About the CRT method to compute class polynomials in dimension 2 Séminaire LFANT

Kristin Lauter¹, Damien Robert²

¹Microsoft Research ²LFANT Team, IMB & INRIA Bordeaux Sud-Ouest

10/05/2012 (Bordeaux)

▲ロト ▲圖ト ▲画ト ▲画ト 三国 - のへで

Examples

Complexity analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Motivation

Abelian varieties and cryptography

If A/\mathbb{F}_q is a "generic" abelian variety of small dimension g, then the DLP on $A(\mathbb{F}_q)$ is thought to be hard if $\#A(\mathbb{F}_q)$ is divisible by a large prime.

- Take random abelian varieties and count the number of points (a bit too slow when *g* = 2);
- Generate abelian varieties with a prescribed number of points (⇒ paring based cryptography).

Class polynomials

- If A/\mathbb{F}_q is an ordinary (simple) abelian variety of dimension g, End $(A) \otimes \mathbb{Q}$ is a (primitive) CM field K (K is a totally imaginary quadratic extension of a totally real number field K_0).
- The class polynomials $H_1, \hat{H}_2, \dots, \hat{H}_{g(g+1)/2}$ parametrizes the invariants of all abelian varieties A/\mathbb{C} with $\text{End}(A) \simeq O_K$.
- If the class polynomials are totally split modulo \mathfrak{P} , their roots in $\mathbb{F}_{\mathfrak{P}}$ gives invariants of abelian varieties $A/\mathbb{F}_{\mathfrak{P}}$ with $\operatorname{End}(A) \simeq O_K$. It is easy to recover $\#A(\mathbb{F}_{\mathfrak{P}})$ given O_K and \mathfrak{P} .

Some technical details

- The abelian varieties are principally polarized.
- A CM type Φ is a choice of an extension to *K* for each of the embedding $K_0 \rightarrow \mathbb{R}$. We have

$$\operatorname{Hom}(K,\mathbb{C}) = \Phi \oplus \overline{\Phi}.$$

Example: If *K* is a (primitive) CM field of degree 4, then either *K* is cyclic and there is one class of CM type, or *K* is dihedral and there is two class of CM types.

- If A is an abelian variety with CM by K, the representation $K \rightarrow \text{End } T_0 A$ is given by a CM type Φ .
- The isogeny class of complex abelian varieties with CM by K is determined by the class of Φ .
- The reflex field of (K, φ) is the CM field K^r generated by the traces $\sum_{\varphi \in \Phi} \varphi(x), x \in K$.
- The type norm $N_{\Phi}: K \to K^r$ is $x \mapsto \prod_{\varphi \in \Phi} \varphi(x)$.

Definition

The class polynomials $(H_{\Phi})_i$) parametrizes the abelian varieties with CM by (O_K, Φ) Class polynomials and complex multiplication

Theorem (Main theorems of complex multiplication)

- The class polynomials $(H_{\Phi})_i$ are defined over K_0 and generate a subfield \mathfrak{H}_{Φ} of the Hilbert class field of K^r .
- If A/C has CM by (O_K, Φ) and 𝔅 is a prime of good reduction in 𝔅_Φ, then the Frobenius of A_𝔅 corresponds to N_{𝔅φ,Φ^r}(𝔅).

If $g \leq 2$, the CM types are in the same orbits under the absolute Galois action, and the class polynomials $H_i = \prod_{\Phi} (H_{\Phi})_i$ are rationals (and even integrals when g = 1).

- For efficiency, we compute the class polynomials H_{Φ} since they give a factor of the full class polynomials *H*. This mean we need less precision.
- In genus 2, this involves working over K_0 rather than \mathbb{Q} in the Dihedral case.

Constructing class polynomials

- Analytic method: compute the invariants in $\mathbb C$ with sufficient precision to recover the class polynomials.
- *p*-adic lifting: lift the invariants in \mathbb{Q}_p with sufficient precision to recover the class polynomials (require specific splitting behavior of *p*).
- CRT: compute the class polynomials modulo small primes, and use the CRT to reconstruct the class polynomials.

