Abelian varieties, theta functions and cryptography Part 2

Damien Robert¹

¹LFANT team, INRIA Bordeaux Sud-Ouest

08/12/2010 (Bordeaux)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ へ ⊙ < ♡

Abelian varieties and cryptography

2 Theta functions

- 3 Arithmetic
- Pairings

Isogenies

-

・ ロ ト ・ 日 ト ・ 日 ト ・

Outline

Abelian varieties and cryptography

2 Theta functions

3 Arithmetic

Pairings

Isogenies

Perspectives

Discrete logarithm

Definition (DLP)

Let $G = \langle g \rangle$ be a cyclic group of prime order. Let $x \in \mathbb{N}$ and $h = g^x$. The discrete logarithm $\log_g(h)$ is x.

- Exponentiation: $O(\log p)$. DLP: $\widetilde{O}(\sqrt{p})$ (in a generic group).
- ⇒ Public key cryptography
- ⇒ Signature
- \Rightarrow Zero knowledge
 - $G = \mathbb{F}_p^*$: sub-exponential attacks.
- \Rightarrow Use $G = A(\mathbb{F}_q)$ where A/\mathbb{F}_q is an abelian variety for the DLP.

Pairing-based cryptography

Definition

A pairing is a bilinear application $e : G_1 \times G_1 \rightarrow G_2$.

- Identity-based cryptography [BF03].
- Short signature [BLS04].
- One way tripartite Diffie-Hellman [Jou04].
- Self-blindable credential certificates [Vero1].
- Attribute based cryptography [SW05].
- Broadcast encryption [Goy+06].

Example

The Weil and Tate pairings on abelian varieties are the only known examples of cryptographic pairings.

• • • • • • • • • • •

Security of abelian varieties

9	# points	DLP
1	O(q)	$\widetilde{O}(q^{1/2})$
2	$O(q^2)$	$\widetilde{O}(q)$
3	$O(q^3)$	$\widetilde{O}(q^{4/3})$ (Jacobian of hyperelliptic curve) $\widetilde{O}(q)$ (Jacobian of non hyperelliptic curve)
$g = \log(q)$	$O(q^g)$	$\widetilde{O}(q^{2-2/g}) L_{1/2}(q^g) = \exp(O(1)\log(x)^{1/2}\log\log(x)^{1/2})$

Security of the DLP

• Weak curves (MOV attack, Weil descent, anomal curves).

- ⇒ Public-key cryptography with the DLP: Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
- ⇒ Pairing-based cryptography: Abelian varieties of dimension $g \leq 4$.

イロト イロト イヨト イヨト

Security of abelian varieties

g	# points	DLP
1	O(q)	$\widetilde{O}(q^{1/2})$
2	$O(q^2)$	$\widetilde{\mathrm{O}}(q)$
3	$O(q^3)$	$\widetilde{O}(q^{4/3})$ (Jacobian of hyperelliptic curve) $\widetilde{O}(q)$ (Jacobian of non hyperelliptic curve)
$g > \log(q)$	$O(q^g)$	$\widetilde{O}(q^{2-2/g}) L_{1/2}(q^g) = \exp(O(1)\log(x)^{1/2}\log\log(x)^{1/2})$

Security of the DLP

- Weak curves (MOV attack, Weil descent, anomal curves).
- ⇒ Public-key cryptography with the DLP: Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
- ⇒ Pairing-based cryptography: Abelian varieties of dimension $g \leq 4$.

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

 $(f : A \to B) \mapsto \operatorname{Ker} f$ $(A \to A/H) \leftrightarrow H$

• *Example:* Multiplication by $\ell \iff \ell$ -torsion), Frobenius (non separable).

イロト イポト イヨト イヨト

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ -adic or p-adic) \Rightarrow Verify a curve is secure.
- Compute the class field polynomials (CM-method) ⇒ Construct a secure curve.
- Compute the modular polynomials \Rightarrow Compute isogenies.
- Determine $End(A) \Rightarrow CRT$ method for class field polynomials.

