Computing optimal pairings on abelian varieties with theta functions

David Lubicz^{1,2}, Damien Robert³

¹CÉLAR

²IRMAR, Université de Rennes 1

³Microsoft Research

30/09/2011 (IMB, Bordeaux)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Outline

- Public-key cryptography
- 2 Miller's algorithm
- 3 Theta functions
- Optimal pairings

Discrete logarithm

Definition (DLP)

Let $G = \langle g \rangle$ be a cyclic group of order *n*. Let $x \in \mathbb{N}$ and $h = g^x$. The discrete logarithm $\log_g(h)$ is *x*.

- Exponentiation: $O(\log n)$. DLP?
- If $n = \prod p_i^{e_i}$ then the DLP $\log_g(h)$ is reduced to several DLP $\log_{g_i}(\cdot)$ where g_i if of order p_i (CRT+Hensel lemma). Thus the cost of the DLP depends on the largest prime divisor of n.
- Generic method to solve the DLP: let $u = \lfloor \sqrt{n} \rfloor$, and compute the intersection of $\{h, hg^{-1}, ..., hg^{-u}\}$ and $\{g^u, g^{2u}, g^{3u}, ...\}$. Cost: $\widetilde{O}(\sqrt{n})$ (Baby steps, giant steps).
- Reduce memory consumption by doing a random walk g^{a_i}h^{b_i} until a collision is found (Pollard-ρ).
- If G is of prime order p, the DLP costs $\tilde{O}(\sqrt{p})$ (in a generic group).

 Public-key cryptography
 Miller's algorithm
 Theta functions

 0●000
 000000000
 000000000

Optimal pairings

Usage in public key cryptography

- Asymetric encryption;
- Signature;
- Zero-knowledge.

Example (Diffie-Hellman Key Exchange)

Alice sends g^a , Bob sends g^b , the common key is

$$g^{ab} = (g^b)^a = (g^a)^b.$$

▲ロト ▲母 ト ▲目 ト ▲目 ト → 日 → のへで

00000	

Miller's algorithm

Theta functions

Pairing-based cryptography

Definition

A pairing is a bilinear application $e: G_1 \times G_1 \rightarrow G_2$.

Example

- If the pairing e can be computed easily, the difficulty of the DLP in G_1 reduces to the difficulty of the DLP in G_2 .
- \Rightarrow MOV attacks on supersingular elliptic curves.
 - Identity-based cryptography [BF03].
 - Short signature [BLS04].
 - One way tripartite Diffie-Hellman [Jou04].
 - Self-blindable credential certificates [Ver01].
 - Attribute based cryptography [SW05].
 - Broadcast encryption [GPS+06].

Public-key cryptog		Miller's algorithm	Theta functions	Optimal pair
00000		000000000	00000000	000000

Pairing-based cryptography

Tripartite Diffie-Helman

Alice sends g^a , Bob sends g^b , Charlie sends g^c . The common key is

$$e(g,g)^{abc} = e(g^b,g^c)^a = e(g^c,g^a)^b = e(g^a,g^b)^c \in G_2.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Example (Identity-based cryptography)

- Master key: (P, sP), s. $s \in \mathbb{N}, P \in G_1$.
- Derived key: Q, sQ. $Q \in G_1$.
- Encryption, $m \in G_2$: $m' = m \oplus e(Q, sP)^r$, rP. $r \in \mathbb{N}$.
- Decryption: $m = m' \oplus e(sQ, rP)$.

Which groups to	use?		
Public-key cryptography 00000	Miller's algorithm 0000000000	Theta functions	Optimal pairings

- The DLP costs $\widetilde{O}(\sqrt{p})$ in a generic group.
 - $G = \mathbb{Z}/p\mathbb{Z}$: DLP is trivial.
 - $G = \mathbb{F}_p^*$: sub-exponential attacks.
 - Elliptic curves or Jacobian of hyperelliptic curves of genus 2 over 𝔽_q: best attack is the generic attack except for some particular cases.
 - Abelian variety: better attack (still exponential) when the dimension g is greater than 2. Subexponential attack when g is greater than log q.

• Abelian varieties give the only known examples of secure cryptographic pairings.

