Computing optimal pairings on abelian varieties with theta functions
 23/05/2013 - EPFL

David Lubicz, Damien Robert

Outline

1. Curves, pairings and cryptography

2. Abelian varieties
3. Theta functions
4. Pairings with theta functions
5. Performance

Curves, pairings and cryptography

Elliptic curves

Definition (char $k \neq 2,3$)
An elliptic curve is a plane curve with equation

$$
y^{2}=x^{3}+a x+b \quad 4 a^{3}+27 b^{2} \neq 0
$$

Exponentiation:

$$
(\ell, P) \mapsto \ell P
$$

Discrete logarithm:

$$
(P, \ell P) \mapsto \ell
$$

Pairing-based cryptography

Definition

A pairing is a non-degenerate bilinear application $e: G_{1} \times G_{1} \rightarrow G_{2}$ between finite abelian groups.

Example

- If the pairing e can be computed easily, the difficulty of the DLP in G_{1} reduces to the difficulty of the DLP in G_{2}.
\Rightarrow MOV attacks on supersingular elliptic curves.
- Identity-based cryptography [BFO3].
- Short signature [BLSO4].
- One way tripartite Diffie-Hellman [Jou04].
- Self-blindable credential certificates [Ver01].
- Attribute based cryptography [SW05].
- Broadcast encryption [Goy+06].

The Weil pairing on elliptic curves

- Let $E: y^{2}=x^{3}+a x+b$ be an elliptic curve over k (char $k \neq 2,3$).
- Let $P, Q \in E[\ell]$ be points of ℓ-torsion.
- Let f_{P} be a function associated to the principal divisor $\ell(P)-\ell(0)$, and f_{Q} to $\ell(Q)-\ell(0)$. We define:

$$
e_{W, \ell}(P, Q)=\frac{f_{P}((Q)-(0))}{f_{Q}((P)-(0))}
$$

- The application $e_{W, \ell}: E[\ell] \times E[\ell] \rightarrow \mu_{\ell}(\bar{k})$ is a non degenerate pairing: the Weil pairing.

Definition (Embedding degree)

The embedding degree d is the smallest number thus that $\ell \mid q^{d}-1 ; \mathbb{F}_{q^{d}}$ is then the smallest extension containing $\mu_{\ell}(\bar{k})$.

The Tate pairing on elliptic curves over \mathbb{F}_{q}

Definition

The Tate pairing is a non degenerate (on the right) bilinear application given by

$$
\begin{aligned}
e_{T}: E_{0}[\ell] \times E\left(\mathbb{F}_{q}\right) / \ell E\left(\mathbb{F}_{q}\right) & \longrightarrow \mathbb{F}_{q^{d}}^{*} / \mathbb{F}_{q^{d}}^{* \ell} \\
(P, Q) & \longmapsto f_{P}((Q)-(0))
\end{aligned}
$$

where

$$
E_{0}[\ell]=\left\{P \in E[\ell]\left(\mathbb{F}_{q^{d}}\right) \mid \pi(P)=[q] P\right\} .
$$

- On $\mathbb{F}_{q^{d}}$, the Tate pairing is a non degenerate pairing

$$
e_{T}: E[\ell]\left(\mathbb{F}_{q^{d}}\right) \times E\left(\mathbb{F}_{q^{d}}\right) / \ell E\left(\mathbb{F}_{q^{d}}\right) \rightarrow \mathbb{F}_{q^{d}}^{*} / \mathbb{F}_{q^{d}}^{* \ell} \simeq \mu_{\ell} ;
$$

- If $\ell^{2} \nmid E\left(\mathbb{F}_{q^{d}}\right)$ then $E\left(\mathbb{F}_{q^{d}}\right) / \ell E\left(\mathbb{F}_{q^{d}}\right) \simeq E[\ell]\left(\mathbb{F}_{q^{d}}\right)$;
- We normalise the Tate pairing by going to the power of $\left(q^{d}-1\right) / \ell$.
- This final exponentiation allows to save some computations.

For instance if $d=2 d^{\prime}$ is even, we can suppose that $Q=\left(x_{2}, y_{2}\right)$ with $x_{2} \in E\left(\mathbb{F}_{q^{d^{\prime}}}\right)$. Then the denominators of $f_{\lambda, \mu, P}(Q)$ are ℓ-th powers and are killed by the final exponentiation.

Miller's functions

- We need to compute the functions f_{P} and f_{Q}. More generally, we define the Miller's functions:

Definition

Let $\lambda \in \mathbb{N}$ and $X \in E[\ell]$, we define $f_{\lambda, X} \in k(E)$ to be a function thus that:

$$
\left(f_{\lambda, X}\right)=\lambda(X)-([\lambda] X)-(\lambda-1)(0) .
$$

- We want to compute (for instance) $f_{\ell, \mathrm{P}}((Q)-(0))$.

Miller's algorithm

- The key idea in Miller's algorithm is that

$$
f_{\lambda+\mu, X}=f_{\lambda, X} f_{\mu, X} f_{\lambda, \mu, X}
$$

where $\mathrm{f}_{\lambda, \mu, X}$ is a function associated to the divisor

$$
([\lambda+\mu] X)-([\lambda] X)-([\mu] X)+(0) .
$$

- We can compute $\mathfrak{f}_{\lambda, \mu, X}$ using the addition law in E : if $[\lambda] X=\left(x_{1}, y_{1}\right)$ and $[\mu] X=\left(x_{2}, y_{2}\right)$ and $\alpha=\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right)$, we have

$$
\mathfrak{f}_{\lambda, \mu, X}=\frac{y-\alpha\left(x-x_{1}\right)-y_{1}}{x+\left(x_{1}+x_{2}\right)-\alpha^{2}} .
$$

Miller's algorithm on elliptic curves

Algorithm (Computing the Tate pairing)

$$
\text { Input: } \ell \in \mathbb{N}, P=\left(x_{1}, y_{1}\right) \in E[\ell]\left(\mathbb{F}_{q}\right), Q=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{q^{d}}\right) \text {. }
$$

Output: $e_{T}(P, Q)$.