Abelian varieties and cryptography

2 Theta functions

3 Arithmetic

Pairings

Isogenies

Perspectives

Complex abelian varieties and theta functions of level n

• $(\vartheta_i)_{i \in \mathbb{Z}(\overline{n})}$: basis of the theta functions of level *n*. $\Leftrightarrow A[n] = A_1[n] \oplus A_2[n]$: symplectic decomposition. • $(\vartheta_i)_{i \in \mathbb{Z}(\overline{n})} = \begin{cases} \text{coordinates system} & n \ge 3 \\ \text{coordinates on the Kummer variety } A/\pm 1 & n = 2 \end{cases}$

• Theta null point: $\vartheta_i(0)_{i \in Z(\overline{n})} = \text{modular invariant.}$

Example ($k = \mathbb{C}$)

Abelian variety over \mathbb{C} : $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$; $\Omega \in \mathcal{H}_g(\mathbb{C})$ the Siegel upper half space (Ω symmetric, Im Ω positive definite).

$$\vartheta_i \coloneqq \Theta\left[\begin{smallmatrix} 0\\ i/n \end{smallmatrix}\right](z,\Omega/n).$$

イロト イロト イヨト イヨト

Jacobian of hyperelliptic curves

 $C: y^2 = f(x)$, hyperelliptic curve of genus g. (deg f = 2g - 1)

- Divisor: formal sum $D = \sum n_i P_i$, $P_i \in C(\overline{k})$. deg $D = \sum n_i$.
- Principal divisor: $\sum_{P \in C(\overline{k})} v_P(f).P; \quad f \in \overline{k}(C).$
- Jacobian of *C* = Divisors of degree 0 modulo principal divisors + Galois action = Abelian variety of dimension *g*.
- Divisor class $D \Rightarrow$ unique representative (Riemann-Roch):

$$D = \sum_{i=1}^{k} (P_i - P_{\infty}) \qquad k \leq g, \quad \text{symmetric } P_i \neq P_j$$

- Mumford coordinates: $D = (u, v) \Rightarrow u = \prod (x x_i), v(x_i) = y_i$.
- Cantor algorithm: addition law.
- Thomae formula: convert between Mumford and theta coordinates of level 2 or 4.

イロト イポト イヨト イヨト

The modular space of theta null points of level $n (\operatorname{car} k + n)$

Theorem (Mumford)

The modular space $\mathcal{M}_{\overline{n}}$ of theta null points is:

$$\sum_{t \in Z(\overline{2})} a_{x+t} a_{y+t} \sum_{t \in Z(\overline{2})} a_{u+t} a_{v+t} = \sum_{t \in Z(\overline{2})} a_{x'+t} a_{y'+t} \sum_{t \in Z(\overline{2})} a_{u'+t} a_{v'+t},$$

with the relations of symmetry $a_x = a_{-x}$.

- Abelian varieties with a *n*-structure = open locus of $\mathcal{M}_{\overline{n}}$.
- If (a_u)_{u∈Z(n̄)} is a valid theta null point, the corresponding abelian variety is given by the following equations in P_k^{n^g-1}:

$$\sum_{t \in Z(\overline{2})} X_{x+t} X_{y+t} \sum_{t \in Z(\overline{2})} a_{u+t} a_{v+t} = \sum_{t \in Z(\overline{2})} X_{x'+t} X_{y'+t} \sum_{t \in Z(\overline{2})} a_{u'+t} a_{v'+t}.$$

The differential addition law $(k = \mathbb{C})$

$$\Big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{i+t}(x+y)\vartheta_{j+t}(x-y)\Big).\Big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k+t}(0)\vartheta_{l+t}(0)\Big) = \\ \Big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{-i'+t}(y)\vartheta_{j'+t}(y)\Big).\Big(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k'+t}(x)\vartheta_{l'+t}(x)\Big).$$

イロト イポト イヨト イヨト

Abelian varieties and cryptography

2 Theta functions

Arithmetic with low level theta functions (car $k \neq 2$)

	Mumford [Lano5]	Level 2 [Gau07]	Level 4
Doubling Mixed Addition	$\begin{array}{l} 34M+7S\\ 37M+6S \end{array}$	$7M + 12S + 9m_0$	$49M + 36S + 27m_0$

Multiplication cost in genus 2 (one step).

