Cryptology, elliptic curves and number theory

Damien Robert

LFANT Team, IMB \& Inria Bordeaux Sud-Ouest

08/03/2011 (Bordeaux)

Outline

(1) Public-key cryptography
2. Abelian varieties
(3) Point counting
(4) Theta functions

A brief history of public-key cryptography

- Secret-key cryptography: Vigenère (1553), One time pad (1917), AES (NIST, 2001).
- Public-key cryptography:
- Diffie-Hellman key exchange (1976).
- RSA (1978): multiplication/factorisation.
- ElGamal: exponentiation/discrete logarithm in $G=\mathbb{F}_{q}^{*}$.
- ECC/HECC (1985): discrete logarithm in $G=A\left(\mathbb{F}_{q}\right)$.
- Lattices, NTRU (1996), Ideal Lattices (2006): perturbate a lattice point/Closest Vector Problem, Bounded Distance Decoding.
- Polynomial systems, HFE (1996): evaluating polynomials/finding roots.
- Coding-based cryptography, McEliece (1978): Matrix.vector/decoding a linear code.
\Rightarrow Encryption, Signature (+Pseudo Random Number Generator, Zero Knowledge).
- Pairing-based cryptography (2000-2001).
- Homomorphic cryptography (2009).

RSA versus (H)ECC

Security (bits level)	RSA	ECC
72	1008	144
80	1248	160
96	1776	192
112	2432	224
128	3248	256
256	15424	512

Key length comparison between RSA and ECC

- Factorisation of a 768-bit RSA modulus [KAF+10].
- Currently: attempt to attack a 130-bit Koblitz elliptic curve.

Discrete logarithm

Definition (DLP)

Let $G=\langle g\rangle$ be a cyclic group of order n. Let $x \in \mathbb{N}$ and $h=g^{x}$. The discrete logarithm $\log _{g}(h)$ is x.

- Exponentiation: $O(\log n)$. DLP?
- If $n=\prod p_{i}^{e_{i}}$ then the DLP $\log _{g}(h)$ is reduced to several DLP $\log _{g_{i}}(\cdot)$ where g_{i} if of order p_{i} (CRT+Hensel lemma). Thus the cost of the DLP depends on the largest prime divisor of n.
- Generic method to solve the DLP: let $u=[\sqrt{n}]$, and compute the intersection of $\left\{h, h g^{-1}, \ldots, h g^{-u}\right\}$ and $\left\{g^{u}, g^{2 u}, g^{3 u}, \ldots\right\}$. Cost: $\widetilde{O}(\sqrt{n})$ (Baby steps, giant steps).
- Reduce memory consumption by doing a random walk $g^{a_{i}} h^{b_{i}}$ until a collision is found (Pollard- ρ).
- If G is of prime order p, the DLP costs $\widetilde{O}(\sqrt{p})$ (in a generic group).

Key exchange

Protocol [Diffie-Hellman Key Exchange]

Alice sends g^{a}, Bob sends g^{b}, the common key is

$$
g^{a b}=\left(g^{b}\right)^{a}=\left(g^{a}\right)^{b} .
$$

Zero knowledge

- Alice knowns $a \in \mathbb{Z} / n \mathbb{Z}$. Publish $p=g^{a}$.
- Alice sends $q=g^{r}$ to Bob, $r \in \mathbb{Z}$ random.
- Bob either:
- Asks r to Alice and checks that $q=g^{r}$.
- Asks $r+a$ to Alice and checks that $q p=g^{r+a}$.

Public key cryptography

- Cyclic group of prime order $G=\langle g\rangle$.
- Alice: secret key a, public key $p=g^{a}$.

Asymetric encryption

- Encrypting $m \in G$: Bob sends $g^{r}, s=m p^{r}, \quad r \in \mathbb{Z}$ random.
- Decryption: $m=s / g^{r a}$.

Signature $\left[G=\mathbb{F}_{p}^{*}\right]$

- Signing m : Alice sends $g^{r}, s=\left(m-a g^{r}\right) / r . \quad r \in \mathbb{Z}$ random.
- Verification: Bob checks that $g^{m}=p^{g^{r}} g^{r s}$.