1. Compute the binary decomposition: $\ell:=\sum_{i=0}^{I} b_{i} 2^{i}$. Let $T=P, f_{1}=1, f_{2}=1$.
2. For i in [I..0] compute
2.1α, the slope of the tangent of E at T.
$2.2 T=2 T . T=\left(x_{3}, y_{3}\right)$.
$2.3 f_{1}=f_{1}^{2}\left(y_{2}-\alpha\left(x_{2}-x_{3}\right)-y_{3}\right), f_{2}=f_{2}^{2}\left(x_{2}+\left(x_{1}+x_{3}\right)-\alpha^{2}\right)$.
2.4 If $b_{i}=1$, then compute
2.4.1 α, the slope of the line going through P and T.
2.4.2 $T=T+Q . T=\left(x_{3}, y_{3}\right)$.
2.4.3 $f_{1}=f_{1}^{2}\left(y_{2}-\alpha\left(x_{2}-x_{3}\right)-y_{3}\right), f_{2}=f_{2}\left(x_{2}+\left(x_{1}+x_{3}\right)-\alpha^{2}\right)$.

Return

$$
\left(\frac{f_{1}}{f_{2}}\right)^{\frac{q^{d}-1}{\ell}}
$$

Jacobian of curves

C a smooth irreducible projective curve of genus g.

- Divisor: formal sum $D=\sum n_{i} P_{i}, \quad P_{i} \in C(\bar{k})$.

$$
\operatorname{deg} \bar{D}=\sum n_{i} .
$$

- Principal divisor: $\sum_{P \in C(\bar{k})} v_{P}(f) . P ; \quad f \in \bar{k}(C)$.

Jacobian of $C=$ Divisors of degree 0 modulo principal divisors

- + Galois action
$=$ Abelian variety of dimension g.
- Divisor class of a divisor $D \in \operatorname{Jac}(C)$ is generically represented by a sum of g points.

Example of Jacobians

DIMENSION 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2 :

$$
y^{2}=f(x), \operatorname{deg} f=5
$$

$$
\begin{aligned}
& D=P_{1}+P_{2}-2 \infty \\
& D^{\prime}=Q_{1}+Q_{2}-2 \infty
\end{aligned}
$$

Example of Jacobians

DIMENSION 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:

$$
y^{2}=f(x), \operatorname{deg} f=5
$$

Example of Jacobians

DIMENSION 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2 :

$$
y^{2}=f(x), \operatorname{deg} f=5
$$

Example of Jacobians

DIMENSION 3

Jacobians of hyperelliptic curves of genus 3.
Jacobians of quartics.

Pairings on Jacobians

- Let $P \in \operatorname{Jac}(C)[\ell]$ and D_{P} a divisor on C representing P;
- By definition of $\operatorname{Jac}(C), \ell D_{P}$ corresponds to a principal divisor $\left(f_{P}\right)$ on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$
\begin{gathered}
e_{W}(P, Q)=f_{P}\left(D_{Q}\right) / f_{Q}\left(D_{P}\right) \\
e_{T}(P, Q)=f_{P}\left(D_{Q}\right) .
\end{gathered}
$$

Pairings on Jacobians

- Let $P \in \operatorname{Jac}(C)[\ell]$ and D_{P} a divisor on C representing P;
- By definition of $\operatorname{Jac}(C), \ell D_{P}$ corresponds to a principal divisor $\left(f_{P}\right)$ on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$
\begin{gathered}
e_{W}(P, Q)=f_{P}\left(D_{Q}\right) / f_{Q}\left(D_{P}\right) \\
e_{T}(P, Q)=f_{P}\left(D_{Q}\right) .
\end{gathered}
$$

- A key ingredient for evaluating $f_{P}\left(D_{Q}\right)$ comes from Weil reciprocity theorem.

Theorem (Weil)
Let D_{1} and D_{2} be two divisors with disjoint support linearly equivalent to (0) on a smooth curve C. Then

$$
f_{D_{1}}\left(D_{2}\right)=f_{D_{2}}\left(D_{1}\right)
$$

Pairings on Jacobians

- Let $P \in \operatorname{Jac}(C)[\ell]$ and D_{P} a divisor on C representing P;
- By definition of $\operatorname{Jac}(C), \ell D_{P}$ corresponds to a principal divisor $\left(f_{P}\right)$ on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$
\begin{gathered}
e_{W}(P, Q)=f_{P}\left(D_{Q}\right) / f_{Q}\left(D_{P}\right) \\
e_{T}(P, Q)=f_{P}\left(D_{Q}\right)
\end{gathered}
$$

- The extension of Miller's algorithm to Jacobians is "straightforward";
- For instance if $g=2$, the function $f_{\lambda, \mu, p}$ is of the form

$$
\frac{y-l(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right)}
$$

where l is of degree 3.

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.

Example

- Elliptic curves= Abelian varieties of dimension 1 ;
- If C is a (smooth) curve of genus g, its Jacobian is an abelian variety of dimension g;
- In dimension $g \geqslant 4$, not every abelian variety is a Jacobian.

Isogenies and pairings

Let $f: A \rightarrow B$ be a separable isogeny with kernel K between two abelian varieties defined over k :

- \hat{K} is the Cartier dual of K, and we have a non degenerate pairing $e_{f}: K \times \hat{K} \rightarrow \bar{k}^{*}$:

1. If $Q \in \hat{K}(\bar{k}), Q$ defines a divisor D_{Q} on B;
2. $\hat{f}(Q)=0$ means that $f^{*} D_{Q}$ is equal to a principal divisor $\left(g_{Q}\right)$ on A;
3. $e_{f}(P, Q)=g_{Q}(x) / g_{Q}(x+P)$. (This last function being constant in its definition domain).

- The Weil pairing e_{ℓ} is the pairing associated to the isogeny $[\ell]: A \rightarrow A$.