Public-key cryptography	Miller's algorithm	Theta functions	Optimal pairings
00000	●000000000	000000000	
The Weil	pairing on elliptic cu	arves	

- Let $E: y^2 = x^3 + ax + b$ be an elliptic curve over k (car $k \neq 2,3$).
- Let $P, Q \in E[\ell]$ be points of ℓ -torsion.
- Let f_P be a function associated to the principal divisor $\ell(P-0)$, and f_Q to $\ell(Q-0)$. We define:

$$e_{W,\ell}(P,Q) = \frac{f_Q(P-0)}{f_P(Q-0)}.$$

• The application $e_{W,\ell} : E[\ell] \times E[\ell] \to \mu_{\ell}(\overline{k})$ is a non degenerate pairing: the Weil pairing.

Public-key cryptography 00000 Miller's algorithm D●00000000 Theta functions

Optimal pairings

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Computing the Weil pairing

• We need to compute the functions f_P and f_Q . More generally, we define the Miller's functions:

Definition

Let $\lambda \in \mathbb{N}$ and $X \in E[\ell]$, we define $f_{\lambda,X} \in k(E)$ to be a function thus that:

$$(f_{\lambda,X}) = \lambda(X) - ([\lambda]X) - (\lambda - 1)(0).$$

Public-key cryptography 00000	Miller's algorithm	Theta functions 00000000	Optimal pairings
Miller's algorithm	ן ו		

• The key idea in Miller's algorithm is that

$$f_{\lambda+\mu,X} = f_{\lambda,X} f_{\mu,X} \mathfrak{f}_{\lambda,\mu,X}$$

where $f_{\lambda,\mu,X}$ is a function associated to the divisor

$$([\lambda + \mu]X) - ([\lambda]X) - ([\mu]X) + (0).$$

• We can compute $f_{\lambda,\mu,X}$ using the addition law in *E*: if $[\lambda]X = (x_1, y_1)$ and $[\mu]X = (x_2, y_2)$ and $\alpha = (y_1 - y_2)/(x_1 - x_2)$, we have

$$f_{\lambda,\mu,X} = \frac{y - \alpha(x - x_1) - y_1}{x + (x_1 + x_2) - \alpha^2}.$$

・ロ・・ 白・・ 小田・ トロ・ うくの

Public-key cryptography		Theta functions	Optimal pairings
	000000000		

Tate pairing

Definition

- Let E/\mathbb{F}_q be an elliptic curve of cardinal divisible by ℓ . Let d be the smallest number thus that $\ell \mid q^d 1$: we call d the embedding degree. \mathbb{F}_{q^d} is constructed from \mathbb{F}_q by adjoining all the ℓ -th root of unity.
- The Tate pairing is a non degenerate bilinear application given by

$$e_T \colon E(\mathbb{F}_{q^d})/\ell E(\mathbb{F}_{q^d}) \times E[\ell](\mathbb{F}_q) \longrightarrow \mathbb{F}_{q^d}^*/\mathbb{F}_{q^d}^{*\ell}$$

$$(P,Q) \longmapsto f_Q((P)-(0))$$

- If $\ell^2 \nmid E(\mathbb{F}_{q^d})$ then $E(\mathbb{F}_{q^d})/\ell E(\mathbb{F}_{q^d}) \simeq E[\ell](\mathbb{F}_{q^d})$.
- We normalise the Tate pairing by going to the power of $(q^d 1)/\ell$.
- This final exponentiation allows to save some computations. For instance if d = 2d' is even, we can suppose that $P = (x_2, y_2)$ with $x_2 \in E(\mathbb{F}_{q^{d'}})$. Then the denominators of $\mathfrak{f}_{\lambda,\mu,Q}$ are ℓ -th powers and are killed by the final exponentiation.

Miller's algorithm

Theta functions

Optimal pairings

Miller's algorithm

Computing the Tate pairing

Input: $\ell \in \mathbb{N}$, $Q = (x_1, y_1) \in E[\ell](\mathbb{F}_q)$, $P = (x_2, y_2) \in E(\mathbb{F}_{q^d})$. Output: $e_T(P,Q)$.

- Compute the binary decomposition: $\ell := \sum_{i=0}^{I} b_i 2^i$. Let $T = Q, f_1 = 1, f_2 = 1$.
- For *i* in [*I*..0] compute
 - α , the slope of the tangent of *E* at *T*.
 - T = 2T. $T = (x_3, y_3)$.
 - $f_1 = f_1^2(y_2 \alpha(x_2 x_3) y_3), f_2 = f_2^2(x_2 + (x_1 + x_3) \alpha^2).$
 - If $b_i = 1$, then compute
 - α , the slope of the line going through Q and T.
 - T = T + Q. $T = (x_3, y_3)$.
 - $f_1 = f_1^2(y_2 \alpha(x_2 x_3) y_3), f_2 = f_2(x_2 + (x_1 + x_3) \alpha^2).$

Return

$$\left(\frac{f_1}{f_2}\right)^{\frac{q^d}{\ell}}$$

20

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

• Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.