Pairing-based cryptography

Definition

A pairing is a bilinear application $e: G_{1} \times G_{1} \rightarrow G_{2}$.

- Identity-based cryptography [BF03].
- Short signature [BLSO4].
- One way tripartite Diffie-Hellman [Jou04].
- Self-blindable credential certificates [Vero1].
- Attribute based cryptography [SW05].
- Broadcast encryption [GPSW06].

Example

- If the pairing e can be computed easily, the difficulty of the DLP in G_{1} reduces to the difficulty of the DLP in G_{2}.
\Rightarrow MOV attacks on elliptic curves.

Pairing-based cryptography

Tripartite Diffie-Helman

Alice sends g^{a}, Bob sends g^{b}, Charlie sends g^{c}. The common key is

$$
e(g, g)^{a b c}=e\left(g^{b}, g^{c}\right)^{a}=e\left(g^{c}, g^{a}\right)^{b}=e\left(g^{a}, g^{b}\right)^{c} \in G_{2} .
$$

Example (Identity-based cryptography)

- Master key: $(P, s P)$, s. $\quad s \in \mathbb{N}, P \in G_{1}$.
- Derived key: $Q, s Q . \quad Q \in G_{1}$.
- Encryption, $m \in G_{2}: m^{\prime}=m \oplus e(Q, s P)^{r}, r P . \quad r \in \mathbb{N}$.
- Decryption: $m=m^{\prime} \oplus e(s Q, r P)$.

Which groups to use?

- The DLP costs $\widetilde{O}(\sqrt{p})$ in a generic group.
- $G=\mathbb{Z} / p \mathbb{Z}$: DLP is trivial.
- $G=\mathbb{F}_{p}^{*}$: sub-exponential attacks.
\Rightarrow Find secure groups with efficient law, compact representation.
\Rightarrow We also want efficient pairings.

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.
\Rightarrow Use $G=A(k)$ with $k=\mathbb{F}_{q}$ for the DLP.

Pairings on abelian varieties

The Weil and Tate pairings on abelian varieties are the only known examples of cryptographic pairings.

$$
e_{W}: A[\ell] \times A[\ell] \rightarrow \mu_{\ell} \subset \mathbb{F}_{q^{k}}^{*}
$$

Elliptic curves

Definition ($\operatorname{car} k \neq 2,3$)

$E: y^{2}=x^{3}+a x+b . \quad 4 a^{3}+27 b^{2} \neq 0$.

- An elliptic curve is a plane curve of genus 1 .
- Elliptic curves = Abelian varieties of dimension 1.

$$
\begin{gathered}
P+Q=-R=\left(x_{R},-y_{R}\right) \\
\lambda=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}} \\
x_{R}=\lambda^{2}-x_{P}-x_{Q} \\
y_{R}=y_{P}+\lambda\left(x_{R}-x_{P}\right)
\end{gathered}
$$

Jacobian of hyperelliptic curves

$C: y^{2}=f(x)$, hyperelliptic curve of genus $g . \quad(\operatorname{deg} f=2 g+1)$

- Divisor: formal sum $D=\sum n_{i} P_{i}, \quad P_{i} \in C(\bar{k})$.

$$
\operatorname{deg} \bar{D}=\sum n_{i} .
$$

- Principal divisor: $\sum_{P \in C(\bar{k})} v_{P}(f) . P ; \quad f \in \bar{k}(C)$.

Jacobian of $C=$ Divisors of degree 0 modulo principal divisors + Galois action

$$
=\text { Abelian variety of dimension } g \text {. }
$$

- Divisor class $D \Rightarrow$ unique representative (Riemann-Roch):

$$
D=\sum_{i=1}^{k}\left(P_{i}-P_{\infty}\right) \quad k \leqslant g, \quad \text { symmetric } P_{i} \neq P_{j}
$$

- Mumford coordinates: $D=(u, v) \Rightarrow u=\prod\left(x-x_{i}\right), v\left(x_{i}\right)=y_{i}$.
- Cantor algorithm: addition law.