Reformulations

- Since $f^{*} D_{Q}$ is trivial, by Grothendieck descent theory D_{Q} (seen as a line bundle) is the quotient of $A \times \mathbb{A}^{1}$ by an action of K :

$$
g_{x} \cdot(t, \lambda)=\left(t+x, g_{x}^{0}(t)(\lambda)\right)
$$

where the cocycle g_{x}^{0} is a character χ (Appell-Humbert).

$$
e_{f}(P, Q)=\chi(P)
$$

- The following diagram is commutative:

$$
\begin{gathered}
\underset{\substack{* \\
f_{Q} \\
\tau_{P}^{*} f^{*} D_{Q}}}{\psi_{P} \xrightarrow{\tau_{P}^{*} \psi_{Q}} \|_{A}} \|_{P}^{*} \mathscr{O}_{A} \\
\left(\psi_{P} \text { is the normalized isomorphism }\right)
\end{gathered}
$$

Pairings and polarisations

- If \mathscr{L} is an ample line bundle corresponding to a divisor Θ, the polarisation $\varphi_{\mathscr{L}}$ is a morphism $A \rightarrow \widehat{A}, x \rightarrow t_{x}^{*} \mathscr{L} \otimes \mathscr{L}^{-1}$.
- We note $K(\mathscr{L})$ the kernel of the polarization.
- Since $\hat{\varphi}_{\mathscr{L}}=\varphi_{\mathscr{L}}, e_{\mathscr{L}}$ is defined on $K(\mathscr{L}) \times K(\mathscr{L})$.
- The following diagram is commutative up to a multiplication by $e_{\mathscr{L}}(P, Q)$:

Pairings and polarisations

- The Theta group $G(\mathscr{L})$ is the group $\left\{\left(x, \psi_{x}\right)\right\}$ where $x \in K(\mathscr{L})$ and ψ_{x} is an isomorphism

$$
\psi_{x}: \mathscr{L} \rightarrow \tau_{x}^{*} \mathscr{L}
$$

The composition is given by $\left(y, \psi_{y}\right) .\left(x, \psi_{x}\right)=\left(y+x, \tau_{x}^{*} \psi_{y} \circ \psi_{x}\right)$.

- $G(\mathscr{L})$ is an Heisenberg group:

$$
1 \longrightarrow k^{*} \longrightarrow G(\mathscr{L}) \longrightarrow 0
$$

- Let $g_{P}=\left(P, \psi_{P}\right) \in G(\mathscr{L})$ and $g_{Q}=\left(Q, \psi_{Q}\right) \in G(\mathscr{L})$.

$$
e_{\mathscr{L}}(P, Q)=g_{P} g_{Q} g_{P}^{-1} g_{Q}^{-1}
$$

The Weil pairing

Definition

Let \mathscr{L} be a principal polarization on A. The (polarized) Weil pairing $e_{W, \mathscr{L}, l}$ is the pairing

$$
e_{W, \mathscr{L}, \ell}: A[\ell] \times A[\ell] \rightarrow \mu_{\ell}(\bar{k}) .
$$

associated to the polarization

$$
A \xrightarrow{[\ell]} A \xrightarrow{\mathscr{L}} \hat{A}
$$

We have the following diagram:

So $e_{W, \mathscr{L}, \ell}(P, Q)=e_{\mathscr{L}^{\ell}}(P, Q)=e_{\ell}\left(P, \varphi_{\mathscr{L}}(Q)\right)$.

The Tate pairings on abelian varieties over finite fields

- From the exact sequence

$$
0 \rightarrow A[\ell]\left(\overline{\mathbb{F}}_{q^{d}}\right) \rightarrow A\left(\overline{\mathbb{F}}_{q^{d}}\right) \rightarrow^{[\ell]} A\left(\overline{\mathbb{F}}_{q^{d}}\right) \rightarrow 0
$$

we get from Galois cohomology a connecting morphism

$$
\delta: A\left(\mathbb{F}_{q^{d}}\right) / \ell A\left(\mathbb{F}_{q^{d}}\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(\overline{\mathbb{F}}_{q^{d}} / \mathbb{F}_{q^{d}}\right), A[\ell]\right) ;
$$

- Composing with the Weil pairing, we get a bilinear application

$$
A[\ell]\left(\mathbb{F}_{q^{d}}\right) \times A\left(\mathbb{F}_{q^{d}}\right) / \ell A\left(\mathbb{F}_{q^{d}}\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(\overline{\mathbb{F}}_{q^{d}} / \mathbb{F}_{q^{d}}\right), \mu_{\ell}\right) \simeq \mathbb{F}_{q^{d}}^{*} / \mathbb{F}_{q^{d}}^{*} \simeq \mu_{\ell}
$$

where the last isomorphism comes from the Kummer sequence

$$
1 \rightarrow \mu_{\ell} \rightarrow \overline{\mathbb{F}}_{q^{d}}^{*} \rightarrow \overline{\mathbb{F}}_{q^{d}}^{*} \rightarrow 1
$$

and Hilbert 90;

- Explicitely, if $P \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ and $Q \in A\left(\mathbb{F}_{q^{d}}\right)$ then the (reduced) Tate pairing is given by

$$
e_{T}(P, Q)=e_{W}\left(\pi\left(P_{0}\right)-P_{0}, Q\right)
$$

where P_{0} is any point such that $P=[\ell] P_{0}$ and π is the Frobenius of $\mathbb{F}_{q^{d}}$.

Cycles and Lang reciprocity

- Let (A, Θ) be a principally polarized abelian variety;
- To a degree 0 cycle $\sum\left(P_{i}\right)$ on A, we can associate the divisor $\sum t_{P_{i}}^{*} \Theta$ on A;
- The cycle $\sum\left(P_{i}\right)$ corresponds to a trivial divisor iff $\sum P_{i}=0$ in A;
- If f is a function on A and $D=\sum\left(P_{i}\right)$ a cycle whose support does not contain a zero or pole of f, we let

$$
f(D)=\prod f\left(P_{i}\right) .
$$

(In the following, when we write $f(D)$ we will always assume that we are in this situation.)

Theorem ([Lan58])

Let D_{1} and D_{2} be two cycles equivalent to 0 , and $f_{D_{1}}$ and $f_{D_{2}}$ be the corresponding functions on A. Then

$$
f_{D_{1}}\left(D_{2}\right)=f_{D_{2}}\left(D_{1}\right)
$$

The Weil and Tate pairings on abelian varieties

Theorem

Let $P, Q \in A[\ell]$. Let D_{P} and D_{Q} be two cycles equivalent to $(P)-(0)$ and (Q) - (0). The Weil pairing is given by

$$
e_{W}(P, Q)=\frac{f_{\ell D_{P}}\left(D_{Q}\right)}{f_{\ell D_{Q}}\left(D_{P}\right)} .
$$

Theorem

Let $P \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ and $Q \in A\left(\mathbb{F}_{q^{d}}\right)$, and let D_{P} and D_{Q} be two cycles equivalent to $(P)-(0)$ and $(Q)-(0)$. The (non reduced) Tate pairing is given by

$$
e_{T}(P, Q)=f_{\ell D_{P}}\left(D_{Q}\right) .
$$

Cryptographic usage of pairings on abelian varieties

- The moduli space of abelian varieties of dimension g is a space of dimension $g(g+1) / 2$. We have more liberty to find optimal abelian varieties in function of the security parameters.
- Supersingular elliptic curves have a too small embedding degree. [RSO9] says that for the current security parameters, optimal supersingular abelian varieties of small dimension are of dimension 4.
- If A is an abelian variety of dimension $g, A[\ell]$ is a $(\mathbb{Z} / \ell \mathbb{Z})$-module of dimension $2 g \Rightarrow$ the structure of pairings on abelian varieties is richer.

