$	$49M + 36S + 27m_0$

Multiplication cost in genus 2 (one step).

Pairings with theta functions

Innia

Miller functions with theta coordinates

Proposition ([LR13])

- For P ∈ A we note z_p a lift to C^g. We call P a projective point and z_p an affine point (because we describe them via their projective, resp affine, theta coordinates);
- We have (up to a constant)

$$f_{\lambda,p}(z) = rac{\vartheta(z)}{\vartheta(z+\lambda z_p)} \left(rac{\vartheta(z+z_p)}{\vartheta(z)}
ight)^{\lambda};$$

• So (up to a constant)

$$\mathfrak{f}_{\lambda,\mu,P}(z)=rac{artheta(z+\lambda z_P)artheta(z+\mu z_P)}{artheta(z)artheta(z+(\lambda+\mu)z_P)}.$$

Three way addition

Proposition ([LR13])

From the affine points z_p , z_q , z_R , z_{P+Q} , z_{P+R} and z_{Q+R} one can compute the affine point z_{P+Q+R} . (In level 2, the proposition is only valid for "generic" points).

Proof.

We can compute the three way addition using a generalised version of Riemann's relations:

$$\begin{split} & \big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{i+t}(z_{P+Q+R})\vartheta_{j+t}(z_{P})\big).\big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k+t}(z_{Q})\vartheta_{l+t}(z_{R})\big) = \\ & \quad \big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{-i'+t}(z_{0})\vartheta_{j'+t}(z_{Q+R})\big).\big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k'+t}(z_{P+R})\vartheta_{l'+t}(z_{P+Q})\big). \end{split}$$

Three way addition in dimension 1 level 2

Algorithm

Input The points x, y, z, X = y + z, Y = x + z, Z = x + y; Output T = x + y + z.

Return

$$T_{0} = \frac{(aX_{0} + bX_{1})(Y_{0}Z_{0} + Y_{1}Z_{1})}{x_{0}(y_{0}z_{0} + y_{1}z_{1})} + \frac{(aX_{0} - bX_{1})(Y_{0}Z_{0} - Y_{1}Z_{1})}{x_{0}(y_{0}z_{0} - y_{1}z_{1})}$$
$$T_{1} = \frac{(aX_{0} + bX_{1})(Y_{0}Z_{0} + Y_{1}Z_{1})}{x_{1}(y_{0}z_{0} + y_{1}z_{1})} - \frac{(aX_{0} - bX_{1})(Y_{0}Z_{0} - Y_{1}Z_{1})}{x_{1}(y_{0}z_{0} - y_{1}z_{1})}$$

Computing the Miller function $f_{\lambda,\mu,P}((Q) - (0))$

Algorithm

Input λP , μP and Q; Output $f_{\lambda,\mu,P}((Q) - (0))$

- **1.** Compute $(\lambda + \mu)P$, $Q + \lambda P$, $Q + \mu P$ using normal additions and take any affine lifts $z_{(\lambda+\mu)P}$, $z_{Q+\lambda P}$ and $z_{Q+\mu P}$;
- **2**. Use a three way addition to compute $z_{Q+(\lambda+\mu)P}$;

Return

$$\mathfrak{f}_{\lambda,\mu,P}((Q)-(0)) = \frac{\vartheta(z_Q+\lambda z_P)\vartheta(z_Q+\mu z_P)}{\vartheta(z_Q)\vartheta(z_Q+(\lambda+\mu)z_P)} \cdot \frac{\vartheta((\lambda+\mu)z_P)\vartheta(z_P)}{\vartheta(\lambda z_P)\vartheta(\mu z_P)}$$

Lemma

The result does not depend on the choice of affine lifts in Step 2.

- ③ This allow us to evaluate the Weil and Tate pairings and derived pairings;
- ② Not possible *a priori* to apply this algorithm in level 2.

