

Computing optimal pairings on abelian varieties with theta functions

18/04/2013 — Grenoble

David Lubicz, Damien Robert

Outline

- 1. Curves, pairings and cryptography
- 2. Abelian varieties
- 3. Theta functions
- 4. Pairings with theta functions
- 5. Performance

Curves, pairings and cryptography

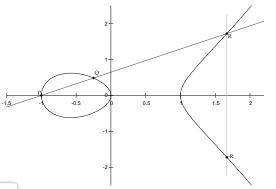
Elliptic curves

Definition (char $k \neq 2, 3$)

An elliptic curve is a plane curve with equation

$$y^2 = x^3 + ax + b$$
 $4a^3 + 27b^2 \neq 0$.

$$4a^3 + 27b^2 \neq 0$$



Exponentiation:

$$(\ell, P) \mapsto \ell P$$

Discrete logarithm:

$$(P, \ell P) \mapsto \ell$$

Pairing-based cryptography

Definition

A pairing is a non-degenerate bilinear application $e:G_1\times G_1\to G_2$ between finite abelian groups.

Example

- If the pairing e can be computed easily, the difficulty of the DLP in G₁
 reduces to the difficulty of the DLP in G₂.
- ⇒ MOV attacks on supersingular elliptic curves.
 - Identity-based cryptography (BF03).
 - Short signature (BLSO4).
 - One way tripartite Diffie-Hellman (Jou04).
 - Self-blindable credential certificates (Ver01).
 - Attribute based cryptography (SW05).
 - Broadcast encryption (Goy+06).

The Weil pairing on elliptic curves

- Let $E: y^2 = x^3 + ax + b$ be an elliptic curve over k (char $k \neq 2,3$).
- Let $P,Q \in E[\ell]$ be points of ℓ -torsion.
- Let f_P be a function associated to the principal divisor $\ell(P)-\ell(0)$, and f_Q to $\ell(Q)-\ell(0)$. We define:

$$e_{W,\ell}(P,Q) = \frac{f_P((Q) - (0))}{f_Q((P) - (0))}.$$

• The application $e_{W,\ell}: E[\ell] \times E[\ell] \to \mu_\ell(\overline{k})$ is a non degenerate pairing: the Weil pairing.

Definition (Embedding degree)

The embedding degree d is the smallest number thus that $\ell \mid q^d-1$; \mathbb{F}_{q^d} is then the smallest extension containing $\mu_\ell(\overline{k})$.

The Tate pairing on elliptic curves over $\ensuremath{\mathbb{F}}_q$

Definition

The Tate pairing is a non degenerate (on the right) bilinear application given by

$$e_T: E_0[\ell] \times E(\mathbb{F}_q) / \ell E(\mathbb{F}_q) \longrightarrow \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*\ell}$$

$$(P,Q) \longmapsto f_P((Q) - (0))$$

where

$$E_0[\ell] = \{ P \in E[\ell](\mathbb{F}_{q^d}) \mid \pi(P) = [q]P \}.$$

- On \mathbb{F}_{q^d} , the Tate pairing is a non degenerate pairing

$$e_T: E[\ell](\mathbb{F}_{q^d}) \times E(\mathbb{F}_{q^d}) / \ell E(\mathbb{F}_{q^d}) \to \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*\ell} \simeq \mu_\ell;$$

- If $\ell^2 \nmid E(\mathbb{F}_{q^d})$ then $E(\mathbb{F}_{q^d})/\ell E(\mathbb{F}_{q^d}) \simeq E[\ell](\mathbb{F}_{q^d})$;
- We normalise the Tate pairing by going to the power of $(q^d 1)/\ell$.
- This final exponentiation allows to save some computations. For instance if d=2d' is even, we can suppose that $Q=(x_2,y_2)$ with $x_2\in E(\mathbb{F}_{q^{d'}})$. Then the denominators of $\mathfrak{f}_{\lambda,\mu,P}(Q)$ are ℓ -th powers and are killed by the final exponentiation.

Miller's functions

• We need to compute the functions f_P and f_Q . More generally, we define the Miller's functions:

Definition

Let $\lambda \in \mathbb{N}$ and $X \in E[\ell]$, we define $f_{\lambda X} \in k(E)$ to be a function thus that:

$$(f_{\lambda X}) = \lambda(X) - ([\lambda]X) - (\lambda - 1)(0).$$

• We want to compute (for instance) $f_{\ell,P}(Q) - (0)$.

Miller's algorithm

The key idea in Miller's algorithm is that

$$f_{\lambda+\mu,\boldsymbol{X}} = f_{\lambda,\boldsymbol{X}} f_{\mu,\boldsymbol{X}} \mathfrak{f}_{\lambda,\mu,\boldsymbol{X}}$$

where $\mathfrak{f}_{\lambda,u,X}$ is a function associated to the divisor

$$([\lambda + \mu]X) - ([\lambda]X) - ([\mu]X) + (0).$$

• We can compute $\mathfrak{f}_{\lambda,\mu,X}$ using the addition law in E: if $[\lambda]X=(x_1,y_1)$ and $[\mu]X=(x_2,y_2)$ and $\alpha=(y_1-y_2)/(x_1-x_2)$, we have

$$f_{\lambda,\mu,X} = \frac{y - \alpha(x - x_1) - y_1}{x + (x_1 + x_2) - \alpha^2}.$$

Miller's algorithm on elliptic curves

Algorithm (Computing the Tate pairing)

Input:
$$\ell \in \mathbb{N}$$
, $P = (x_1, y_1) \in E[\ell](\mathbb{F}_q)$, $Q = (x_2, y_2) \in E(\mathbb{F}_{q^d})$. **Output:** $e_T(P, Q)$.

