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A brief history of public-key cryptography

Secret-key cryptography: Vigenère (1553), One time pad (1917),
AES (NIST, 2001).

Public-key cryptography:

Diffie–Hellman key exchange (1976).
RSA (1978): multiplication/factorisation.
ElGamal: exponentiation/discrete logarithm in G =F∗q .
ECC/HECC (1985): discrete logarithm in G = A(Fq ).
Lattices, NTRU (1996), Ideal Lattices (2006): perturbate a lattice
point/Closest Vector Problem, Bounded Distance Decoding.
Polynomial systems, HFE (1996): evaluating polynomials/finding
roots.
Coding-based cryptography, McEliece (1978):
Matrix.vector/decoding a linear code.

⇒ Encryption, Signature (+Pseudo Random Number Generator, Zero
Knowledge).

Pairing-based cryptography (2000–2001).

Homomorphic cryptography (2009).
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RSA versus (H)ECC

Security
RSA ECC

(bits level)

72 1008 144
80 1248 160
96 1776 192
112 2432 224
128 3248 256
256 15424 512

Key length comparison between RSA and ECC

Factorisation of a 768-bit RSA modulus [KAF+10].

Currently: attempt to attack a 130-bit Koblitz elliptic curve.
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Discrete logarithm

Definition (DLP)

Let G = 〈g 〉 be a cyclic group of prime order. Let x �N and h = g x . The
discrete logarithm logg (h) is x .

Exponentiation: O(log p ). DLP: eO(pp ) (in a generic group).

G =F∗p : sub-exponential attacks.

⇒ Find secure groups with efficient law, compact representation.

Protocol [Diffie–Hellman Key Exchange]

Alice sends g a , Bob sends g b , the common key is

g ab = (g b )a = (g a )b .



Public-key cryptography Abelian varieties, Arithmetic and Pairings Isogenies

Pairing-based cryptography

Definition

A pairing is a bilinear application e : G1×G1→G2.

Identity-based cryptography [BF03].

Short signature [BLS04].

One way tripartite Diffie–Hellman [Jou04].

Self-blindable credential certificates [Ver01].

Attribute based cryptography [SW05].

Broadcast encryption [GPSW06].

Tripartite Diffie–Helman

Alice sends g a , Bob sends g b , Charlie sends g c . The common key is

e (g , g )ab c = e (g b , g c )a = e (g c , g a )b = e (g a , g b )c �G2.
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Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base
field k .

Abelian variety = points on a projective space (locus of
homogeneous polynomials) + an abelian group law given by
rational functions.

⇒ Use G = A(k ) with k =Fq for the DLP.

Pairings on abelian varieties

The Weil and Tate pairings on abelian varieties are the only known
examples of cryptographic pairings.

eW : A[ℓ]×A[ℓ]→µℓ ⊂F∗q k .
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Elliptic curves

Definition (car k ̸= 2, 3)

E : y 2 = x 3+a x +b . 4a 3+27b 2 ̸= 0.

An elliptic curve is a plane curve of genus 1.

Elliptic curves = Abelian varieties of dimension 1.
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Jacobian of hyperelliptic curves

C : y 2 = f (x ), hyperelliptic curve of genus g . (deg f = 2g +1)

Divisor: formal sum D =
∑

n i Pi ,
deg D =
∑

n i .
Pi �C (k ).

Principal divisor:
∑

P�C (k ) vP ( f ).P; f � k (C ).
Jacobian of C =Divisors of degree 0 modulo principal divisors

+ Galois action
= Abelian variety of dimension g .

Divisor class D ⇒ unique representative (Riemann–Roch):

D =
k
∑

i=1

(Pi −P∞) k ¶ g , symmetric Pi ̸= Pj

Mumford coordinates: D = (u , v ) ⇒ u =
∏

(x −x i ), v (x i ) = yi .

Cantor algorithm: addition law.
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Example of the addition law in genus 2
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Security of abelian varieties

g # points DLP

1 O(q ) eO(q 1/2)
2 O(q 2) eO(q )

3 O(q 3)
eO(q 4/3) (Jacobian of hyperelliptic curve)
eO(q ) (Jacobian of non hyperelliptic curve)

g
O(q g )
eO(q 2−2/g )

g > log(q ) L 1/2(q g )= exp(O(1) log(x )1/2 log log(x )1/2)

Security of the DLP

Weak curves (MOV attack, Weil descent, anomal curves).

