# Abelian varieties, theta functions and cryptography 

## Part 2

Damien Robert ${ }^{1}$<br>${ }^{1}$ LFANT team, INRIA Bordeaux Sud-Ouest<br>08/12/2010 (Bordeaux)

## Outline

(1) Abelian varieties and cryptography
(2) Theta functions
(3) Arithmetic

4 Pairings
(5) Isogenies
(6) Perspectives

## Outline

(1) Abelian varieties and cryptography
(2) Theta functions
(3) Arithmetic

4 Pairings
(5) Isogenies

6 Perspectives

## Discrete logarithm

## Definition (DLP)

Let $G=\langle g\rangle$ be a cyclic group of prime order. Let $x \in \mathbb{N}$ and $h=g^{x}$. The discrete logarithm $\log _{g}(h)$ is $x$.

- Exponentiation: $O(\log p)$. DLP: $\widetilde{O}(\sqrt{p})$ (in a generic group).
$\Rightarrow$ Public key cryptography
$\Rightarrow$ Signature
$\Rightarrow$ Zero knowledge
- $G=\mathbb{F}_{p}^{*}$ : sub-exponential attacks.
$\Rightarrow$ Use $G=A\left(\mathbb{F}_{q}\right)$ where $A / \mathbb{F}_{q}$ is an abelian variety for the DLP.


## Pairing-based cryptography

## Definition

A pairing is a bilinear application $e: G_{1} \times G_{1} \rightarrow G_{2}$.

- Identity-based cryptography [BFo3].
- Short signature [BLSo4].
- One way tripartite Diffie-Hellman [Jouo4].
- Self-blindable credential certificates [Veror].
- Attribute based cryptography [SWo5].
- Broadcast encryption [Goy+o6].


## Example

The Weil and Tate pairings on abelian varieties are the only known examples of cryptographic pairings.

## Security of abelian varieties

| $g$ | \# points | DLP |
| :---: | :--- | :--- |
| 1 | $O(q)$ | $\widetilde{O}\left(q^{1 / 2}\right)$ |
| 2 | $O\left(q^{2}\right)$ | $\widetilde{O}(q)$ |
| 3 | $O\left(q^{3}\right)$ | $\widetilde{O}\left(q^{4 / 3}\right)$ (Jacobian of hyperelliptic curve) |
| (Jacobian of non hyperelliptic curve) |  |  |
| $g$ | $O\left(q^{g}\right)$ | $\widetilde{O}\left(q^{2-2 / g}\right)$ |
| $g>\log (q)$ | $L_{1 / 2}\left(q^{g}\right)=\exp \left(O(1) \log (x)^{1 / 2} \log \log (x)^{1 / 2}\right)$ |  |
|  | Security of the DLP |  |

- Weak curves (MOV attack, Weil descent, anomal curves).
$\Rightarrow$ Public-key cryptography with the DLP: Elliptic curves, Jacobian of hyperelliptic curves of genus 2 .
$\Rightarrow$ Pairing-based cryptography: Abelian varieties of dimension $g \leqslant 4$.


## Security of abelian varieties

| $g$ | \# points | DLP |
| :---: | :--- | :--- |
| 1 | $O(q)$ | $\widetilde{O}\left(q^{1 / 2}\right)$ |
| 2 | $O\left(q^{2}\right)$ | $\widetilde{O}(q)$ |
| 3 | $O\left(q^{3}\right)$ | $\widetilde{O}\left(q^{4 / 3}\right)$ (Jacobian of hyperelliptic curve) |
| $(q) \quad$ (Jacobian of non hyperelliptic curve) |  |  |
| $g$ | $O\left(q^{g}\right)$ | $\widetilde{O}\left(q^{2-2 / g}\right)$ |
| $L_{1 / 2}\left(q^{g}\right)=\exp \left(O(1) \log (x)^{1 / 2} \log \log (x)^{1 / 2}\right)$ |  |  |
|  | Security of the DLP |  |

- Weak curves (MOV attack, Weil descent, anomal curves).
$\Rightarrow$ Public-key cryptography with the DLP: Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
$\Rightarrow$ Pairing-based cryptography: Abelian varieties of dimension $g \leqslant 4$.