- **1.** Compute the binary decomposition: $\ell := \sum_{i=0}^{I} b_i 2^i$. Let $T = P, f_1 = 1, f_2 = 1$.
- 2. For i in [1..0] compute
 - **2.1** α , the slope of the tangent of E at T.

2.2
$$T = 2T$$
. $T = (x_3, y_3)$.

2.3
$$f_1 = f_1^2(y_2 - \alpha(x_2 - x_3) - y_3), f_2 = f_2^2(x_2 + (x_1 + x_3) - \alpha^2).$$

2.4 If $b_i = 1$, then compute

2.4.1 α , the slope of the line going through P and T.

2.4.2
$$T = T + Q$$
. $T = (x_3, y_3)$.

2.4.3
$$f_1 = f_1^2(y_2 - \alpha(x_2 - x_3) - y_3), f_2 = f_2(x_2 + (x_1 + x_3) - \alpha^2).$$

Return

$$\left(rac{f_1}{f_2}
ight)^{rac{q^d-1}{\ell}}.$$

Jacobian of curves

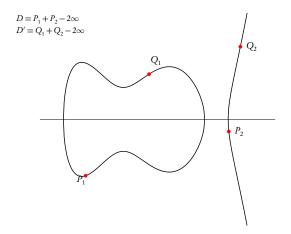
 $\it C$ a smooth irreducible projective curve of genus $\it g$.

- Divisor: formal sum $D = \sum n_i P_i$, $P_i \in C(\overline{k})$. $\deg D = \sum n_i$.
- Principal divisor: $\sum_{P \in C(\overline{k})} v_P(f).P$; $f \in \overline{k}(C)$.

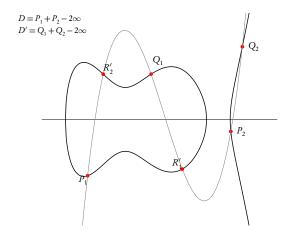
Jacobian of C = Divisors of degree 0 modulo principal divisors

- + Galois action
 - = Abelian variety of dimension g.
- Divisor class of a divisor D ∈ Jac(C) is generically represented by a sum of g points.

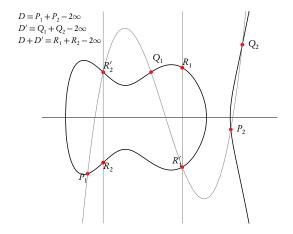
DIMENSION 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2: $y^2 = f(x)$, $\deg f = 5$.



DIMENSION 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2: $y^2 = f(x)$, $\deg f = 5$.



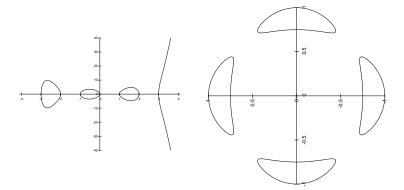
DIMENSION 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2: $y^2 = f(x)$, $\deg f = 5$.



DIMENSION 3

Jacobians of hyperelliptic curves of genus 3.

Jacobians of quartics.



Pairings on Jacobians

- Let P ∈ Jac(C)[ℓ] and D_P a divisor on C representing P;
- By definition of Jac(C), ℓD_P corresponds to a principal divisor (f_P) on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$e_W(P,Q) = f_P(D_Q)/f_Q(D_P)$$

$$e_T(P,Q) = f_P(D_Q).$$

Pairings on Jacobians

- Let P ∈ Jac(C)[ℓ] and D_P a divisor on C representing P;
- By definition of Jac(C), ℓD_P corresponds to a principal divisor (f_P) on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$e_W(P,Q) = f_P(D_Q)/f_Q(D_P)$$

$$e_T(P,Q) = f_P(D_Q).$$

• A key ingredient for evaluating $f_P(D_Q)$ comes from Weil reciprocity theorem.

Theorem (Weil)

Let ${\cal D}_1$ and ${\cal D}_2$ be two divisors with disjoint support linearly equivalent to (0) on a smooth curve C. Then

$$f_{D_1}(D_2) = f_{D_2}(D_1).$$

Pairings on Jacobians

- Let P ∈ Jac(C)[ℓ] and D_P a divisor on C representing P;
- By definition of Jac(C), ℓD_P corresponds to a principal divisor (f_P) on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$e_W(P,Q) = f_P(D_Q)/f_Q(D_P)$$

$$e_T(P,Q) = f_P(D_Q).$$

- The extension of Miller's algorithm to Jacobians is "straightforward";
- For instance if g=2, the function $\mathfrak{f}_{\lambda,\mu,P}$ is of the form

$$\frac{y - l(x)}{(x - x_1)(x - x_2)}$$

where l is of degree 3.

2

Abelian varieties

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

 Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.

Example

- Elliptic curves= Abelian varieties of dimension 1;
- If C is a (smooth) curve of genus g, its Jacobian is an abelian variety of dimension g;
- In dimension $g \ge 4$, not every abelian variety is a Jacobian.