⇒ Public-key cryptography with the DLP: Elliptic curves, Jacobian
of hyperelliptic curves of genus 2.

⇒ Pairing-based cryptography: Abelian varieties of dimension g ¶ 4.
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Complex abelian varieties

Abelian variety over C: A =Cg / (Zg +ΩZg ), where Ω �Hg (C) the
Siegel upper half space.

The theta functions with characteristic give a lot of analytic
(quasi periodic) functions on Cg .

ϑ
�a

b

�

(z ,Ω)=
∑

n�Zg

eπi t (n+a )Ω(n+a )+2πi t (n+a )(z+b ) a ,b �Qg

Quasi-periodicity:

ϑ
�a

b

�

(z+m1Ω+m2,Ω)= e 2πi (t a ·m2−t b ·m1)−πi t m1Ωm1−2πi t m1 ·zϑ
�a

b

�

(z ,Ω).

Projective coordinates:

A −→ Pn g−1
C

z 7−→ (ϑi (z ))i�Z (n )
where Z (n ) =Zg /nZg and ϑi = ϑ

h

0
i
n

i

(., Ω
n
).



Public-key cryptography Abelian varieties, Arithmetic and Pairings Isogenies

Theta functions of level n

Translation by a point of n -torsion:

ϑi (z +
m1

n
Ω+

m2

n
) = e−

2πi
n

t i ·m1ϑi+m2 (z ).

(ϑi )i�Z (n ): basis of the theta functions of level n
⇔ A[n ] = A1[n ]⊕A2[n ]: symplectic decomposition.

(ϑi )i�Z (n ) =
¨

coordinates system n ¾ 3

coordinates on the Kummer variety A/±1 n = 2

Theta null point: ϑi (0)i�Z (n ) =modular invariant.
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The differential addition law (k =C)

�

∑

t �Z (2)
χ(t )ϑi+t (x + y )ϑj+t (x − y )

�

.
�

∑

t �Z (2)
χ(t )ϑk+t (0)ϑl+t (0)

�

=

�

∑

t �Z (2)
χ(t )ϑ−i ′+t (y )ϑj ′+t (y )

�

.
�

∑

t �Z (2)
χ(t )ϑk ′+t (x )ϑl ′+t (x )

�

.

where χ � Ẑ (2), i , j , k , l �Z (n )
(i ′, j ′, k ′, l ′) = A(i , j , k , l )

A =
1

2











1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
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Arithmetic with low level theta functions (car k ̸= 2)

Mumford Level 2
Level 4

[Lan05] [Gau07]
Doubling 34M +7S

7M +12S+9m0 49M +36S+27m0Mixed Addition 37M +6S

Multiplication cost in genus 2 (one step).

Montgomery Level 2 Jacobians Level 4
Doubling

5M +4S+1m0 3M +6S+3m0
3M +5S

9M +10S+5m0Mixed Addition 7M +6S+1m0

Multiplication cost in genus 1 (one step).
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Arithmetic with high level theta functions [LR10a]

Algorithms for
Additions and differential additions in level 4.
Computing P ±Q in level 2 (need one square root). [LR10b]
Fast differential multiplication.

Compressing coordinates O(1):
Level 2n theta null point ⇒ 1+ g (g +1)/2 level 2 theta null points.
Level 2n ⇒ 1+ g level 2 theta functions.

Decompression: n g differential additions.
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The Weil and Tate pairing with theta coordinates [LR10b]

P and Q points of ℓ-torsion.

0A P 2P . . . ℓP =λ0
P 0A

Q P ⊕Q 2P +Q . . . ℓP +Q =λ1
PQ

2Q P +2Q

. . . . . .

ℓQ =λ0
Q 0A P + ℓQ =λ1

Q P

eW,ℓ(P,Q) =
λ1

Pλ
0
Q

λ0
Pλ

1
Q
.

If P =Ωx1+x2 and Q =Ωy1+ y2, then eW,ℓ(P,Q) = e−2πiℓ(t x1 ·y2−t y1 ·x2).

eT,ℓ(P,Q) = λ
1
P

λ0
P
.
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Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism
between two Abelian varieties.

Isogenies = Rational map + group morphism + finite kernel.

Isogenies⇔ Finite subgroups.