Remark

In genus 1, all these methods are quasi-linear in the size of the output \Rightarrow computation bounded by memory. But we can construct directly the class polynomials modulo p with the explicit CRT.

Review of the CRT algorithm in genus 2

- 1. Select a CRT prime *p*.
- 2. For each abelian surface A in the $O(p^3)$ isomorphic classes:
 - 2.1 Check if *A* is in the right isogeny class by computing the characteristic polynomial of the Frobenius (do some trial tests to check for #*A* before).
 - 2.2 Check if $End(A) = O_K$.
- 3. From the invariants of the maximal curves, reconstruct $(H_{\Phi})_i \mod p$.

Repeat until we can recover $(H_{\Phi})_i$ from the $(H_{\Phi})_i \mod p$ using the CRT.

Remark

Since K is primitive, we only need to look at Jacobians of hyperelliptic curves of genus 2.

Selecting the prime *p*

Definition

A CRT prime $\mathfrak{p} \subset O_{K_0^r}$ is a prime such that all abelian varieties over \mathbb{C} with CM by (O_K, Φ) have good reduction modulo \mathfrak{p} .

- p is a CRT prime for the CM type Φ if and only if there exists an unramified prime q in O_{K^r} of degree 1 above p of principal type norm (π)
- The isogeny class of the reduction of these abelian varieties mod p is determined (up to a twist) by ±π where N_Φ(p)=(π).
- For efficiency, we work with CRT primes \mathfrak{p} that are unramified of degree one over $p = \mathfrak{p} \cap \mathbb{Z}$.
- ⇒ the reduction to \mathbb{F}_p of the abelian varieties with CM by (O_K, Φ) will then be ordinary.

Working with both CM types in the Dihedral case

Let Φ_1 and Φ_2 be the two CM types.

- If p splits as p_1p_2 in K_0^r , then for p to be a CRT prime for both CM types, we need p_1 and p_2 to be CRT primes.
- ⇒ We have less prime to work with, and less possibilities to sieve. Whereas when only dealing with one CM type, we can even choose the best prime among p_1 and p_2 .

Remark

The reductions of the abelian varieties with CM by Φ_2 modulo \mathfrak{p}_1 are isomorphics to the reductions of the abelian varieties with CM by Φ_1 modulo \mathfrak{p}_2 .

Checking if a curve is maximal

- Let *J* be the Jacobian of a curve in the right isogeny class. Then $\mathbb{Z}[\pi,\overline{\pi}] \subset \operatorname{End}(J) \subset O_K$.
- Let $\gamma \in O_K \setminus \mathbb{Z}[\pi, \overline{\pi}]$. We want to check if $\gamma \in \text{End}(J)$.
- If p > 3 then $(O_K : \mathbb{Z}[\pi, \overline{\pi}])$ is prime to p. We then have $\gamma \in \text{End}(J) \iff p\gamma \in \text{End}(J)$.
- Let *n* be the smallest integer thus that $n\gamma \in \mathbb{Z}[\pi,\overline{\pi}]$. Since $(\mathbb{Z}[\pi,\overline{\pi}]:\mathbb{Z}[\pi]) = p$, we can write $np\gamma = P(\pi)$.
- Then $\gamma \in \text{End}(J) \Leftrightarrow P(\pi) = 0$ on J[n].
- In practice (Freeman-Lauter): compute $J[\ell^d]$ for $\ell^d | (O_K : \mathbb{Z}[\pi, \overline{\pi}])$ and check the action of the generators of O_K on it.

Remark

If $1, \alpha, \beta, \gamma$ are generators of O_K as a \mathbb{Z} -module, it can happen that $\gamma = P(\alpha, \beta)$, so that we don't need to check that $\gamma \in \text{End}(J)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example 1: Checking if a curve is maximal

- Let $H: y^2 = 10x^6 + 57x^5 + 18x^4 + 11x^3 + 38x^2 + 12x + 31$ over \mathbb{F}_{59} and *J* the Jacobian of *H*. We have $\operatorname{End}(J) \otimes \mathbb{Q} = \mathbb{Q}(i\sqrt{29+2\sqrt{29}})$ and we want to check if $\operatorname{End}(J) = O_K$.
- O_K is generated as a \mathbb{Z} -module by $1, \alpha, \beta, \gamma$. α is of index 2 in $O_K/\mathbb{Z}[\pi, \overline{\pi}], \beta$ of index 4 and γ of index 40.
- So the old algorithm will check $J[2^3]$ and J[5].
- But $(O_K)_2 = \mathbb{Z}_2[\pi, \overline{\pi}, \alpha]$, so we only need to check J[2] and J[5].