Theta functions

Complex abelian variety

- A complex abelian variety is of the form $A=V / \Lambda$ where V is a \mathbb{C}-vector space and Λ a lattice, with a polarization (actually an ample line bundle) \mathscr{L} on it;
- The Chern class of \mathscr{L} corresponds to a symplectic real form E on V such that $E(i x, i y)=E(x, y)$ and $E(\Lambda, \Lambda) \subset \mathbb{Z}$;
- The commutator pairing $e_{\mathscr{L}}$ is then given by $\exp (2 i \pi E(\cdot, \cdot))$;
- A principal polarization on A corresponds to a decomposition $\Lambda=\Omega \mathbb{Z}^{g}+\mathbb{Z}^{g}$ with $\Omega \in \mathfrak{H}_{g}$ the Siegel space;
- The associated Riemann form on A is then given by $E\left(\Omega x_{1}+x_{2}, \Omega y_{1}+y_{2}\right)={ }^{t} x_{1} \cdot y_{2}-{ }^{t} y_{1} \cdot x_{2}$.

Theta coordinates on abelian varieties

- Every abelian variety (over an algebraically closed field) can be described by theta coordinates of level $n>2$ even. (The level n encodes information about the n-torsion).
- The theta coordinates of level 2 on A describe the Kummer variety of A.
- For instance if $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$ is an abelian variety over \mathbb{C}, the theta coordinates on A come from the analytic theta functions with characteristic:

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i^{t}(n+a) \Omega(n+a)+2 \pi i^{t}(n+a)(z+b)} \quad a, b \in \mathbb{Q}^{g}
$$

Remark

Working on level n mean we take a n-th power of the principal polarisation. So in the following we will compute the n-th power of the usual Weil and Tate pairings.
,

The differential addition law $(k=\mathbb{C})$

$$
\begin{gathered}
\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right) \\
\text { where } \chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\bar{n}) \\
\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=A(i, j, k, l) \\
A=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
\end{gathered}
$$

Example: differential addition in dimension 1 and in level 2

Algorithm

$$
\begin{aligned}
\text { Input } z_{P} & =\left(x_{0}, x_{1}\right), z_{Q}=\left(y_{0}, y_{1}\right) \text { and } z_{P-Q}=\left(z_{0}, z_{1}\right) \text { with } z_{0} z_{1} \neq 0 ; \\
z_{0} & =(a, b) \text { and } A=2\left(a^{2}+b^{2}\right), B=2\left(a^{2}-b^{2}\right) .
\end{aligned}
$$

Output $z_{P+Q}=\left(t_{0}, t_{1}\right)$.

1. $t_{0}^{\prime}=\left(x_{0}^{2}+x_{1}^{2}\right)\left(y_{0}^{2}+y_{2}^{2}\right) / A$
2. $t_{1}^{\prime}=\left(x_{0}^{2}-x_{1}^{2}\right)\left(y_{0}^{2}-y_{1}^{2}\right) / B$
3. $t_{0}=\left(t_{0}^{\prime}+t_{1}^{\prime}\right) / z_{0}$
4. $t_{1}=\left(t_{0}^{\prime}-t_{1}^{\prime}\right) / z_{1}$

Return $\left(t_{0}, t_{1}\right)$

Cost of the arithmetic with low level theta functions (char $k \neq 2$)

	Montgomery	Level 2	Jacobians coordinates
Doubling	$5 M+4 S+1 m_{0}$	$3 M+6 S+3 m_{0}$	$3 M+5 S$
Mixed Addition			$7 M+6 S+1 m_{0}$

Multiplication cost in genus 1 (one step).

	Mumford	Level 2	Level 4
Doubling	$34 M+7 S$		
Mixed Addition	$37 M+6 S$		

Multiplication cost in genus 2 (one step).

Pairings with theta functions

Miller functions with theta coordinates

Proposition ([LR13])

- For $P \in A$ we note z_{P} a lift to \mathbb{C}^{8}. We call P a projective point and z_{P} an affine point (because we describe them via their projective, resp affine, theta coordinates);
- We have (up to a constant)

$$
f_{\lambda, P}(z)=\frac{\vartheta(z)}{\vartheta\left(z+\lambda z_{P}\right)}\left(\frac{\vartheta\left(z+z_{P}\right)}{\vartheta(z)}\right)^{\lambda}
$$

- So (up to a constant)

$$
\mathfrak{f}_{\lambda, \mu, p}(z)=\frac{\vartheta\left(z+\lambda z_{P}\right) \vartheta\left(z+\mu z_{p}\right)}{\vartheta(z) \vartheta\left(z+(\lambda+\mu) z_{P}\right)} .
$$

Three way addition

Proposition ([LR13])

From the affine points $z_{P}, z_{Q}, z_{R}, z_{P+Q}, z_{P+R}$ and z_{Q+R} one can compute the affine point z_{P+Q+R}.
(In level 2, the proposition is only valid for "generic" points).

Proof.