## Tsogenies

## Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies $=$ Rational map + group morphism + finite kernel.
- Isogenies $\Leftrightarrow$ Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \leftrightarrow H
\end{aligned}
$$

- Example: Multiplication by $\ell$ ( $\Rightarrow \ell$-torsion), Frobenius (non separable).


## Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms ( $\ell$-adic or $p$-adic) $\Rightarrow$ Verify a curve is secure.
- Compute the class field polynomials (CM-method) $\Rightarrow$ Construct a secure curve.
- Compute the modular polynomials $\Rightarrow$ Compute isogenies.
- Determine $\operatorname{End}(A) \Rightarrow$ CRT method for class field polynomials.


## Outline

(1) Abelian varieties and cryptography
(2) Theta functions
(3) Arithmetic

4 Pairings
(5) Isogenies

6 Perspectives

## Complex abelian varieties and theta functions of level $n$

- $\left(\vartheta_{i}\right)_{i \in Z(\bar{n})}$ : basis of the theta functions of level $n$.

$$
\left(Z(\bar{n}):=\mathbb{Z}^{9} / n \mathbb{Z}^{9}\right)
$$

$\Leftrightarrow A[n]=A_{1}[n] \oplus A_{2}[n]:$ symplectic decomposition.

- $\left(\vartheta_{i}\right)_{i \in Z(\bar{n})}= \begin{cases}\text { coordinates system } & n \geqslant 3 \\ \text { coordinates on the Kummer variety } A / \pm 1 & n=2\end{cases}$
- Theta null point: $\vartheta_{i}(0)_{i \in Z(\bar{n})}=$ modular invariant.


## Example $(k=\mathbb{C})$

Abelian variety over $\mathbb{C}: A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right) ; \Omega \in \mathcal{H}_{g}(\mathbb{C})$ the Siegel upper half space ( $\Omega$ symmetric, $\operatorname{Im} \Omega$ positive definite).

$$
\vartheta_{i}:=\Theta\left[\begin{array}{c}
0 \\
i / n
\end{array}\right](z, \Omega / n) .
$$

## Jacobian of hyperelliptic curves

$C: y^{2}=f(x)$, hyperelliptic curve of genus $g . \quad(\operatorname{deg} f=2 g-1)$

- Divisor: formal sum $D=\sum n_{i} P_{i}, \quad P_{i} \in C(\bar{k})$.

$$
\operatorname{deg} D=\sum n_{i} .
$$

- Principal divisor: $\sum_{P \in C(\bar{k})} v_{P}(f) . P ; \quad f \in \bar{k}(C)$.
- Jacobian of $C=$ Divisors of degree 0 modulo principal divisors + Galois action $=$ Abelian variety of dimension $g$.
- Divisor class $D \Rightarrow$ unique representative (Riemann-Roch):

$$
D=\sum_{i=1}^{k}\left(P_{i}-P_{\infty}\right) \quad k \leqslant g, \quad \text { symmetric } P_{i} \neq P_{j}
$$

- Mumford coordinates: $D=(u, v) \Rightarrow u=\Pi\left(x-x_{i}\right), v\left(x_{i}\right)=y_{i}$.
- Cantor algorithm: addition law.
- Thomae formula: convert between Mumford and theta coordinates of level 2 or 4.


