Algorithms on abelian varieties for cryptography

Damien Robert¹

¹Microsoft Research

17/01/2012 (LIX)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

000	000000	0000000	0000000000	0000000
Outline				

- Public-key cryptography
- Abelian varieties
- 3 Theta functions
- Isogenies

Discrete log	arithm			
000	000000	0000000	0000000000	0000000
	Abelian varieties	Theta functions	Isogenies	Examples

Definition (DLP)

5

Let $G = \langle g \rangle$ be a cyclic group of prime order. Let $x \in \mathbb{N}$ and $h = g^x$. The discrete logarithm $\log_g(h)$ is x.

- Exponentiation: $O(\log p)$. DLP: $\tilde{O}(\sqrt{p})$ (in a generic group). So we can use the DLP for public key cryptography.
- ⇒ We want to find secure groups with efficient addition law and compact representation.

Pairing-based	cryptograp	hv		
Public-key cryptography	Abelian varieties	Theta functions	Isogenies 0000000000	Examples 0000000

Definition

A pairing is a bilinear application $e: G_1 \times G_1 \rightarrow G_2$.

Example

• If the pairing e can be computed easily, the difficulty of the DLP in G_1 reduces to the difficulty of the DLP in G_2 .

- \Rightarrow MOV attacks on supersingular elliptic curves.
 - Identity-based cryptography [BF03].
 - Short signature [BLS04].
 - One way tripartite Diffie-Hellman [Jou04].
 - Self-blindable credential certificates [Ver01].
 - Attribute based cryptography [SW05].
 - Broadcast encryption [GPS+06].

Example of	applications			
000	000000	0000000	0000000000	0000000
	Abelian varieties	Theta functions	Isogenies	Examples

Tripartite Diffie-Helman

i ap

Alice sends g^a , Bob sends g^b , Charlie sends g^c . The common key is

$$e(g,g)^{abc} = e(g^b,g^c)^a = e(g^c,g^a)^b = e(g^a,g^b)^c \in G_2.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Example (Identity-based cryptography)

- Master key: (P, sP), s. $s \in \mathbb{N}, P \in G_1$.
- Derived key: Q, sQ. $Q \in G_1$.
- Encryption, $m \in G_2$: $m' = m \oplus e(Q, sP)^r$, rP. $r \in \mathbb{N}$.
- Decryption: $m = m' \oplus e(sQ, rP)$.

Public-key cryptography	Abelian varieties	Theta functions	Isogenies	Examples
000		00000000	0000000000	0000000
Elliptic curves				

Definition (car $k \neq 2,3$)

An elliptic curve is a plan curve of equation

$$y^2 = x^3 + ax + b$$
 $4a^3 + 27b^2 \neq 0.$

Abelian varie	ties		0000000

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.
- Abelian variety of dimension 1 = elliptic curves.
- ⇒ Abelian varieties are just the generalization of elliptic curves in higher dimension.

Pairings on abelian varieties

The Weil and Tate pairings on abelian varieties are the only known examples of cryptographic pairings.

 $e_W: A[\ell] \times A[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*.$

000	000000	0000000	0000000000	0000000
Public-key cryptography		Theta functions	Isogenies	Examples

Abelian surfaces

Abelian varieties of dimension 2 are given by: 5 quadratic equations in \mathbb{P}^7 .

$$\begin{aligned} (4a_1a_2+4a_5a_6)X_1X_6+(4a_1a_2+4a_5a_6)X_2X_5 = \\ (4a_3a_44a_4a_3)X_3X_4+(4a_3a_44a_4a_3)X_7X_8; \\ (2a_1a_5+2a_2a_6)X_1^2+(2a_1a_5+2a_2a_6)X_2^2+(-2a_3^2-2a_4^2-2a_3^2-2a_4^2)X_3X_3 = \\ (2a_3^2+2a_4^2+2a_3^2+2a_4^2)X_4X_8+(-2a_1a_5-2a_2a_6)X_5^2+(-2a_1a_5-2a_2a_6)X_6^2; \\ (4a_1a_6+4a_2a_5)X_1X_2+(-4a_3a_4-4a_3a_4)X_3X_8 = \\ (4a_3a_4+4a_3a_4)X_4X_7+(-4a_1a_6-4a_2a_5)X_5X_6; \\ (2a_1^2+2a_2^2+2a_5^2+2a_6^2)X_1X_5+(2a_1^2+2a_2^2+2a_5^2+2a_6^2)X_2X_6+(-2a_3a_3-2a_4a_4)X_3^2 = \\ (2a_3a_3+2a_4a_4)X_4^2+(2a_3a_3+2a_4a_4)X_7^2+(2a_3a_3+2a_4a_4)X_8^2; \\ (2a_1^2-2a_2^2+2a_5^2-2a_6^2)X_1X_5+(-2a_1^2+2a_2^2-2a_5^2+2a_6^2)X_2X_6+(-2a_3a_3+2a_4a_4)X_3^2 = \\ (-2a_3a_3+2a_4a_4)X_4^2+(2a_3a_3-2a_4a_4)X_7^2+(-2a_3a_3+2a_4a_4)X_8^2; \end{aligned}$$