Isogenies and pairings

Let $f:A \rightarrow B$ be a separable isogeny with kernel K between two abelian varieties defined over k:

$$0 \longrightarrow K \longrightarrow A \xrightarrow{f} B \longrightarrow 0$$

$$0 \longleftarrow \hat{A} \xleftarrow{\hat{f}} \hat{B} \longleftarrow \hat{K} \longleftarrow 0$$

- \hat{K} is the Cartier dual of K, and we have a non degenerate pairing $e_f: K \times \hat{K} \to \overline{k}^*$:
 - **1.** If $Q \in \hat{K}(\overline{k})$, Q defines a divisor D_Q on B;
 - **2.** $\hat{f}(Q) = 0$ means that f^*D_Q is equal to a principal divisor (g_Q) on A;
 - **3.** $e_f(P,Q) = g_Q(x)/g_Q(x+P)$. (This last function being constant in its definition domain).
- The Weil pairing is the pairing associated to the isogeny $[\ell]: A \rightarrow A$.

Pairings and polarisations

- If Θ is an ample divisor, the polarisation φ_{Θ} is a morphism $A \to \widehat{A}, x \mapsto t_*^*\Theta \Theta$.
- We can then compose the Weil pairing with φ_{Θ} :

$$\begin{array}{ccc} e_{W,\Theta,\ell} \colon A[\ell] \times A[\ell] & \longrightarrow & \mu_{\ell}(\overline{k}) \\ (P,Q) & \longmapsto & e_{W,\ell}(P,\varphi_{\Theta}(Q)) \end{array}.$$

• If Θ corresponds to the ample line bundle \mathscr{L} , $e_{W,\Theta,\ell}$ can also be seen as the pairing coming from the polarisation $\varphi_{\ell\Theta}$ or as the commutator pairing $e_{\mathscr{L}^\ell}$.

The Tate pairings on abelian varieties over finite fields

· From the exact sequence

$$0 \to A[\ell](\overline{\mathbb{F}}_{q^d}) \to A(\overline{\mathbb{F}}_{q^d}) \to^{[\ell]} A(\overline{\mathbb{F}}_{q^d}) \to 0$$

we get from Galois cohomology a connecting morphism

$$\delta: A(\mathbb{F}_{q^d})/\ell A(\mathbb{F}_{q^d}) \to H^1(\operatorname{Gal}(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d}), A[\ell]);$$

Composing with the Weil pairing, we get a bilinear application

$$A[\ell](\mathbb{F}_{q^d}) \times A(\mathbb{F}_{q^d}) / \ell A(\mathbb{F}_{q^d}) \to H^1(\text{Gal}(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d}), \mu_{\ell}) \simeq \mathbb{F}_{q^d}^* / \mathbb{F}_{q^d}^{*^{\ell}} \simeq \mu_{\ell}$$

where the last isomorphism comes from the Kummer sequence

$$1 \to \mu_{\ell} \to \overline{\mathbb{F}}_{q^d}^* \to \overline{\mathbb{F}}_{q^d}^* \to 1$$

and Hilbert 90;

• Explicitely, if $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$ then the (reduced) Tate pairing is given by

$$e_T(P,Q) = e_W(\pi(P_0) - P_0, Q)$$

where P_0 is any point such that $P=[\ell]P_0$ and π is the Frobenius of $\mathbb{F}_{q^d}.$

Cycles and Lang reciprocity

- Let (A, Θ) be a principally polarized abelian variety;
- To a degree 0 cycle $\sum(P_i)$ on A, we can associate the divisor $\sum t_{P_i}^*\Theta$ on A;
- The cycle $\sum (P_i)$ corresponds to a trivial divisor iff $\sum P_i = 0$ in A;
- If f is a function on A and $D=\sum (P_i)$ a cycle whose support does not contain a zero or pole of f , we let

$$f(D) = \prod f(P_i).$$

(In the following, when we write $f(\mathcal{D})$ we will always assume that we are in this situation.)

Theorem ([Lan58])

Let D_1 and D_2 be two cycles equivalent to 0, and f_{D_1} and f_{D_2} be the corresponding functions on A. Then

$$f_{D_1}(D_2) = f_{D_2}(D_1)$$

The Weil and Tate pairings on abelian varieties

Theorem

Let $P,Q \in A[\ell]$. Let D_P and D_Q be two cycles equivalent to (P)-(0) and (Q)-(0). The Weil pairing is given by

$$e_W(P,Q) = \frac{f_{\ell D_P}(D_Q)}{f_{\ell D_Q}(D_P)}.$$

Theorem

Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$, and let D_P and D_Q be two cycles equivalent to (P)-(0) and (Q)-(0). The (non reduced) Tate pairing is given by

$$e_T(P,Q) = f_{\ell D_P}(D_Q).$$

Cryptographic usage of pairings on abelian varieties

- The moduli space of abelian varieties of dimension g is a space of dimension g(g+1)/2. We have more liberty to find optimal abelian varieties in function of the security parameters.
- Supersingular elliptic curves have a too small embedding degree. (RSO9) says that for the current security parameters, optimal supersingular abelian varieties of small dimension are of dimension 4.
- If A is an abelian variety of dimension g, A[ℓ] is a (ℤ/ℓℤ)-module of dimension 2g ⇒ the structure of pairings on abelian varieties is richer.