Example

- Elliptic curves= Abelian varieties of dimension 1.
- If *C* is a (smooth) curve of genus *g*, its Jacobian is an abelian variety of dimension *g*.

00000	000000000	00000000	000000000000000000000000000000000000000
Pairing on abeliar	n varieties		

- Let $Q \in \widehat{A}[\ell]$. By definition of the dual abelian variety, Q is a divisor of degree 0 on A such that $[\ell]^*Q$ is principal. Let $g_Q \in k(A)$ be a function associated to $[\ell]^*Q$.
- We can then define the Weil pairing:

$$e_{W,\ell}: A[\ell] \times \widehat{A}[\ell] \longrightarrow \mu_{\ell}(\overline{k})$$

$$(P,Q) \longmapsto \frac{g_Q(x+P)}{g_Q(x)}$$

(This last function being constant in its definition domain).

• Likewise, we can extend the Tate pairing to abelian varieties.

Doirings and n	alarizations	
Pairings and D	olalizations	

- If Θ is an ample divisor, the polarisation φ_{Θ} is a morphism
 - $A \to \widehat{A}, x \mapsto t_x^* \Theta \Theta.$
 - We can then compose the Weil and Tate pairings with φ_{Θ} :

$$\begin{array}{ccc} e_{W,\Theta,\ell} \colon A[\ell] \times A[\ell] & \longrightarrow & \mu_{\ell}(\overline{k}) \\ (P,Q) & \longmapsto & e_{W,\ell}(P,\varphi_{\Theta}(Q)) \end{array}$$

• More explicitly, if f_P and f_Q are the functions associated to the principal divisors $\ell t_P^* \Theta - \ell \Theta$ and $\ell t_Q^* \Theta - \ell \Theta$ we have

$$e_{W,\Theta,\ell}(P,Q) = \frac{f_Q(P-0)}{f_P(Q-0)}.$$

Remark

If Θ corresponds to the ample line bundle \mathcal{L} , $e_{W,\Theta,\ell}$ corresponds to the commutator pairing $e_{\mathcal{L}^{\ell}}$.

- The moduli space of abelian varieties of dimension g is a space of dimension g(g+1)/2. We have more liberty to find optimal abelian varieties in function of the security parameters.
- Supersingular elliptic curves have a too small embedding degree. [RS09] says that for the current security parameters, optimal supersingular abelian varieties of small dimension are of dimension 4.
- If A is an abelian variety of dimension g, A[ℓ] is a (Z/ℓZ)-module of dimension 2g ⇒ the structure of pairings on abelian varieties is richer.

- If *J* is the Jacobian of an hyperelliptic curve *H* of genus *g*, it is easy to extend Miller's algorithm to compute the Tate and Weil pairing on *J* with Mumford coordinates.
- For instance if g = 2, the function $f_{\lambda,\mu,Q}$ is of the form

$$\frac{y-l(x)}{(x-x_1)(x-x_2)}$$

where l is of degree 3.

• What about more general abelian varieties? We don't have Mumford coordinates.

Complex shel	ian variety		
00000	000000000	• 0 000000	000000000
Public-key cryptography	Miller's algorithm		Optimal pairings

- A complex abelian variety is of the form $A = V/\Lambda$ where V is a \mathbb{C} -vector space and Λ a lattice, with a polarization (actually an ample line bundle) \mathscr{L} on it.
- The Chern class of \mathscr{L} corresponds to a symplectic real form *E* on *V* such that E(ix, iy) = E(x, y) and $E(\Lambda, \Lambda) \subset \mathbb{Z}$.
- The pairing $e_{\mathscr{L}}$ is then given by $\exp(2i\pi E(\cdot, \cdot))$.
- A principal polarization on *A* corresponds to a decomposition $\Lambda = \Omega \mathbb{Z}^g + \mathbb{Z}^g$ with $\Omega \in \mathfrak{H}_g$ the Siegel space.