where the parameters satisfy 2 quartic equations in \mathbb{P}^5 :

$$a_1^3 a_5 + a_1^2 a_2 a_6 + a_1 a_2^2 a_5 + a_1 a_5^3 + a_1 a_5 a_6^2 + a_2^3 a_6 + a_2 a_5^2 a_6 + a_2 a_3^2 - 2a_3^4 - 4a_3^2 a_4^2 - 2a_4^4 = 0;$$

$$a_1^2 a_2 a_6 + a_1 a_2^2 a_5 + a_1 a_5 a_6^2 + a_2 a_5^2 a_6 - 4a_3^2 a_4^2 = 0$$

lacobian of	hyperelliptic	curves		
Public-key cryptography	Abelian varieties	Theta functions	Isogenies	Examples
000		00000000	0000000000	000000C

 $C: y^2 = f(x)$, hyperelliptic curve of genus g. (deg f = 2g + 1)

- Divisor: formal sum $D = \sum n_i P_i$, $P_i \in C(\overline{k})$. deg $D = \sum n_i$.
- Principal divisor: $\sum_{P \in C(\overline{k})} v_P(f) \cdot P; \quad f \in \overline{k}(C).$

Jacobian of C = Divisors of degree 0 modulo principal divisors • + Galois action = Abelian variety of dimension g.

• Divisor class $D \Rightarrow$ unique representative (Riemann-Roch):

$$D = \sum_{i=1}^{k} (P_i - P_{\infty}) \qquad k \leq g, \quad \text{symmetric } P_i \neq P_j$$

- Mumford coordinates: $D = (u, v) \Rightarrow u = \prod (x x_i), v(x_i) = y_i$.
- Cantor algorithm: addition law.

 Public-key cryptography
 Abelian varieties
 Theta functions
 Isogenies
 Examples

 000
 000000
 00000000
 00000000
 00000000

Abelian varieties as Jacobians

Dimension 2: Jacobians of hyperelliptic curves of genus 2:

$$y^2 = f(x), \deg f = 5.$$

 Public-key cryptography
 Abelian varieties
 Theta functions
 Isogenies
 Examples

 000
 000000
 00000000
 00000000
 00000000

Abelian varieties as Jacobians

Dimension 2: Jacobians of hyperelliptic curves of genus 2: $v^2 = f(x), \deg f = 5.$

 Public-key cryptography
 Abelian varieties
 Theta functions
 Isogenies
 Examples

 000
 000000
 00000000
 00000000
 00000000

Abelian varieties as Jacobians

Dimension 2: Jacobians of hyperelliptic curves of genus 2: $v^2 = f(x), \deg f = 5.$

000000 Abelian varieties as Jacobians

Dimension 3 Jacobians of hyperelliptic curves of genus 3.

Jacobians of quartics.

	200000
000000000000000000000000000000000000000	000000
Public-key cryptography Abelian varieties Theta functions Isogenies Exa	amples

(ロ) (個) (E) (E) (E) (の)(C)

Dimension 4

Abelian varieties do not come from a curve generically.

	•						
000			000000		0000000	000000000	000000
Public-key cryptography				Theta functions	Isogenies	Examples	

Security	of	abelian	varieties	

g	# points	DLP
1	O(q)	$\widetilde{O}(q^{1/2})$
2	$O(q^2)$	$\widetilde{O}(q)$
3	$O(q^3)$	$\widetilde{O}(q^{4/3})$ (Jacobian of an hyperelliptic curve) $\widetilde{O}(q)$ (Jacobian of a quartic)
$g = \log(q)$	$O(q^g)$	$\widetilde{O}(q^{2-2/g})$ $L_{1/2}(q^g) = \exp(O(1)\log(x)^{1/2}\log\log(x)^{1/2})$

Security of the DLP

• Weak curves (MOV attack, Weil descent, anomal curves).