We can compute the three way addition using a generalised version of Riemann's relations:

$$
\begin{aligned}
& \left(\sum_{t \in Z \overline{(2)}} \chi(t) \vartheta_{i+t}\left(z_{P+Q+R}\right) \vartheta_{j+t}\left(z_{P}\right)\right) \cdot\left(\sum_{t \in Z \overline{(2)}} \chi(t) \vartheta_{k+t}\left(z_{Q}\right) \vartheta_{l+t}\left(z_{R}\right)\right)= \\
& \quad\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}\left(z_{0}\right) \vartheta_{j^{\prime}+t}\left(z_{Q+R}\right)\right) \cdot\left(\sum_{t \in Z \overline{(2)}} \chi(t) \vartheta_{k^{\prime}+t}\left(z_{P+R}\right) \vartheta_{l^{\prime}+t}\left(z_{P+Q}\right)\right) .
\end{aligned}
$$

Three way addition in dimension 1 level 2

Algorithm
Input The points $x, y, z, X=y+z, Y=x+z, Z=x+y$;
Output $T=x+y+z$.
Return

$$
\begin{aligned}
& T_{0}=\frac{\left(a X_{0}+b X_{1}\right)\left(Y_{0} Z_{0}+Y_{1} Z_{1}\right)}{x_{0}\left(y_{0} z_{0}+y_{1} z_{1}\right)}+\frac{\left(a X_{0}-b X_{1}\right)\left(Y_{0} Z_{0}-Y_{1} Z_{1}\right)}{x_{0}\left(y_{0} z_{0}-y_{1} z_{1}\right)} \\
& T_{1}=\frac{\left(a X_{0}+b X_{1}\right)\left(Y_{0} Z_{0}+Y_{1} Z_{1}\right)}{x_{1}\left(y_{0} z_{0}+y_{1} z_{1}\right)}-\frac{\left(a X_{0}-b X_{1}\right)\left(Y_{0} Z_{0}-Y_{1} Z_{1}\right)}{x_{1}\left(y_{0} z_{0}-y_{1} z_{1}\right)}
\end{aligned}
$$

Computing the Miller function $\mathfrak{f}_{\lambda, \mu, p}((Q)-(0))$

Algorithm

> Input $\lambda P, \mu P$ and Q;
> Output $\mathfrak{f}_{\lambda, \mu, P}((Q)-(0))$

1. Compute $(\lambda+\mu) P, Q+\lambda P, Q+\mu P$ using normal additions and take any affine lifts $z_{(\lambda+\mu) P}, z_{Q+\lambda P}$ and $z_{Q+\mu P}$;
2. Use a three way addition to compute $z_{Q+(\lambda+\mu) P}$;

Return

$$
\mathfrak{f}_{\lambda, \mu, P}((Q)-(0))=\frac{\vartheta\left(z_{Q}+\lambda z_{P}\right) \vartheta\left(z_{Q}+\mu z_{P}\right)}{\vartheta\left(z_{Q}\right) \vartheta\left(z_{Q}+(\lambda+\mu) z_{P}\right)} \cdot \frac{\vartheta\left((\lambda+\mu) z_{P}\right) \vartheta\left(z_{P}\right)}{\vartheta\left(\lambda z_{P}\right) \vartheta\left(\mu z_{P}\right)} .
$$

Lemma

The result does not depend on the choice of affine lifts in Step 2.
(;) This allow us to evaluate the Weil and Tate pairings and derived pairings;
(3) Not possible a priori to apply this algorithm in level 2.

The Tate pairing with Miller's functions and theta coordinates

- Let $P \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ and $Q \in A\left(\mathbb{F}_{q^{d}}\right)$; choose any lift z_{P}, z_{Q} and z_{P+Q}.
- The algorithm loop over the binary expansion of ℓ, and at each step does a doubling step, and if necessary an addition step.

Given $z_{\lambda P}, z_{\lambda P+Q} ;$
Doubling Compute $z_{2 \lambda P}, z_{2 \lambda P+Q}$ using two differential additions; Addition Compute $(2 \lambda+1) P$ and take an arbitrary lift $z_{(2 \lambda+1) P}$. Use a three way addition to compute $z_{(2 \lambda+1) P+Q}$.

- At the end we have computed affine points $z_{\ell P}$ and $z_{\ell P+Q}$. Evaluating the Miller function then gives exactly the quotient of the projective factors between $z_{\ell P}, z_{0}$ and $z_{\ell P+Q}, z_{Q}$.
(:) Described this way can be extended to level 2 by using compatible additions;
(2) Three way additions and normal (or compatible) additions are quite cumbersome, is there a way to only use differential additions?

The Weil and Tate pairing with theta coordinates [LR10]

P and Q points of ℓ-torsion.

z_{0}	z_{P}	$2 z_{P}$	\cdots	$\ell z_{P}=\lambda_{P}^{0} z_{0}$
z_{Q}	$z_{P} \oplus z_{Q}$	$2 z_{P}+z_{Q}$	\ldots	$\ell z_{P}+z_{Q}=\lambda_{P}^{1} z_{Q}$
$2 z_{Q}$	$z_{P}+2 z_{Q}$			
\cdots	\cdots			
$\ell Q=\lambda_{Q}^{0} 0_{A}$	$z_{P}+\ell z_{Q}=\lambda_{Q}^{1} z_{P}$			

- $e_{W, \ell}(P, Q)=\frac{\lambda_{p}^{1} \lambda_{Q}^{0}}{\lambda_{p}^{0} \lambda_{Q}^{1}}$.
- $e_{T, \ell}(P, Q)=\frac{\lambda_{p}^{1}}{\lambda_{p}^{0}}$.

Why does it works?

$$
\begin{array}{ccclc}
z_{0} & \alpha z_{P} & \alpha^{4}\left(2 z_{P}\right) & \ldots & \alpha^{\ell^{2}}\left(\ell z_{P}\right)=\lambda^{\prime 0} z_{0} \\
\beta z_{Q} & \gamma\left(z_{P} \oplus z_{Q}\right) & \frac{\gamma^{2} \alpha^{2}}{\beta}\left(2 z_{P}+z_{Q}\right) & \ldots & \frac{r^{\ell} \alpha^{\ell(\ell-1)}}{\beta^{\ell-1}}\left(\ell z_{P}+z_{Q}\right)=\lambda_{p}^{\prime 1} \beta z_{Q} \\
\beta^{4}\left(2 z_{Q}\right) & \frac{\gamma^{2} \beta^{2}}{\alpha}\left(z_{P}+2 z_{Q}\right) & & & \\
\ldots & \ldots & & & \\
\beta^{\ell^{2}}\left(\ell z_{Q}\right)=\lambda_{Q}^{\prime 0} z_{0} & \frac{r^{\ell} \beta^{\ell(\ell-1)}}{\alpha^{\ell-1}}\left(z_{P}+\ell z_{Q}\right)=\lambda_{Q}^{\prime 1} \alpha z_{P} & &
\end{array}
$$