Example of the addition law in genus 2

Example of the addition law in genus 2

Example of the addition law in genus 2

Complex abelian varieties

- Abelian variety over $\mathbb{C}: A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$, where $\Omega \in \mathscr{H}_{g}(\mathbb{C})$ the Siegel upper half space.
- An elliptic curve over \mathbb{C} is a torus \mathbb{C} / Λ, where Λ is a lattice.
- The isomorphism $E \rightarrow \mathbb{C} / \Lambda$ is given by $P \mapsto \int_{0}^{P} d x / y, \Lambda$ is the image of $H_{1}(E, \mathbb{Z})$.
- Let $\mathscr{E}_{2 k}(\Lambda)=\sum_{w \in \Lambda^{*}} w^{-2 k}$ be the Eisenstein series of weight $2 k$, and

$$
\wp(z, \Lambda)=\frac{1}{z^{2}}+\sum_{w \in \Lambda^{*}} \frac{1}{(z-w)^{2}}-\frac{1}{w^{2}}
$$

Then $\mathbb{C} / \Lambda \rightarrow E, z \mapsto\left(\wp(z), \wp^{\prime}(z)\right)$ is an isomorphism, where $E: y^{2}=4 x^{3}-60 \mathscr{E}_{4}(\Lambda)-140 \mathscr{E}_{6}(\Lambda)$.

Modular function

- A lattice $\Lambda \subset \mathbb{C}$ can be uniquely represented as $\Lambda=\mathbb{Z} \tau+\mathbb{Z}$, where τ is in the Poincarré half-plane \mathfrak{H}.
- There is a bijection between $\mathfrak{H} / \Gamma(1)$ and the set of isomorphic elliptic curves, where $\Gamma(1)=\mathrm{Sl}_{2}(\mathbb{Z}) /\{ \pm 1\}$ and the action is given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot \tau=\frac{a \tau+b}{c \tau+d} .
$$

- Let $X(1)$ be the compatification of $\mathfrak{H} / \Gamma(1)$ (constructed by adding the cusps to \mathfrak{H}). It is an analytic space, and the j-function gives an isomorphism between $X(1)$ and $\mathbb{P}_{\mathbb{C}}^{1}$.
- The (meromorphic) k-forms on $X(1)$ corresponds to modular functions of weight $2 k$:

$$
f\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot \tau\right)=(c \tau+d)^{2 k} f(\tau)
$$

Security of abelian varieties

g	\# points	DLP
1	$O(q)$	$\widetilde{O}\left(q^{1 / 2}\right)$
2	$O\left(q^{2}\right)$	$\widetilde{O}(q)$
3	$O\left(q^{3}\right)$	$\widetilde{O}\left(q^{4 / 3}\right) \quad$ (Jacobian of hyperelliptic curve)
		$\widetilde{O}(q) \quad$ Jacobian of non hyperelliptic curve)
g	$O\left(q^{g}\right)$	$\widetilde{O}\left(q^{2-2 / g}\right)$
	$L_{1 / 2}\left(q^{g}\right)=\exp \left(O(1) \log (x)^{1 / 2} \log \log (x)^{1 / 2}\right)$	

Security of the DLP

- Weak curves (MOV attack, Weil descent, anomal curves).
\Rightarrow Public-key cryptography with the DLP: Elliptic curves, Jacobian of hyperelliptic curves of genus 2 .
\Rightarrow Pairing-based cryptography: Abelian varieties of dimension $g \leqslant 4$.

Security of abelian varieties

g	\# points	DLP
1	$O(q)$	$\widetilde{O}\left(q^{1 / 2}\right)$
2	$O\left(q^{2}\right)$	$\widetilde{O}(q)$
3	$O\left(q^{3}\right)$	$\widetilde{O}\left(q^{4 / 3}\right) \quad($ Jacobian of hyperelliptic curve)
		$\widetilde{O}(q) \quad$ Jacobian of non hyperelliptic curve)
g	$O\left(q^{g}\right)$	$\widetilde{O}\left(q^{2-2 / g}\right)$
	$L_{1 / 2}\left(q^{g}\right)=\exp \left(O(1) \log (x)^{1 / 2} \log \log (x)^{1 / 2}\right)$	

Security of the DLP

- Weak curves (MOV attack, Weil descent, anomal curves).
\Rightarrow Public-key cryptography with the DLP: Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
\Rightarrow Pairing-based cryptography: Abelian varieties of dimension $g \leqslant 4$.