( f : A→ B ) 7→Ker f

(A→ A/H ) 7→H

Example: Multiplication by ℓ (⇒ ℓ-torsion), Frobenius (non
separable).
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Cryptographic usage of isogenies

Transfer the DLP from one Abelian variety to another.

Point counting algorithms (ℓ-adic or p -adic) ⇒ Verify a curve is
secure.

Compute the class field polynomials (CM-method) ⇒ Construct
a secure curve.

Compute the modular polynomials ⇒ Compute isogenies.

Determine End(A) ⇒ CRT method for class field polynomials.
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Vélu’s formula

Theorem

Let E : y 2 = f (x ) be an elliptic curve and G ⊂ E (k ) a finite subgroup. Then
E/G is given by Y 2 = g (X ) where

X (P) = x (P)+
∑

Q�G \{0E }

(x (P +Q)−x (Q))

Y (P) = y (P)+
∑

Q�G \{0E }

�

y (P +Q)− y (Q)
�

.

Uses the fact that x and y are characterised in k (E ) by

v0E (x ) =−2 vP (x )¾ 0 if P ̸= 0E

v0E (y ) =−3 vP (y )¾ 0 if P ̸= 0E

y 2/x 3(0E ) = 1

No such characterisation in genus g ¾ 2 for Mumford
coordinates.
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The isogeny theorem

Theorem

Let ϕ : Z (n )→Z (ℓn ),x 7→ ℓ.x be the canonical embedding.
Let K = A2[ℓ]⊂ A2[ℓn ].

Let (ϑA
i )i�Z (ℓn ) be the theta functions of level ℓn on

A =Cg /(Zg +ΩZg ).

Let (ϑB
i )i�Z (n ) be the theta functions of level n of

B = A/K =Cg /(Zg + Ω
ℓ
Zg ).

We have:
(ϑB

i (x ))i�Z (n ) = (ϑA
ϕ(i )(x ))i�Z (n )

Example

π : (x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11) 7→ (x0,x3,x6,x9) is a 3-isogeny
between elliptic curves.
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An example with g = 1, n = 2, ℓ= 3

z �Cg /(Zg + ℓΩZg ), level ℓn

z �Cg /(Zg +ΩZg ), level n

π

ℓz �Cg /(Zg + ℓΩZg ), level ℓn

bπ

[ℓ]
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Changing level

Theorem (Koizumi–Kempf)

Let F be a matrix of rank r such that t F F = ℓ Idr . Let X � (Cg )r and
Y = F (X ) � (Cg )r . Let j � (Qg )r and i = F (j ). Then we have

ϑ
�

0
i 1

�

(Y1,
Ω
n
) . . .ϑ
�

0
i r

�

(Yr ,
Ω
n
) =
∑

t1,...,tr � 1
ℓ
Zg /Zg

F (t1,...,tr )=(0,...,0)

ϑ
�

0
j1

�

(X1+ t1,
Ω
ℓn
) . . .ϑ
�

0
jr

�

(Xr + tr ,
Ω
ℓn
),

If ℓ= a 2+b 2, we take F =
�

a b
−b a

�

, so r = 2.

In general, ℓ= a 2+b 2+ c 2+d 2, we take F to be the matrix of
multiplication by a +b i + c j +d k in the quaternions, so r = 4.
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Computing isogenies [Cosset, Lubicz, R.]

Let A/k be an abelian variety of dimension g over k given in
theta coordinates. Let K ⊂ A be a maximal isotropic subgroup of
A[ℓ] (ℓ prime to 2 and the characteristic). Then we have an
algorithm to compute the isogeny A 7→ A/K .

Need O(#K ) differential additions in A
+ O(ℓg ) or O(ℓ2g ) multiplications ⇒ fast.

The formulas are rational if the kernel K is rational.

⇒ Work in level 2.

⇒ Convert back and forth to Mumford coordinates:

A B

Jac(C1) Jac(C2)

bπ
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AVIsogenies

AVIsogenies: Magma code written by Bisson, Cosset and R.
http://avisogenies.gforge.inria.fr

Released under LGPL 2+.

Implement isogeny computation (and applications thereof) for
abelian varieties using theta functions.