## The modular space of theta null points of level $n(\operatorname{car} k+n)$

## Theorem (Mumford)

The modular space $\mathcal{M}_{\bar{n}}$ of theta null points is:

$$
\sum_{t \in Z(\overline{2})} a_{x+t} a_{y+t} \sum_{t \in Z(\overline{2})} a_{u+t} a_{v+t}=\sum_{t \in Z(\overline{2})} a_{x^{\prime}+t} a_{y^{\prime}+t} \sum_{t \in Z(\overline{2})} a_{u^{\prime}+t} a_{v^{\prime}+t}
$$

with the relations of symmetry $a_{x}=a_{-x}$.

- Abelian varieties with a $n$-structure $=$ open locus of $\mathcal{M}_{\bar{n}}$.
- If $\left(a_{u}\right)_{u \in Z(\bar{n})}$ is a valid theta null point, the corresponding abelian variety is given by the following equations in $\mathbb{P}_{k}^{n^{9}-1}$ :

$$
\sum_{t \in Z(\overline{2})} X_{x+t} X_{y+t} \sum_{t \in Z(\overline{2})} a_{u+t} a_{v+t}=\sum_{t \in Z(\overline{2})} X_{x^{\prime}+t} X_{y^{\prime}+t} \sum_{t \in Z(\overline{2})} a_{u^{\prime}+t} a_{v^{\prime}+t}
$$

## The differential addition law $(k=\mathbb{C})$

$$
\begin{aligned}
& \left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
& \quad\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right) .
\end{aligned}
$$

$$
\begin{gathered}
\text { where } \quad \chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\bar{n}) \\
\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=A(i, j, k, l) \\
A=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
\end{gathered}
$$

## Outline

(1) Abelian varieties and cryptography
2) Theta functions
(3) Arithmetic

4 Pairings
(5) Isogenies

6 Perspectives

## Arithmetic with low level theta functions ( $\operatorname{car} k \neq 2$ )

|  | Mumford | Level 2 | Level 4 |
| :--- | :---: | :---: | :---: |
|  | [Lano5] | [Gauo7] |  |
| Doubling | $34 M+7 S$ | $7 M+12 S+9 m_{0}$ | $49 M+36 S+27 m_{0}$ |
| Mixed Addition | $37 M+6 S$ |  |  |

Multiplication cost in genus 2 (one step).
$\left.\begin{array}{lcccc}\hline & \text { Montgomery } & \text { Level 2 } & \text { Jacobians } & \text { Level 4 } \\ \text { Doubling } & 5 M+4 S+1 m_{0} & 3 M+6 S+3 m_{0} & 3 M+5 S & 7 M+6 S+1 m_{0}\end{array}\right) 9 M+10 S+5 m_{0} \quad$.

Multiplication cost in genus 1 (one step).

## Arithmetic with high level theta functions [L Rioa]

- Algorithms for
- Additions and differential additions in level 4.
- Computing $P \pm Q$ in level 2 (need one square root). [LRıob]
- Fast differential multiplication.
- Compressing coordinates $O(1)$ :
- Level $2 n$ theta null point $\Rightarrow 1+g(g+1) / 2$ level 2 theta null points.
- Level $2 n \Rightarrow 1+g$ level 2 theta functions.
- Decompression: $n^{9}$ differential additions.


## Outline

(1) Abelian varieties and cryptography
2) Theta functions
(3) Arithmetic
(4) Pairings
(5) Isogenies

6 Perspectives

## Pairings on abelian varieties

$E / k$ : elliptic curve.

- Weil pairing: $E[\ell] \times E[\ell] \rightarrow \mu_{\ell}$.

$$
P, Q \in E[\ell] . \exists f_{\ell, P} \in k(E),\left(f_{\ell, P}\right)=\ell\left(P-0_{E}\right) .
$$

$$
e_{W, \ell}(P, Q)=\frac{f_{\ell, P}\left(Q-0_{E}\right)}{f_{\ell, Q}\left(P-0_{E}\right)} .
$$

- Tate pairing: $e_{T, \ell}(P, Q)=f_{\ell, P}\left(Q-0_{E}\right)$.
- Miller algorithm: pairing with Mumford coordinates.