Choosing an elliptic curve

(0) One can choose a random elliptic curve E over \mathbb{F}_{q}, and check that $\# E\left(\mathbb{F}_{q}\right)$ is divisible by a large prime number.
(2) Let $\chi_{\pi}(X)=X^{2}-t X+q$ be the characteristic polynomial of the Frobenius. Then $\# E\left(\mathbb{F}_{q}\right)=\chi_{\pi}(1)$.
(Reminder: the characteristic polynomial of an endomorphism α is the unique polynomial χ_{α} such that for all $n \in \mathbb{N}$ $\chi_{\alpha}(n)=\operatorname{deg}(\alpha-n \mathrm{Id})$. It is also the characteristic polynomial of α acting on the Tate module $T_{\ell}(E)$ for $\ell \nmid q$.)
(3) Hasse: $|t| \leqslant 2 \sqrt{q}$.
(Comes from the fact that deg is a positive quadratic form).
(- We need an efficient algorithm to find the trace t.

Schoof algorithm

- Let $E: y^{2}=x^{3}+a x+b$ defined over \mathbb{F}_{q} (of characteristic >3).
- The idea to count the points on E is to compute $t \bmod \ell$ for a lot of small primes ℓ, and then use the CRT to find back ℓ.
- We will need $O(\log q)$ primes of size $O(\log q)$.
- For each small prime $\ell \geqslant 3$, we can construct a division polynomial ψ_{ℓ} of degree $\left(\ell^{2}-1\right) / 2$ such that $P \in E[\ell]$ if and only if $\psi_{\ell}\left(x_{P}\right)=0$.
- We can then work over the algebra $A=\mathbb{F}_{q}[x, y] /\left(y^{2}-a x-b, \psi_{\ell}(x)\right)$, to recover $t \bmod \ell$. This costs $O(\log (q)+\ell)$ operations in A, each costing $O\left(\ell^{2} \log (q)\right)$, so in total $O\left(\log q^{4}\right)$.
- We recover t in time $O\left(\log q^{5}\right)$.
- Can we improve this algorithm? We need to work on subgroups of the ℓ-torsion.

Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \hookleftarrow H
\end{aligned}
$$

- Example: Multiplication by $\ell(\Rightarrow \ell$-torsion), Frobenius (non separable).

Vélu's formula

Theorem

Let $E: y^{2}=f(x)$ be an elliptic curve and $G \subset E(k)$ a finite subgroup. Then E / G is given by $Y^{2}=g(X)$ where

$$
\begin{aligned}
& X(P)=x(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}}(x(P+Q)-x(Q)) \\
& Y(P)=y(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}}(y(P+Q)-y(Q)) .
\end{aligned}
$$

- Uses the fact that x and y are characterised in $k(E)$ by

$$
\begin{array}{rrr}
v_{0_{E}}(x)=-2 & v_{P}(x) \geqslant 0 & \text { if } P \neq 0_{E} \\
v_{0_{E}}(y)=-3 & v_{P}(y) \geqslant 0 & \text { if } P \neq 0_{E} \\
y^{2} / x^{3}\left(0_{E}\right)=1 & &
\end{array}
$$

- Generalized to abelian varieties by Cosset, Lubicz, R.

Modular polynomials

Definition

- Modular polynomial $\varphi_{n}(x, y) \in \mathbb{Z}[x, y]: \varphi_{n}(x, y)=0 \Leftrightarrow x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\varphi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- Atkins and Elkies ameliorations to Schoof algorithm:
(1) Compute $\varphi_{\ell}(X, j(E))$ and checks if there is a rational root j^{\prime}.
(2) Compute the factor $g_{\ell}(X)$ of $\psi_{\ell}(X)$ corresponding to the isogeny $E \rightarrow E^{\prime}$.
(3) Compute the action of π on the algebra $B=\mathbb{F}_{q}[x, y] /\left(y^{2}-a x-b, g_{\ell}(X)\right)$.
The total complexity is $O\left(\log q^{4}\right)$.