Current release 0.2: isogenies in genus 2.

http://avisogenies.gforge.inria.fr
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Implementation

H hyperelliptic curve of genus 2 over k =Fq , J = Jac(H ), ℓ odd prime,
2ℓ∧ car k = 1. Compute all rational (ℓ,ℓ)-isogenies J 7→ Jac(H ′) (we
suppose the zeta function known):

1 Compute the extension Fq n where the geometric points of the
maximal isotropic kernel of J [ℓ] lives.

2 Compute a “symplectic” basis of J [ℓ](Fq n ).
3 Find the rational maximal isotropic kernels K .
4 For each kernel K , convert its basis from Mumford to theta

coordinates of level 2. (Rosenhain then Thomae).
5 Compute the other points in K in theta coordinates using

differential additions.
6 Apply the change level formula to recover the theta null point

of J /K .
7 Compute the Igusa invariants of J /K (“Inverse Thomae”).
8 Distinguish between the isogeneous curve and its twist.
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coordinates of level 2. (Rosenhain then Thomae).
5 Compute the other points in K in theta coordinates using

differential additions.
6 Apply the change level formula to recover the theta null point

of J /K .
7 Compute the Igusa invariants of J /K (“Inverse Thomae”).
8 Distinguish between the isogeneous curve and its twist.
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Timings for isogenies computations (ℓ= 7)

Jacobian of Hyperelliptic Curve defined by y^2 = t^254*x^6 + t^223*x^5 +

t^255*x^4 + t^318*x^3 + t^668*x^2 + t^543*x + t^538 over GF(3^6)

> time RationallyIsogenousCurvesG2(J,7);

** Computing 7 -rationnal isotropic subgroups

-- Computing the 7 -torsion over extension of deg 4

!! Basis: 2 points in Finite field of size 3^24

-- Listing subgroups

1 subgroups over Finite field of size 3^24

-- Convert the subgroups to theta coordinates

Time: 0.060

Computing the 1 7 -isogenies

** Precomputations for l= 7 Time: 0.180

** Computing the 7 -isogeny

Computing the l-torsion Time: 0.030

Changing level Time: 0.210

Time: 0.430

Time: 0.490

[ <[ t^620, t^691, t^477 ], Jacobian of Hyperelliptic Curve defined by

y^2 = t^615*x^6 + t^224*x^5 + t^37*x^4 + t^303*x^3 + t^715*x^2 + t^128*x + t^17 over GF(3^6)> ]
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Timings for isogenies computations (ℓ= 5)

Jacobian of Hyperelliptic Curve defined by y^2 = 39*x^6 + 4*x^5 + 82*x^4

+ 10*x^3 + 31*x^2 + 39*x + 2 over GF(83)

> time RationallyIsogenousCurvesG2(J,5);

** Computing 5 -rationnal isotropic subgroups

-- Computing the 5 -torsion over extension of deg 24

Time: 0.940

!! Basis: 4 points in Finite field of size 83^24

-- Listing subgroups

Time: 1.170

6 subgroups over Finite field of size 83^24

-- Convert the subgroups to theta coordinates

Time: 0.360

Time: 2.630

Computing the 6 5 -isogenies

Time: 0.820

Time: 3.460

[ <[ 36, 69, 38 ], Jacobian of Hyperelliptic Curve defined by

y^2 = 27*x^6 + 63*x^5 + 5*x^4 + 24*x^3 + 34*x^2 + 6*x + 76 over GF(83)>,

...]
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Timings for isogeny graphs (ℓ= 3)

Jacobian of Hyperelliptic Curve defined by y^2 = 41*x^6 + 131*x^5 +

55*x^4 + 57*x^3 + 233*x^2 + 225*x + 51 over GF(271)

time isograph,jacobians:=IsoGraphG2(J,{3}: save_mem:=-1);

Computed 540 isogenies and found 135 curves.

Time: 14.410

Core 2 with 4BG of RAM.

Computing kernels: ≈ 5s .