Field of definition of the ℓ^d -torsion

Proposition

- The geometric points of $J[\ell^d]$ are defined over $\mathbb{F}_{p^{\alpha_d}} \Leftrightarrow \pi^{\alpha_d} 1 \in \ell^d \operatorname{End}(J)$.
- $\alpha_d \mid \alpha_1 \ell^{d-1}$. If $\operatorname{End}(J) = O_K$ this is an equality: $\alpha_d = \alpha_1 \ell^{d-1}$.

Corollary

Let α be thus that $\pi^{\alpha} - 1 \in \ell O_K$. We first check that $(\pi^{\alpha} - 1)/\ell$ is an element of End(*J*) ($\Leftrightarrow J[\ell]$ defined over $\mathbb{F}_{p^{\alpha}}$). Then $J[\ell^d]$ is defined over $\mathbb{F}_{p^{\alpha t^{d-1}}}$.

Remark

It may happen that we get a factor two on the degrees by working over the twist: that is by working with $-\pi$.

Computing the ℓ^d -torsion

- We compute $\#J(\mathbb{F}_{p^{\alpha}}) = \ell^{\beta} c$ (where α is the degree of definition of the ℓ^{d} -torsion).
- If P_0 is a random point of $J(\mathbb{F}_{p^{\alpha}})$, then $P = cP_0$ is a random point of ℓ^{∞} -torsion, and P multiplied by a suitable power of ℓ is a random point of ℓ^d -torsion.
- Usual method (Freeman-Lauter): take a lot of random points of ℓ^d -torsion, and hope they generate it over $\mathbb{F}_{p^{\alpha}}$.
- Problems: the random points of ℓ^d -torsion are not uniform \Rightarrow require a lot of random points, and the result is probabilistic.
- Our solution: Compute the whole ℓ[∞]-torsion. "Correct" points to find uniform points of ℓ^d-torsion. Use pairings to save memory.
- \Rightarrow We can check if a curve is maximal faster.
- \Rightarrow We can abort early.

Example 2: checking if a curve is maximal

- Let $H: y^2 = 80x^6 + 51x^5 + 49x^4 + 3x^3 + 34x^2 + 40x + 12$ over \mathbb{F}_{139} and *J* the Jacobian of *H*. We have $\text{End}(J) \otimes \mathbb{Q} = \mathbb{Q}(i\sqrt{13 + 2\sqrt{29}})$ and we want to check if $\text{End}(J) = O_K$.
- For that we need to compute *J*[3⁵], that lives over an extension of degree 81 (for the twist it lives over an extension of degree 162).
- With the old randomized algorithm, this computation takes 470 seconds (with 12 Frobenius trials over $\mathbb{F}_{139^{162}}$).
- With the new algorithm computing the ℓ^{∞} -torsion, it only takes 17.3 seconds (needing only 4 random points over $\mathbb{F}_{139^{61}}$, approx 4 seconds needed to get a new random point of ℓ^{∞} -torsion).

Obtaining all the maximal curves

- If *J* is a maximal curve, and *ℓ* does not divide (*O_K* : ℤ[π, π̄]), then any (ℓ, ℓ)-isogenous curve is maximal.
- The maximal Jacobians form a principal homogeneous space under the Shimura class group $\mathfrak{C}(O_K) = \{(I, \rho) | I\overline{I} = (\rho) \text{ and } \rho \in K_0^+\}.$
- (ℓ, ℓ) -isogenies between maximal Jacobians correspond to element of the form $(I, \ell) \in \mathfrak{C}(O_K)$. We can use the structure of $\mathfrak{C}(O_K)$ to determine the number of new curves we will obtain with (ℓ, ℓ) -isogenies.
 - \Rightarrow Don't compute unneeded isogenies.
- It can be faster to compute (ℓ, ℓ) -isogenies with $\ell \mid (O_K : \mathbb{Z}[\pi, \overline{\pi}])$ to find new maximal Jacobians when ℓ and $\operatorname{val}_{\ell}((O_K : \mathbb{Z}[\pi, \overline{\pi}]))$ is small.