	Montgomery	Level 2	Jacobians	Level 4
Doubling Mixed Addition	$5M + 4S + 1m_0$	$3M + 6S + 3m_0$	3M + 5S $7M + 6S + 1m_0$	$9M + 10S + 5m_0$

Multiplication cost in genus 1 (one step).

Image: A math a math

Arithmetic with high level theta functions [198100]

• Algorithms for

- Additions and differential additions in level 4.
- Computing *P* ± *Q* in level 2 (need one square root). [LR10b]
- Fast differential multiplication.
- Compressing coordinates *O*(1):
 - Level 2*n* theta null point $\Rightarrow 1 + g(g+1)/2$ level 2 theta null points.
 - Level $2n \Rightarrow 1 + g$ level 2 theta functions.
- Decompression: n^g differential additions.

Abelian varieties and cryptography

2 Theta functions

3 Arithmetic

6 Perspectives

Pairings on abelian varieties

E/k: elliptic curve.

• Weil pairing: $E[\ell] \times E[\ell] \rightarrow \mu_{\ell}$. $P, Q \in E[\ell]$. $\exists f_{\ell,P} \in k(E), (f_{\ell,P}) = \ell(P - 0_E)$.

$$e_{W,\ell}(P,Q) = \frac{f_{\ell,P}(Q-0_E)}{f_{\ell,Q}(P-0_E)}.$$

- Tate pairing: $e_{T,\ell}(P,Q) = f_{\ell,P}(Q-0_E)$.
- Miller algorithm: pairing with Mumford coordinates.

The Weil and Tate pairing with theta coordinates [1.Rub]

P and *Q* points of ℓ -torsion.

Comparison with Miller algorithm

g = 1 7M + 7S + 2m₀ g = 2 17M + 13S + 6m₀

Tate pairing with theta coordinates, $P, Q \in A[\ell](\mathbb{F}_{q^d})$ (one step)

		Miller		Theta coordinates
		Doubling	Addition	One step
g = 1	d even d odd	$1\mathbf{M} + 1\mathbf{S} + 1\mathbf{m}$ $2\mathbf{M} + 2\mathbf{S} + 1\mathbf{m}$	$1\mathbf{M} + 1\mathbf{m}$ $2\mathbf{M} + 1\mathbf{m}$	$1\mathbf{M} + 2\mathbf{S} + 2\mathbf{m}$
<i>g</i> = 2	<i>Q</i> degenerate + denominator elimination General case	$1\mathbf{M} + 1\mathbf{S} + 3\mathbf{m}$ $2\mathbf{M} + 2\mathbf{S} + 18\mathbf{m}$	1 M + 3 m 2 M + 18 m	$3\mathbf{M} + 4\mathbf{S} + 4\mathbf{m}$

 $P \in A[\ell](\mathbb{F}_q), Q \in A[\ell](\mathbb{F}_{q^d})$ (counting only operations in \mathbb{F}_{q^d}).

イロト イポト イヨト イヨ

Abelian varieties and cryptography

2 Theta functions

- 3 Arithmetic
- Pairings

Perspectives

- Given an isotropic subgroup K ⊂ A(k̄) compute the isogeny A ↦ A/K. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety A and B find the isogeny $A \mapsto B$. (Clever use of Vélu's formula \Rightarrow SEA algorithm).

イロト イヨト イヨト イ

- Given an isotropic subgroup $K \subset A(\overline{k})$ compute the isogeny $A \mapsto A/K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety *A* and *B* find the isogeny *A* → *B*. (Clever use of Vélu's formula ⇒ SEA algorithm).

イロト イヨト イヨト イ

- Given an isotropic subgroup $K \subset A(\overline{k})$ compute the isogeny $A \mapsto A/K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety *A* and *B* find the isogeny *A* → *B*. (Clever use of Vélu's formula ⇒ SEA algorithm).

