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Motivation

Abelian varieties and cryptography
If A/Fq is a “generic” abelian variety of small dimension g , then the
DLP on A(Fq ) is thought to be hard if #A(Fq ) is divisible by a large
prime.

• Take random abelian varieties and count the number of points
(a bit too slow when g = 2);

• Generate abelian varieties with a prescribed number of points
(⇒ paring based cryptography).
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Class polynomials

• If A/Fq is an ordinary (simple) abelian variety of dimension g ,
End(A)⊗Q is a (primitive) CM field K (K is a totally imaginary
quadratic extension of a totally real number field K0).

• The class polynomials H1, bH2 . . . , bHg (g+1)/2 parametrizes the
invariants of all abelian varieties A/C with End(A)≃OK .

• If the class polynomials are totally split modulo P, their roots in
FP gives invariants of abelian varieties A/FP with End(A)≃OK .
It is easy to recover #A(FP) given OK and P.



Class polynomials Speeding up the CRT Examples Complexity analysis

Some technical details
• The abelian varieties are principally polarized.
• A CM type Φ is a choice of an extension to K for each of the

embedding K0→R. We have

Hom(K ,C) = Φ⊕Φ.

Example: If K is a (primitive) CM field of degree 4, then either K
is cyclic and there is one class of CM type, or K is dihedral and
there is two class of CM types.

• If A is an abelian variety with CM by K , the representation
K → End T0A is given by a CM type Φ.

• The isogeny class of complex abelian varieties with CM by K is
determined by the class of Φ.

• The reflex field of (K ,ϕ) is the CM field K r generated by the
traces
∑

ϕ�Φϕ(x ), x � K .

• The type norm NΦ : K → K r is x 7→
∏

ϕ�Φϕ(x ).
Definition
The class polynomials (HΦ)i ) parametrizes the abelian varieties with
CM by (OK ,Φ)
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Class polynomials and complex multiplication

Theorem (Main theorems of complex multiplication)

• The class polynomials (HΦ)i are defined over K0 and generate a
subfield HΦ of the Hilbert class field of K r .

• If A/C has CM by (OK ,Φ) and P is a prime of good reduction in HΦ,
then the Frobenius of AP corresponds to NHΦ,Φr (P).

If g ¶ 2, the CM types are in the same orbits under the absolute
Galois action, and the class polynomials Hi =

∏

Φ(HΦ)i are rationals
(and even integrals when g = 1).

• For efficiency, we compute the class polynomials HΦ since they
give a factor of the full class polynomials H . This mean we need
less precision.

• In genus 2, this involves working over K0 rather than Q in the
Dihedral case.
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Constructing class polynomials

• Analytic method: compute the invariants in C with sufficient
precision to recover the class polynomials.

• p -adic lifting: lift the invariants in Qp with sufficient precision
to recover the class polynomials (require specific splitting
behavior of p ).

• CRT: compute the class polynomials modulo small primes, and
use the CRT to reconstruct the class polynomials.

Remark
In genus 1, all these methods are quasi-linear in the size of the output ⇒
computation bounded by memory. But we can construct directly the
class polynomials modulo p with the explicit CRT.
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Review of the CRT algorithm in genus 2

1. Select a CRT prime p .

2. For each abelian surface A in the O(p 3) isomorphic classes:
2.1 Check if A is in the right isogeny class by computing the

characteristic polynomial of the Frobenius (do some trial tests to
check for #A before).

2.2 Check if End(A) =OK .

3. From the invariants of the maximal curves, reconstruct (HΦ)i
mod p .

Repeat until we can recover (HΦ)i from the (HΦ)i mod p using the
CRT.

Remark
Since K is primitive, we only need to look at Jacobians of hyperelliptic
curves of genus 2.
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Selecting the prime p

Definition
A CRT prime p⊂OK r

0
is a prime such that all abelian varieties over C

with CM by (OK ,Φ) have good reduction modulo p.

• p is a CRT prime for the CM type Φ if and only if there exists an
unramified prime q in OK r of degree 1 above p of principal type
norm (π)

• The isogeny class of the reduction of these abelian varieties
mod p is determined (up to a twist) by ±π where NΦ(p) = (π).

• For efficiency, we work with CRT primes p that are unramified
of degree one over p = p∩Z.

⇒ the reduction to Fp of the abelian varieties with CM by (OK ,Φ)
will then be ordinary.
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Working with both CM types in the Dihedral case

Let Φ1 and Φ2 be the two CM types.

• If p splits as p1p2 in K r
0 , then for p to be a CRT prime for both

CM types, we need p1 and p2 to be CRT primes.

⇒ We have less prime to work with, and less possibilities to sieve.
Whereas when only dealing with one CM type, we can even
choose the best prime among p1 and p2.