"Going up"

- There is p^3 classes of isomorphic curves, but only a very small number ($\#\mathfrak{C}(O_K)$) with $\operatorname{End}(J) = O_K$.
- But there is at most $16p^{3/2}$ isogeny class.
- \Rightarrow On average, there is $\approx p^{3/2}$ curves in a given isogeny class.
- ⇒ If we have a curve in the right isogeny class, try to find isogenies giving a maximal curve!

An algorithm for "going up"

- 1. Let $\gamma \in O_K \setminus \text{End}(J)$. We can assume that $\ell^{\infty} \gamma \in \mathbb{Z}[\pi, \overline{\pi}]$.
- 2. Let *d* be the smallest integer such that $\gamma(J[\ell^d]) \neq \{0\}$, and let $K = \gamma(J[\ell^d])$. By definition, $K \subset J[\ell]$.
- We compute all (ℓ, ℓ)-isogeneous Jacobians J' where the kernel intersect K. Keep J' if #γ(J'[ℓ^d]) < #K (and be careful to prevent cycles).
- First go up for $\gamma = (\pi^{\alpha} 1)/\ell$: this minimize the extensions we have to work with.

Some pesky details

Non maximal cycles \Rightarrow We try to reduce globally the obstruction for

all endomorphisms.

Complexity analysis

Some pesky details

э

Examples

Complexity analysis

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つくぐ

Some pesky details

- It is not always possible to go up. We would need more general isogenies than (ℓ, ℓ) -isogenies.
- Most frequent case: we can't go up because there is no (ℓ, ℓ) -isogenies at all! (And we can detect this).

Complexity analysis

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つくぐ

The modified CRT algorithm

- 1. Select a prime *p*.
- 2. Select a random Jacobian until it is in the right isogeny class.
- 3. Go up to find a Jacobian with CM by O_K (if it fails, go back to last step).
- 4. Use isogenies to find all other Jacobians with CM by O_K .
- 5. From the invariants of the maximal abelian surfaces, reconstruct $H_i \mod p$.

Sieving the primes

- We throw a prime *p* for the CRT if detecting if a curve is maximal is too costly, or there is not enough curves where we can "go up".
- How to estimate this number?
 - Compute the lattice of orders between Z[π, π] and O_K. For all such order O such that (O_K : O) is not divisible by any ℓ where there is no (ℓ, ℓ)-isogeny, compute 𝔅(O).

This is too costly! (Even computing $Pic(\mathbb{Z}[\pi,\overline{\pi}])$ is too costly!)

2. Compute

$$#\mathfrak{C}(\mathbb{Z}[\pi,\overline{\pi}]) = \frac{c(O_K : \mathbb{Z}[\pi,\overline{\pi}]) \# \operatorname{Cl}(O_K) \operatorname{Reg}(O_K)(\widehat{O}_K^* : \widehat{\mathbb{Z}}[\pi,\overline{\pi}]^*)}{2 \# \operatorname{Cl}(\mathbb{Z}[\pi+\overline{\pi}]) \operatorname{Reg}(\mathbb{Z}[\pi+\overline{\pi}])}$$

and estimate the number of curves as

$$\sum_{d \mid \#\mathfrak{C}(\mathbb{Z}[\pi,\overline{\pi}])} d$$

(for *d* not divisible by a ℓ where we can't go up).

• We use a dynamic approach: if a prime discarded earlier is now better than the current prime, go back to this prime.

Exploring the curves

- 1. Go sequentially through the p^3 Igusa invariants j_1, j_2, j_3 . But constructing the curve from the invariants is costly.
- 2. Construct random curves in Weierstrass form

$$y^2 = a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0.$$

3. If the two torsion is rational (check where $\frac{\pi-1}{2}$ live), construct curves in Rosenhain form

$$y^{2} = x(x-1)(x-\lambda)(x-\mu)(x-\nu).$$

4. If the Hilbert moduli space is rational, construct the *j*-invariants from the Gundlach invariants (only p^2 invariants, parametrizing the space of curves with real multiplication by K_0).

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q (~

Finding the denominators

- Use Brunier-Yang formulas to get a multiple of the denominator.
- Do a rationnal reconstruction in K_0^r using LLL.
- Since the Brunier-Yang formula give the denominator for both CM types, both methods are roughly the same.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

р	l^d	$lpha_d$	# Curves	Estimate	Time (old)	Time (new)
7	2^{2}	4	7	8	0.5 + 0.3	0+0.2
17	2	1	39	32	4 + 0.2	0 + 0.1
23	2 ² ,7	4,3	49	51	9 + 2.3	0 + 0.2
71	2^{2}	4	7	8	255 + 0.7	5.3 + 0.2
97	2	1	39	32	680 + 0.3	2 + 0.1
103	$2^2, 17$	4,16	119	127	829 + 17.6	0.5 + 1
113	2 ⁵ ,7	16,6	1281	877	1334 + 28.8	0.2 + 1.3
151	$2^2, 7, 17$	4,3,16	-	-	0	0
					3162 <i>s</i>	13s

Computing the class polynomial for $K = \mathbb{Q}(i\sqrt{2+\sqrt{2}}), \mathfrak{C}(O_K) = \{0\}.$

 $H_1 = X - 1836660096$, $H_2 = X - 28343520$, $H_3 = X - 9762768$

р	l^d	α_d	# Curves	Estimate	Time (old)	Time (new)
29	3,23	2,264	-	-	-	-
53	3,43	2,924	-	-	-	-
61	3	2	9	6	167 + 0.2	0.2 + 0.5
79	3 ³	18	81	54	376 + 8.1	0.3 + 0.9
107	$3^2, 43$	6,308	-	-	-	-
113	3,53	1,52	159	155	1118 + 137.2	0.8 + 25
131	3 ² ,53	6,52	477	477	1872 + 127.4	2.2 + 44.4
139	3^{5}	81	?	486	-	1 + 36.7
157	3^{4}	27	243	164	3147 + 16.5	-
					6969 <i>s</i>	114s

Computing the class polynomial for $K = \mathbb{Q}(i\sqrt{13+2\sqrt{29}}), \mathfrak{C}(O_K) = \{0\}.$

 $H_1 = X - 268435456$, $H_2 = X + 5242880$, $H_3 = X + 2015232$.

Class polynomials

Speeding up the CRT

Examples

Complexity analysi

р	l ^d	α_d	# Curves	Estimate	Time (old)	Time (new)
7	-	-	1	1	0.3	0 + 0.1
23	13	84	15	2 (16)	9 + 70.7	0.4 + 24.6
53	7	3	7	7	105 + 0.5	7.7 + 0.5
59	2,5	1,12	322	48 (286)	164 + 6.4	1.4 + 0.6
83	3,5	4,24	77	108	431 + 9.8	2.4 + 1.1
103	67	1122	-	-	-	-
107	7, 13	3,21	105	8 (107)	963 + 69.3	-
139	5 ² , 7	60,2	259	9 (260)	2189 + 62.1	-
181	3	1	161	135	5040 + 3.6	4.5 + 0.2
197	5,109	24,5940	-	-	-	-
199	5 ²	60	37	2 (39)	10440 + 35.1	-
223	2,23	1,11	1058	39 (914)	10440 + 35.1	-
227	109	1485	-	-	-	-
233	5, 7, 13	8,3,28	735	55 (770)	11580 + 141.6	88.3 + 29.4
239	7,109	6,297	-	-	-	-
257	3, 7, 13	4,6,84	1155	109 (1521)	17160 + 382.8	-
313	3, 13	1,14	?	146 (2035)	-	165 + 14.7
373	5,7	6,24	?	312	-	183.4 + 3.8
541	2, 7, 13	1,3,14	?	294 (4106)	-	91 + 5.5
571	3, 5 , 7	2,6,6	?	1111 (6663)	-	96.6 + 3.1
					56585s	776s