• The corresponding polarization on *A* is then given by $E(\Omega x_1 + x_2, \Omega y_1 + y_2) = {}^t x_1 \cdot y_2 - {}^t y_1 \cdot x_2.$

- Every abelian variety (over an algebraically closed field) can be described by theta coordinates of level n > 2 even. (The level n encodes information about the *n*-torsion).
- The theta coordinates of level 2 on *A* describe the Kummer variety of *A*.
- For instance if A = C^g/(Z^g + ΩZ^g) is an abelian variety over C, the theta coordinates on A come from the theta functions with characteristic:

$$\vartheta\left[\begin{smallmatrix}a\\b\end{smallmatrix}\right](z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i^{t}(n+a)\Omega(n+a) + 2\pi i^{t}(n+a)(z+b)} \quad a, b \in \mathbb{Q}^g$$

$$\begin{split} \sum_{t\in Z(\overline{2})} \chi(t)\vartheta_{i+t}(x+y)\vartheta_{j+t}(x-y)\big).\big(\sum_{t\in Z(\overline{2})} \chi(t)\vartheta_{k+t}(0)\vartheta_{l+t}(0)\big) = \\ \big(\sum_{t\in Z(\overline{2})} \chi(t)\vartheta_{-i'+t}(y)\vartheta_{j'+t}(y)\big).\big(\sum_{t\in Z(\overline{2})} \chi(t)\vartheta_{k'+t}(x)\vartheta_{l'+t}(x)\big). \end{split}$$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

 Public-key cryptography
 Miller's algorithm
 Theta functions
 Optimal pair

 00000
 00000000
 00000000
 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Example: addition in genus 1 and in level 2

Differential Addition Algorithm: Input: $P = (x_1 : z_1), Q = (x_2 : z_2)$

and $R = P - Q = (x_1 : z_1)$, $Q - (x_2 : z_2)$ output: $P + Q = (x_3 : z_3)$ with $x_3 z_3 \neq 0$. Output: P + Q = (x' : z').

- $x_0 = (x_1^2 + z_1^2)(x_2^2 + z_2^2);$
- 2 $z_0 = \frac{A^2}{B^2} (x_1^2 z_1^2) (x_2^2 z_2^2);$

$$\ \, {} { \ \, { 0 } \ \, { 0 } \ \, { 0 } \ \, { 0 } \ \, { (x_0+z_0)/x_3 ; } }$$

- $2 z' = (x_0 z_0)/z_3;$
- Seturn (x':z').

Public-key cryptographyMiller's algorithm
occoolTheta functions
occoolOptimal pairings
occoolCost of the arithmetic with low level theta functions
(car $k \neq 2$)

	Mumford	Level 2	Level 4
Doubling Mixed Addition	$\begin{array}{c} 34M+7S\\ 37M+6S \end{array}$	$7M + 12S + 9m_0$	$49M + 36S + 27m_0$

Multiplication cost in genus 2 (one step).

	Montgomery	Level 2	Jacobians coordinates
Doubling Mixed Addition	$5M + 4S + 1m_0$	$3M + 6S + 3m_0$	3M+5S $7M+6S+1m_0$

Multiplication cost in genus 1 (one step).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The Weil and	Tate pairing wi	th theta coordi	inates
The well and	Tate pairing wi	ith theta coord	inates

P and *Q* points of ℓ -torsion.

$$0_A \qquad P \qquad 2P \qquad \dots \qquad \ell P = \lambda_P^0 0_A$$

$$Q \qquad P \oplus Q \qquad 2P + Q \qquad \dots \qquad \ell P + Q = \lambda_P^1 Q$$

$$2Q \qquad P + 2Q$$

$$\dots \qquad \dots$$

$$\ell Q = \lambda_Q^0 0_A \qquad P + \ell Q = \lambda_Q^1 P$$

$$\bullet \quad e_{W,\ell}(P,Q) = \frac{\lambda_P^1 \lambda_Q^0}{\lambda_P^0 \lambda_Q^1}.$$
If $P = \Omega x_1 + x_2$ and $Q = \Omega y_1 + y_2$, then $e_{W,\ell}(P,Q) = e^{-2\pi i \ell (t x_1 \cdot y_2 - t y_1 \cdot x_2)}.$

$$\bullet \quad e_{T,\ell}(P,Q) = \frac{\lambda_P^1}{\lambda_P^0}.$$

Why does it work	ks?		
Public-key cryptography 00000	Miller's algorithm 0000000000	Theta functions	Optimal pairings