We then have

$$
\begin{gathered}
\lambda_{P}^{\prime 0}=\alpha^{\ell^{2}} \lambda_{P}^{0}, \quad \lambda_{Q}^{\prime 0}=\beta^{\ell^{2}} \lambda_{Q}^{0}, \quad \lambda_{P}^{1}=\frac{\gamma^{\ell} \alpha^{(\ell(\ell-1)}}{\beta^{\ell}} \lambda_{P}^{1}, \quad \lambda_{Q}^{\prime 1}=\frac{\gamma^{\ell} \beta^{(\ell(\ell-1)}}{\alpha^{\ell}} \lambda_{Q}^{1}, \\
e_{W, \ell}^{\prime}(P, Q)=\frac{\lambda_{P}^{1} \lambda_{Q}^{\prime 0}}{\lambda_{P}^{\prime 0} \lambda_{Q}^{\prime}}=\frac{\lambda_{P}^{1} \lambda_{Q}^{0}}{\lambda_{P}^{0} \lambda_{Q}^{1}}=e_{W, \ell}(P, Q), \\
e_{T, \ell}^{\prime}(P, Q)=\frac{\lambda_{P}^{\prime 1}}{\lambda_{P}^{\prime 0}}=\frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} \frac{\lambda_{P}^{1}}{\lambda_{P}^{0}}=\frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} e_{T, \ell}(P, Q) .
\end{gathered}
$$

- If $n=2$ we work over the Kummer variety K over k, so $e(P, Q) \in \breve{k}^{*, \pm 1}$.
- We represent a class $x \in \bar{k}^{*, \pm 1}$ by $x+1 / x \in \vec{k}^{*}$. We want to compute the symmetric pairing

$$
e_{s}(P, Q)=e(P, Q)+e(-P, Q) .
$$

- From $\pm P$ and $\pm Q$ we can compute $\{ \pm(P+Q), \pm(P-Q)\}$ (need a square root), and from these points the symmetric pairing.
- e_{s} is compatible with the \mathbb{Z}-structure on K and $\bar{k}^{*, \pm 1}$.
- The \mathbb{Z}-structure on $\bar{k}^{*, \pm}$ can be computed as follow:

$$
\left(x^{\ell_{1}+\ell_{2}}+\frac{1}{x^{\ell_{1}+\ell_{2}}}\right)+\left(x^{\ell_{1}-\ell_{2}}+\frac{1}{x^{\ell_{1}-\ell_{2}}}\right)=\left(x^{\ell_{1}}+\frac{1}{x^{\ell_{1}}}\right)\left(x^{\ell_{2}}+\frac{1}{x^{\ell_{2}}}\right)
$$

Ate pairing

Definition

Ate pairing

- Let $G_{1}=E[\ell] \bigcap \operatorname{Ker}\left(\pi_{q}-1\right)$ and $G_{2}=E[\ell] \bigcap \operatorname{Ker}\left(\pi_{q}-[q]\right)$.
- Let $\lambda \equiv q \bmod \ell$, the (reduced) ate pairing is defined by

$$
a_{\lambda}: G_{2} \times G_{1} \rightarrow \mu_{\ell},(P, Q) \mapsto f_{\lambda, P}(Q)^{\left(q^{d}-1\right) / \ell}
$$

- It is non degenerate if $\ell^{2} \nmid\left(\lambda^{k}-1\right)$.
(). We expect the Miller loop to be half the length as for the Tate pairing;
(*) We need to work over $\mathbb{F}_{q^{d}}$ rather than \mathbb{F}_{q} for computing Miller's functions;
() Can use twists to alleviate the problem (this was not always possible with non elliptic Jacobians).

Ate pairing with theta functions

- Let $P \in G_{2}$ and $Q \in G_{1}$.
- In projective coordinates, we have $\pi_{q}^{d}(P+Q)=\lambda^{d} P+Q=P+Q$;
- Unfortunately, in affine coordinates, $\pi_{q}^{d}\left(z_{P+Q}\right) \neq \lambda^{d} z_{P}+z_{Q}$.
- But if $\pi_{q}\left(z_{P+Q}\right)=C *\left(\lambda z_{P}+z_{Q}\right)$, then C is exactly the (non reduced) ate pairing!

Algorithm (Computing the ate pairing)

$$
\text { Input } P \in G_{2}, Q \in G_{1} \text {; }
$$

1. Compute $z_{Q}+\lambda z_{p}, \lambda z_{p}$ using differential additions;
2. Find the projective factors C_{1} and C_{0} such that $z_{Q}+\lambda z_{P}=C_{1} * \pi\left(z_{P+Q}\right)$ and $\lambda z_{p}=C_{0} * \pi\left(z_{P}\right)$ respectively;
Return $\left(C_{1} / C_{0}\right)^{\frac{q^{d}-1}{\ell}}$.

Optimal ate pairing

- Let $\lambda=m \ell=\sum c_{i} q^{i}$ be a multiple of ℓ with small coefficients c_{i}. $(\ell \nmid m)$
- The pairing

$$
\begin{aligned}
a_{\lambda}: G_{2} \times G_{1} & \longrightarrow \mu_{\ell} \\
(P, Q) & \longmapsto\left(\prod_{i} f_{c_{i}, P}(Q)^{q^{i}} \prod_{i} f_{\sum_{j>i} c_{j} q^{j}, c_{i} q^{i}, P}(Q)\right)^{\left(q^{d}-1\right) / \ell}
\end{aligned}
$$

is non degenerate when $m d q^{d-1} \not \equiv\left(q^{d}-1\right) / r \sum_{i} i c_{i} q^{i-1} \bmod \ell$.

- Since $\varphi_{d}(q)=0 \bmod \ell$ we look at powers $q, q^{2}, \ldots, q^{\varphi(d)-1}$.
- We can expect to find λ such that $c_{i} \approx \ell^{1 / \varphi(d)}$.

Optimal ate pairing with theta functions

Algorithm (Computing the optimal ate pairing)

$$
\text { Input } \pi_{q}(P)=[q] P, \pi_{q}(Q)=Q, \lambda=m \ell=\sum c_{i} q^{i}
$$

1. Compute the $z_{Q}+c_{i} z_{p}$ and $c_{i} z_{P}$;
2. Apply Frobeniuses to obtain the $z_{Q}+c_{i} q^{i} z_{P}, c_{i} q^{i} z_{P}$;
3. Compute $c_{i} q^{i} z_{p} \oplus \sum_{j} c_{j} q^{j} z_{p}$ (up to a constant) and then do a three way addition to compute $z_{Q}+c_{i} q^{i} z_{P}+\sum_{j} c_{j} q^{j} z_{P}$ (up to the same constant);
4. Recurse until we get $\lambda z_{P}=C_{0} * z_{P}$ and $z_{Q}+\lambda z_{P}=C_{1} * z_{Q}$;

Return $\left(C_{1} / C_{0}\right)^{\frac{q^{d}-1}{\ell}}$.