The Tate pairing with Miller's functions and theta coordinates

- Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$; choose any lift z_P , z_Q and z_{P+Q} .
- The algorithm loop over the binary expansion of ℓ , and at each step does a doubling step, and if necessary an addition step.

```
 \begin{array}{ll} \mbox{Given } z_{\lambda P}, z_{\lambda P+Q}; \\ \mbox{Doubling } & \mbox{Compute } z_{2\lambda P}, z_{2\lambda P+Q} \mbox{ using two differential additions;} \\ \mbox{Addition } & \mbox{Compute } (2\lambda+1)P \mbox{ and take an arbitrary lift } z_{(2\lambda+1)P}. \mbox{ Use a three way addition to compute } z_{(2\lambda+1)P+Q}. \end{array}
```

- At the end we have computed affine points $z_{\ell P}$ and $z_{\ell P+Q}$. Evaluating the Miller function then gives exactly the quotient of the projective factors between $z_{\ell P}$, z_0 and $z_{\ell P+Q}$, z_Q .
- © Described this way can be extended to level 2 by using compatible additions;
- © Three way additions and normal (or compatible) additions are quite cumbersome, is there a way to only use differential additions?

The Weil and Tate pairing with theta coordinates (LR10)

P and *Q* points of ℓ -torsion.

$$z_{0} \qquad z_{p} \qquad 2z_{p} \qquad \dots \qquad \ell z_{p} = \lambda_{p}^{0} z_{0}$$

$$z_{Q} \qquad z_{p} \oplus z_{Q} \qquad 2z_{p} + z_{Q} \qquad \dots \qquad \ell z_{p} + z_{Q} = \lambda_{p}^{1} z_{Q}$$

$$2z_{Q} \qquad z_{p} + 2z_{Q}$$

$$\dots \qquad \dots$$

$$\ell Q = \lambda_{Q}^{0} 0_{A} \qquad z_{p} + \ell z_{Q} = \lambda_{Q}^{1} z_{p}$$

$$\cdot e_{W,\ell}(P,Q) = \frac{\lambda_{p}^{1} \lambda_{Q}^{0}}{\lambda_{p}^{0} \lambda_{Q}^{1}}.$$

$$\cdot e_{T,\ell}(P,Q) = \frac{\lambda_{p}^{1}}{\lambda_{p}^{0}}.$$

Why does it works?

$$z_{0} \qquad \alpha z_{p} \qquad \alpha^{4}(2z_{p}) \qquad \dots \qquad \alpha^{\ell^{2}}(\ell z_{p}) = \lambda_{p}^{0} z_{0}$$

$$\beta z_{Q} \qquad \gamma(z_{p} \oplus z_{Q}) \qquad \frac{\gamma^{2} \alpha^{2}}{\beta}(2z_{p} + z_{Q}) \qquad \dots \qquad \frac{\gamma^{\ell} \alpha^{\ell(\ell-1)}}{\beta^{\ell-1}}(\ell z_{p} + z_{Q}) = \lambda_{p}^{\prime 1} \beta z_{Q}$$

$$\beta^{4}(2z_{Q}) \qquad \frac{\gamma^{2} \beta^{2}}{\alpha}(z_{p} + 2z_{Q})$$

$$\beta^{\ell^2}(\ell z_Q) = \lambda'_Q^0 z_0 \quad \frac{\gamma^\ell \beta^{\ell(\ell-1)}}{a^{\ell-1}}(z_P + \ell z_Q) = \lambda'_Q^1 a z_P$$

. . .