• • • • • • • • • • • •

- Given an isotropic subgroup $K \subset A(\overline{k})$ compute the isogeny $A \mapsto A/K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety A and B find the isogeny $A \mapsto B$. (Clever use of Vélu's formula \Rightarrow SEA algorithm).

• • • • • • • • • • • •

Vélu's formula

Theorem

Let $E: y^2 = f(x)$ be an elliptic curve and $G \subset E(k)$ a finite subgroup. Then E/G is given by $Y^2 = g(X)$ where

$$X(P) = x(P) + \sum_{Q \in G \setminus \{0_E\}} x(P+Q) - x(Q)$$

$$Y(P) = y(P) + \sum_{Q \in G \setminus \{0_E\}} y(P+Q) - y(Q)$$

• Uses the fact that x and y are characterised in k(E) by

$$v_{0_E}(x) = -2 \qquad v_P(x) \ge 0 \quad \text{if } P \neq 0_E$$

$$v_{0_E}(y) = -3 \qquad v_P(y) \ge 0 \quad \text{if } P \neq 0_E$$

$$v_P(y) \ge 0 \quad \text{if } P \neq 0_E$$

• No such characterisation in genus $g \ge 2$.

J

• • • • • • • • • • • • •

The isogeny theorem

Theorem (Mumford)

- Let $\ell \wedge n = 1$, and $\phi : Z(\overline{\ell}n) \to Z(\overline{\ell}n)$, $x \mapsto \ell . x$ be the canonical embedding. Let $K_0 = A[\ell]_2 \subset A[\ell n]_2$.
- Let $(\vartheta_i^A)_{i \in \mathbb{Z}(\overline{\ell n})}$ be the theta functions of level ℓn on $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$.
- Let $(\vartheta_i^B)_{i \in \mathbb{Z}(\overline{n})}$ be the theta functions of level n of $B = A/K_0 = \mathbb{C}^g/(\mathbb{Z}^g + \frac{\Omega}{\ell}\mathbb{Z}^g)$.
- We have:

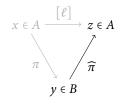
$$(\vartheta_i^B(x))_{i\in Z(\overline{n})} = (\vartheta_{\phi(i)}^A(x))_{i\in Z(\overline{n})}$$

Example

 $\pi: (x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}) \mapsto (x_0, x_3, x_6, x_9)$ is a 3-isogeny between elliptic curves.

イロト イポト イヨト イヨト

The contragredient isogeny [1-Ruor]

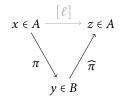


Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$

イロト イロト イヨト イ

The contragredient isogeny [1-Ruor]

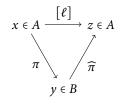


Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$

イロト イロト イヨト イ

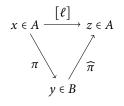
The contragredient isogeny [1-Ruor]



Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

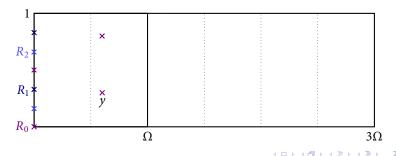
$$\widehat{\pi}(y) = \ell . x$$

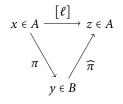
< ロト < 同ト < ヨト <



Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

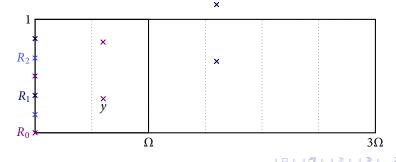
$$\widehat{\pi}(y) = \ell . x$$

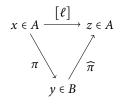




Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

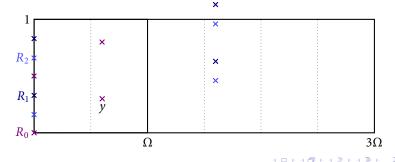
$$\widehat{\pi}(y) = \ell . x$$



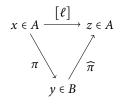


Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$

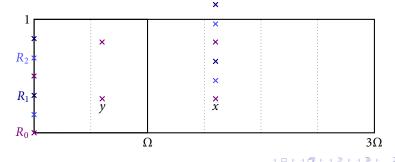


Damien Robert (LFANT)



Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$



Changing level without taking isogenies

Theorem (Koizumi-Kempf)

- Let \mathcal{L} be the space of theta functions of level ℓn and \mathcal{L}' the space of theta functions of level n.
- Let $F \in_r (\mathbb{Z})$ be such that ${}^tFF = \ell$ Id, and $f : A^r \to A^r$ the corresponding isogeny.