We then have

$$\begin{split} \lambda'_{P}^{0} &= \alpha^{\ell^{2}} \lambda_{P}^{0}, \quad \lambda'_{Q}^{0} = \beta^{\ell^{2}} \lambda_{Q}^{0}, \quad \lambda'_{P}^{1} = \frac{\gamma^{\ell} \alpha^{(\ell(\ell-1)}}{\beta^{\ell}} \lambda_{P}^{1}, \quad \lambda'_{Q}^{1} = \frac{\gamma^{\ell} \beta^{(\ell(\ell-1)}}{\alpha^{\ell}} \lambda_{Q}^{1}, \\ e'_{W,\ell}(P,Q) &= \frac{\lambda'_{P}^{1} \lambda'_{Q}^{0}}{\lambda'_{P}^{0} \lambda'_{Q}^{1}} = \frac{\lambda_{P}^{1} \lambda_{Q}^{0}}{\lambda_{P}^{0} \lambda_{Q}^{1}} = e_{W,\ell}(P,Q), \\ e'_{T,\ell}(P,Q) &= \frac{\lambda'_{P}^{1}}{\lambda'_{P}^{0}} = \frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} \frac{\lambda_{P}^{1}}{\lambda_{P}^{0}} = \frac{\gamma^{\ell}}{\alpha^{\ell} \beta^{\ell}} e_{T,\ell}(P,Q). \end{split}$$

The case $n = 2$			
00000	000000000	000000000	00000000
Public-key cryptography	Miller's algorithm		Optimal pairings

- If n = 2 we work over the Kummer variety K, so $e(P,Q) \in \overline{k}^{*,\pm 1}$.
- We represent a class $x \in \overline{k}^{*,\pm 1}$ by $x + 1/x \in \overline{k}^*$. We want to compute the symmetric pairing

$$e_s(P,Q) = e(P,Q) + e(-P,Q).$$

- From $\pm P$ and $\pm Q$ we can compute $\{\pm (P+Q), \pm (P-Q)\}$ (need a square root), and from these points the symmetric pairing.
- e_s is compatible with the \mathbb{Z} -structure on K and $\overline{k}^{*,\pm 1}$.
- The \mathbb{Z} -structure on $\overline{k}^{*,\pm}$ can be computed as follow:

$$(x^{\ell_1+\ell_2}+\frac{1}{x^{\ell_1+\ell_2}})+(x^{\ell_1-\ell_2}+\frac{1}{x^{\ell_1-\ell_2}})=(x^{\ell_1}+\frac{1}{x^{\ell_1}})(x^{\ell_2}+\frac{1}{x^{\ell_2}})$$

Public-key cryptograp 00000	phy Mill OO	ler's algorithm 000000000	Theta functions	Optimal pairing
Compai	rison with N	/liller algori	thm	
		$g = 1 7\mathbf{M} + 7\mathbf{S} + g = 2 17\mathbf{M} + 13\mathbf{S}$	$2\mathbf{m}_0$ $5 + 6\mathbf{m}_0$	
	Tate pairing with	theta coordinates,	$P,Q \in A[\ell](\mathbb{F}_{q^d})$) (one step)
		Mill	er	Theta coordinates
		Doubling	Addition	One step
g = 1	<i>d</i> even <i>d</i> odd	$1\mathbf{M} + 1\mathbf{S} + 1\mathbf{m}$ $2\mathbf{M} + 2\mathbf{S} + 1\mathbf{m}$	$1\mathbf{M} + 1\mathbf{m}$ $2\mathbf{M} + 1\mathbf{m}$	1M + 2S + 2m
g=2	Q degenerate + d even General case	1M+1S+3m 2M+2S+18m	1M + 3m 2M + 18m	3M + 4S + 4m

 $P \in A[\ell](\mathbb{F}_q), Q \in A[\ell](\mathbb{F}_{q^d})$ (counting only operations in \mathbb{F}_{q^d}).