Remark
The reductions of the abelian varieties with CM by Φ2 modulo p1 are
isomorphics to the reductions of the abelian varieties with CM by Φ1

modulo p2.
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Checking if a curve is maximal

• Let J be the Jacobian of a curve in the right isogeny class. Then
Z[π,π]⊂ End(J )⊂OK .

• Let γ �OK \Z[π,π]. We want to check if γ � End(J ).

• If p > 3 then (OK :Z[π,π]) is prime to p . We then have
γ � End(J )⇔ pγ � End(J ).

• Let n be the smallest integer thus that nγ �Z[π,π]. Since
(Z[π,π] :Z[π]) = p , we can write npγ= P(π).

• Then γ � End(J )⇔ P(π) = 0 on J [n ].

• In practice (Freeman-Lauter): compute J [ℓd ] for ℓd | (OK :Z[π,π])
and check the action of the generators of OK on it.

Remark
If 1,α,β ,γ are generators of OK as a Z-module, it can happen that
γ= P(α,β ), so that we don’t need to check that γ � End(J ).
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Example 1: Checking if a curve is maximal

• Let H : y 2 = 10x 6+57x 5+18x 4+11x 3+38x 2+12x +31 over F59 and

J the Jacobian of H . We have End(J )⊗Q=Q(i
p

29+2
p

29) and
we want to check if End(J ) =OK .

• OK is generated as a Z-module by 1,α,β ,γ. α is of index 2 in
OK /Z[π,π], β of index 4 and γ of index 40.

• So the old algorithm will check J [23] and J [5].

• But (OK )2 =Z2[π,π,α], so we only need to check J [2] and J [5].
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Field of definition of the ℓd -torsion

Proposition

• The geometric points of J [ℓd ] are defined over Fpαd ⇔
παd −1 � ℓd End(J ).

• αd |α1ℓd−1. If End(J ) =OK this is an equality: αd =α1ℓd−1.

Corollary
Let α be thus that πα−1 � ℓOK . We first check that (πα−1)/ℓ is an
element of End(J ) (⇔ J [ℓ] defined over Fpα ). Then J [ℓd ] is defined over
Fpαℓd−1 .

Remark
It may happen that we get a factor two on the degrees by working over
the twist: that is by working with −π.
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Computing the ℓd -torsion

• We compute #J (Fpα ) = ℓβ c (where α is the degree of definition
of the ℓd -torsion).

• If P0 is a random point of J (Fpα ), then P = c P0 is a random point
of ℓ∞-torsion, and P multiplied by a suitable power of ℓ is a
random point of ℓd -torsion.

• Usual method (Freeman-Lauter): take a lot of random points of
ℓd -torsion, and hope they generate it over Fpα .

• Problems: the random points of ℓd -torsion are not uniform ⇒
require a lot of random points, and the result is probabilistic.

• Our solution: Compute the whole ℓ∞-torsion. “Correct” points to
find uniform points of ℓd -torsion. Use pairings to save memory.

⇒ We can check if a curve is maximal faster.

⇒ We can abort early.
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Example 2: checking if a curve is maximal

• Let H : y 2 = 80x 6+51x 5+49x 4+3x 3+34x 2+40x +12 over F139 and

J the Jacobian of H . We have End(J )⊗Q=Q(i
p

13+2
p

29) and
we want to check if End(J ) =OK .

• For that we need to compute J [35], that lives over an extension
of degree 81 (for the twist it lives over an extension of degree
162).

• With the old randomized algorithm, this computation takes
470 seconds (with 12 Frobenius trials over F139162 ).  

• With the new algorithm computing the ℓ∞-torsion, it only takes
17.3 seconds (needing only 4 random points over F13981 , approx 4
seconds needed to get a new random point of ℓ∞-torsion).
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Obtaining all the maximal curves

• If J is a maximal curve, and ℓ does not divide (OK :Z[π,π]), then
any (ℓ,ℓ)-isogenous curve is maximal.

• The maximal Jacobians form a principal homogeneous space
under the Shimura class group
C(OK ) = {(I ,ρ) | I I = (ρ) and ρ � K +0 }.

• (ℓ,ℓ)-isogenies between maximal Jacobians correspond to
element of the form (I ,ℓ) �C(OK ). We can use the structure of
C(OK ) to determine the number of new curves we will obtain
with (ℓ,ℓ)-isogenies.
⇒ Don’t compute unneeded isogenies.

• It can be faster to compute (ℓ,ℓ)-isogenies with ℓ | (OK :Z[π,π])
to find new maximal Jacobians when ℓ and valℓ((OK :Z[π,π])) is
small.
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“Going up”

• There is p 3 classes of isomorphic curves, but only a very small
number (#C(OK )) with End(J ) =OK .

• But there is at most 16p 3/2 isogeny class.

⇒ On average, there is ≈ p 3/2 curves in a given isogeny class.

⇒ If we have a curve in the right isogeny class, try to find
isogenies giving a maximal curve!
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An algorithm for “going up”

1. Let γ �OK \End(J ). We can assume that ℓ∞γ �Z[π,π].

2. Let d be the smallest integer such that γ(J [ℓd ]) ̸= {0}, and let
K = γ(J [ℓd ]). By definition, K ⊂ J [ℓ].

3. We compute all (ℓ,ℓ)-isogeneous Jacobians J ′ where the kernel
intersect K . Keep J ′ if #γ(J ′[ℓd ])< #K (and be careful to prevent
cycles).

• First go up for γ= (πα−1)/ℓ: this minimize the extensions we
have to work with.
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Some pesky details

Non maximal cycles ⇒ We try to reduce globally the obstruction for

all endomorphisms.
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Some pesky details
Local minimums

3 3

3 3
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Some pesky details

• It is not always possible to go up. We would need more general
isogenies than (ℓ,ℓ)-isogenies.

• Most frequent case: we can’t go up because there is no
(ℓ,ℓ)-isogenies at all! (And we can detect this).
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The modified CRT algorithm

1. Select a prime p .

2. Select a random Jacobian until it is in the right isogeny class.

3. Go up to find a Jacobian with CM by OK (if it fails, go back to
last step).

4. Use isogenies to find all other Jacobians with CM by OK .

5. From the invariants of the maximal abelian surfaces,
reconstruct Hi mod p .
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Sieving the primes
• We throw a prime p for the CRT if detecting if a curve is

maximal is too costly, or there is not enough curves where we
can “go up”.

• How to estimate this number?
1. Compute the lattice of orders between Z[π,π] and OK . For all such

order O such that (OK : O) is not divisible by any ℓ where there is
no (ℓ,ℓ)-isogeny, compute C(O).
This is too costly! (Even computing Pic(Z[π,π]) is too costly!)

2. Compute

#C(Z[π,π]) =
c (OK : Z [π,π])# Cl(OK )Reg(OK )(bO∗K : bZ[π,π]∗)

2# Cl(Z[π+π])Reg(Z[π+π])

and estimate the number of curves as
∑

d |#C(Z[π,π])

d

(for d not divisible by a ℓ where we can’t go up).

• We use a dynamic approach: if a prime discarded earlier is now
better than the current prime, go back to this prime.
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Exploring the curves

1. Go sequentially through the p 3 Igusa invariants j1, j2, j3. But
constructing the curve from the invariants is costly.

2. Construct random curves in Weierstrass form

y 2 = a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0.

3. If the two torsion is rational (check where π−1
2

live), construct
curves in Rosenhain form

y 2 = x (x −1)(x −λ)(x −µ)(x −ν ).

4. If the Hilbert moduli space is rational, construct the j -invariants
from the Gundlach invariants (only p 2 invariants, parametrizing
the space of curves with real multiplication by K0).
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Finding the denominators

• Use Brunier-Yang formulas to get a multiple of the denominator.

• Do a rationnal reconstruction in K r
0 using LLL.

• Since the Brunier-Yang formula give the denominator for both
CM types, both methods are roughly the same.
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p l d αd # Curves Estimate Time (old) Time (new)

7 22 4 7 8 0.5+0.3 0+0.2
17 2 1 39 32 4+0.2 0+0.1
23 22, 7 4, 3 49 51 9+2.3 0+0.2
71 22 4 7 8 255+0.7 5.3+0.2
97 2 1 39 32 680+0.3 2+0.1

103 22, 17 4, 16 119 127 829+17.6 0.5+1
113 25, 7 16, 6 1281 877 1334+28.8 0.2+1.3
151 22, 7, 17 4, 3, 16 - - 0 0

3162s 13s

Computing the class polynomial for K =Q(i
p

2+
p

2), C(OK ) = {0}.

H1 =X −1836660096, H2 =X −28343520, H3 =X −9762768
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p l d αd # Curves Estimate Time (old) Time (new)

29 3, 23 2, 264 - - - -
53 3, 43 2, 924 - - - -
61 3 2 9 6 167+0.2 0.2+0.5
79 33 18 81 54 376+8.1 0.3+0.9

107 32, 43 6, 308 - - - -
113 3, 53 1, 52 159 155 1118+137.2 0.8+25
131 32, 53 6, 52 477 477 1872+127.4 2.2+44.4
139 35 81 ? 486 - 1+36.7
157 34 27 243 164 3147+16.5 -

6969s 114s

Computing the class polynomial for K =Q(i
p

13+2
p

29), C(OK ) = {0}.

H1 =X −268435456, H2 =X +5242880, H3 =X +2015232.
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p l d αd # Curves Estimate Time (old) Time (new)

7 - - 1 1 0.3 0+0.1
23 13 84 15 2 (16) 9+70.7 0.4+24.6
53 7 3 7 7 105+0.5 7.7+0.5
59 2, 5 1, 12 322 48 (286) 164+6.4 1.4+0.6
83 3, 5 4, 24 77 108 431+9.8 2.4+1.1

103 67 1122 - - - -
107 7, 13 3, 21 105 8 (107) 963+69.3 -
139 52, 7 60, 2 259 9 (260) 2189+62.1 -
181 3 1 161 135 5040+3.6 4.5+0.2
197 5, 109 24, 5940 - - - -
199 52 60 37 2 (39) 10440+35.1 -
223 2, 23 1, 11 1058 39 (914) 10440+35.1 -
227 109 1485 - - - -
233 5, 7, 13 8,3, 28 735 55 (770) 11580+141.6 88.3+29.4
239 7, 109 6, 297 - - - -
257 3, 7, 13 4,6, 84 1155 109 (1521) 17160+382.8 -
313 3, 13 1, 14 ? 146 (2035) - 165+14.7
373 5, 7 6, 24 ? 312 - 183.4+3.8
541 2, 7, 13 1,3, 14 ? 294 (4106) - 91+5.5
571 3, 5,7 2, 6, 6 ? 1111 (6663) - 96.6+3.1

56585s 776s

Computing the class polynomial for K =Q(i
p

29+2
p

29), C(OK ) = {0}.

H1 = 244140625X −2614061544410821165056
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A Dihedral example
• K is the CM field defined by X 4+13X 2+41. OK0 =Z[α] where α is

a root of X 2−3534X +177505.
• We first compute the class polynomials over Z using Spallek’s

invariants, and obtain the following polynomials in 5956
seconds:

H1 = 64X 2+14761305216X −11157710083200000

H2 = 16X 2+72590904X −8609344200000

H3 = 16X 2+28820286X −303718531500

• Next we compute them over the real subfield and using Streng’s
invariants. We get in 1401 seconds:

H1 = 256X −2030994+56133α;

H2 = 128X +12637944−2224908α;

H3 = 65536X −11920680322632+1305660546324α.

• Primes used: 59, 139, 241, 269, 131, 409, 541, 271, 359, 599, 661, 761.
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Complexity coming from isogenies
Let ∆0 =∆K0/Q and ∆1 =NK0/Q(∆K /K0 so that ∆=∆1∆2

0.
• The complexity of the going-up step and checking the

endomorphism ring is polynomial in the highest prime power
dividing the index. For the CRT prime we are using the index is
a polynomial in ∆. There is a positive density of prime where
the largest prime dividing the index is O(∆ϵ) so we can neglect
the corresponding cost in the complexity analysis.

• We need horizontal isogenies of small degrees to generate all
maximal curves from one. In practice this was always the case
(elements of norm polylogarithmic in ∆ generates the Shimura
class groups).

• At worst, we know that the class group of K r is generated by
totally split primes of norm polylogarithmic in ∆. The typenorm
of these elements will yield horizontal isogenies of small
degrees.

• The cofactor C/NΦ(Cl(K r ) is bounded by 26w (∆)+1, where w (∆) is
the number of divisors of ∆. Outside a zero density of very
smooth numbers, w (∆)< 2 log log∆ so we can absorb the factor
in the eO notation.
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A pessimal view on the complexity of the CRT
method in dimension 2

• The degree of the class polynomials is eO(∆1/2
0 ∆

1/2
1 ).

• The size of coefficients is bounded by eO(∆5/2
0 ∆

3/2
1 ) (non optimal).

In practice, they are eO(∆1/2
0 ∆

1/2
1 ).

⇒ The size of the class polynomials is eO(∆0∆1).

• We need eO(∆1/2
0 ∆

1/2
1 ) primes, and by Cebotarev the density of

primes we can use is eO(∆1/2
0 ∆

1/2
1 ) ⇒ the largest prime is

p = eO(∆0∆1).

⇒ Finding a curve in the right isogeny class will take Ω(p 3/2) so the
total complexity is Ω(∆2

0∆
2
1) ⇒ we can’t achieve quasi-linearity

even if the going-up step always succeed!

⇒ A solution would be to work over convenient subspaces of the
moduli space.
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Perspectives

• 6 seconds for 10000 curves is way too slow! Implement this part
with pari!

• Compute Gundlach invariants for more real quadratic fields.

• In progress: combine the going-up method with Gaetan’s
sub-exponential endomorphism ring computation. Particularly
interesting when a power divides the index.

• More general isogenies than (ℓ,ℓ)-isogenies!
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