We then have

. . .

$$\begin{split} \lambda'_{p}^{0} &= \alpha^{\ell^{2}} \lambda_{p}^{0}, \quad \lambda'_{Q}^{0} = \beta^{\ell^{2}} \lambda_{Q}^{0}, \quad \lambda'_{p}^{1} = \frac{\gamma^{\ell} \alpha^{\ell(\ell-1)}}{\beta^{\ell}} \lambda_{p}^{1}, \quad \lambda'_{Q}^{1} = \frac{\gamma^{\ell} \beta^{\ell(\ell-1)}}{\alpha^{\ell}} \lambda_{Q}^{1}, \\ e'_{W,\ell}(P,Q) &= \frac{\lambda'_{p}^{1} \lambda'_{Q}^{0}}{\lambda'_{p}^{0} \lambda'_{Q}^{1}} = \frac{\lambda_{p}^{1} \lambda_{Q}^{0}}{\lambda_{p}^{0} \lambda_{Q}^{1}} = e_{W,\ell}(P,Q), \\ e'_{T,\ell}(P,Q) &= \frac{\lambda'_{p}^{1}}{\lambda'_{p}^{0}} = \frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} \frac{\lambda_{p}^{1}}{\lambda_{p}^{0}} = \frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} e_{T,\ell}(P,Q). \end{split}$$

The case *n* = 2

- If n = 2 we work over the Kummer variety K over k, so $e(P,Q) \in \overline{k}^{*,\pm 1}$.
- We represent a class $x \in \overline{k}^{*,\pm 1}$ by $x + 1/x \in \overline{k}^{*}$. We want to compute the symmetric pairing

$$e_s(P,Q) = e(P,Q) + e(-P,Q).$$

- From $\pm P$ and $\pm Q$ we can compute $\{\pm (P+Q), \pm (P-Q)\}$ (need a square root), and from these points the symmetric pairing.
- e_s is compatible with the \mathbb{Z} -structure on K and $\overline{k}^{*,\pm 1}$.
- The \mathbb{Z} -structure on $\overline{k}^{*,\pm}$ can be computed as follow:

$$(x^{\ell_1+\ell_2}+\frac{1}{x^{\ell_1+\ell_2}})+(x^{\ell_1-\ell_2}+\frac{1}{x^{\ell_1-\ell_2}})=(x^{\ell_1}+\frac{1}{x^{\ell_1}})(x^{\ell_2}+\frac{1}{x^{\ell_2}})$$

Ate pairing

Definition

Ate pairing

- Let $G_1 = E[\ell] \bigcap \operatorname{Ker}(\pi_q 1)$ and $G_2 = E[\ell] \bigcap \operatorname{Ker}(\pi_q [q])$.
- Let $\lambda \equiv q \mod \ell$, the (reduced) ate pairing is defined by

$$a_{\lambda}: G_2 \times G_1 \to \mu_{\ell}, (P,Q) \mapsto f_{\lambda,P}(Q)^{(q^d-1)/\ell}$$

- It is non degenerate if $\ell^2 \nmid (\lambda^k 1)$.
- © We expect the Miller loop to be half the length as for the Tate pairing;
- \odot We need to work over \mathbb{F}_{q^d} rather than \mathbb{F}_q for computing Miller's functions;
- © Can use twists to alleviate the problem (this was not always possible with non elliptic Jacobians).

Ate pairing with theta functions

- Let $P \in G_2$ and $Q \in G_1$.
- In projective coordinates, we have $\pi_q^d(P+Q) = \lambda^d P + Q = P + Q$;
- Unfortunately, in affine coordinates, $\pi_q^d(z_{P+Q}) \neq \lambda^d z_P + z_Q$.
- But if $\pi_q(z_{P+Q}) = C * (\lambda z_P + z_Q)$, then C is exactly the (non reduced) ate pairing!

Algorithm (Computing the ate pairing)

Input $P \in G_2$, $Q \in G_1$;

- **1.** Compute $z_Q + \lambda z_P$, λz_P using differential additions;
- **2.** Find the projective factors C_1 and C_0 such that $z_Q + \lambda z_P = C_1 * \pi(z_{P+Q})$ and $\lambda z_P = C_0 * \pi(z_P)$ respectively;

Return $(C_1/C_0)^{\frac{q^d-1}{\ell}}$.