Ate pairing			
Public-key cryptography 00000	Miller's algorithm 0000000000	Theta functions	Optimal pairings

- Let $G_1 = E[\ell] \bigcap \operatorname{Ker}(\pi_q 1)$ and $G_2 = E[\ell] \bigcap \operatorname{Ker}(\pi_q [q])$.
- We have $f_{ab,Q} = f_{a,Q}^b f_{b,[a]Q}$.
- Let $P \in G_1$ and $Q \in G_2$ we have $f_{a,[q]Q}(P) = f_{a,Q}(P)^q$.
- Let $\lambda \equiv q \mod \ell$. Let $m = (\lambda^d 1)/\ell$. We then have

$$e_T(P,Q)^m = f_{\lambda^d,Q}(P)^{(q^d-1)/\ell} = \left(f_{\lambda,Q}(P)^{\lambda^{d-1}} f_{\lambda,[q]Q}(P)^{\lambda^{d-2}} \dots f_{\lambda,[q^{d-1}]Q}(P)\right)^{(q^d-1)/\ell} = \left(f_{\lambda,Q}(P)^{\sum \lambda^{d-1-i}q^i}\right)^{(q^d-1)/\ell}$$

Definition

Let $\lambda \equiv q \mod \ell$, the (reduced) ate pairing is defined by

$$a_{\lambda}: G_1 \times G_2 \to \mu_{\ell}, (P,Q) \mapsto f_{\lambda,Q}(P)^{(q^d-1)/\ell}$$

It is non degenerate if $\ell^2 \nmid (\lambda^k - 1)$.

Ontimal ate			
00000	000000000	00000000	00000000
Public-key cryptography	Miller's algorithm	Theta functions	

- Let $\lambda = m\ell = \sum c_i q^i$ be a multiple of ℓ with small coefficients c_i . $(\ell \nmid m)$
- The pairing

$$a_{\lambda}: G_{1} \times G_{2} \longrightarrow \mu_{\ell}$$

$$(P,Q) \longmapsto \left(\prod_{i} f_{c_{i},Q}(P)^{q^{i}} \prod_{i} \mathfrak{f}_{\sum_{j>i} c_{j}q^{j},c_{i}q^{i},Q}(P)\right)^{(q^{d}-1)/\ell}$$

is non degenerate when $m dq^{d-1} \not\equiv (q^d - 1)/r \sum_i ic_i q^{i-1} \mod \ell$.

- Since $\varphi_d(q) = 0 \mod \ell$ we look at powers $q, q^2, \dots, q^{\varphi(d)-1}$.
- We can expect to find λ such that $c_i \approx \ell^{1/\varphi(d)}$.

Public-key cryptography 00000 Miller's algorithm

Theta functions

Optimal pairings

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Ate pairing with theta functions

- Let $P \in G_1$ and $Q \in G_2$.
- In projective coordinates, we have $\pi_a^d(P \oplus Q) = P \oplus \lambda^d Q = P \oplus Q$.
- Unfortunately, in affine coordinates, $\pi_a^d(P+Q) \neq P + \lambda^d Q$.
- But if $\pi_q(P+Q) = C * (P+\lambda Q)$, then C is exactly the (non reduced) ate pairing!

Miller function	ne with theta	coordinates	
00000	000000000	00000000	00000000
Public-key cryptography	Miller's algorithm	Theta functions	

• We have

$$f_{\mu,Q}(P) = \frac{\vartheta(Q)}{\vartheta(P+\mu Q)} \left(\frac{\vartheta(P+Q)}{\vartheta(P)}\right)^{\mu}.$$

So

$$\mathfrak{f}_{\lambda,\mu,Q}(P) = \frac{\vartheta(P+\lambda Q)\vartheta(P+\mu Q)}{\vartheta(P)\vartheta(P+(\lambda+\mu)Q)}.$$

• We can compute this function using a generalised version of Riemann's relations:

$$(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{i+t}(P+(\lambda+\mu)Q)\vartheta_{j+t}(\lambda Q)).(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k+t}(\mu Q)\vartheta_{l+t}(P)) = (\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{-i'+t}(0)\vartheta_{j'+t}(P+\mu Q)).(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k'+t}(P+\lambda Q)\vartheta_{l'+t}((\lambda+\mu)Q)).$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

-		00000000	000000000
Public-key cryptography	Miller's algorithm	Theta functions	Optimal pairings

Optimal ate with theta functions

- **O** Input: $\pi_q(P) = P$, $\pi_q(Q) = q * Q$, $\lambda = m\ell = \sum c_i q^i$.
- Sompute the $P + c_i Q$ and $c_i Q$.
- Solution Apply Frobeniuses to obtain the $P + c_i q^i Q$, $c_i q^i Q$.
- Compute $c_i q^i Q + c_j q^j Q$ (up to a constant) and then use the extended Riemann relations to compute $P + c_i q^i Q + c_j q^j Q$ (up to the same constant).