## The Weil and Tate pairing with theta coordinates [L Riob]

$P$ and $Q$ points of $\ell$-torsion.

$$
\begin{array}{ccccc}
0_{A} & P & 2 P & \cdots & \ell P=\lambda_{P}^{0} 0_{A} \\
Q & P \oplus Q & 2 P+Q & \cdots & \ell P+Q=\lambda_{P}^{1} Q \\
2 Q & P+2 Q & & & \\
\cdots & \cdots & & & \\
\ell Q=\lambda_{Q}^{0} 0_{A} & P+\ell Q=\lambda_{Q}^{1} P & & & \\
\text { - } e_{W, \ell}(P, Q)=\frac{\lambda_{P}^{1} \Lambda_{0}^{0}}{\lambda_{p}^{p} l_{Q}^{1}} . \\
\text { - } e_{T, \ell}(P, Q)=\frac{\lambda_{p}^{p}}{\lambda_{P}^{p} .}
\end{array}
$$

## Comparison with $\mathcal{M i l l e r}$ algorithm

$$
\begin{array}{ll}
g=1 & 7 \mathbf{M}+7 \mathbf{S}+2 \mathbf{m}_{\mathbf{0}} \\
g=2 & 17 \mathbf{M}+13 \mathbf{S}+6 \mathbf{m}_{\mathbf{0}} \\
\hline
\end{array}
$$

Tate pairing with theta coordinates, $P, Q \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ (one step)

|  |  | Miller |  | Theta coordinates |
| :--- | :--- | :---: | :---: | :---: |
|  |  | Doubling | Addition | One step |
| $g=1$ | $d$ even | $1 \mathbf{M}+1 \mathbf{S}+1 \mathbf{m}$ | $1 \mathbf{M}+1 \mathbf{m}$ | $1 \mathbf{M}+2 \mathbf{S}+2 \mathbf{m}$ |
|  | $d$ odd | $2 \mathbf{M}+2 \mathbf{S}+1 \mathbf{m}$ | $2 \mathbf{M}+1 \mathbf{m}$ |  |
| $g=2$ | Q degenerate + <br> denominator elimination <br> General case | $1 \mathbf{M}+1 \mathbf{S}+3 \mathbf{m}$ | $1 \mathbf{M}+3 \mathbf{m}$ | $3 \mathbf{M}+4 \mathbf{S}+4 \mathbf{m}$ |
|  |  | $2 \mathbf{M}+2 \mathbf{S}+18 \mathbf{m}$ | $2 \mathbf{M}+18 \mathbf{m}$ |  |

$$
\left.P \in A[\ell]\left(\mathbb{F}_{q}\right), Q \in A[\ell]\left(\mathbb{F}_{q^{d}}\right) \text { (counting only operations in } \mathbb{F}_{q^{d}}\right) .
$$

## Outline

(1) Abelian varieties and cryptography
2) Theta functions
(3) Arithmetic

4 Pairings
(5) Isogenies

## Explicit isogeny computation

- Given an isotropic subgroup $K \subset A(\bar{k})$ compute the isogeny $A \mapsto A / K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety $A$ and $B$ find the isogeny $A \mapsto B$. (Clever use of Vélu's formula $\Rightarrow$ SEA algorithm).


## Explicit isogeny computation

- Given an isotropic subgroup $K \subset A(\bar{k})$ compute the isogeny $A \mapsto A / K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety $A$ and $B$ find the isogeny $A \mapsto B$. (Clever use of Vélu's formula $\Rightarrow$ SEA algorithm).


## Explicit isogeny computation

- Given an isotropic subgroup $K \subset A(\bar{k})$ compute the isogeny $A \mapsto A / K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety $A$ and $B$ find the isogeny $A \mapsto B$. (Clever use of Vélu's formula $\Rightarrow$ SEA algorithm).