Other cryptographic usage of isogenies

- Transfer the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-adic or p-adic) \Rightarrow Verify a curve is secure.
- Compute the class field polynomials (CM-method) \Rightarrow Construct a secure curve.
- Compute the modular polynomials \Rightarrow Compute isogenies.
- Determine $\operatorname{End}(A) \Rightarrow$ CRT method for class field polynomials.

Point counting in small characteristic

- Let E / \mathbb{F}_{q} be an ordinary elliptic curve. There exists a unique lift \mathscr{E} of E on \mathbb{Q}_{q} such that $\operatorname{End}(E) \simeq \operatorname{End}(\mathscr{E})$. \mathscr{E} is called the canonical lift of E, and moreover we have

$$
\varphi_{p}\left(j_{\mathscr{E}}, \sigma j_{\mathscr{E}}\right)=0
$$

where σ is the lift of the (small) Frobenius on \mathbb{Q}_{q}.

- The idea of Satoh's algorithm is that the cycle:
$\mathscr{E} \mapsto \mathscr{E}^{\sigma} \mapsto \mathscr{E}^{\sigma^{2}} \ldots \mapsto \mathscr{E}^{\sigma^{n}}$ lift the Frobenius if $q=p^{n}$.
- In fact it suffices to compute the action of $\mathscr{E} \mapsto \mathscr{E}^{\sigma}$ on the differentials given by $\gamma \in \mathbb{Q}_{q}$. Since the action on the differentials on $\mathscr{E}^{\sigma} \mapsto \mathscr{E}^{\sigma^{2}}$ is given by γ^{σ}, we deduce that the norm of γ is an eigenvector of the Frobenius.
- The cost is $O\left(n^{2}\right)$.
- Hard to extend to other curves \Rightarrow Kedlaya algorithm: choose any lift, and compute the action of the Frobenius on the Monsky-Washnitzer cohomology.

Complex multiplication

- Another idea to choose a good elliptic curve is to fix a prescribed number of point and generate a curves with this number.
- This is indispensable for pairings applications where we want to control the embedding degree (otherwise it is of order q with a random curve).
- If E / \mathbb{F}_{q} is an ordinary elliptic curve, $\operatorname{End}(E)$ is an order in $\mathbb{Q}(\pi)$ containing $\mathbb{Z}[\pi, \bar{\pi}]$. The endomorphism ring of an elliptic curve is a finer invariant than its number of points.
- If \mathscr{O}_{K} is the maximal order of an imaginary quadratic field K, then there are h_{K} class of complex elliptic curves E such that $\operatorname{End}(E)=\mathscr{O}_{K}$, where h_{K} is the class number of K.
- The algorithm of complex multiplication computes the class polynomial of degree $h_{K}: H_{K}=\Pi(X-j(E))$ where the product goes over each complex elliptic curve with complex multiplication by \mathscr{O}_{K}.

The theory of complex multiplication

- If E / \mathbb{C} as complex multiplication by O_{K}, then $K(j(E))$ is the Hilbert class field of K. Adjoining the x coordinates of the points of torsion gives the maximal abelian extension of K (and adjoining all the points of torsion give the maximal abelian extension of the Hilbert class field).
- $H_{K} \in \mathbb{Z}[X]$ and is the minimal polynomial of $j(E)$ over K. In particular $j(E)$ is an algebraic integer.

Example

$Q(\sqrt{-163})$ is principal, so $j\left(\frac{1+\sqrt{-163}}{2}\right) \in \mathbb{Z}$. Moreover
$j(q)=\frac{1}{q}+744+196884 q+21493760 q^{2}+\ldots$ with $q=e^{2 \pi i \tau}$. When we
substitute $\tau=\frac{1+\sqrt{-163}}{2}$ we find that $q=-e^{-\pi \sqrt{163}} \approx-3.809 .10^{-18}$ is very small. Such $e^{\pi \sqrt{163}}$ is almost an integer, and indeed we compute

$$
e^{\pi \sqrt{163}}=262537412640768743.99999999999925007 \ldots
$$

Applications

- Since the j-invariant give the field of moduli (and even the field of definition), if p splits completely in $K(j(E)), E$ reduces to \mathbb{F}_{p}.
- For such a p, the polynomial H_{K} splits completely in \mathbb{F}_{p}, and its roots corresponds to the j-invariant of elliptic curves E defined over \mathbb{F}_{p} such that $\operatorname{End}(E)=\mathscr{O}_{K}$.

