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Class polynomials

If A/Fq is an ordinary (simple) abelian variety of dimension g ,
End(A)⊗Q is a (primitive) CM field K (K is a totally imaginary
quadratic extension of a totally real number field K0).

Inverse problem: given a CM field K , construct the class
polynomials H1, bH2 . . . , bHg (g+1)/2 which parametrizes the
invariants of all abelian varieties A/C with End(A)≃OK .

Cryptographic application: if the class polynomials are totally
split modulo an ideal P, their roots in FP gives invariants of
abelian varieties A/FP with End(A)≃OK . It is easy to recover
#A(FP) given OK and P.
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Some technical details

The abelian varieties are principally polarized.

CM-types: a partition Hom(K ,C) = Φ⊕Φ.
In genus 2, the CM field K of degree 4 will be either cyclic (and
Galoisian) or Dihedral (and non Galoisian). The latter case
appear most often, and in this case we have two CM-types.

Definition

The class polynomials (HΦ,i ) parametrizes the abelian varieties
with CM by (OK ,Φ);

The reflex field of (K ,ϕ) is the CM field K r generated by the
traces
∑

ϕ�Φϕ(x ), x � K ;

The type norm NΦ : K → K r is x 7→
∏

ϕ�Φϕ(x ).
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Class polynomials and complex multiplication

Theorem (Main theorems of complex multiplication)

The class polynomials (HΦ,i ) are defined over K r
0 and generate a

subfield HΦ of the Hilbert class field of K r .

If A/C has CM by (OK ,Φ) and P is a prime of good reduction in HΦ,
then the Frobenius of AP corresponds to NHΦ,Φr (P).

For efficiency, we compute the class polynomials HΦ,i since they
give a factor of the full class polynomials Hi . This mean we
need less precision.

In genus 2, this involves working over K0 rather than Q in the
Dihedral case.
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Constructing class polynomials

Analytic method: compute the invariants in C with sufficient
precision to recover the class polynomials.

p -adic lifting: lift the invariants in Qp with sufficient precision
to recover the class polynomials (require specific splitting
behavior of p ).

CRT: compute the class polynomials modulo small primes, and
use the CRT to reconstruct the class polynomials.

Remark

In genus 1, all these methods are quasi-linear in the size of the output ⇒
computation bounded by memory. But we can construct directly the
class polynomials modulo p with the explicit CRT so the CRT approach is
only time dependent.
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Review of the CRT algorithm in genus 2

1 Select a CRT prime p ;
2 Find all abelian surfaces A/Fp with CM by (OK ,Φ);
3 From the invariants of the maximal abelian surfaces,

reconstruct HΦ,i mod p .

Repeat until we can recover HΦ,i from the HΦ,i mod p using the CRT.

Remark

Since K is primitive, we only need to look at Jacobians of hyperelliptic
curves of genus 2.
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Isogenies and endomorphism ring

If A/Fp is an abelian surface, the CM field K = End(A)⊗Q is
generated by the Frobenius π;

If A = Jac(H ) then the characteristic polynomial χπ (and
therefore K ) is uniquely determined by #H and #A;

Tate: the isogeny class of A is given by all the other abelian
surfaces with CM field K (“isogenous⇔ same number of
points”);

The CM order End(A)⊂ K is a finer invariant which partition the
isogeny class (one subset for every order O such that
Z[π,π]⊂O ⊂OK and O is stable by the complex conjugation).

Definition

Les f : A→ B be an isogeny. Then we call f horizontal if
End(A) = End(B ). Otherwise we call f vertical.
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Selecting the prime p

Definition

A CRT prime p⊂OK r
0
is a prime such that all abelian varieties over C

with CM by (OK ,Φ) have good reduction modulo p.

p is a CRT prime for the CM type Φ if and only if there exists an
unramified prime q in OK r of degree 1 above p of principal type
norm (π);

The isogeny class of the reduction of these abelian varieties
mod p is determined (up to a twist) by ±π where NΦ(p) = (π).

Remark

For efficiency, we work with CRT primes p that are unramified of degree
one over p = p∩Z;
⇒ the reduction to Fp of the abelian varieties with CM by (OK ,Φ) will
then be ordinary.
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The case of elliptic curves

Let K be an imaginary quadratic field of Discriminant ∆. Then
HOK has degree O(

p
∆) with coefficients of size eO(

p
∆);

The CRT step will use eO(
p
∆) primes p of size eO(∆);

For each CRT prime p there is O(p ) isomorphic classes of elliptic
curves, O(pp ) curves inside the isogeny class corresponding to
K and O(pp ) curves with End(E ) =OK ;

⇒ Finding a maximal curve takes time O(pp ).