## Explicit isogeny computation

- Given an isotropic subgroup $K \subset A(\bar{k})$ compute the isogeny $A \mapsto A / K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety $A$ and $B$ find the isogeny $A \mapsto B$. (Clever use of Vélu's formula $\Rightarrow$ SEA algorithm).


## Vélu's formula

## Theorem

Let $E: y^{2}=f(x)$ be an elliptic curve and $G \subset E(k)$ a finite subgroup. Then $E / G$ is given by $Y^{2}=g(X)$ where

$$
\begin{aligned}
& X(P)=x(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}} x(P+Q)-x(Q) \\
& Y(P)=y(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}} y(P+Q)-y(Q)
\end{aligned}
$$

- Uses the fact that $x$ and $y$ are characterised in $k(E)$ by

$$
\begin{array}{rlr}
v_{0_{E}}(x)=-2 & v_{P}(x) \geqslant 0 & \text { if } P \neq 0_{E} \\
v_{0_{E}}(y)=-3 & v_{P}(y) \geqslant 0 & \text { if } P \neq 0_{E} \\
y^{2} / x^{3}\left(0_{E}\right)=1 & &
\end{array}
$$

- No such characterisation in genus $g \geqslant 2$.


## The isogeny theorem

## Theorem (Mumford)

- Let $\ell \wedge n=1$, and $\phi: Z(\bar{n}) \rightarrow Z(\overline{\ell n}), x \mapsto \ell . x$ be the canonical embedding. Let $K_{0}=A[\ell]_{2} \subset A[\ell n]_{2}$.
- Let $\left(\vartheta_{i}^{A}\right)_{i \in Z(\overline{\text { en }})}$ be the theta functions of level \&n on $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\vartheta_{i}^{B}\right)_{i \in Z(\bar{n})}$ be the theta functions of level $n$ of $B=A / K_{0}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\frac{\Omega}{\ell} \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\vartheta_{i}^{B}(x)\right)_{i \in Z(\bar{n})}=\left(\vartheta_{\phi(i)}^{A}(x)\right)_{i \in Z(\bar{n})}
$$

## Example

$\pi:\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}\right) \mapsto\left(x_{0}, x_{3}, x_{6}, x_{9}\right)$ is a 3-isogeny between elliptic curves.

## The contragredient isogeny [L Rioa]



Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the $\ell^{g}$ antecedents. Then

$$
\widehat{\pi}(y)=\ell . x
$$

## The contragredient isogeny [L Rioa]



Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z\left(\overline{\ell_{n}}\right)}$. Let $y \in B$ and $x \in A$ be one of the $\ell^{9}$ antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

## The contragredient isogeny [L Rioa]



Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the $\ell^{g}$ antecedents. Then

$$
\widehat{\pi}(y)=\ell . x
$$

## The contragredient isogeny [L Rioa]



Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the $\ell^{g}$ antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$



## The contragredient isogeny [L Rioa]



Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the $\ell^{g}$ antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$



## The contragredient isogeny [L Rioa]



Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the $\ell^{g}$ antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$



## The contragredient isogeny [L Rioa]



Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the $\ell^{g}$ antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$



## Changing level without taking isogenies

## Theorem (Koizumi-Kempf)

- Let $\mathcal{L}$ be the space of theta functions of level $\ell n$ and $\mathcal{L}^{\prime}$ the space of theta functions of level $n$.
- Let $F \epsilon_{r}(\mathbb{Z})$ be such that ${ }^{t} F F=\ell \operatorname{Id}$, and $f: A^{r} \rightarrow A^{r}$ the corresponding isogeny.