3

Theta functions

Complex abelian variety

- A complex abelian variety is of the form $A = V/\Lambda$ where V is a $\mathbb C$ -vector space and Λ a lattice, with a polarization (actually an ample line bundle) $\mathscr L$ on it:
- The Chern class of \mathcal{L} corresponds to a symplectic real form E on V such that E(ix,iy)=E(x,y) and $E(\Lambda,\Lambda)\subset\mathbb{Z}$;
- The commutator pairing $e_{\mathcal{L}}$ is then given by $\exp(2i\pi E(\cdot,\cdot))$;
- A principal polarization on A corresponds to a decomposition $\Lambda = \Omega \mathbb{Z}^g + \mathbb{Z}^g$ with $\Omega \in \mathfrak{H}_g$ the Siegel space;
- The associated Riemann form on A is then given by $E(\Omega x_1 + x_2, \Omega y_1 + y_2) = {}^t x_1 \cdot y_2 {}^t y_1 \cdot x_2.$

Theta coordinates on abelian varieties

- Every abelian variety (over an algebraically closed field) can be described by theta coordinates of level n > 2 even. (The level n encodes information about the n-torsion).
- The theta coordinates of level 2 on A describe the Kummer variety of A.
- For instance if $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$ is an abelian variety over \mathbb{C} , the theta coordinates on A come from the analytic theta functions with characteristic:

$$\vartheta\left[\begin{smallmatrix} a\\b\end{smallmatrix}\right](z,\Omega) = \sum_{n\in\mathbb{Z}^g} e^{\pi i \, {}^t(n+a)\Omega(n+a) + 2\pi i \, {}^t(n+a)(z+b)} \quad a,b\in\mathbb{Q}^g$$

Remark

Working on level n mean we take a n-th power of the principal polarisation. So in the following we will compute the n-th power of the usual Weil and Tate pairings.

The differential addition law $(k = \mathbb{C})$

$$\begin{split} \big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{i+t}(x+y)\vartheta_{j+t}(x-y)\big).\big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k+t}(0)\vartheta_{l+t}(0)\big) = \\ \big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{-i'+t}(y)\vartheta_{j'+t}(y)\big).\big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k'+t}(x)\vartheta_{l'+t}(x)\big). \end{split}$$

Example: differential addition in dimension ${\bf 1}$ and in level ${\bf 2}$

Algorithm

$$\begin{array}{ll} \text{Input} & z_{P}=(x_{0},x_{1}), \, z_{Q}=(y_{0},y_{1}) \text{ and } z_{P-Q}=(z_{0},z_{1}) \text{ with } z_{0}z_{1}\neq 0; \\ & z_{0}=(a,b) \text{ and } A=2(a^{2}+b^{2}), \, B=2(a^{2}-b^{2}). \end{array}$$

- **1.** $t_0' = (x_0^2 + x_1^2)(y_0^2 + y_2^2)/A$
- **2.** $t_1' = (x_0^2 x_1^2)(y_0^2 y_1^2)/B$
- $3. \ t_0 = (t_0' + t_1')/z_0$
- **4.** $t_1 = (t'_0 t'_1)/z_1$

Return (t_0, t_1)

Cost of the arithmetic with low level theta functions (char $k \neq 2$)

	Montgomery	Level 2	Jacobians coordinates
Doubling Mixed Addition	$5M + 4S + 1m_0$	$3M + 6S + 3m_0$	$3M + 5S$ $7M + 6S + 1m_0$

Multiplication cost in genus 1 (one step).

	Mumford	Level 2	Level 4
Doubling Mixed Addition	34M + 7S $37M + 6S$	$7M + 12S + 9m_0$	$49M + 36S + 27m_0$

Multiplication cost in genus 2 (one step).

Miller functions with theta coordinates

Proposition ((LR13))

- For P ∈ A we note z_p a lift to C^g. We call P a projective point and z_p an affine point (because we describe them via their projective, resp affine, theta coordinates);
- We have (up to a constant)

$$f_{\lambda,P}(z) = \frac{\vartheta(z)}{\vartheta(z + \lambda z_P)} \left(\frac{\vartheta(z + z_P)}{\vartheta(z)}\right)^{\lambda};$$

• So (up to a constant)

$$\mathfrak{f}_{\lambda,\mu,P}(z)=rac{artheta(z+\lambda z_P)artheta(z+\mu z_P)}{artheta(z)artheta(z+(\lambda+\mu)z_P)}.$$

Three way addition

Proposition ((LR13))

From the affine points z_P , z_Q , z_R , z_{P+Q} , z_{P+R} and z_{Q+R} one can compute the affine point z_{P+Q+R} . (In level 2, the proposition is only valid for "generic" points).

Proof.

We can compute the three way addition using a generalised version of Riemann's relations:

$$\begin{split} & \big(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(\mathbf{z}_{P+Q+R}) \vartheta_{j+t}(\mathbf{z}_{P}) \big). \big(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(\mathbf{z}_{Q}) \vartheta_{l+t}(\mathbf{z}_{R}) \big) = \\ & \quad \quad \big(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i'+t}(\mathbf{z}_{0}) \vartheta_{j'+t}(\mathbf{z}_{Q+R}) \big). \big(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k'+t}(\mathbf{z}_{P+R}) \vartheta_{l'+t}(\mathbf{z}_{P+Q}) \big). \end{split}$$

_

Three way addition in dimension 1 level 2

Algorithm

Input The points
$$x, y, z, X = y + z, Y = x + z, Z = x + y$$
; **Output** $T = x + y + z$.