Computing isogenies: ≈ 7s (Torsion: ≈ 2s , Changing level: ≈ 3.5s .)
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Going further (ℓ= 53)

Jacobian of Hyperelliptic Curve defined by y^2 = 97*x^6 + 77*x^5 +

62*x^4 + 14*x^3 + 33*x^2 + 18*x + 40 over GF(113)

> time RationallyIsogenousCurvesG2(J,53);

** Computing 53 -rationnal isotropic subgroups

-- Computing the 53 -torsion over extension of deg 52 Time: 8.610

!! Basis: 3 points in Finite field of size 113^52

-- Listing subgroups Time: 1.210

2 subgroups over Finite field of size 113^52

-- Convert the subgroups to theta coordinates Time: 0.100

Time: 9.980

Computing the 2 53 -isogenies

** Precomputations for l= 53 Time: 0.240

** Computing the 53 -isogeny

Computing the l-torsion Time: 7.570

Changing level Time: 1.170

Time: 8.840

** Computing the 53 -isogeny

Time: 8.850

Time: 27.950
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Going further (ℓ= 19)

Jacobian of Hyperelliptic Curve defined by y^2 = 194*x^6 + 554*x^5 +

606*x^4 + 523*x^3 + 642*x^2 + 566*x + 112 over GF(859)

> time RationallyIsogenousCurvesG2(J,19);

** Computing 19 -rationnal isotropic subgroups (extension degree 18)

Time: 0.760

Computing the 2 19 -isogenies

** Precomputations for l= 19 Time: 11.160

** Computing the 19 -isogeny

Computing the l-torsion Time: 0.250

Changing level Time: 18.590

Time: 18.850

** Computing the 19 -isogeny

Computing the l-torsion Time: 0.250

Changing level Time: 18.640

Time: 18.900

Time: 51.060

[ <[ 341, 740, 389 ], Jacobian of Hyperelliptic Curve defined by y^2 = 724*x^6 +

680*x^5 + 538*x^4 + 613*x^3 + 557*x^2 + 856*x + 628 over GF(859)>,

... ]
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A record isogeny computation! (ℓ= 1321)

J Jacobian of y 2 = x 5+41691x 4+24583x 3+2509x 2+15574x over F42179.

#J = 21013212.

> time RationallyIsogenousCurvesG2(J,1321:ext_degree:=1);

** Computing 1321 -rationnal isotropic subgroups

Time: 0.350

Computing the 1 1321 -isogenies

** Precomputations for l= 1321

Time: 1276.950

** Computing the 1321 -isogeny

Computing the l-torsion

Time: 1200.270

Changing level

Time: 1398.780

Time: 5727.250

Time: 7004.240

Time: 7332.650

[ <[ 9448, 15263, 31602 ], Jacobian of Hyperelliptic Curve defined by

y^2 = 33266*x^6 + 20155*x^5 + 31203*x^4 + 9732*x^3 +

4204*x^2 + 18026*x + 29732 over GF(42179)> ]

Core 2 with 32GB of RAM.

Total memory usage: 9764.22MB.
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Isogeny graphs: ℓ=q1q2 =Q1Q1Q2Q2 (Q 7→ K0 7→ K )
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Isogeny graphs: ℓ=q1q2 =Q1Q1Q2Q2 (Q 7→ K0 7→ K )
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Isogeny graphs: ℓ=q =QQ (Q 7→ K0 7→ K )
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Isogeny graphs: ℓ=q1q2 =Q1Q1Q2
2 (Q 7→ K0 7→ K )
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Isogeny graphs: ℓ=q 2 =Q2Q
2

(Q 7→ K0 7→ K )
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Isogeny graphs: ℓ=q 2 =Q4 (Q 7→ K0 7→ K )
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Non maximal isogeny graphs (ℓ=q =QQ)
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Non maximal isogeny graphs (ℓ=q =QQ)
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Non maximal isogeny graphs (ℓ=q =QQ)
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Non maximal isogeny graphs (ℓ=q1q2 =Q1Q1Q2Q2)
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Non maximal isogeny graphs (ℓ=q1q2 =Q1Q1Q2Q2)
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Non maximal isogeny graphs (ℓ=q1q2 =Q1Q1Q2Q2)



Public-key cryptography Abelian varieties, Arithmetic and Pairings Isogenies

Non maximal isogeny graphs (ℓ=q =Q2)
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Non maximal isogeny graphs (ℓ=q =Q2)
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Applications and perspectives

Computing endomorphism ring. Generalize [BS09] to higher
genus, work by Bisson.

Class polynomials in genus 2 using the CRT. If K is a CM field
and J /Fp is such that End(J )⊗ZQ= K , use isogenies to find the
Jacobians whose endomorphism ring is OK . Work by Lauter+R.

Modular polynomials in genus 2 using theta null points:
computed by Gruenewald using analytic methods for ℓ= 3.