- Securse until we get $\lambda Q = C_0 * Q$ and $P + \lambda Q = C_1 * P$.
- **6** Return $(C_1/C_0)^{\frac{q^d-1}{\ell}}$.

The case n = 2

- Computing $c_i q^i Q \pm c_j q^j Q$ requires a square root (very costly).
- And we need to recognize $c_i q^i Q + c_j q^j Q$ from $c_i q^i Q c_j q^j Q$.
- We will use compatible additions: if we know x, y, z and x+z, y+z, we can compute x+y without a square root.
- We apply the compatible additions with $x = c_i q^i Q$, $y = c_j q^j Q$ and z = P.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Compatible additions

- Recall that we know x, y, z and x + z, y + z.
- From it we can compute $(x+z)\pm(y+z) = \{x+y+2z, x-y\}$ and of course $x \pm y$. Then x+y is the element in $\{x+y, x-y\}$ not appearing in the preceding set.
- Since we can distinguish x + y from x y we can compute them without a square root.

The compatib	le addition algo	orithm in dime	nsion 1
The compatib	le addition algo	orithm in dime	nsion 1

Input: x, y,
$$xz = x + z$$
, $yz = y + z$.
Computing $x \pm y$:
 $\alpha = (y_0^2 + y_1^2)(x_0^2 + y_0^2)A', \beta = (y_0^2 - y_1^2)(x_0^2 - y_0^2)B'$
 $\lambda_{00} = (\alpha + \beta), \lambda_{11} = (\alpha - \beta)$
 $\lambda_{01} := 2y_0y_1x_0x_1/ab.$

Omputing $(x+z)\pm(y+z)$:

1 2

$$\begin{aligned} \alpha' &= (y z_0^2 + y z_1^2)(x z_0^2 + y z_0^2) A', \beta' = (y z_0^2 - y z_1^2)(x z_0^2 - y z_0^2) B' \\ \lambda'_{00} &= \alpha' + \beta', \lambda'_{11} = \alpha' - \beta' \\ \lambda'_{01} &= 2y z_0 y z_1 x z_0 x z_1 / ab. \end{aligned}$$

• **Return** $x + y = [\lambda_{00}(\lambda_{11}\lambda'_{00} - \lambda'_{11}\lambda_{00}), -2\lambda_{11}(\lambda'_{01}\lambda_{00} - \lambda_{01}\lambda'_{00})].$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

Perspectives

- Characteristic 2 case (especially for supersingular abelian varieties of characteristic 2).
- Optimized implementations (FPGA, ...).
- Look at special points (degenerate divisors, ...).

ublic-key cryptography 00000	Miller's algorithm	Theta functions	Optimal pairing
Bibliogra	phy		
[BF03]	D. Boneh and M. Franklin. "Identity-b SIAM Journal on Computing 32.3 (2003)	ased encryption from the Weil , pp. 586–615 (cit. on p. 5).	pairing". In:
[BLSO4]	D. Boneh, B. Lynn, and H. Shacham. " Journal of Cryptology 17.4 (2004), pp. 29	Short signatures from the Weil 97-319 (cit. on p. 5).	pairing". In:
[GPS+06]	V. Goyal, O. Pandey, A. Sahai, and B. W fine-grained access control of encryp conference on Computer and communi	aters. "Attribute-based encrypti ed data". In: <i>Proceedings of the</i> cations security. ACM. 2006, p. 9	on for <i>13th ACM</i> 8 (cit. on p. 5).
[Jou04]	A. Joux. "A one round protocol for tri <i>Cryptology</i> 17.4 (2004), pp. 263–276 (cit	partite Diffie-Hellman". In: <i>Jour</i> . on p. 5).	nal of
[RS09]	K. Rubin and A. Silverberg. "Using abo cryptography". In: <i>Journal of Cryptolo</i>	elian varieties to improve pairin gy 22.3 (2009), pp. 330-364 (cit. c	g-based on p. 16).
[SW05]	A. Sahai and B. Waters. "Fuzzy identit Cryptology-EUROCRYPT 2005 (2005), pp	y-based encryption". In: Advance 0. 457–473 (cit. on p. 5).	es in
[Ver01]	E. Verheul. "Self-blindable credential Advances in Cryptology–ASIACRYPT 200	certificates from the Weil pairin 1 (2001), pp. 533-551 (cit. on p. 5)	ıg". In:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