Return

$$\begin{split} T_0 &= \frac{(aX_0 + bX_1)(Y_0Z_0 + Y_1Z_1)}{x_0(y_0z_0 + y_1z_1)} + \frac{(aX_0 - bX_1)(Y_0Z_0 - Y_1Z_1)}{x_0(y_0z_0 - y_1z_1)} \\ T_1 &= \frac{(aX_0 + bX_1)(Y_0Z_0 + Y_1Z_1)}{x_1(y_0z_0 + y_1z_1)} - \frac{(aX_0 - bX_1)(Y_0Z_0 - Y_1Z_1)}{x_1(y_0z_0 - y_1z_1)} \end{split}$$

Computing the Miller function $f_{\lambda,\mu,P}((Q)-(0))$

Algorithm

Input
$$\lambda P$$
, μP and Q ;
Output $\mathfrak{f}_{\lambda,\mu,P}((Q)-(0))$

- **1.** Compute $(\lambda + \mu)P$, $Q + \lambda P$, $Q + \mu P$ using normal additions and take any affine lifts $z_{(\lambda + \mu)P}$, $z_{Q + \lambda P}$ and $z_{Q + \mu P}$;
- **2.** Use a three way addition to compute $z_{Q+(\lambda+\mu)P}$;

Return

$$\mathfrak{f}_{\lambda,\mu,P}((Q)-(0))=\frac{\vartheta(z_Q+\lambda z_P)\vartheta(z_Q+\mu z_P)}{\vartheta(z_Q)\vartheta(z_Q+(\lambda+\mu)z_P)}\cdot\frac{\vartheta((\lambda+\mu)z_P)\vartheta(z_P)}{\vartheta(\lambda z_P)\vartheta(\mu z_P)}.$$

Lemma

The result does not depend on the choice of affine lifts in Step 2.

- © This allow us to evaluate the Weil and Tate pairings and derived pairings;
- ② Not possible a priori to apply this algorithm in level 2.

The Tate pairing with Miller's functions and theta coordinates

- Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$; choose any lift z_P , z_Q and z_{P+Q} .
- The algorithm loop over the binary expansion of ℓ, and at each step does a doubling step, and if necessary an addition step.

```
Given z_{\lambda P}, z_{\lambda P+Q};

Doubling Compute z_{2\lambda P}, z_{2\lambda P+Q} using two differential additions;

Addition Compute (2\lambda+1)P and take an arbitrary lift z_{(2\lambda+1)P}. Use a three way addition to compute z_{(2\lambda+1)P+Q}.
```

- At the end we have computed affine points $z_{\ell P}$ and $z_{\ell P+Q}$. Evaluating the Miller function then gives exactly the quotient of the projective factors between $z_{\ell P}$, z_0 and $z_{\ell P+Q}$, z_O .
- Described this way can be extended to level 2 by using compatible additions;
- Three way additions and normal (or compatible) additions are quite cumbersome, is there a way to only use differential additions?

4

Pairings with theta functions

The Weil and Tate pairing with theta coordinates (LR10)

P and Q points of ℓ -torsion.

$$\begin{aligned} \bullet & e_{W,\ell}(P,Q) = \frac{\lambda_P^1 \lambda_Q^0}{\lambda_P^0 \lambda_Q^1}. \\ \bullet & e_{T,\ell}(P,Q) = \frac{\lambda_P^1}{\lambda_p^0}. \end{aligned}$$

•
$$e_{T,\ell}(P,Q) = \frac{\lambda_p^1}{\lambda_p^0}$$
.

Why does it works?

$$z_0 \qquad \alpha z_P \qquad \alpha^4(2z_P) \qquad \dots \qquad \alpha^{\ell^2}(\ell z_P) = \lambda'_P^0 z_0$$

$$\beta z_Q \qquad \gamma(z_P \oplus z_Q) \qquad \frac{\gamma^2 \alpha^2}{\beta} (2z_P + z_Q) \qquad \dots \qquad \frac{\gamma^{\ell} \alpha^{\ell(\ell-1)}}{\beta^{\ell-1}} (\ell z_P + z_Q) = \lambda'_P^1 \beta z_Q$$

$$\beta^4(2z_Q) \qquad \frac{\gamma^2 \beta^2}{\alpha} (z_P + 2z_Q) \qquad \dots$$

$$\dots \qquad \dots$$

$$\beta^{\ell^2}(\ell z_Q) = \lambda'_Q^0 z_0 \quad \frac{\gamma^\ell \beta^{\ell(\ell-1)}}{\alpha^{\ell-1}}(z_P + \ell z_Q) = \lambda'_Q^1 \alpha z_P$$