Complex ab	elian varietie	s		
000	000000	• 0 000000	0000000000	0000000
Public-key cryptography	Abelian varieties		Isogenies	Examples

- Abelian variety over C: A = C^g/(Z^g + ΩZ^g), where Ω ∈ ℋ_g(C) the Siegel upper half space.
- The theta functions with characteristic are analytic (quasi periodic) functions on \mathbb{C}^g .

$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z, \Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i^{t} (n+a)\Omega(n+a) + 2\pi i^{t} (n+a)(z+b)} \quad a, b \in \mathbb{Q}^g$$

Quasi-periodicity:

$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z+m_1\Omega+m_2,\Omega) = e^{2\pi i (t_a \cdot m_2 - t_b \cdot m_1) - \pi i t_m \Omega m_1 - 2\pi i t_m \cdot z} \vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z,\Omega).$$

• Projective coordinates:

$$\begin{array}{rccc} A & \longrightarrow & \mathbb{P}^{n^g-1}_{\mathbb{C}} \\ z & \longmapsto & (\vartheta_i(z))_{i \in Z(\overline{n})} \end{array}$$

where $Z(\overline{n}) = \mathbb{Z}^g / n\mathbb{Z}^g$ and $\vartheta_i = \vartheta \begin{bmatrix} 0 \\ \frac{i}{n} \end{bmatrix} (., \frac{\Omega}{n}).$

Thota functi	one of loval	10		
000	000000	0000000	000000000	0000000
Public-key cryptography	Abelian varieties		Isogenies	Examples

• Translation by a point of *n*-torsion:

$$\vartheta_i(z+\frac{m_1}{n}\Omega+\frac{m_2}{n})=e^{-\frac{2\pi i}{n}t}\vartheta_{i+m_2}(z).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(ϑ_i)_{i∈Z(n)}: basis of the theta functions of level n
 ⇔ A[n] = A₁[n] ⊕ A₂[n]: symplectic decomposition.

• $(\vartheta_i)_{i \in \mathbb{Z}(\overline{n})} = \begin{cases} \text{coordinates system} & n \ge 3\\ \text{coordinates on the Kummer variety } A/\pm 1 & n=2 \end{cases}$

• Theta null point: $\vartheta_i(0)_{i \in \mathbb{Z}(\overline{n})} = \text{modular invariant.}$

The differe	ntial addition	law $(k = \mathbb{C})$		
000	000000	0000000	000000000	0000000
Public-key cryptography	Abelian varieties		Isogenies	Examples

 \sim

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

$$\begin{split} \Big(\sum_{t\in Z(\bar{2})}\chi(t)\vartheta_{i+t}(x+y)\vartheta_{j+t}(x-y)\Big).\Big(\sum_{t\in Z(\bar{2})}\chi(t)\vartheta_{k+t}(0)\vartheta_{l+t}(0)\Big) = \\ \Big(\sum_{t\in Z(\bar{2})}\chi(t)\vartheta_{-i'+t}(y)\vartheta_{j'+t}(y)\Big).\Big(\sum_{t\in Z(\bar{2})}\chi(t)\vartheta_{k'+t}(x)\vartheta_{l'+t}(x)\Big). \end{split}$$

Fyample	addition in genu	s 1 and in l	evel 2	
000	000000	0000000	000000000	0000000
Public-key cryptography	Abelian varieties		Isogenies	Examples

5

Differential Addition Algorithm: Input: $P = (x_1 : z_1), Q = (x_2 : z_2)$ and $R = P - Q = (x_3 : z_3)$ with $x_3 z_3 \neq 0$. **Output:** P + Q = (x' : z').

• $x_0 = (x_1^2 + z_1^2)(x_2^2 + z_2^2);$ • $z_0 = \frac{A^2}{B^2}(x_1^2 - z_1^2)(x_2^2 - z_2^2);$ • $x' = (x_0 + z_0)/x_3;$

$$2' = (x_0 - z_0)/z_3;$$

Seturn (x':z').

	Mumford	Level 2	Level 4
Doubling Mixed Addition	$\begin{array}{c} 34M+7S\\ 37M+6S \end{array}$	$7M + 12S + 9m_0$	$49M + 36S + 27m_0$

Multiplication cost in genus 2 (one step).