Optimal ate pairing

- Let $\lambda = m\ell = \sum c_i q^i$ be a multiple of ℓ with small coefficients c_i . $(\ell \nmid m)$
- The pairing

$$\begin{array}{rccc} a_{\lambda} \colon G_{2} \times G_{1} & \longrightarrow & \mu_{\ell} \\ (P,Q) & \longmapsto & \left(\prod_{i} f_{c_{i},P}(Q)^{q^{i}} \prod_{i} \mathfrak{f}_{\sum_{j > i} c_{j}q^{j}, c_{i}q^{i}, P}(Q) \right)^{(q^{d}-1)/\ell} \end{array}$$

is non degenerate when $mdq^{d-1} \not\equiv (q^d-1)/r \sum_i ic_i q^{i-1} \mod \ell$.

- Since $\varphi_d(q) = 0 \mod \ell$ we look at powers $q, q^2, \dots, q^{\varphi(d)-1}$.
- We can expect to find λ such that $c_i \approx \ell^{1/\varphi(d)}$.

Optimal ate pairing with theta functions

Algorithm (Computing the optimal ate pairing)

Input $\pi_q(P) = [q]P$, $\pi_q(Q) = Q$, $\lambda = m\ell = \sum c_i q^i$;

- **1.** Compute the $z_Q + c_i z_p$ and $c_i z_p$;
- **2**. Apply Frobeniuses to obtain the $z_Q + c_i q^i z_P$, $c_i q^i z_P$;
- **3.** Compute $c_i q^i z_p \oplus \sum_j c_j q^j z_p$ (up to a constant) and then do a three way addition to compute $z_q + c_i q^i z_p + \sum_j c_j q^j z_p$ (up to the same constant);
- **4**. Recurse until we get $\lambda z_p = C_0 * z_p$ and $z_Q + \lambda z_p = C_1 * z_Q$;

Return $(C_1/C_0)^{\frac{q^d-1}{\ell}}$.

The case n = 2

- Computing $c_i q^i z_p \pm \sum_j c_j q^j z_p$ requires a square root (very costly);
- And we need to recognize $c_i q^i z_p + \sum_j c_j q^j z_p$ from $c_i q^i z_p \sum_j c_j q^j z_p$.
- We will use compatible additions: if we know x, y, z and x + z, y + z, we can compute x + y without a square root;
- We apply the compatible additions with $x = c_i q^i z_p$, $y = \sum_j c_j q^j z_p$ and $z = z_q$.

Compatible additions

- Recall that we know x, y, z and x + z, y + z;
- From it we can compute $(x + z) \pm (y + z) = \{x + y + 2z, x y\}$ and of course $\{x + y, x y\}$;
- Then x + y is the element in $\{x + y, x y\}$ not appearing in the preceding set;
- Since x y is a common point, we can recover it without computing a square root.

The compatible addition algorithm in dimension 1

Algorithm

Innía

Input *x*, *y*, Y = x + z, X = y + z;

1. Computing $x \pm y$:

$$a = (x_0^2 + x_1^2)(y_0^2 + y_1^2)/A$$

$$\beta = (x_0^2 - x_1^2)(y_0^2 - y_1^2)/B$$

$$\kappa_{00} = (\alpha + \beta), \kappa_{11} = (\alpha - \beta)$$

$$\kappa_{10} := x_0 x_1 y_0 y_1/ab$$

2. Computing $(x+z) \pm (y+z)$:

$$\begin{split} &\alpha' = (Y_0^2 + Y_1^2)(X_0^2 + X_1^2)/A \\ &\beta' = (Y_0^2 - Y_1^2)(X_0^2 - X_1^2)/B \\ &\kappa'_{00} = \alpha' + \beta', \kappa'_{11} = \alpha' - \beta' \\ &\kappa'_{10} = Y_1Y_2X_1X_2/ab \end{split}$$