We then have

$$\begin{split} \lambda'_{\,p}^0 &= \alpha^{\ell^2} \lambda_p^0, \quad \lambda'_{\,Q}^0 = \beta^{\ell^2} \lambda_Q^0, \quad \lambda'_{\,p}^1 = \frac{\gamma^\ell \alpha^{(\ell(\ell-1)}}{\beta^\ell} \lambda_p^1, \quad \lambda'_{\,Q}^1 = \frac{\gamma^\ell \beta^{(\ell(\ell-1)}}{\alpha^\ell} \lambda_Q^1, \\ e'_{W,\ell}(P,Q) &= \frac{\lambda'_{\,p}^1 \lambda'_{\,Q}^0}{\lambda'_{\,p}^0 \lambda'_{\,Q}^1} = \frac{\lambda_p^1 \lambda_Q^0}{\lambda_p^0 \lambda_Q^1} = e_{W,\ell}(P,Q), \\ e'_{T,\ell}(P,Q) &= \frac{\lambda'_{\,p}^1}{\lambda'_{\,p}^0} = \frac{\gamma^\ell}{\alpha^\ell \beta^\ell} \frac{\lambda_p^1}{\lambda_p^0} = \frac{\gamma^\ell}{\alpha^\ell \beta^\ell} e_{T,\ell}(P,Q). \end{split}$$

The case n=2

- If n = 2 we work over the Kummer variety K over k, so $e(P,Q) \in \overline{k}^{*,\pm 1}$.
- We represent a class $x\in \overline{k}^{*,\pm 1}$ by $x+1/x\in \overline{k}^*$. We want to compute the symmetric pairing

$$e_s(P,Q) = e(P,Q) + e(-P,Q).$$

- From $\pm P$ and $\pm Q$ we can compute $\{\pm (P+Q), \pm (P-Q)\}$ (need a square root), and from these points the symmetric pairing.
- e_s is compatible with the \mathbb{Z} -structure on K and $\overline{k}^{*,\pm 1}$.
- The \mathbb{Z} -structure on $\overline{k}^{*,\pm}$ can be computed as follow:

$$(x^{\ell_1+\ell_2}+\frac{1}{x^{\ell_1+\ell_2}})+(x^{\ell_1-\ell_2}+\frac{1}{x^{\ell_1-\ell_2}})=(x^{\ell_1}+\frac{1}{x^{\ell_1}})(x^{\ell_2}+\frac{1}{x^{\ell_2}})$$

Ate pairing

Definition

Ate pairing

- Let $G_1 = E[\ell] \cap \operatorname{Ker}(\pi_q 1)$ and $G_2 = E[\ell] \cap \operatorname{Ker}(\pi_q [q])$.
- Let $\lambda \equiv q \mod \ell$, the (reduced) ate pairing is defined by

$$a_{\lambda}: G_2 \times G_1 \to \mu_{\ell}, (P,Q) \mapsto f_{\lambda,P}(Q)^{(q^d-1)/\ell}.$$

- It is non degenerate if $\ell^2 \nmid (\lambda^k 1)$.
- © We expect the Miller loop to be half the length as for the Tate pairing;
- \odot We need to work over \mathbb{F}_{q^d} rather than \mathbb{F}_q for computing Miller's functions;
- © Can use twists to alleviate the problem (this was not possible with non elliptic Jacobians).

Ate pairing with theta functions

- Let $P \in G_2$ and $Q \in G_1$.
- In projective coordinates, we have $\pi_q^d(P+Q) = \lambda^d P + Q = P + Q$;
- Unfortunately, in affine coordinates, $\pi_{g}^{d}(z_{p+Q}) \neq \lambda^{d}z_{p} + z_{Q}$.
- But if $\pi_q(z_{P+Q})=C*(\lambda z_P+z_Q)$, then C is exactly the (non reduced) ate pairing!

Algorithm (Computing the ate pairing)

Input
$$P \in G_2$$
, $Q \in G_1$;

- **1.** Compute $z_Q + \lambda z_P$, λz_P using differential additions;
- **2.** Find the projective factors C_1 and C_0 such that $z_Q + \lambda z_P = C_1 * \pi(z_{P+Q})$ and $\lambda z_P = C_0 * \pi(z_P)$ respectively;

Return
$$(C_1/C_0)^{\frac{q^d-1}{\ell}}$$
.

Optimal ate pairing

- Let $\lambda = m\ell = \sum c_i q^i$ be a multiple of ℓ with small coefficients c_i . $(\ell \nmid m)$
- The pairing

$$\begin{array}{cccc} a_{\lambda} \colon G_{2} \times G_{1} & \longrightarrow & \mu_{\ell} \\ & (P,Q) & \longmapsto & \left(\prod_{i} f_{c_{i},P}(Q)^{q^{i}} \prod_{i} \mathfrak{f}_{\sum_{j>i} c_{j}q^{j},c_{i}q^{i},P}(Q) \right)^{(q^{d}-1)/\ell} \end{array}$$

is non degenerate when $mdq^{d-1} \not\equiv (q^d-1)/r \sum_i ic_i q^{i-1} \mod \ell$.

- Since $\varphi_d(q) = 0 \mod \ell$ we look at powers $q, q^2, \dots, q^{\varphi(d)-1}$.
- We can expect to find λ such that $c_i \approx \ell^{1/\varphi(d)}$.

Optimal ate pairing with theta functions

Algorithm (Computing the optimal ate pairing)

Input
$$\pi_q(P) = [q]P$$
, $\pi_q(Q) = Q$, $\lambda = m\ell = \sum c_i q^i$;

- **1.** Compute the $z_Q + c_i z_p$ and $c_i z_p$;
- **2.** Apply Frobeniuses to obtain the $z_Q + c_i q^i z_P$, $c_i q^i z_P$;
- **3.** Compute $c_i q^i z_P \oplus \sum_j c_j q^j z_P$ (up to a constant) and then do a three way addition to compute $z_Q + c_i q^i z_P + \sum_j c_j q^j z_P$ (up to the same constant);
- **4.** Recurse until we get $\lambda z_P = C_0 * z_P$ and $z_Q + \lambda z_P = C_1 * z_Q$;

Return $(C_1/C_0)^{\frac{q^d-1}{\ell}}$.

The case n=2

- Computing $c_i q^i z_p \pm \sum_i c_j q^j z_p$ requires a square root (very costly);
- And we need to recognize $c_iq^iz_p + \sum_j c_jq^jz_p$ from $c_iq^iz_p \sum_j c_jq^jz_p$.
- We will use compatible additions: if we know x, y, z and x + z, y + z, we can compute x + y without a square root;
- We apply the compatible additions with $x=c_iq^iz_p$, $y=\sum_ic_jq^jz_p$ and $z=z_Q$.

Compatible additions

- Recall that we know x, y, z and x + z, y + z;
- From it we can compute $(x+z)\pm(y+z)=\{x+y+2z,x-y\}$ and of course $\{x+y,x-y\}$;
- Then x + y is the element in $\{x + y, x y\}$ not appearing in the preceding set;
- Since x y is a common point, we can recover it without computing a square root.

The compatible addition algorithm in dimension 1

Algorithm

Input
$$x$$
, y , $Y = x + z$, $X = y + z$;

1. Computing $x \pm y$:

$$\alpha = (x_0^2 + x_1^2)(y_0^2 + y_1^2)/A$$

$$\beta = (x_0^2 - x_1^2)(y_0^2 - y_1^2)/B$$

$$\kappa_{00} = (\alpha + \beta), \kappa_{11} = (\alpha - \beta)$$

$$\kappa_{10} := x_0 x_1 y_0 y_1/ab$$

2. Computing $(x+z)\pm(y+z)$:

$$\alpha' = (Y_0^2 + Y_1^2)(X_0^2 + X_1^2)/A$$

$$\beta' = (Y_0^2 - Y_1^2)(X_0^2 - X_1^2)/B$$

$$\kappa'_{00} = \alpha' + \beta', \kappa'_{11} = \alpha' - \beta'$$

$$\kappa'_{10} = Y_1Y_2X_1X_2/ab$$

Return $x + y = [\kappa_{00}(\kappa_{10}\kappa'_{00} - \kappa'_{10}\kappa_{00}), \kappa_{10}(\kappa_{10}\kappa'_{00} - \kappa'_{10}\kappa_{00}) + \kappa_{00}(\kappa_{11}\kappa'_{00} - \kappa'_{11}\kappa_{00})]$

5

Performance

One step of the pairing computation

Algorithm (A step of the Miller loop with differential additions)

$$\begin{array}{ll} \text{Input} & nP = (x_n, z_n); (n+1)P = (x_{n+1}, z_{n+1}), (n+1)P + Q = (x'_{n+1}, z'_{n+1}). \\ \textbf{Output} & 2nP = (x_{2n}, z_{2n}); (2n+1)P = (x_{2n+1}, z_{2n+1}); \\ & (2n+1)P + Q = (x'_{2n+1}, z'_{2n+1}). \end{array}$$

- **1.** $\alpha = (x_n^2 + z_n^2); \beta = \frac{A}{B}(x_n^2 z_n^2).$
- **2.** $X_n = \alpha^2$; $X_{n+1} = \alpha(x_{n+1}^2 + z_{n+1}^2)$; $X'_{n+1} = \alpha(x'_{n+1}^2 + z'_{n+1}^2)$;
- **3.** $Z_n = \beta(x_n^2 z_n^2); Z_{n+1} = \beta(x_{n+1}^2 z_{n+1}^2); Z'_{n+1} = \beta(x'_{n+1}^2 + z'_{n+1}^2);$
- **4.** $x_{2n} = X_n + Z_n$; $x_{2n+1} = (X_{n+1} + Z_{n+1})/x_p$; $x'_{2n+1} = (X'_{n+1} + Z'_{n+1})/x_Q$;
- **5.** $z_{2n} = \frac{a}{b}(X_n Z_n)$; $z_{2n+1} = (X_{n+1} Z_{n+1})/z_p$; $z'_{2n+1} = (X'_{n+1} Z'_{n+1})/z_Q$;
- **Return** (x_{2n}, z_{2n}) ; (x_{2n+1}, z_{2n+1}) ; (x'_{2n+1}, z'_{2n+1}) .

Weil and Tate pairing over \mathbb{F}_{q^d}

$$g = 1$$
 $4M + 2m + 8S + 3m_0$
 $g = 2$ $8M + 6m + 16S + 9m_0$

Tate pairing with theta coordinates, $P,Q \in A[\ell](\mathbb{F}_{q^d})$ (one step)

Operations in \mathbb{F}_q : M: multiplication, S: square, m multiplication by a coordinate of P or Q, m_0 multiplication by a theta constant;

Mixed operations in \mathbb{F}_q and \mathbb{F}_{q^d} : M, m and m₀;

Operations in \mathbb{F}_{q^d} **:** M, m and S.

Remark

- Doubling step for a Miller loop with Edwards coordinates: $9\mathbf{M} + 7\mathbf{S} + 2\mathbf{m}_0$;
- Just doubling a point in Mumford projective coordinates using the fastest algorithm [Lan05]: $33M + 7S + 1m_0$;
- Asymptotically the final exponentiation is more expensive than Miller's loop, so the Weil's pairing is faster than the Tate's pairing!

Tate pairing

$$\begin{array}{ll} g = 1 & 1\mathbf{m} + 2\mathbf{S} + 2\mathbf{M} + 2M + 1m + 6S + 3m_0 \\ g = 2 & 3\mathbf{m} + 4\mathbf{S} + 4\mathbf{M} + 4M + 3m + 12S + 9m_0 \end{array}$$

Tate pairing with theta coordinates, $P \in A[\ell](\mathbb{F}_q), Q \in A[\ell](\mathbb{F}_{q^d})$ (one step)

		Mille	Miller	
		Doubling	Addition	One step
g=1	d even d odd	1M + 1S + 1M $2M + 2S + 1M$	$1\mathbf{M} + 1\mathbf{M}$ $2\mathbf{M} + 1\mathbf{M}$	$1\mathbf{M} + 2\mathbf{S} + 2\mathbf{M}$
g=2	Q degenerate + d even General case	1M + 1S + 3M $2M + 2S + 18M$	1M + 3M $2M + 18M$	$3\mathbf{M} + 4\mathbf{S} + 4\mathbf{M}$

 $P \in A[\ell](\mathbb{F}_q), \, Q \in A[\ell](\mathbb{F}_{q^d}) \text{ (counting only operations in } \mathbb{F}_{q^d}\text{)}.$

Ate and optimal ate pairings

$$\begin{split} g &= 1 & 4\mathbf{M} + 1\mathbf{m} + 8\mathbf{S} + 1\mathbf{m} + 3\mathbf{m}_0 \\ g &= 2 & 8\mathbf{M} + 3\mathbf{m} + 16\mathbf{S} + 3\mathbf{m} + 9\mathbf{m}_0 \end{split}$$

Ate pairing with theta coordinates, $P \in G_2$, $Q \in G_1$ (one step)

Remark

Using affine Mumford coordinates in dimension 2, the hyperelliptic ate pairing costs [Gra+07]:

Doubling 1I + 29M + 9S + 7M

Addition 1I + 29M + 5S + 7M

(where I denotes the cost of an affine inversion in \mathbb{F}_{q^d}).

Perspectives

- Look at supersingular abelian varieties in characteristic 2 (Just for fun, cryptographic applications are killed by the $L(1/4, \cdot)$ index calculus in $\mathbb{F}_{2^n}^*$ from A. Joux);
- Optimized implementations (FPGA, ...);
- Look at special points (degenerate divisors, ...).

BIBLIOGRAPHY

D. Boneh and M. Franklin. "Identity-based encryption from the Weil pairing". In: SIAM Journal on Computing 32.3 (2003), pp. 586–615 (cit. on p. 5).

D. Boneh, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: Journal of Cryptology 17.4 (2004), pp. 297–319 (cit. on p. 5).

V. Goyal, O. Pandey, A. Sahai, and B. Waters. "Attribute-based encryption for fine-grained access control of encrypted data". In: *Proceedings of the 13th ACM conference on Computer and communications security*. ACM. 2006, p. 98 (cit. on p. 5).

R. Granger, F. Hess, R. Oyono, N. Thériault, and F. Vercauteren. "Ate pairing on hyperelliptic curves". In: Advances in cryptology—EUROCRYPT 2007. Vol. 4515. Lecture Notes in Comput. Sci. Berlin: Springer, 2007, pp. 430–447 (cit. on p. 53).

A. Joux. "A one round protocol for tripartite Diffie–Hellman". In: Journal of Cryptology 17.4 (2004), pp. 263–276 (cit. on p. 5).

S. Lang. "Reciprocity and Correspondences". In: American Journal of Mathematics 80.2 (1958), pp. 431–440 (cit. on p. 24).

T. Lange. "Formulae for arithmetic on genus 2 hyperelliptic curves". In: Applicable Algebra in Engineering, Communication and Computing 15.5 (2005), pp. 295–328 (cit. on p. 51).

D. Lubicz and D. Robert. "Efficient pairing computation with theta functions". In: Algorithmic Number

Theory. Lecture Notes in Comput. Sci. 6197 (July 2010). Ed. by G. Hanrot, F. Morain, and E. Thomé. 9th International Symposium, Nancy, France, ANTS-IX, July 19–23, 2010, Proceedings. DOI: 10.1007/978-3-642-14518-6-21. Url:

10.100//9/8-3-642-14518-6_21. Urt. http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf. Slides http://www.normalesup.org/~robert/publications/slides/2010-07-ants.pdf (cit. on p. 39).

D. Lubicz and D. Robert. "A generalisation of Miller's algorithm and applications to pairing computations on abelian varieties". Mar. 2013. Url: http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf. HAL:

K. Rubin and A. Silverberg. "Using abelian varieties to improve pairing-based cryptography". In: *Journal of Cryptology* 22.3 (2009), pp. 330–364 (cit. on p. **26**).

A. Sahai and B. Waters. "Fuzzy identity-based encryption". In: Advances in Cryptology–EUROCRYPT 2005 (2005), pp. 457–473 (cit. on p. 5).

E. Verheul. "Self-blindable credential certificates from the Weil pairing". In: Advances in Cryptology—ASIACRYPT 2001 (2001), pp. 533–551 (cit. on p. 5).

hal-00806923, eprint; 2013/192 (cit. on pp. 33, 34).