We have $\mathcal{L}=f^{*} \mathcal{L}^{\prime}$ and the isogeny $f$ is given by

$$
f^{*}\left(\vartheta_{i_{1}}^{\mathcal{L}^{\prime}} \star \ldots \star \mathcal{\vartheta}_{\substack{\left.i_{r} \\\left(j_{1}, \ldots, j_{j}\right) \in K_{1} \\ \mathcal{L}_{1}^{\prime}\left(\mathcal{j}_{1}, \ldots, \mathcal{L}_{r}\right)=\left(\mathcal{L}_{r}^{\prime}\right) \times \ldots \times i_{1}\right) \times i_{r}\left(i_{1}\right)}} \vartheta_{\substack{\left.j_{j_{1}}^{\mathcal{L}}\right)}}^{\mathcal{L}} \star \ldots \star \mathcal{\vartheta}_{j_{r}}^{\mathcal{L}}\right.
$$

- $F=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ give the Riemann relations. (For general $\ell$, use the quaternions.) $\Rightarrow$ Go up and down in level without taking isogenies [Cosset +R ].


## Changing level and isogenies

## Corollary

Let $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$ and $B=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right)$. We can express the isogeny $A \rightarrow B, z \mapsto \ell z$ of kernel $K=\frac{1}{\ell} \mathbb{Z}^{g} / \mathbb{Z}^{g}$ in term of the theta functions of level $n$ on $A$ and $B$ :

$$
\begin{aligned}
& \vartheta\left[\begin{array}{c}
0 \\
i_{1}
\end{array}\right]\left(\ell z, \ell \frac{\Omega}{n}\right) \vartheta\left[\begin{array}{l}
0 \\
i_{2}
\end{array}\right]\left(0, \ell \frac{\Omega}{n}\right) \ldots \vartheta\left[\begin{array}{c}
0 \\
i_{r}
\end{array}\right]\left(0, \ell \frac{\Omega}{n}\right)= \\
& \sum_{\substack{t_{1}, \ldots, t_{r} \in K \\
F\left(t_{1}, \ldots, t_{r}\right)=(0, \ldots, 0)}} \vartheta\left[\begin{array}{l}
0 \\
j_{1}
\end{array}\right]\left(X_{1}+t_{1}, \frac{\Omega}{n}\right) \ldots \vartheta\left[\begin{array}{l}
0 \\
j_{r}
\end{array}\right]^{\mathcal{L}}\left(X_{r}+t_{r}, \frac{\Omega}{n}\right),
\end{aligned}
$$

where $X=F^{-1}(\ell z, 0, \ldots, 0)$.

## Remark

We compute the coordinates $\vartheta\left[\begin{array}{l}0 \\ j_{i}\end{array}\right]\left(X_{i}+t_{i}, \frac{\Omega}{n}\right)$ not in $A$ but in $\mathbb{C}^{g}$ thanks to the differential additions.

## $\mathcal{A}$ complete generalisation of Velu's algorithm [Cosset $+\mathcal{R}$ ]

- Compute the isogeny $B \rightarrow A$ while staying in level $n$.
- $O\left(\ell^{g}\right)$ differential additions $+O\left(\ell^{g}\right)$ or $O\left(\ell^{2 g}\right.$ for the changing level.
- The formulas are rational if the kernel $K$ is rational.
- Blocking part: compute $K \Rightarrow$ compute all the $\ell$-torsion on $B$. $g=2$ : $\ell$-torsion, $\widetilde{O}\left(\ell^{6}\right)$ vs $O\left(\ell^{2}\right)$ or $O\left(\ell^{4}\right)$ for the isogeny. $\Rightarrow$ Work in level 2.
$\Rightarrow$ Convert back and forth to Mumford coordinates:



## Outline

(1) Abelian varieties and cryptography
2) Theta functions
(3) Arithmetic

4 Pairings
(5) Isogenies
(6) Perspectives

## The $\mathcal{A G M}$ and canonical lifts

- The elliptic curves $E_{n}: y^{2}=x\left(x-a_{n}^{2}\right)\left(x-b_{n}^{2}\right)$ converges over $\mathbb{Q}_{2^{\alpha}}$ to the canonical lift of $\left(E_{0}\right)_{\mathbb{F}_{2^{\alpha}}}$ [Mesoi], where $\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{n \in \mathbb{N}}$ satisfy the Arithmetic Geometric Mean:

$$
\begin{aligned}
a_{n+1} & =\frac{a_{n}+b_{n}}{2} \\
b_{n+1} & =\sqrt{a_{n} b_{n}}
\end{aligned}
$$