Return $x + y = [\kappa_{00}(\kappa_{10}\kappa'_{00} - \kappa'_{10}\kappa_{00}), \kappa_{10}(\kappa_{10}\kappa'_{00} - \kappa'_{10}\kappa_{00}) + \kappa_{00}(\kappa_{11}\kappa'_{00} - \kappa'_{11}\kappa_{00})]$

5

Performance

One step of the pairing computation

Algorithm (A step of the Miller loop with differential additions)

Input
$$nP = (x_n, z_n); (n+1)P = (x_{n+1}, z_{n+1}), (n+1)P + Q = (x'_{n+1}, z'_{n+1}).$$

Output $2nP = (x_{2n}, z_{2n}); (2n+1)P = (x_{2n+1}, z_{2n+1});$
 $(2n+1)P + Q = (x'_{2n+1}, z'_{2n+1}).$

1.
$$\alpha = (x_n^2 + z_n^2); \beta = \frac{A}{B}(x_n^2 - z_n^2).$$

2. $X_n = \alpha^2; X_{n+1} = \alpha(x_{n+1}^2 + z_{n+1}^2); X'_{n+1} = \alpha(x'_{n+1}^2 + z'_{n+1}^2);$
3. $Z_n = \beta(x_n^2 - z_n^2); Z_{n+1} = \beta(x_{n+1}^2 - z_{n+1}^2); Z'_{n+1} = \beta(x'_{n+1}^2 + z'_{n+1}^2);$
4. $x_{2n} = X_n + Z_n; x_{2n+1} = (X_{n+1} + Z_{n+1})/x_p; x'_{2n+1} = (X'_{n+1} + Z'_{n+1})/x_Q;$
5. $z_{2n} = \frac{a}{b}(X_n - Z_n); z_{2n+1} = (X_{n+1} - Z_{n+1})/z_p; z'_{2n+1} = (X'_{n+1} - Z'_{n+1})/z_Q;$
Return $(x_{2n}, z_{2n}); (x_{2n+1}, z_{2n+1}); (x'_{2n+1}, z'_{2n+1}).$

Damien Robert - Computing optimal pairings on abelian varieties with theta functions

Innía

 $g = 1 \qquad 4\mathbf{M} + 2\mathbf{m} + 8\mathbf{S} + 3\mathbf{m}_0$ $g = 2 \qquad 8\mathbf{M} + 6\mathbf{m} + 16\mathbf{S} + 9\mathbf{m}_0$

Tate pairing with theta coordinates, $P, Q \in A[\ell](\mathbb{F}_{q^d})$ (one step)

Operations in \mathbb{F}_q : *M*: multiplication, *S*: square, *m* multiplication by a coordinate of *P* or *Q*, m_0 multiplication by a theta constant; **Mixed operations in** \mathbb{F}_q and \mathbb{F}_{q^d} : M, m and m_0 ; **Operations in** \mathbb{F}_{q^d} : M, m and S.

Remark

- Doubling step for a Miller loop with Edwards coordinates: $9M + 7S + 2m_0$;
- Just doubling a point in Mumford projective coordinates using the fastest algorithm [LanD5]: $33M+7S+1m_{\rm 0};$
- Asymptotically the final exponentiation is more expensive than Miller's loop, so the Weil's pairing is faster than the Tate's pairing!

Tate pairing

$$g = 1$$
 $1\mathbf{m} + 2\mathbf{S} + 2\mathbf{M} + 2M + 1m + 6S + 3m_0$

g = 2 $3m + 4S + 4M + 4M + 3m + 12S + 9m_0$

Tate pairing with theta coordinates, $P \in A[\ell](\mathbb{F}_q), Q \in A[\ell](\mathbb{F}_{a^d})$ (one step)