We have $\mathcal{L} = f^* \mathcal{L}'$ and the isogeny f is given by

$$f^* \left(\vartheta_{i_1}^{\mathcal{L}'} \star \ldots \star \vartheta_{i_r}^{\mathcal{L}'} \right) = \lambda \sum_{\substack{(j_1, \ldots, j_r) \in K_1(\mathcal{L}') \times \ldots \times K_1(\mathcal{L}') \\ f(j_1, \ldots, j_r) = (i_1, \ldots, i_r)}} \vartheta_{j_1}^{\mathcal{L}} \star \ldots \star \vartheta_{j_r}^{\mathcal{L}}$$

• $F = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ give the Riemann relations. (For general ℓ , use the quaternions.) \Rightarrow Go up and down in level without taking isogenies [Cosset+R].

イロト イポト イヨト イヨト

Changing level and isogenies

Corollary

Let $A = \mathbb{C}^g/(\mathbb{Z}^g + \Omega\mathbb{Z}^g)$ and $B = \mathbb{C}^g/(\mathbb{Z}^g + \ell\Omega\mathbb{Z}^g)$. We can express the isogeny $A \to B, z \mapsto \ell z$ of kernel $K = \frac{1}{\ell}\mathbb{Z}^g/\mathbb{Z}^g$ in term of the theta functions of level n on A and B:

$$\vartheta \begin{bmatrix} 0\\i_1 \end{bmatrix} (\ell z, \ell \frac{\Omega}{n}) \vartheta \begin{bmatrix} 0\\i_2 \end{bmatrix} (0, \ell \frac{\Omega}{n}) \dots \vartheta \begin{bmatrix} 0\\i_r \end{bmatrix} (0, \ell \frac{\Omega}{n}) = \sum_{\substack{t_1, \dots, t_r \in K\\F(t_1, \dots, t_r) = (0, \dots, 0)}} \vartheta \begin{bmatrix} 0\\j_1 \end{bmatrix} (X_1 + t_1, \frac{\Omega}{n}) \dots \vartheta \begin{bmatrix} 0\\j_r \end{bmatrix}^{\mathcal{L}} (X_r + t_r, \frac{\Omega}{n}),$$

where $X = F^{-1}(\ell z, 0, ..., 0)$.

Remark

We compute the coordinates $\vartheta \begin{bmatrix} 0 \\ j_i \end{bmatrix} (X_i + t_i, \frac{\Omega}{n})$ not in A but in \mathbb{C}^g thanks to the differential additions.

Damien Robert (LFANT)

・ロト ・ 日 ・ ・ 日 ・ ・

A complete generalisation of Vélu's algorithm [Cosset+ R]

- Compute the isogeny $B \rightarrow A$ while staying in level *n*.
- $O(\ell^g)$ differential additions + $O(\ell^g)$ or $O(\ell^{2g})$ for the changing level.
- The formulas are rational if the kernel *K* is rational.
- Blocking part: compute $K \Rightarrow$ compute all the ℓ -torsion on B. $g = 2: \ell$ -torsion, $\widetilde{O}(\ell^6)$ vs $O(\ell^2)$ or $O(\ell^4)$ for the isogeny.
- \Rightarrow Work in level 2.
- ⇒ Convert back and forth to Mumford coordinates:

$$\begin{array}{c} B & \xrightarrow{\widehat{\pi}} & A \\ \\ \| & & \| \\ \\ \\ \operatorname{Fac}(C_1) & \xrightarrow{} & \operatorname{Jac}(C_2) \end{array}$$