- Generalized in all genus by looking at theta null points [Meso2].
- Generalized in arbitrary characteristic $p$ by [CLo8] by looking at modular relations of degree $p^{2}$ on theta null points.
$\Rightarrow$ Point counting.
$\Rightarrow$ Class polynomials.


## Some perspectives

- Improve the pairing algorithm (Ate pairing,optimal ate).
- Characteristic 2 [GLog].
- A SEA-like algorithm in genus 2 ?


## Bibliography

| [ $\mathrm{BFO}_{3}$ ] | D. Boneh and M. Franklin. "Identity-based encryption from the Weil pairing". In: SIAM Journal on Computing 32.3 (2003), pp. 586-615. |
| :---: | :---: |
| [BLSo4] | D. Boneh, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: Journal of Cryptology 17.4 (2004), pp. 297-319. |
| [CLo8] | R. Carls and D. Lubicz. "A $p$-adic quasi-quadratic time and quadratic space point counting algorithm". In: International Mathematics Research Notices (2008). |
| [Gauo7] | P. Gaudry. "Fast genus 2 arithmetic based on Theta functions". In: Journal of Mathematical Cryptology 1.3 (2007), pp. 243-265. |
| [GLog] | P. Gaudry and D. Lubicz. "The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines". In: Finite Fields and Their Applications 15.2 (2009), pp. 246-260. |
| [Goy+06] | V. Goyal, O. Pandey, A. Sahai, and B. Waters. "Attribute-based encryption for fine-grained access control of encrypted data". In: Proceedings of the 13th ACM conference on Computer and communications security. ACM. 2006, p. 98. |
| [Jou04] | A. Joux. "A one round protocol for tripartite Diffie-Hellman". In: Journal of Cryptology 17.4 (2004), pp. 263-276. |
| [Lano5] | T. Lange. "Formulae for arithmetic on genus 2 hyperelliptic curves". In: Applicable Algebra in Engineering, Communication and Computing 15.5 (2005), pp. 295-328. |
| [LR10a] | D. Lubicz and D. Robert. Computing isogenies between abelian varieties. HAL http://hal.archives-ouvertes.fr/hal-00446062/. Jan. 2010. arXiv:1001.2016. URL: http://www.normalesup.org/~robert/pro/publications/articles/isogenies.pdf. |
| [LR1ob] | D. Lubicz and D. Robert. "Efficient pairing computation with theta functions". In: Lecture Notes in Comput. Sci. 6197 (Jan. 2010). Ed. by G. Hanrot, F. Morain, and E. Thomé. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings. DoI: 10.1007/978-3-642-14518-6_21. URL: <br> http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf. Slides http://www.normalesup.org/~robert/publications/slides/2010-07-ants.pd量. |


| [Meso1] | J.-F. Mestre. Lettre à Gaudry et Harley. 2001. URL: http://www.math.jussieu.fr/mestre. |
| :--- | :--- |
| [Meso2] | J.-F. Mestre. Notes of a talk given at the Cryptography Seminar Rennes. 2002. URL: <br> http://www.math.univ-rennes1.fr/crypto/2001-02/mestre.ps. |
| [SW05] | A. Sahai and B. Waters. "Fuzzy identity-based encryption". In: Advances in <br> Cryptology-EUROCRYPT 2005 (2005), pp. 457-473. |
| [Vero1] | E. Verheul. "Self-blindable credential certificates from the Weil pairing". In: Advances in <br> Cryptology-ASIACRYPT 2001 (2001), pp. 533-551. |