	Montgomery	Level 2	Jacobians coordinates
Doubling Mixed Addition	$5M + 4S + 1m_0$	$3M + 6S + 3m_0$	3M+5S $7M+6S+1m_0$

Multiplication cost in genus 1 (one step).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

000	000000	00000 00	000000000	0000000
The Weil pai	ring on ellip	tic curves		

- Let $E: y^2 = x^3 + ax + b$ be an elliptic curve over k (car $k \neq 2,3$).
- Let $P,Q \in E[\ell]$ be points of ℓ -torsion.
- Let f_P be a function associated to the principal divisor $\ell(P-0)$, and f_Q to $\ell(Q-0)$. We define:

$$e_{W,\ell}(P,Q) = \frac{f_Q(P-0)}{f_P(Q-0)}.$$

• The application $e_{W,\ell} : E[\ell] \times E[\ell] \rightarrow \mu_{\ell}(\overline{k})$ is a non degenerate pairing: the Weil pairing.

Public-key cryptography 000	Abelian varieties	Theta functions	Isogenies 0000000000	Examples 000000C
The Weil and T	ate pairing w	vith theta co	ordinates	

P and *Q* points of ℓ -torsion.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Public-key cryptography 000	Abelian varieties	Theta functions	Isogenies 0000000000	Examples 0000000
Why does it works?				

$$\begin{array}{cccc} \mathbf{0}_{A} & \alpha P & \alpha^{4}(2P) & \dots & \alpha^{\ell^{2}}(\ell P) = \lambda_{P}^{\prime 0}\mathbf{0}_{A} \\ \beta Q & \gamma(P \oplus Q) & \frac{\gamma^{2}\alpha^{2}}{\beta}(2P+Q) & \dots & \frac{\gamma^{\ell}\alpha^{\ell(\ell-1)}}{\beta^{\ell-1}}(\ell P+Q) = \lambda_{P}^{\prime 1}\beta Q \\ \beta^{4}(2Q) & \frac{\gamma^{2}\beta^{2}}{\alpha}(P+2Q) & \dots & \dots \\ & \dots & & \dots \\ \beta^{\ell^{2}}(\ell Q) = \lambda_{Q}^{\prime 0}\mathbf{0}_{A} & \frac{\gamma^{\ell}\beta^{\ell(\ell-1)}}{\alpha^{\ell-1}}(P+\ell Q) = \lambda_{Q}^{\prime 1}\alpha P \end{array}$$

We then have

$$\begin{split} \lambda'_{P}^{0} &= \alpha^{\ell^{2}} \lambda_{P}^{0}, \quad \lambda'_{Q}^{0} = \beta^{\ell^{2}} \lambda_{Q}^{0}, \quad \lambda'_{P}^{1} = \frac{\gamma^{\ell} \alpha^{(\ell(\ell-1)}}{\beta^{\ell}} \lambda_{P}^{1}, \quad \lambda'_{Q}^{1} = \frac{\gamma^{\ell} \beta^{(\ell(\ell-1)}}{\alpha^{\ell}} \lambda_{Q}^{1}, \\ e'_{W,\ell}(P,Q) &= \frac{\lambda'_{P}^{1} \lambda'_{Q}^{0}}{\lambda'_{P}^{0} \lambda'_{Q}^{1}} = \frac{\lambda_{P}^{1} \lambda_{Q}^{0}}{\lambda_{P}^{0} \lambda_{Q}^{1}} = e_{W,\ell}(P,Q), \\ e'_{T,\ell}(P,Q) &= \frac{\lambda'_{P}^{1}}{\lambda'_{P}^{0}} = \frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} \frac{\lambda_{P}^{1}}{\lambda_{P}^{0}} = \frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} e_{T,\ell}(P,Q). \end{split}$$

Isogenies				
Public-key cryptography 000	Abelian varieties	Theta functions 00000000	Isogenies	Examples 0000000

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies ⇔ Finite subgroups.

$$(f: A \to B) \mapsto \operatorname{Ker} f$$
$$(A \to A/H) \leftrightarrow H$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

• *Example:* Multiplication by ℓ (⇒ℓ-torsion), Frobenius (non separable).