- Computing $c_{i} q^{i} z_{P} \pm \sum_{j} c_{j} q^{j} z_{p}$ requires a square root (very costly);
- And we need to recognize $c_{i} q^{i} z_{p}+\sum_{j} c_{j} q^{j} z_{p}$ from $c_{i} q^{i} z_{P}-\sum_{j} c_{j} q^{j} z_{p}$.
- We will use compatible additions: if we know x, y, z and $x+z, y+z$, we can compute $x+y$ without a square root;
- We apply the compatible additions with $x=c_{i} q^{i} z_{p}, y=\sum_{j} c_{j} q^{j} z_{p}$ and $z=z_{Q}$.

Compatible additions

- Recall that we know x, y, z and $x+z, y+z$;
- From it we can compute $(x+z) \pm(y+z)=\{x+y+2 z, x-y\}$ and of course $\{x+y, x-y\}$;
- Then $x+y$ is the element in $\{x+y, x-y\}$ not appearing in the preceding set;
- Since $x-y$ is a common point, we can recover it without computing a square root.

The compatible addition algorithm in dimension 1

Algorithm

$$
\text { Input } x, y, Y=x+z, X=y+z
$$

1. Computing $x \pm y$:

$$
\begin{gathered}
\alpha=\left(x_{0}^{2}+x_{1}^{2}\right)\left(y_{0}^{2}+y_{1}^{2}\right) / A \\
\beta=\left(x_{0}^{2}-x_{1}^{2}\right)\left(y_{0}^{2}-y_{1}^{2}\right) / B \\
\kappa_{00}=(\alpha+\beta), \kappa_{11}=(\alpha-\beta) \\
\kappa_{10}:=x_{0} x_{1} y_{0} y_{1} / a b
\end{gathered}
$$

2. Computing $(x+z) \pm(y+z)$:

$$
\begin{gathered}
\alpha^{\prime}=\left(Y_{0}^{2}+Y_{1}^{2}\right)\left(X_{0}^{2}+X_{1}^{2}\right) / A \\
\beta^{\prime}=\left(Y_{0}^{2}-Y_{1}^{2}\right)\left(X_{0}^{2}-X_{1}^{2}\right) / B \\
\kappa_{00}^{\prime}=\alpha^{\prime}+\beta^{\prime}, \kappa_{11}^{\prime}=\alpha^{\prime}-\beta^{\prime} \\
\kappa_{10}^{\prime}=Y_{1} Y_{2} X_{1} X_{2} / a b
\end{gathered}
$$

Return $x+y=\left[\kappa_{00}\left(\kappa_{10} \kappa_{00}^{\prime}-\kappa_{10}^{\prime} \kappa_{00}\right), \kappa_{10}\left(\kappa_{10} \kappa_{00}^{\prime}-\kappa_{10}^{\prime} \kappa_{00}\right)+\kappa_{00}\left(\kappa_{11} \kappa_{00}^{\prime}-\kappa_{11}^{\prime} \kappa_{00}\right)\right]$

Performance

One step of the pairing computation

Algorithm (A step of the Miller loop with differential additions)

$$
\begin{aligned}
& \text { Input } n P=\left(x_{n}, z_{n}\right) ;(n+1) P=\left(x_{n+1}, z_{n+1}\right),(n+1) P+Q=\left(x_{n+1}^{\prime}, z_{n+1}^{\prime}\right) \text {. } \\
& \text { Output } 2 n P=\left(x_{2 n}, z_{2 n}\right) ;(2 n+1) P=\left(x_{2 n+1}, z_{2 n+1}\right) ; \\
& \\
& (2 n+1) P+Q=\left(x_{2 n+1}^{\prime}, z_{2 n+1}^{\prime}\right) .
\end{aligned}
$$

1. $\alpha=\left(x_{n}^{2}+z_{n}^{2}\right) ; \beta=\frac{A}{B}\left(x_{n}^{2}-z_{n}^{2}\right)$.
2. $X_{n}=\alpha^{2} ; X_{n+1}=\alpha\left(x_{n+1}^{2}+z_{n+1}^{2}\right) ; X_{n+1}^{\prime}=\alpha\left(x_{n+1}^{2}+z_{n+1}^{\prime 2}\right)$;
3. $Z_{n}=\beta\left(x_{n}^{2}-z_{n}^{2}\right) ; Z_{n+1}=\beta\left(x_{n+1}^{2}-z_{n+1}^{2}\right) ; Z_{n+1}^{\prime}=\beta\left(x_{n+1}^{\prime 2}+z_{n+1}^{\prime 2}\right)$;
4. $x_{2 n}=X_{n}+Z_{n} ; x_{2 n+1}=\left(X_{n+1}+Z_{n+1}\right) / x_{P} ; x_{2 n+1}^{\prime}=\left(X_{n+1}^{\prime}+Z_{n+1}^{\prime}\right) / x_{Q}$;
5. $z_{2 n}=\frac{a}{b}\left(X_{n}-Z_{n}\right) ; z_{2 n+1}=\left(X_{n+1}-Z_{n+1}\right) / z_{p} ; z_{2 n+1}^{\prime}=\left(X_{n+1}^{\prime}-Z_{n+1}^{\prime}\right) / z_{Q}$;

Return $\left(x_{2 n}, z_{2 n}\right) ;\left(x_{2 n+1}, z_{2 n+1}\right) ;\left(x_{2 n+1}^{\prime}, z_{2 n+1}^{\prime}\right)$.

Weil and Tate pairing over $\mathbb{F}_{q^{d}}$

$g=1$	$4 \mathbf{M}+2 \mathbf{m}+8 \mathbf{S}+3 \mathrm{~m}_{0}$
$g=2$	$8 \mathbf{M}+6 \mathbf{m}+16 \mathbf{S}+9 \mathrm{~m}_{0}$

Tate pairing with theta coordinates, $P, Q \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ (one step)
Operations in \mathbb{F}_{q} : M : multiplication, S : square, m multiplication by a coordinate of P or Q, m_{0} multiplication by a theta constant;
Mixed operations in \mathbb{F}_{q} and $\mathbb{F}_{q^{d}}: \mathrm{M}, \mathrm{m}$ and m_{0};
Operations in $\mathbb{F}_{q^{d}}: \mathbf{M}, \mathbf{m}$ and \mathbf{S}.