Computing the class polynomial for $K = \mathbb{Q}(i\sqrt{29+2\sqrt{29}}), \mathfrak{C}(O_K) = \{0\}.$

$H_1 = 244140625X - 2614061544410821165056$

A Dihedral example

- *K* is the CM field defined by $X^4 + 13X^2 + 41$. $O_{K_0} = \mathbb{Z}[\alpha]$ where α is a root of $X^2 3534X + 177505$.
- We first compute the class polynomials over ℤ using Spallek's invariants, and obtain the following polynomials in 5956 seconds:

$$\begin{split} H_1 = & 64X^2 + 14761305216X - 11157710083200000 \\ H_2 = & 16X^2 + 72590904X - 8609344200000 \\ H_3 = & 16X^2 + 28820286X - 303718531500 \end{split}$$

• Next we compute them over the real subfield and using Streng's invariants. We get in 1401 seconds:

 $H_1 = 256X - 2030994 + 56133\alpha;$

 $H_2 = 128X + 12637944 - 2224908\alpha;$

 $H_3 = 65536X - 11920680322632 + 1305660546324\alpha.$

• Primes used: 59, 139, 241, 269, 131, 409, 541, 271, 359, 599, 661, 761.

Complexity coming from isogenies Let $\Delta_0 = \Delta_{K_0/\mathbb{Q}}$ and $\Delta_1 = N_{K_0/\mathbb{Q}}(\Delta_{K/K_0}$ so that $\Delta = \Delta_1 \Delta_0^2$.

- The complexity of the going-up step and checking the endomorphism ring is polynomial in the highest prime power dividing the index. For the CRT prime we are using the index is a polynomial in Δ . There is a positive density of prime where the largest prime dividing the index is $O(\Delta^{\varepsilon})$ so we can neglect the corresponding cost in the complexity analysis.
- We need horizontal isogenies of small degrees to generate all maximal curves from one. In practice this was always the case (elements of norm polylogarithmic in Δ generates the Shimura class groups).
- At worst, we know that the class group of K^r is generated by totally split primes of norm polylogarithmic in Δ . The typenorm of these elements will yield horizontal isogenies of small degrees.
- The cofactor $\mathfrak{C}/N_{\Phi}(\operatorname{Cl}(K^r)$ is bounded by $2^{6w(\Delta)+1}$, where $w(\Delta)$ is the number of divisors of Δ . Outside a zero density of very smooth numbers, $w(\Delta) < 2\log\log\Delta$ so we can absorb the factor in the \widetilde{O} notation.

A pessimal view on the complexity of the CRT method in dimension 2

- The degree of the class polynomials is $\widetilde{O}(\Delta_0^{1/2}\Delta_1^{1/2})$.
- The size of coefficients is bounded by $\widetilde{O}(\Delta_0^{5/2}\Delta_1^{3/2})$ (non optimal). In practice, they are $\widetilde{O}(\Delta_0^{1/2}\Delta_1^{1/2})$.
- \Rightarrow The size of the class polynomials is $\widetilde{O}(\Delta_0 \Delta_1)$.
 - We need $\widetilde{O}(\Delta_0^{1/2}\Delta_1^{1/2})$ primes, and by Cebotarev the density of primes we can use is $\widetilde{O}(\Delta_0^{1/2}\Delta_1^{1/2}) \Rightarrow$ the largest prime is $p = \widetilde{O}(\Delta_0\Delta_1)$.
- ⇒ Finding a curve in the right isogeny class will take $\Omega(p^{3/2})$ so the total complexity is $\Omega(\Delta_0^2 \Delta_1^2)$ ⇒ we can't achieve quasi-linearity even if the going-up step always succeed!
- ⇒ A solution would be to work over convenient subspaces of the moduli space.

Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Perspectives

- 6 seconds for 10000 curves is way too slow! Implement this part with pari!
- · Compute Gundlach invariants for more real quadratic fields.
- In progress: combine the going-up method with Gaetan's sub-exponential endomorphism ring computation. Particularly interesting when a power divides the index.
- More general isogenies than (l, l)-isogenies!