Abelian varieties and cryptography

2 Theta functions

- 3 Arithmetic
- Pairings

The AGM and canonical lifts

• The elliptic curves $E_n : y^2 = x(x - a_n^2)(x - b_n^2)$ converges over $\mathbb{Q}_{2^{\alpha}}$ to the canonical lift of $(E_0)_{\mathbb{F}_{2^{\alpha}}}$ [Meso1], where $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$ satisfy the Arithmetic Geometric Mean:

$$a_{n+1} = \frac{a_n + b_n}{2}$$
$$b_{n+1} = \sqrt{a_n b_n}$$

- Generalized in all genus by looking at theta null points [Meso2].
- Generalized in arbitrary characteristic p by [CL08] by looking at modular relations of degree p^2 on theta null points.
- \Rightarrow Point counting.
- \Rightarrow Class polynomials.

< ロト < 同ト < ヨト < ヨト

- Improve the pairing algorithm (Ate pairing, optimal ate).
- Characteristic 2 [GL09].
- A SEA-like algorithm in genus 2?

(日)

Bibliography

[BF03]	D. Boneh and M. Franklin. "Identity-based encryption from the Weil pairing". In: SIAM Journal on Computing 32.3 (2003), pp. 586-615.
[BLSo4]	D. Boneh, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: <i>Journal of Cryptology</i> 17.4 (2004), pp. 297–319.
[CL08]	R. Carls and D. Lubicz. "A <i>p</i> -adic quasi-quadratic time and quadratic space point counting algorithm". In: <i>International Mathematics Research Notices</i> (2008).
[Gau07]	P. Gaudry. "Fast genus 2 arithmetic based on Theta functions". In: <i>Journal of Mathematical Cryptology</i> 1.3 (2007), pp. 243–265.
[GL09]	P. Gaudry and D. Lubicz. "The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines". In: <i>Finite Fields and Their Applications</i> 15.2 (2009), pp. 246–260.
[Goy+06]	V. Goyal, O. Pandey, A. Sahai, and B. Waters. "Attribute-based encryption for fine-grained access control of encrypted data". In: <i>Proceedings of the 13th ACM conference on Computer and communications security.</i> ACM. 2006, p. 98.
[Jouo4]	A. Joux. "A one round protocol for tripartite Diffie–Hellman". In: <i>Journal of Cryptology</i> 17.4 (2004), pp. 263–276.
[Lano5]	T. Lange. "Formulae for arithmetic on genus 2 hyperelliptic curves". In: Applicable Algebra in Engineering, Communication and Computing 15.5 (2005), pp. 295–328.
[LR10a]	D. Lubicz and D. Robert. <i>Computing isogenies between abelian varieties</i> . HAL http://hal.archives-ouvertes.fr/hal-00446062/. Jan. 2010. arXiv:1001.2016. URL: http://www.normalesup.org/~robert/pro/publications/articles/isogenies.pdf.
[LR10b]	D. Lubicz and D. Robert. "Efficient pairing computation with theta functions". In: Lecture Notes in Comput. Sci. 6197 (Jan. 2010). Ed. by G. Hanrot, F. Morain, and E. Thomé. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings. DOI: 10.1007/978-3-642-14518-6_21. URL: http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf. Slides http://www.normalesup.org/~robert/publications/slides/2010+07-ants.pdf.
	about (FANT) Aboli a unitation about functions and annuts analysis (Constructions) and annuts annuts annuts and annuts annuts and annuts an

Bibliography

[Meso1]	JF. Mestre. Lettre à Gaudry et Harley. 2001. URL: http://www.math.jussieu.fr/mestre.
[Meso2]	JF. Mestre. Notes of a talk given at the Cryptography Seminar Rennes. 2002. URL: http://www.math.univ-rennes1.fr/crypto/2001-02/mestre.ps.
[SW05]	A. Sahai and B. Waters. "Fuzzy identity-based encryption". In: <i>Advances in</i> <i>Cryptology–EUROCRYPT 2005</i> (2005), pp. 457–473.
[Vero1]	E. Verheul. "Self-blindable credential certificates from the Weil pairing". In: Advances in Cryptology—ASIACRYPT 2001 (2001), pp. 533-551.

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト