Improved CRT Algorithm for class polynomials in genus 2

Kristin Lauter ${ }^{1}$, Damien Robert ${ }^{2}$

${ }^{1}$ Microsoft Research ${ }^{2}$ LFANT Team, INRIA Bordeaux Sud-Ouest

> 01/08/2012 (Microsoft Research)

Class polynomials

- If A / \mathbb{F}_{q} is an ordinary (simple) abelian variety of dimension g, $\operatorname{End}(A) \otimes \mathbb{Q}$ is a (primitive) CM field K (K is a totally imaginary quadratic extension of a totally real number field K_{0}).
- Inverse problem: given a CM field K, construct the class polynomials $H_{1}, \widehat{H}_{2} \ldots, \widehat{H}_{g(g+1) / 2}$ which parametrizes the invariants of all abelian varieties A / \mathbb{C} with $\operatorname{End}(A) \simeq O_{K}$.
- Cryptographic application: if the class polynomials are totally split modulo an ideal \mathfrak{P}, their roots in $\mathbb{F}_{\mathfrak{F}}$ gives invariants of abelian varieties $A / \mathbb{F}_{\mathfrak{P}}$ with $\operatorname{End}(A) \simeq O_{K}$. It is easy to recover $\# A\left(\mathbb{F}_{\mathfrak{P}}\right)$ given O_{K} and \mathfrak{P}.

Some technical details

- The abelian varieties are principally polarized.
- CM-types: a partition $\operatorname{Hom}(K, \mathbb{C})=\Phi \oplus \bar{\Phi}$.
- In genus 2, the CM field K of degree 4 will be either cyclic (and Galoisian) or Dihedral (and non Galoisian). The latter case appear most often, and in this case we have two CM-types.

Definition

- The class polynomials $\left(H_{\Phi, i}\right)$ parametrizes the abelian varieties with CM by $\left(O_{K}, \Phi\right)$;
- The reflex field of (K, φ) is the CM field K^{r} generated by the traces $\sum_{\varphi \in \Phi} \varphi(x), x \in K$;
- The type norm $N_{\Phi}: K \rightarrow K^{r}$ is $x \mapsto \prod_{\varphi \in \Phi} \varphi(x)$.

Class polynomials and complex multiplication

Theorem (Main theorems of complex multiplication)

- The class polynomials $\left(H_{\Phi, i}\right)$ are defined over K_{0}^{r} and generate a subfield \mathfrak{H}_{Φ} of the Hilbert class field of K^{r}.
- If A / \mathbb{C} has $C M$ by $\left(O_{K}, \Phi\right)$ and \mathfrak{P} is a prime of good reduction in \mathfrak{H}_{Φ}, then the Frobenius of $A_{\mathfrak{P}}$ corresponds to $N_{\mathfrak{H}_{\mathfrak{q}}, \Phi^{r}}(\mathfrak{P})$.
- For efficiency, we compute the class polynomials $H_{\Phi, i}$ since they give a factor of the full class polynomials H_{i}. This mean we need less precision.
- In genus 2 , this involves working over K_{0} rather than \mathbb{Q} in the Dihedral case.

Constructing class polynomials

- Analytic method: compute the invariants in \mathbb{C} with sufficient precision to recover the class polynomials.
- p-adic lifting: lift the invariants in \mathbb{Q}_{p} with sufficient precision to recover the class polynomials (require specific splitting behavior of p).
- CRT: compute the class polynomials modulo small primes, and use the CRT to reconstruct the class polynomials.

Remark

In genus 1 , all these methods are quasi-linear in the size of the output \Rightarrow computation bounded by memory. But we can construct directly the class polynomials modulo p with the explicit CRT so the CRT approach is only time dependent.

Review of the CRT algorithm in genus 2

(1) Select a CRT prime p;
(2) Find all abelian surfaces A / \mathbb{F}_{p} with CM by $\left(O_{K}, \Phi\right)$;
(3) From the invariants of the maximal abelian surfaces, reconstruct $H_{\Phi, i} \bmod p$.
Repeat until we can recover $H_{\Phi, i}$ from the $H_{\Phi, i} \bmod p$ using the CRT.

Remark

Since K is primitive, we only need to look at Jacobians of hyperelliptic curves of genus 2 .