Complex abelian varieties

- Let $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$ be a complex abelian variety.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g}.

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i^{t}(n+a) \Omega(n+a)+2 \pi i^{t}(n+a)(z+b)} \quad a, b \in \mathbb{Q}^{g}
$$

Quasi-periodicity:
$\vartheta\left[\begin{array}{c}a \\ b\end{array}\right]\left(z+m_{1} \Omega+m_{2}, \Omega\right)=e^{2 \pi i\left(\begin{array}{c}t \\ a\end{array} \cdot m_{2}{ }^{t} b \cdot m_{1}\right)-\pi i^{t} m_{1} \Omega m_{1}-2 \pi i t_{m_{1}} \cdot z} \vartheta\left[\begin{array}{c}a \\ b\end{array}\right](z, \Omega)$.

- Projective coordinates:

$$
\begin{array}{rll}
A & \longrightarrow & \mathbb{P}_{\mathbb{C}}^{n^{g}-1} \\
z & \longrightarrow & \left(\vartheta_{i}(z)\right)_{i \in Z(\bar{n})}
\end{array}
$$

where $Z(\bar{n})=\mathbb{Z}^{g} / n \mathbb{Z}^{g}$ and $\vartheta_{i}=\vartheta\left[\begin{array}{l}0 \\ \frac{i}{n}\end{array}\right]\left(., \frac{\Omega}{n}\right)$.

Theta functions of level n

- Translation by a point of n-torsion:

$$
\vartheta_{i}\left(z+\frac{m_{1}}{n} \Omega+\frac{m_{2}}{n}\right)=e^{-\frac{2 \pi i}{n} t_{i \cdot m_{1}}} \vartheta_{i+m_{2}}(z) .
$$

- $\left(\vartheta_{i}\right)_{i \in Z(\bar{n})}$: basis of the theta functions of level n $\Leftrightarrow A[n]=A_{1}[n] \oplus A_{2}[n]:$ symplectic decomposition.
- $\left(\vartheta_{i}\right)_{i \in Z(\bar{n})}= \begin{cases}\text { coordinates system } & n \geqslant 3 \\ \text { coordinates on the Kummer variety } A / \pm 1 & n=2\end{cases}$
- Theta null point: $\vartheta_{i}(0)_{i \in Z(\bar{n})}=$ modular invariant.

The differential addition law $(k=\mathbb{C})$

$$
\begin{aligned}
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right)
\end{aligned}
$$

where $\quad \chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\bar{n})$

$$
\begin{aligned}
& \left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=A(i, j, k, l) \\
& A=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

The Weil and Tate pairing with theta coordinates [LR10]

P and Q points of ℓ-torsion.

$$
\begin{array}{ccccc}
0_{A} & P & 2 P & \ldots & \ell P=\lambda_{P}^{0} 0_{A} \\
Q & P \oplus Q & 2 P+Q & \ldots & \ell P+Q=\lambda_{P}^{1} Q \\
2 Q & P+2 Q & & & \\
\ldots & \ldots & & & \\
\ell Q=\lambda_{Q}^{0} 0_{A} & P+\ell Q=\lambda_{Q}^{1} P & & &
\end{array}
$$

- $e_{W, \ell}(P, Q)=\frac{\lambda_{p}^{1} \lambda_{\rho}^{0}}{\lambda_{P}^{0} \lambda_{Q}^{2}}$.

If $P=\Omega x_{1}+x_{2}$ and $Q=\Omega y_{1}+y_{2}$, then $e_{W, \ell}(P, Q)=e^{-2 \pi i \ell\left(t x_{1} \cdot y_{2}-t y_{1} \cdot x_{2}\right)}$.

- $e_{T, \ell}(P, Q)=\frac{\lambda_{p}^{1}}{\lambda_{p}^{.}}$.

Duplication formula

$$
\begin{aligned}
& \vartheta\left[\begin{array}{c}
0 \\
\frac{i}{n}
\end{array}\right]\left(z_{1}+z_{2}, \frac{\Omega}{n}\right) \vartheta\left[\begin{array}{c}
0 \\
\frac{i}{n}
\end{array}\right]\left(z_{1}-z_{2}, \frac{\Omega}{n}\right)=\sum_{t \in \frac{1}{2} \mathbb{Z}^{g} / \mathbb{Z}^{b}} \vartheta\left[\begin{array}{c}
\frac{t}{2} \\
\frac{i+j}{2 n}
\end{array}\right]\left(2 z_{1}, 2 \frac{\Omega}{n}\right) \vartheta\left[\begin{array}{c}
\frac{t}{2} \\
\frac{i-j}{2 n}
\end{array}\right]\left(2 z_{2}, 2 \frac{\Omega}{n}\right) \\
& \vartheta\left[\begin{array}{c}
\chi / 2 \\
i /(2 n)
\end{array}\right]\left(2 z_{1}, 2 \frac{\Omega}{n}\right) \vartheta\left[\begin{array}{c}
\chi / 2 \\
j /(2 n)
\end{array}\right]\left(2 z_{2}, 2 \frac{\Omega}{n}\right)= \\
& \frac{1}{2^{g}} \sum_{t \in \frac{1}{2} \mathbb{Z}^{g} / \mathbb{Z}^{g}} e^{-2 i \pi t} \chi \cdot t \vartheta\left[\begin{array}{c}
2 \chi \\
\frac{i+j}{2 n}+t
\end{array}\right]\left(z_{1}+z_{2}, \frac{\Omega}{n}\right) \vartheta\left[\begin{array}{c}
\frac{i-j}{2 n}+t
\end{array}\right]\left(z_{1}-z_{2}, \frac{\Omega}{n}\right) .
\end{aligned}
$$

- The duplication formula give a modular polynomial for 2 -isogenies on any abelian variety \Rightarrow point counting in characteristic 2 by computing the canonical lift.
- The elliptic curves $E_{n}: y^{2}=x\left(x-a_{n}^{2}\right)\left(x-b_{n}^{2}\right)$ converges over $\mathbb{Q}_{2^{k}}$ to the canonical lift of $\left(E_{0}\right)_{\mathbb{F}_{2^{k}}}$ [Mes01], where $\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{n \in \mathbb{N}}$ satisfy the Arithmetic Geometric Mean:

$$
\begin{aligned}
a_{n+1} & =\frac{a_{n}+b_{n}}{2} \\
b_{n+1} & =\sqrt{a_{n} b_{n}}
\end{aligned}
$$

[BFO3]
[BLSO4] D. Boneh, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: Journal of Cryptology 17.4 (2004), pp. 297-319 (cit. on p. 8).
[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. "Attribute-based encryption for fine-grained access control of encrypted data". In: Proceedings of the 13th ACM conference on Computer and communications security. ACM. 2006, p. 98 (cit. on p. 8).
[Jou04] A. Joux. "A one round protocol for tripartite Diffie-Hellman". In: Journal of Cryptology 17.4 (2004), pp. 263-276 (cit. on p. 8).
[KAF+10] T. Kleinjung, K. Aoki, J. Franke, et al. "Factorization of a 768-bit RSA modulus". In: (2010) (cit. on p. 4).
[LR10] D. Lubicz and D. Robert. "Efficient pairing computation with theta functions". In: Algorithmic Number Theory. Lecture Notes in Comput. Sci. 6197 (July 2010). Ed. by G. Hanrot, F. Morain, and E. Thomé. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings. DOI: 10.1007/978-3-642-14518-6_21. URL: http://www.normalesup.org/~robert/pro/publications/articles/ pairings.pdf. Slides http: //www.normalesup.org/~robert/publications/slides/2010-07-ants.pdf (cit. on p. 34).
[Mes01] J.-F. Mestre. Lettre à Gaudry et Harley. 2001. URL: http://www.math.jussieu.fr/mestre (cit. on p. 35).
[SW05] A. Sahai and B. Waters. "Fuzzy identity-based encryption". In: Advances in Cryptology-EUROCRYPT 2005 (2005), pp. 457-473 (cit. on p. 8).
[Vero1] E. Verheul. "Self-blindable credential certificates from the Weil pairing". In: Advances in Cryptology-ASIACRYPT 2001 (2001), pp. 533-551 (cit. on p. 8).