Isogenies using rational coordinates? Work by Smith using the
geometry of Kummer surfaces for ℓ= 3 (g = 2). Cassels and
Flynn: modification of theta coordinates to have rational
coordinates on hyperelliptic curves of genus 2.

How to compute (ℓ, 1)-isogenies in genus 2?

Look at g = 3 (associate theta coordinates to the Jacobian of a
non hyperelliptic curve).



Public-key cryptography Abelian varieties, Arithmetic and Pairings Isogenies

Thank you for your attention!



Public-key cryptography Abelian varieties, Arithmetic and Pairings Isogenies

Bibliography
[BS09] G. Bisson and A. Sutherland. “Computing the endomorphism ring of an ordinary

elliptic curve over a finite field”. In: Journal of Number Theory (2009) (cit. on p. 64).

[BF03] D. Boneh and M. Franklin. “Identity-based encryption from the Weil pairing”. In:
SIAM Journal on Computing 32.3 (2003), pp. 586–615 (cit. on p. 6).

[BLS04] D. Boneh, B. Lynn, and H. Shacham. “Short signatures from the Weil pairing”. In:
Journal of Cryptology 17.4 (2004), pp. 297–319 (cit. on p. 6).

[Gau07] P. Gaudry. “Fast genus 2 arithmetic based on Theta functions”. In: Journal of
Mathematical Cryptology 1.3 (2007), pp. 243–265 (cit. on p. 18).

[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters. “Attribute-based encryption for
fine-grained access control of encrypted data”. In: Proceedings of the 13th ACM
conference on Computer and communications security. ACM. 2006, p. 98 (cit. on
p. 6).

[Jou04] A. Joux. “A one round protocol for tripartite Diffie–Hellman”. In: Journal of
Cryptology 17.4 (2004), pp. 263–276 (cit. on p. 6).

[KAF+10] T. Kleinjung, K. Aoki, J. Franke, et al. “Factorization of a 768-bit RSA modulus”. In:
(2010) (cit. on p. 4).

[Lan05] T. Lange. “Formulae for arithmetic on genus 2 hyperelliptic curves”. In: Applicable
Algebra in Engineering, Communication and Computing 15.5 (2005), pp. 295–328
(cit. on p. 18).

[LR10a] D. Lubicz and D. Robert. Computing isogenies between abelian varieties. 2010.
arXiv:1001.2016. URL: http://www.normalesup.org/~robert/pro/
publications/articles/isogenies.pdf. HAL: hal-00446062.

http://arxiv.org/abs/1001.2016
http://www.normalesup.org/~robert/pro/publications/articles/isogenies.pdf
http://www.normalesup.org/~robert/pro/publications/articles/isogenies.pdf
http://hal.archives-ouvertes.fr/hal-00446062/


Public-key cryptography Abelian varieties, Arithmetic and Pairings Isogenies

[LR10b] D. Lubicz and D. Robert. “Efficient pairing computation with theta functions”. In:
Algorithmic Number Theory. Lecture Notes in Comput. Sci. 6197 (July 2010). Ed. by
G. Hanrot, F. Morain, and E. Thomé. 9th International Symposium, Nancy, France,
ANTS-IX, July 19-23, 2010, Proceedings. DOI: 10.1007/978-3-642-14518-6_21.
URL: http://www.normalesup.org/~robert/pro/publications/articles/
pairings.pdf. Slides http:
//www.normalesup.org/~robert/publications/slides/2010-07-ants.pdf.

[SW05] A. Sahai and B. Waters. “Fuzzy identity-based encryption”. In: Advances in
Cryptology–EUROCRYPT 2005 (2005), pp. 457–473 (cit. on p. 6).

[Ver01] E. Verheul. “Self-blindable credential certificates from the Weil pairing”. In:
Advances in Cryptology—ASIACRYPT 2001 (2001), pp. 533–551 (cit. on p. 6).

http://dx.doi.org/10.1007/978-3-642-14518-6_21
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf
http://www.normalesup.org/~robert/publications/slides/2010-07-ants.pdf
http://www.normalesup.org/~robert/publications/slides/2010-07-ants.pdf

	Public-key cryptography
	Public-key systems
	Discrete logarithm in cryptography

	Abelian varieties, Arithmetic and Pairings
	Jacobians
	Theta functions
	Arithmetic
	Pairings

	Isogenies
	Definition
	Theta functions and isogenies
	AVIsogenies
	Examples