Isogenies and endomorphism ring

- If A / \mathbb{F}_{p} is an abelian surface, the CM field $K=\operatorname{End}(A) \otimes \mathbb{Q}$ is generated by the Frobenius π;
- If $A=\operatorname{Jac}(H)$ then the characteristic polynomial χ_{π} (and therefore K) is uniquely determined by \#H and \#A;
- Tate: the isogeny class of A is given by all the other abelian surfaces with CM field K ("isogenous \Leftrightarrow same number of points");
- The CM order $\operatorname{End}(A) \subset K$ is a finer invariant which partition the isogeny class (one subset for every order O such that $\mathbb{Z}[\pi, \bar{\pi}] \subset O \subset O_{K}$ and O is stable by the complex conjugation).

Definition

Les $f: A \rightarrow B$ be an isogeny. Then we call f horizontal if $\operatorname{End}(A)=\operatorname{End}(B)$. Otherwise we call f vertical.

Selecting the prime p

Definition

A CRT prime $\mathfrak{p} \subset O_{K_{0}^{r}}$ is a prime such that all abelian varieties over \mathbb{C} with CM by $\left(O_{K}, \Phi\right)$ have good reduction modulo \mathfrak{p}.

- \mathfrak{p} is a CRT prime for the CM type Φ if and only if there exists an unramified prime \mathfrak{q} in $O_{K^{r}}$ of degree 1 above p of principal type norm (π);
- The isogeny class of the reduction of these abelian varieties $\bmod \mathfrak{p}$ is determined (up to a twist) by $\pm \pi$ where $N_{\Phi}(\mathfrak{p})=(\pi)$.

Remark

For efficiency, we work with CRT primes \mathfrak{p} that are unramified of degree one over $p=\mathfrak{p} \cap \mathbb{Z}$;
\Rightarrow the reduction to \mathbb{F}_{p} of the abelian varieties with CM by $\left(O_{K}, \Phi\right)$ will then be ordinary.

The case of elliptic curves

- Let K be an imaginary quadratic field of Discriminant Δ. Then $H_{O_{K}}$ has degree $O(\sqrt{\Delta})$ with coefficients of size $\widetilde{O}(\sqrt{\Delta})$;
- The CRT step will use $\widetilde{O}(\sqrt{\Delta})$ primes p of size $\widetilde{O}(\Delta)$;
- For each CRT prime p there is $O(p)$ isomorphic classes of elliptic curves, $O(\sqrt{p})$ curves inside the isogeny class corresponding to K and $O(\sqrt{p})$ curves with $\operatorname{End}(E)=O_{K}$;
\Rightarrow Finding a maximal curve takes time $O(\sqrt{\bar{p}})$.
- Once a maximal curve is found, compute all the others using horizontal isogenies (very fast);
\Rightarrow Finding all maximal curves take time $\widetilde{O}(\sqrt{p})$, for a total complexity of $\widetilde{O}(\Delta)$.

Vertical isogenies with elliptic curves

Remark

It is easier to find a curve in the isogeny class rather than in the subset of maximal curves. One can use vertical isogenies to go from such a curve to a maximal curve;
\Rightarrow This approach gain some logarithmic factors and yields huge practical improvements!

Vertical isogenies with elliptic curves

Adapting these ideas to the genus 2 case

- Select a CRT prime p;
(2) Select random Jacobians until finding one in the right isogeny class;
(3) Try to go up using vertical isogenies to find a Jacobian with CM by O_{K};
(9) Use horizontal isogenies to find all other Jacobians with CM by O_{K};
(3) From the invariants of the maximal abelian surfaces, reconstruct $H_{\Phi, i} \bmod p$.

Obtaining all the maximal Jacobians: the horizontal isogenies

- The maximal Jacobians form a principal homogeneous space under the Shimura class group $\mathfrak{C}\left(O_{K}\right)=\left\{(I, \rho) \mid I \bar{I}=(\rho)\right.$ and $\left.\rho \in K_{0}^{+}\right\}$.
- (ℓ, ℓ)-isogenies between maximal Jacobians correspond to elements of the form $(I, \ell) \in \mathfrak{C}\left(O_{K}\right)$. We can use the structure of $\mathfrak{C}\left(O_{K}\right)$ to determine the number of new Jacobians we will obtain with (ℓ, ℓ)-isogenies (\Rightarrow Don't compute unneeded isogenies).
- Moreover, if J is a maximal Jacobian, and ℓ does not divide ($O_{K}: \mathbb{Z}[\pi, \bar{\pi}]$), then any (ℓ, ℓ)-isogenous Jacobian is maximal.

Remark

It can be faster to compute (ℓ, ℓ)-isogenies with $\ell \mid\left(O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right)$ to find new maximal Jacobians when ℓ and $\operatorname{val}_{\ell}\left(\left(O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right)\right)$ is small.

Checking if a curve is maximal and going up

Cumbersome method: if A is in the isogeny class, compute $\operatorname{End}(A)$. If this is not O_{K} try to compute a vertical isogeny $f: A \rightarrow B$ with $\operatorname{End}(B) \supset \operatorname{End}(A)$. Recurse...

Intelligent method: try to go up at the same time we compute $\operatorname{End}(A)$.

Checking if a curve is maximal and going up

Cumbersome method: if A is in the isogeny class, compute $\operatorname{End}(A)$. If this is not O_{K} try to compute a vertical isogeny $f: A \rightarrow B$ with $\operatorname{End}(B) \supset \operatorname{End}(A)$. Recurse...

Intelligent method: try to go up at the same time we compute $\operatorname{End}(A)$.

The vertical method of Freeman-Lauter:

- Let $P(\pi)$ be a polynomial on the Frobenius. It is easy to compute its action on $A\left(\mathbb{F}_{p}\right)[n]$ provided we have a basis of the n-torsion. If this action is null, then $\gamma=P(\pi) / n \in K$ is actually an element of $\operatorname{End}(A)$
\Rightarrow If $L=P(\pi)\left(A\left(\mathbb{F}_{p}\right)[n]\right) \neq\{0\}$, then L can be seen as the obstruction to $\gamma \in \operatorname{End}(A)$. We try to find isogenies such that this obstruction decrease, and recurse.

Checking if a curve is maximal and going up

Cumbersome method: if A is in the isogeny class, compute $\operatorname{End}(A)$. If this is not O_{K} try to compute a vertical isogeny $f: A \rightarrow B$ with $\operatorname{End}(B) \supset \operatorname{End}(A)$. Recurse...

Intelligent method: try to go up at the same time we compute $\operatorname{End}(A)$.

The horizontal method of Bisson-Sutherland:

- If $I_{1}^{n_{1}} I_{2}^{n_{2}} \ldots I_{k}^{n_{k}}$ is a relation in $\mathfrak{C}\left(O_{K}\right)$, then if $\operatorname{End}(A)=O_{K}$, following the isogeny path corresponding to I_{1} (n_{1} times) followed by I_{2} (n_{2} times)...will give a cycle in the isogeny graph;
\Rightarrow If instead at the end of the path we find an abelian variety B non isomorphic to A then we try to collapse the path by finding two isogenies of the same degree $f: A \rightarrow A^{\prime}$ and $g: B \rightarrow A^{\prime}$ to the same abelian variety. Starting from A^{\prime} will then give us a cycle. Recurse from here...

Checking if a curve is maximal and going up

Cumbersome method: if A is in the isogeny class, compute $\operatorname{End}(A)$. If this is not O_{K} try to compute a vertical isogeny $f: A \rightarrow B$ with $\operatorname{End}(B) \supset \operatorname{End}(A)$. Recurse...

Intelligent method: try to go up at the same time we compute End (A).

Remark

Asymptotically the horizontal method is sub-exponential while the vertical method is exponential. In practice the horizontal method give huge speed up even in small examples when the index $\left[O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right]$ is divisible by a power.

Some pesky details

Non maximal cycles \Rightarrow We try to reduce globally the obstruction for all endomorphisms.

Some pesky details

Local minimums I

Some pesky details

Local minimums II

Some pesky details

Polarizations

Some pesky details

- With the CRT primes p we are working with, there is $O\left(p^{3}\right)$ hyperelliptic curves (up to isomorphisms), $O\left(p^{3 / 2}\right)$ curves in the isogeny class (corresponding to K) and only $O\left(p^{1 / 2}\right)$ curves with maximal endomorphism ring O_{K}
\Rightarrow being able to go up gains more than logarithmic factors!
- Unfortunately it is not always possible to go up. We would need more general isogenies than (ℓ, ℓ)-isogenies.
- Most frequent case: we can't go up because there is no (ℓ, ℓ)-isogenies at all! (And we can detect this).

Further details

- We sieve the primes p (using a dynamic approach).
- Estimate the number of curves where we can go up as

$$
\sum_{d \mid\left[O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right]} \# \mathbb{C}(\mathbb{Z}[\pi, \bar{\pi}]) / d
$$

(for $\left[O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right] / d$ not divisible by a ℓ where we can't go up), with

$$
\# \mathfrak{C}(\mathbb{Z}[\pi, \bar{\pi}])=\frac{c\left(O_{K}: Z[\pi, \bar{\pi}]\right) \# \mathrm{Cl}\left(O_{K}\right) \operatorname{Reg}\left(O_{K}\right)\left(\widehat{O}_{K}^{*}: \widehat{\mathbb{Z}}[\pi, \bar{\pi}]^{*}\right)}{2 \# \mathrm{Cl}(\mathbb{Z}[\pi+\bar{\pi}]) \operatorname{Reg}(\mathbb{Z}[\pi+\bar{\pi}])}
$$

- To find the denominators: do a rationnal reconstruction in K_{0}^{r} using LLL or use Brunier-Yang formulas.

p	l^{d}	α_{d}	\# Curves	Estimate	Time (old)	Time (new)
7	2^{2}	4	7	8	$0.5+0.3$	$0+0.2$
17	2	1	39	32	$4+0.2$	$0+0.1$
23	$2^{2}, 7$	4,3	49	51	$9+2.3$	$0+0.2$
71	2^{2}	4	7	8	$255+0.7$	$5.3+0.2$
97	2	1	39	32	$680+0.3$	$2+0.1$
103	$2^{2}, 17$	4,16	119	127	$829+17.6$	$0.5+1$
113	$2^{5}, 7$	16,6	1281	877	$1334+28.8$	$0.2+1.3$
151	$2^{2}, 7,17$	$4,3,16$	-	-	0	0
					$3162 s$	$13 s$

Computing the class polynomial for $K=\mathbb{Q}(i \sqrt{2+\sqrt{2}}), \mathfrak{C}\left(O_{K}\right)=\{0\}$.
$H_{1}=X-1836660096, \quad H_{2}=X-28343520, \quad H_{3}=X-9762768$

p	l^{d}	α_{d}	\# Curves	Estimate	Time (old)	Time (new)
29	3,23	2,264	-	-	-	-
53	3,43	2,924	-	-	-	-
61	3	2	9	6	$167+0.2$	$0.2+0.5$
79	3^{3}	18	81	54	$376+8.1$	$0.3+0.9$
107	$3^{2}, 43$	6,308	-	-	-	-
113	3,53	1,52	159	155	$1118+137.2$	$0.8+25$
131	$3^{2}, 53$	6,52	477	477	$1872+127.4$	$2.2+44.4$
139	3^{5}	81	$?$	486	-	$1+36.7$
157	3^{4}	27	243	164	$3147+16.5$	-

Computing the class polynomial for $K=\mathbb{Q}(i \sqrt{13+2 \sqrt{29}}), \mathfrak{C}\left(O_{K}\right)=\{0\}$.

$$
H_{1}=X-268435456, \quad H_{2}=X+5242880, \quad H_{3}=X+2015232
$$

p	l^{d}	α_{d}	\# Curves	Estimate	Time (old)	Time (new)
7	-	-	1	1	0.3	$0+0.1$
23	$\mathbf{1 3}$	84	15	$2(16)$	$9+70.7$	$0.4+24.6$
53	7	3	7	7	$105+0.5$	$7.7+0.5$
59	$2, \mathbf{5}$	1,12	322	$48(286)$	$164+6.4$	$1.4+0.6$
83	3,5	4,24	77	108	$431+9.8$	$2.4+1.1$
103	67	1122	-	-	-	-
107	$7, \mathbf{1 3}$	3,21	105	$8(107)$	$963+69.3$	-
139	$\mathbf{5}^{2}, 7$	60,2	259	$9(260)$	$2189+62.1$	-
181	3	1	161	135	$5040+3.6$	$4.5+0.2$
197	5,109	24,5940	-	-	-	-
199	$\mathbf{5}^{2}$	60	37	$2(39)$	$10440+35.1$	-
223	2,23	1,11	1058	$39(914)$	$10440+35.1$	-
227	109	1485	-	-	-	-
233	$5,7,13$	$8,3,28$	735	$55(770)$	$11580+141.6$	$88.3+29.4$
239	7,109	6,297	-	-	-	-
257	$3,7,13$	$4,6,84$	1155	$109(1521)$	$17160+382.8$	-
313	$3, \mathbf{1 3}$	1,14	$?$	$146(2035)$	-	$165+14.7$
373	5,7	6,24	$?$	312	-	$183.4+3.8$
541	$2,7,13$	$1,3,14$	$?$	$294(4106)$	-	$91+5.5$
571	$3,5,7$	$2,6,6$	$?$	$1111(6663)$	-	$96.6+3.1$
					56585 s	776 s

Computing the class polynomial for $K=\mathbb{Q}(i \sqrt{29+2 \sqrt{29}}), \mathfrak{C}\left(O_{K}\right)=\{0\}$.

$$
H_{1}=244140625 X-2614061544410821165056
$$

A Dihedral example

- K is the CM field defined by $X^{4}+13 X^{2}+41 . O_{K_{0}}=\mathbb{Z}[\alpha]$ where α is a root of $X^{2}-3534 X+177505$.
- We first compute the class polynomials over \mathbb{Z} using Spallek's invariants, and obtain the following polynomials in 5956 seconds:

$$
\begin{gathered}
H_{1}=64 X^{2}+14761305216 X-11157710083200000 \\
H_{2}=16 X^{2}+72590904 X-8609344200000 \\
H_{3}=16 X^{2}+28820286 X-303718531500
\end{gathered}
$$

- Next we compute them over the real subfield and using Streng's invariants. We get in 1401 seconds:

$$
\begin{gathered}
H_{1}=256 X-2030994+56133 \alpha \\
H_{2}=128 X+12637944-2224908 \alpha \\
H_{3}=65536 X-11920680322632+1305660546324 \alpha
\end{gathered}
$$

- Primes used: 59, 139, 241, 269, 131, 409, 541, 271, 359, 599, 661, 761.

A pessimal view on the complexity of the CRT method in dimension 2

- The degree of the class polynomials is $\widetilde{O}\left(\Delta_{0}^{1 / 2} \Delta_{1}^{1 / 2}\right)$.
- The size of coefficients is bounded by $\widetilde{O}\left(\Delta_{0}^{5 / 2} \Delta_{1}^{3 / 2}\right)$ (non optimal). In practice, they are $\widetilde{O}\left(\Delta_{0}^{1 / 2} \Delta_{1}^{1 / 2}\right)$.
\Rightarrow The size of the class polynomials is $\widetilde{O}\left(\Delta_{0} \Delta_{1}\right)$.
- We need $\widetilde{O}\left(\Delta_{0}^{1 / 2} \Delta_{1}^{1 / 2}\right)$ primes, and by Cebotarev the density of primes we can use is $\widetilde{O}\left(\Delta_{0}^{1 / 2} \Delta_{1}^{1 / 2}\right) \Rightarrow$ the largest prime is $p=\widetilde{O}\left(\Delta_{0} \Delta_{1}\right)$.
\Rightarrow Finding a curve in the right isogeny class will take $\Omega\left(p^{3 / 2}\right)$ so the total complexity is $\Omega\left(\Delta_{0}^{2} \Delta_{1}^{2}\right) \Rightarrow$ we can't achieve quasi-linearity even if the going-up step always succeed!
\Rightarrow A solution would be to work over convenient subspaces of the moduli space.

Perspectives

- In progress: Improve the search for curves in the isogeny class;
- Use lonica pairing based approach to choose horizontal kernels in the maximal step;
- Change the polarization;
- Work inside Humbert surfaces;
- Work with supersingular abelian varieties;
- More general isogenies than (ℓ, ℓ)-isogenies.