Crvptographic	usage of isog	genies		
Public-key cryptography	Abelian varieties	Theta functions	Isogenies	Examples
000	000000	00000000		0000000

- Transfer the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-adic or p-adic) ⇒ Verify a curve is secure.
- Compute the class field polynomials (CM-method) ⇒ Construct a secure curve.
- Compute the modular polynomials \Rightarrow Compute isogenies.
- Determine $End(A) \Rightarrow CRT$ method for class field polynomials.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト つ Q (~

000 \/{l	000000	0000000	000000000	0000000
veius formula				

Theorem

Let $E: y^2 = f(x)$ be an elliptic curve and $G \subset E(k)$ a finite subgroup. Then E/G is given by $Y^2 = g(X)$ where

$$X(P) = x(P) + \sum_{Q \in G \setminus \{0_E\}} (x(P+Q) - x(Q))$$

$$Y(P) = y(P) + \sum_{Q \in G \setminus \{0_E\}} (y(P+Q) - y(Q)).$$

• Uses the fact that x and y are characterised in k(E) by

$$\begin{array}{ll}
\nu_{0_E}(x) = -2 & \nu_P(x) \ge 0 & \text{if } P \neq 0_E \\
\nu_{0_E}(y) = -3 & \nu_P(y) \ge 0 & \text{if } P \neq 0_E \\
y^2/x^3(0_E) = 1
\end{array}$$

No such characterisation in genus g≥2 for Mumford coordinates.

The isogeny	theorem			
Public-key cryptography	Abelian varieties	Theta functions	Isogenies	Examples 0000000

Theorem

- Let φ: Z(n)→Z(ln), x → l.x be the canonical embedding.
 Let K = A₂[l] ⊂ A₂[ln].
- Let $(\vartheta_i^A)_{i \in \mathbb{Z}(\overline{\ell n})}$ be the theta functions of level ℓn on $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$.
- Let (ϑ^B_i)_{i∈Z(n)} be the theta functions of level n of B=A/K = C^g/(Z^g + Ω/ℓZ^g).

• We have:

$$(\vartheta_i^B(x))_{i \in Z(\overline{n})} = (\vartheta_{\varphi(i)}^A(x))_{i \in Z(\overline{n})}$$

Example

 $\pi: (x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}) \mapsto (x_0, x_3, x_6, x_9)$ is a 3-isogeny between elliptic curves.

 $z \in \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$, level n

 $\widehat{\pi}$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つくぐ

π

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つくぐ

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Changing leve	ച			
Public-key cryptography	Abelian varieties	Theta functions	Isogenies	Examples

Theorem (Koizumi-Kempf)

Let *F* be a matrix of rank *r* such that ${}^tFF = \ell \operatorname{Id}_r$. Let $X \in (\mathbb{C}^g)^r$ and $Y = F(X) \in (\mathbb{C}^g)^r$. Let $j \in (\mathbb{Q}^g)^r$ and i = F(j). Then we have

$$\vartheta \begin{bmatrix} 0\\i_1 \end{bmatrix} (Y_1, \frac{\Omega}{n}) \dots \vartheta \begin{bmatrix} 0\\i_r \end{bmatrix} (Y_r, \frac{\Omega}{n}) = \sum_{\substack{t_1, \dots, t_r \in \frac{1}{\ell} \mathbb{Z}^g / \mathbb{Z}^g \\ F(t_1, \dots, t_r) = (0, \dots, 0)}} \vartheta \begin{bmatrix} 0\\j_1 \end{bmatrix} (X_1 + t_1, \frac{\Omega}{\ell n}) \dots \vartheta \begin{bmatrix} 0\\j_r \end{bmatrix} (X_r + t_r, \frac{\Omega}{\ell n}),$$

(This is the isogeny theorem applied to $F_A: A^r \to A^r$.)

- If $\ell = a^2 + b^2$, we take $F = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, so r = 2.
- In general, $\ell = a^2 + b^2 + c^2 + d^2$, we take *F* to be the matrix of multiplication by a + bi + cj + dk in the quaternions, so r = 4.
- ⇒ We have a complete algorithm to compute the isogeny $A \mapsto A/K$ given the kernel *K* [Cosset, Lubicz, R.].

AVIsogenies				
000	000000	0000000	00000000000	0000000
Public-key cryptography	Abelian varieties	Theta functions		Examples

- AVIsogenies: Magma code written by Bisson, Cosset and R. http://avisogenies.gforge.inria.fr
- Released under LGPL 2+.

• Implement isogeny computation (and applications thereof) for abelian varieties using theta functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• Current release 0.2: isogenies in genus 2.