Once a maximal curve is found, compute all the others using
horizontal isogenies (very fast);

⇒ Finding all maximal curves take time eO(pp ), for a total
complexity of eO(∆).
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Vertical isogenies with elliptic curves

Remark

It is easier to find a curve in the isogeny class rather than in the subset
of maximal curves. One can use vertical isogenies to go from such a
curve to a maximal curve;

⇒ This approach gain some logarithmic factors and yields huge
practical improvements!
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Vertical isogenies with elliptic curves
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Adapting these ideas to the genus 2 case

1 Select a CRT prime p ;
2 Select random Jacobians until finding one in the right isogeny

class;
3 Try to go up using vertical isogenies to find a Jacobian with CM

by OK ;
4 Use horizontal isogenies to find all other Jacobians with CM by

OK ;
5 From the invariants of the maximal abelian surfaces,

reconstruct HΦ,i mod p .
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Obtaining all the maximal Jacobians: the horizontal
isogenies

The maximal Jacobians form a principal homogeneous space
under the Shimura class group
C(OK ) = {(I ,ρ) | I I = (ρ) and ρ � K +0 }.
(ℓ,ℓ)-isogenies between maximal Jacobians correspond to
elements of the form (I ,ℓ) �C(OK ). We can use the structure of
C(OK ) to determine the number of new Jacobians we will obtain
with (ℓ,ℓ)-isogenies (⇒ Don’t compute unneeded isogenies).

Moreover, if J is a maximal Jacobian, and ℓ does not divide
(OK :Z[π,π]), then any (ℓ,ℓ)-isogenous Jacobian is maximal.

Remark

It can be faster to compute (ℓ,ℓ)-isogenies with ℓ | (OK :Z[π,π]) to find
new maximal Jacobians when ℓ and valℓ((OK :Z[π,π])) is small.
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Checking if a curve is maximal and going up

Cumbersome method: if A is in the isogeny class, compute End(A). If
this is not OK try to compute a vertical isogeny f : A→ B with
End(B )⊃ End(A). Recurse…

Intelligent method: try to go up at the same time we compute
End(A).
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Checking if a curve is maximal and going up

Cumbersome method: if A is in the isogeny class, compute End(A). If
this is not OK try to compute a vertical isogeny f : A→ B with
End(B )⊃ End(A). Recurse…

Intelligent method: try to go up at the same time we compute
End(A).

The vertical method of Freeman-Lauter:

Let P(π) be a polynomial on the Frobenius. It is easy to compute
its action on A(Fp )[n ] provided we have a basis of the n -torsion.
If this action is null, then γ= P(π)/n � K is actually an element
of End(A)

⇒ If L = P(π)
�

A(Fp )[n ]
�

̸= {0}, then L can be seen as the obstruction
to γ � End(A). We try to find isogenies such that this obstruction
decrease, and recurse.
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Checking if a curve is maximal and going up

Cumbersome method: if A is in the isogeny class, compute End(A). If
this is not OK try to compute a vertical isogeny f : A→ B with
End(B )⊃ End(A). Recurse…

Intelligent method: try to go up at the same time we compute
End(A).

The horizontal method of Bisson-Sutherland:

If I n 1
1 I n 2

2 . . . I n k

k is a relation in C(OK ), then if End(A) =OK ,
following the isogeny path corresponding to I1 (n 1 times)
followed by I2 (n 2 times)…will give a cycle in the isogeny graph;

⇒ If instead at the end of the path we find an abelian variety B
non isomorphic to A then we try to collapse the path by finding
two isogenies of the same degree f : A→ A ′ and g : B→ A ′ to the
same abelian variety. Starting from A ′ will then give us a cycle.
Recurse from here…
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Checking if a curve is maximal and going up

Cumbersome method: if A is in the isogeny class, compute End(A). If
this is not OK try to compute a vertical isogeny f : A→ B with
End(B )⊃ End(A). Recurse…

Intelligent method: try to go up at the same time we compute
End(A).

Remark

Asymptotically the horizontal method is sub-exponential while the
vertical method is exponential. In practice the horizontal method give
huge speed up even in small examples when the index [OK :Z[π,π]] is
divisible by a power.
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Some pesky details

Non maximal cycles⇒We try to reduce globally the obstruction
for all endomorphisms.
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Some pesky details

Local minimums I

3 3

3 3
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Some pesky details

Local minimums II
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Some pesky details

Polarizations

3 3 3

3

3 3 3
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Some pesky details

With the CRT primes p we are working with, there is O(p 3)
hyperelliptic curves (up to isomorphisms), O(p 3/2) curves in the
isogeny class (corresponding to K ) and only O(p 1/2) curves with
maximal endomorphism ring OK

⇒ being able to go up gains more than logarithmic factors!

Unfortunately it is not always possible to go up. We would need
more general isogenies than (ℓ,ℓ)-isogenies.

Most frequent case: we can’t go up because there is no
(ℓ,ℓ)-isogenies at all! (And we can detect this).
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Further details

We sieve the primes p (using a dynamic approach).

Estimate the number of curves where we can go up as
∑

d |[OK :Z[π,π]]

#C(Z[π,π])/d

(for [OK :Z[π,π]]/d not divisible by a ℓ where we can’t go up),
with

#C(Z[π,π]) =
c (OK : Z [π,π])# Cl(OK )Reg(OK )(bO∗K : bZ[π,π]∗)

2# Cl(Z[π+π])Reg(Z[π+π])
.

To find the denominators: do a rationnal reconstruction in K r
0

using LLL or use Brunier-Yang formulas.
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p l d αd # Curves Estimate Time (old) Time (new)

7 22 4 7 8 0.5+0.3 0+0.2
17 2 1 39 32 4+0.2 0+0.1
23 22, 7 4, 3 49 51 9+2.3 0+0.2
71 22 4 7 8 255+0.7 5.3+0.2
97 2 1 39 32 680+0.3 2+0.1

103 22, 17 4, 16 119 127 829+17.6 0.5+1
113 25, 7 16, 6 1281 877 1334+28.8 0.2+1.3
151 22, 7, 17 4, 3, 16 - - 0 0

3162s 13s

Computing the class polynomial for K =Q(i
p

2+
p

2), C(OK ) = {0}.

H1 =X −1836660096, H2 =X −28343520, H3 =X −9762768
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p l d αd # Curves Estimate Time (old) Time (new)

29 3, 23 2, 264 - - - -
53 3, 43 2, 924 - - - -
61 3 2 9 6 167+0.2 0.2+0.5
79 33 18 81 54 376+8.1 0.3+0.9

107 32, 43 6, 308 - - - -
113 3, 53 1, 52 159 155 1118+137.2 0.8+25
131 32, 53 6, 52 477 477 1872+127.4 2.2+44.4
139 35 81 ? 486 - 1+36.7
157 34 27 243 164 3147+16.5 -

6969s 114s

Computing the class polynomial for K =Q(i
p

13+2
p

29), C(OK ) = {0}.

H1 =X −268435456, H2 =X +5242880, H3 =X +2015232.
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p l d αd # Curves Estimate Time (old) Time (new)

7 - - 1 1 0.3 0+0.1
23 13 84 15 2 (16) 9+70.7 0.4+24.6
53 7 3 7 7 105+0.5 7.7+0.5
59 2, 5 1, 12 322 48 (286) 164+6.4 1.4+0.6
83 3, 5 4, 24 77 108 431+9.8 2.4+1.1

103 67 1122 - - - -
107 7, 13 3, 21 105 8 (107) 963+69.3 -
139 52, 7 60, 2 259 9 (260) 2189+62.1 -
181 3 1 161 135 5040+3.6 4.5+0.2
197 5, 109 24, 5940 - - - -
199 52 60 37 2 (39) 10440+35.1 -
223 2, 23 1, 11 1058 39 (914) 10440+35.1 -
227 109 1485 - - - -
233 5, 7, 13 8,3, 28 735 55 (770) 11580+141.6 88.3+29.4
239 7, 109 6, 297 - - - -
257 3, 7, 13 4,6, 84 1155 109 (1521) 17160+382.8 -
313 3, 13 1, 14 ? 146 (2035) - 165+14.7
373 5, 7 6, 24 ? 312 - 183.4+3.8
541 2, 7, 13 1,3, 14 ? 294 (4106) - 91+5.5
571 3, 5,7 2, 6, 6 ? 1111 (6663) - 96.6+3.1

56585s 776s

Computing the class polynomial for K =Q(i
p

29+2
p

29), C(OK ) = {0}.

H1 = 244140625X −2614061544410821165056
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A Dihedral example

K is the CM field defined by X 4+13X 2+41. OK0 =Z[α] where α is
a root of X 2−3534X +177505.
We first compute the class polynomials over Z using Spallek’s
invariants, and obtain the following polynomials in 5956
seconds:

H1 = 64X 2+14761305216X −11157710083200000

H2 = 16X 2+72590904X −8609344200000

H3 = 16X 2+28820286X −303718531500

Next we compute them over the real subfield and using Streng’s
invariants. We get in 1401 seconds:

H1 = 256X −2030994+56133α;

H2 = 128X +12637944−2224908α;

H3 = 65536X −11920680322632+1305660546324α.

Primes used: 59, 139, 241, 269, 131, 409, 541, 271, 359, 599, 661, 761.
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A pessimal view on the complexity of the CRT
method in dimension 2

The degree of the class polynomials is eO(∆1/2
0 ∆

1/2
1 ).

The size of coefficients is bounded by eO(∆5/2
0 ∆

3/2
1 ) (non optimal).

In practice, they are eO(∆1/2
0 ∆

1/2
1 ).

⇒ The size of the class polynomials is eO(∆0∆1).

We need eO(∆1/2
0 ∆

1/2
1 ) primes, and by Cebotarev the density of

primes we can use is eO(∆1/2
0 ∆

1/2
1 ) ⇒ the largest prime is

p = eO(∆0∆1).

⇒ Finding a curve in the right isogeny class will take Ω(p 3/2) so the
total complexity is Ω(∆2

0∆
2
1) ⇒ we can’t achieve quasi-linearity

even if the going-up step always succeed!

⇒ A solution would be to work over convenient subspaces of the
moduli space.
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Perspectives

In progress: Improve the search for curves in the isogeny class;

Use Ionica pairing based approach to choose horizontal kernels
in the maximal step;

Change the polarization;

Work inside Humbert surfaces;

Work with supersingular abelian varieties;

More general isogenies than (ℓ,ℓ)-isogenies.
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