		Mille	Miller	
		Doubling	Addition	One step
g = 1	<i>d</i> even <i>d</i> odd	$1\mathbf{M} + 1\mathbf{S} + 1\mathbf{M}$ $2\mathbf{M} + 2\mathbf{S} + 1\mathbf{M}$	$\begin{array}{l} 1\mathbf{M} + 1\mathbf{M} \\ 2\mathbf{M} + 1\mathbf{M} \end{array}$	$1\mathbf{M} + 2\mathbf{S} + 2\mathbf{M}$
g = 2	Q degenerate + d even General case	$1\mathbf{M} + 1\mathbf{S} + 3\mathbf{M}$ $2\mathbf{M} + 2\mathbf{S} + 18\mathbf{M}$	$1\mathbf{M} + 3\mathbf{M}$ $2\mathbf{M} + 18\mathbf{M}$	$3\mathbf{M} + 4\mathbf{S} + 4\mathbf{M}$

 $P \in A[\ell](\mathbb{F}_q), Q \in A[\ell](\mathbb{F}_{q^d}) \text{ (counting only operations in } \mathbb{F}_{q^d}).$

Ate and optimal ate pairings

- g = 1 $4M + 1m + 8S + 1m + 3m_0$
- g = 2 8M + 3m + 16S + 3m + 9m₀

Ate pairing with theta coordinates, $P \in G_2, Q \in G_1$ (one step)

Remark

Using affine Mumford coordinates in dimension 2, the hyperelliptic ate pairing costs [Gra+D7]:

Doubling 1I + 29M + 9S + 7M

Addition 1I + 29M + 5S + 7M

(where I denotes the cost of an affine inversion in \mathbb{F}_{a^d}).

Perspectives

- Look at supersingular abelian varieties in characteristic 2 (Just for fun, cryptographic applications are killed by the $L(1/4, \cdot)$ index calculus in $\mathbb{F}_{2^n}^*$ from A. Joux);
- Optimized implementations (FPGA, ...);
- Look at special points (degenerate divisors, ...).

BIBLIOGRAPHY

D. Boneh and M. Franklin. "Identity-based encryption from the Weil pairing". In: SIAM Journal on Computing 32.3 (2003), pp. 586–615 (cit. on p. 5).

D. Boneh, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: *Journal of Cryptology* 17.4 (2004), pp. 297–319 (cit. on p. 5).

V. Goyal, O. Pandey, A. Sahai, and B. Waters. "Attribute-based encryption for fine-grained access control of encrypted data". In: *Proceedings of the 13th ACM conference on Computer and communications security*. ACM. 2006, p. 98 (cit. on p. 5).

R. Granger, F. Hess, R. Oyono, N. Thériault, and F. Vercauteren. **"Ate pairing on hyperelliptic curves"**. In: *Advances in cryptology—EUROCRYPT 2007*. Vol. 4515. Lecture Notes in Comput. Sci. Berlin: Springer, 2007, pp. 430–447 (cit. on p. **56**).

S. Lang. "Reciprocity and Correspondences". In: American Journal of Mathematics 80.2 (1958), pp. 431-440 (cit. on p. 27).

T. Lange. "Formulae for arithmetic on genus 2 hyperelliptic curves". In: Applicable Algebra in Engineering, Communication and Computing 15.5 (2005), pp. 295–328 (cit. on p. 54).

D. Lubicz and D. Robert. "Efficient pairing computation with theta functions". In: Algorithmic Number

Theory, Lecture Notes in Comput. Sci. 6197 (July 2010), Ed. by G. Hanrot, F. Morain, and E. Thomé. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings. DOI: 10.1007/978-3-642-14518-6 21. UrL:

 $\label{eq:http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf. Slides http://www.normalesup.org/~robert/publications/slides/2010-07-ants.pdf (cit. on p. 42).$

A. Sahai and B. Waters. "Fuzzy identity-based encryption". In: Advances in Cryptology-EUROCRYPT 2005 (2005), pp. 457–473 (cit. on p. 5).

E. Verheul. "Self-blindable credential certificates from the Weil pairing". In: Advances in Cryptology—ASIACRYPT 2001 (2001), pp. 533–551 (cit. on p. 5).

Innía