	000000	0000000	0000000000	0000000
Implementatio	n			

- Compute the extension \mathbb{F}_{q^n} where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Compute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- 5 Find the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of *J/K*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Ocompute the Igusa invariants of J/K ("Inverse Thomae").
- Oistinguish between the isogeneous curve and its twist.

Implementa	tion			
Public-key cryptography 000	Abelian varieties	Theta functions	Isogenies ○○○○○○○●○○	Examples

- Compute the extension \mathbb{F}_{q^n} where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Compute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- 5 Find the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of *J/K*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Compute the Igusa invariants of J/K ("Inverse Thomae").
- Oistinguish between the isogeneous curve and its twist.

Implementa	tion			
Public-key cryptography 000	Abelian varieties	Theta functions	Isogenies ○○○○○○○●○○	Examples

- Compute the extension \mathbb{F}_{q^n} where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- 5 Find the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of *J/K*.

- Ocompute the Igusa invariants of J/K ("Inverse Thomae").
- Oistinguish between the isogeneous curve and its twist.

Implementa	tion			
Public-key cryptography 000	Abelian varieties	Theta functions	Isogenies ○○○○○○○●○○	Examples

- Compute the extension \mathbb{F}_{q^n} where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Sind the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of *J/K*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Ocompute the Igusa invariants of J/K ("Inverse Thomae").
- Oistinguish between the isogeneous curve and its twist.

Implementa	tion			
Public-key cryptography 000	Abelian varieties	Theta functions	Isogenies ○○○○○○○●○○	Examples

- Compute the extension \mathbb{F}_{q^n} where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Sind the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of *J/K*.

・ロト・日本・日本・日本・日本・日本

- Ocompute the Igusa invariants of J/K ("Inverse Thomae").
- Oistinguish between the isogeneous curve and its twist.

Implementa	tion			
Public-key cryptography 000	Abelian varieties	Theta functions	Isogenies ○○○○○○○●○○	Examples

- Compute the extension \mathbb{F}_{q^n} where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Sind the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in K in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of *J/K*.

- Ocompute the Igusa invariants of J/K ("Inverse Thomae").
- Oistinguish between the isogeneous curve and its twist.

Implementa	tion			
Public-key cryptography 000	Abelian varieties	Theta functions	Isogenies ○○○○○○○●○○	Examples

- Compute the extension \mathbb{F}_{q^n} where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Sind the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of J/K.

- Ocompute the Igusa invariants of J/K ("Inverse Thomae").
- Oistinguish between the isogeneous curve and its twist.

Implementa	tion			
Public-key cryptography 000	Abelian varieties	Theta functions	Isogenies ○○○○○○○●○○	Examples

- Compute the extension \mathbb{F}_{q^n} where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Sind the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of *J/K*.

- Ocompute the Igusa invariants of J/K ("Inverse Thomae").
- Distinguish between the isogeneous curve and its twist.

Implementa	tion			
Public-key cryptography 000	Abelian varieties	Theta functions	Isogenies ○○○○○○○●○○	Examples

- Compute the extension \mathbb{F}_{q^n} where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Sind the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of *J/K*.
- Compute the Igusa invariants of J/K ("Inverse Thomae").
- Oistinguish between the isogeneous curve and its twist.

Computing the	right extens	ion		
Public-key cryptography 000	Abelian varieties	Theta functions 00000000	Isogenies	Examples

- J = Jac(H) abelian variety of dimension 2. $\chi(X)$ the corresponding zeta function.
- Degree of a point of ℓ -torsion | the order of X in $\mathbb{F}_{\ell}[X]/\chi(X)$.
- If K rational, K(k) ≃ (Z/ℓZ)², the degree of a point in K | the LCM of orders of X in F_ℓ[X]/P(X) for P | χ of degree two.
- Since we are looking to *K* maximal isotropic, $J[\ell] \simeq K \oplus K'$ and we know that $P \mid \chi$ is such that $\chi(X) \equiv P(X)P(\overline{X}) \mod \ell$ where $\overline{X} = q/X$ represents the Verschiebung.

Remark

The degree *n* is $\leq \ell^2 - 1$. If ℓ is totally split in $\mathbb{Z}[\pi, \overline{\pi}]$ then $n \mid \ell - 1$.