Remark

- Doubling step for a Miller loop with Edwards coordinates: $9 \mathbf{M}+7 \mathbf{S}+2 \mathrm{~m}_{0}$;
- Just doubling a point in Mumford projective coordinates using the fastest algorithm [Lan05]: 33M $+7 \mathbf{S}+1 \mathrm{~m}_{0}$;
- Asymptotically the final exponentiation is more expensive than Miller's loop, so the Weil's pairing is faster than the Tate's pairing!

Tate pairing

$$
\begin{array}{ll}
g=1 & 1 \mathrm{~m}+2 \mathrm{~S}+2 \mathrm{M}+2 M+1 m+6 S+3 m_{0} \\
g=2 & 3 \mathrm{~m}+4 \mathrm{~S}+4 \mathrm{M}+4 M+3 m+12 S+9 m_{0} \\
\hline
\end{array}
$$

Tate pairing with theta coordinates, $P \in A[\ell]\left(\mathbb{F}_{q}\right), Q \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ (one step)

		Miller		Theta coordinates
		Doubling	Addition	One step
$g=1$	d even	$1 \mathbf{M}+1 \mathbf{S}+1 \mathbf{M}$	$1 \mathbf{M}+1 \mathbf{M}$	$1 \mathbf{M}+2 \mathbf{S}+2 \mathbf{M}$
	d odd	$2 \mathbf{M}+2 \mathbf{S}+1 \mathbf{M}$	$2 \mathbf{M}+1 \mathbf{M}$	
$g=2$	Q degenerate +	$1 \mathbf{M}+1 \mathbf{S}+3 \mathbf{M}$	$1 \mathbf{M}+3 \mathbf{M}$	$3 \mathbf{M}+4 \mathbf{S}+4 \mathbf{M}$
	d even	General case	$2 \mathbf{M}+2 \mathbf{S}+18 \mathbf{M}$	$2 \mathbf{M}+18 \mathbf{M}$

$$
P \in A[\ell]\left(\mathbb{F}_{q}\right), Q \in A[\ell]\left(\mathbb{F}_{q^{d}}\right) \text { (counting only operations in } \mathbb{F}_{q^{d}} \text {). }
$$

Ate and optimal ate pairings

$$
\begin{array}{ll}
g=1 & 4 \mathbf{M}+1 \mathbf{m}+8 \mathbf{S}+1 \mathrm{~m}+3 \mathrm{~m}_{0} \\
g=2 & 8 \mathbf{M}+3 \mathrm{~m}+16 \mathbf{S}+3 \mathrm{~m}+9 \mathrm{~m}_{0}
\end{array}
$$

Ate pairing with theta coordinates, $P \in G_{2}, Q \in G_{1}$ (one step)

Remark

Using affine Mumford coordinates in dimension 2, the hyperelliptic ate pairing costs [Gra+07]:

Doubling $1 \mathbf{I}+29 \mathrm{M}+9 \mathrm{~S}+7 \mathrm{M}$

$$
\text { Addition } 1 \mathbf{I}+29 \mathrm{M}+5 \mathbf{S}+7 \mathrm{M}
$$

(where I denotes the cost of an affine inversion in $\mathbb{F}_{q^{d}}$).

Perspectives

- Look at supersingular abelian varieties in characteristic 2 (Just for fun, cryptographic applications are killed by the $L(1 / 4, \cdot)$ index calculus in $\mathbb{F}_{2^{n}}^{*}$ from A. Joux);
- Optimized implementations (FPGA, ...);
- Look at special points (degenerate divisors, ...).

BibLIography

D. Boneh and M. Franklin. "Identity-based encryption from the Weil pairing". In: SIAM Journal on Computing 32.3 (2003), pp. 586-615 (cit. on p. 5).
D. Boneh, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: Journal of Cryptology 17.4 (2004), pp. 297-319 (cit. on p. 5).
V. Goyal, O. Pandey, A. Sahai, and B. Waters. "Attribute-based encryption for fine-grained access control of encrypted data". In: Proceedings of the 13th ACM conference on Computer and communications security. ACM. 2006, p. 98 (cit. on p. 5).
R. Granger, F. Hess, R. Oyono, N. Thériault, and F. Vercauteren. "Ate pairing on hyperelliptic curves". In: Advances in cryptology-EUROCRYPT 2007. Vol. 4515. Lecture Notes in Comput. Sci. Berlin: Springer, 2007, pp. 430-447 (cit. on p. 56).
A. Joux. "A one round protocol for tripartite Diffie-Hellman". In: Journal of Cryptology 17.4 (2004), pp. 263-276 (cit. on p. 5).
5. Lang. "Reciprocity and Correspondences". In: American Journal of Mathematics 80.2 (1958), pp. 431-440 (cit. on p. 27).
T. Lange. "Formulae for arithmetic on genus 2 hyperelliptic curves". In: Applicable Algebra in Engineering. Communication and Computing 15.5 (2005), pp. 295-328 (cit. on p. 54).
D. Lubicz and D. Robert. "Efficient pairing computation with theta functions". In: Algorithmic Number Theory. Lecture Notes in Comput. Sci. 6197 (July 2010). Ed. by G. Hanrot, F. Morain, and E. Thomé. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings. DOI:
10.1007/978-3-642-14518-6_21. Url:
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf. Slides http://www.normalesup.org/~robert/publications/slides/2010-07-ants.pdf (cit. on p. 42).
D. Lubicz and D. Robert. "A generalisation of Miller's algorithm and applications to pairing computations on abelian varieties". Mar. 2013. UrL: http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf. HAL: hal-00806923, eprint: 2013/192 (cit. on pp. 37, 38).
K. Rubin and A. Silverberg. "Using abelian varieties to improve pairing-based cryptography". In: Journal of Cryptology 22.3 (2009), pp. 330-364 (cit. on p. 29).
A. Sahai and B. Waters. "Fuzzy identity-based encryption". In: Advances in Cryptology-EUROCRYPT 2005 (2005), pp. 457-473 (cit. on p. 5).
E. Verheul. "Self-blindable credential certificates from the Weil pairing". In: Advances in Cryptology-ASIACRYPT 2001 (2001), pp. 533-551 (cit. on p. 5).