Computing the	e ℓ-torsion			
Public-key cryptography 000	Abelian varieties 000000	Theta functions	Isogenies	Examples 0000000

- We want to compute $J(\mathbb{F}_{q^n})[\ell]$.
- From the zeta function $\chi(X)$ we can compute random points in $J(\mathbb{F}_{q^n})[\ell^{\infty}]$ uniformly.
- If P is in J(𝔽_{qⁿ})[ℓ[∞]], ℓ^mP ∈ J(𝔽_{qⁿ})[ℓ] for a suitable m. This does not give uniform points of ℓ-torsion but we can correct the points obtained.

Example

- Suppose $J(\mathbb{F}_{q^n})[\ell^{\infty}] = \langle P_1, P_2 \rangle$ with P_1 of order ℓ^2 and P_2 of order ℓ .
- First random point $Q_1 = P_1 \Rightarrow$ we recover the point of ℓ -torsion: $\ell \cdot P_1$.
- Second random point $Q_2 = \alpha P_1 + \beta P_2$. If $\alpha \neq 0$ we recover the point of ℓ -torsion $\alpha \ell P_1$ which is not a new generator.
- We correct the original point: $Q'_2 = Q_2 \alpha Q_1 = \beta P_2$.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Horizontal i	sogeny grant	$1 \cdot \ell = a_1 a_2 =$	$O_1\overline{O}_1O_2\overline{O}_2$	
000	000000	0000000	0000000000	000000
Public-key cryptography	Abelian varieties	Theta functions	Isogenies	

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - のへで

Horizontal isogeny graphs: $\ell = q^2 = Q^4$

General isogen	y graphs ($\ell = q = Q\overline{Q}$		
Public-key cryptography	Abelian varieties	Theta functions	Isogenies	Examples
000	000000		0000000000	0000000

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼

			000000000	000000
isogeny graph	and lattice o	r orders in g	jenus 2	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三里・のへで

Isogeny graph	and lattice o	of orders in g	enus 2	
Public-key cryptography	Abelian varieties	Theta functions	Isogenies	Examples
000	000000	00000000	0000000000	0000000

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

Isogeny graph	and lattice o	of orders in g	enus 2	
Public-key cryptography	Abelian varieties	Theta functions	Isogenies	Examples
000	000000	00000000	0000000000	0000000

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

<ロト < 四ト < 巨ト < 巨ト

ъ

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ⊙へ⊙

▲ロト▲御ト▲臣ト▲臣ト 臣 のの(

Applications and parepactives	
Public-key cryptography Abelian varieties Theta functions Isogenies Ex 000 0000000 000000000 0 0 0	1000000 1000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- Modular polynomials in genus 2.
- Isogenies using rational coordinates?
- How to compute cyclic isogenies in genus 2?
- Dimension 3.

These lases of		1		
000	000000	0000000	0000000000	000000
Public-key cryptography	Abelian varieties	Theta functions	Isogenies	

Thank you for your attention!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣��

9ublic-key cryptography 200	Abelian varieties	00000000	Isogenies	
Bibliogra	ohy			
[BF03]	D. Boneh and M. Franklin. "Id SIAM Journal on Computing 32.	entity-based encryption f 3 (2003), pp. 586–615 (cit.	rom the Weil pairing". I on p. 4).	n:
[BLSO4]	D. Boneh, B. Lynn, and H. Shao Journal of Cryptology 17.4 (2004	cham. "Short signatures f 4), pp. 297–319 (cit. on p. 4	rom the Weil pairing". I	n:
[GPS+06]	V. Goyal, O. Pandey, A. Sahai, a fine-grained access control of conference on Computer and co	nd B. Waters. "Attribute- encrypted data". In: Proc communications security. A	based encryption for eedings of the 13th ACM CM. 2006, p. 98 (cit. on	p. 4).
[Jou04]	A. Joux. "A one round protoco <i>Cryptology</i> 17.4 (2004), pp. 263-	ol for tripartite Diffie-Hell -276 (cit. on p. 4).	man". In: Journal of	
[SW05]	A. Sahai and B. Waters. "Fuzzy Cryptology-EUROCRYPT 2005 (2	/ identity-based encryptio 2005), pp. 457–473 (cit. on	n". In: <i>Advances in</i> p. 4).	
[Ver01]	E. Verheul. "Self-blindable cre Advances in Cryptology–ASIACI	dential certificates from t R <i>YPT 2001</i> (2001), pp. 533–55	he Weil pairing". In: 51 (cit. on p. 4).	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