Generalizing Vélu’s formulas and some applications

Damien Robert ${ }^{1}$
${ }^{1}$ LFANT Team, Inria Bordeaux Sud-Ouest
23/11/2010 (LIX)

Outline

(1) Abelian varieties

2 Isogenies
(3) Implementation

4 Examples and Applications

Discrete logarithm

Definition (DLP)

Let $G=\langle g\rangle$ be a cyclic group of prime order. Let $x \in \mathbb{N}$ and $h=g^{x}$. The discrete logarithm $\log _{g}(h)$ is x.

- Exponentiation: $O(\log p)$. DLP: $\widetilde{O}(\sqrt{p})$ (in a generic group).
\Rightarrow Usual tools of public key cryptography (and more!)
- $G=\mathbb{F}_{p}^{*}$: sub-exponential attacks.
\Rightarrow Find secure groups with efficient law, compact representation.

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.
\Rightarrow Use $G=A(k)$ with $k=\mathbb{F}_{q}$ for the DLP.
\Rightarrow Pairing-based cryptography with the Weil or Tate pairing. (Only available on abelian varieties.)

Elliptic curves

Definition ($\operatorname{car} k \neq 2,3$)

$E: y^{2}=x^{3}+a x+b . \quad 4 a^{3}+27 b^{2} \neq 0$.

- An elliptic curve is a plane curve of genus 1 .
- Elliptic curves $=$ Abelian varieties of dimension 1.

$$
\begin{gathered}
P+Q=-R=\left(x_{R},-y_{R}\right) \\
\lambda=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}} \\
x_{R}=\lambda^{2}-x_{P}-x_{Q} \\
y_{R}=y_{P}+\lambda\left(x_{R}-x_{P}\right)
\end{gathered}
$$

Jacobian of hyperelliptic curves

$C: y^{2}=f(x)$, hyperelliptic curve of genus $g . \quad(\operatorname{deg} f=2 g-1)$

- Divisor: formal sum $D=\sum n_{i} P_{i}, \quad P_{i} \in C(\bar{k})$.

$$
\operatorname{deg} D=\sum n_{i} .
$$

- Principal divisor: $\sum_{P \in C(\bar{k})} v_{P}(f) . P ; \quad f \in \bar{k}(C)$.
- Jacobian of $C=$ Divisors of degree 0 modulo principal divisors $=$ Abelian variety of dimension g.
- Divisor class $D \Rightarrow$ unique representative (Riemann-Roch):

$$
D=\sum_{i=1}^{k}\left(P_{i}-P_{\infty}\right) \quad k \leqslant g, \quad \text { symmetric } P_{i} \neq P_{j}
$$

- Mumford coordinates: $D=(u, v) \Rightarrow u=\Pi\left(x-x_{i}\right), v\left(x_{i}\right)=y_{i}$.
- Cantor algorithm: addition law.

Example of the addition law in genus 2

$$
\begin{aligned}
& D=P_{1}+P_{2}-2 \infty \\
& D^{\prime}=Q_{1}+Q_{2}-2 \infty
\end{aligned}
$$

Example of the addition law in genus 2

Example of the addition law in genus 2

Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies $=$ Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \leftrightarrow H
\end{aligned}
$$

- Example: Multiplication by ℓ ($\Rightarrow \ell$-torsion), Frobenius (non separable).

Cryptographic usage of isogenies

- Transfer the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-adic or p-adic) \Rightarrow Verify a curve is secure.
- Compute the class field polynomials (CM-method) \Rightarrow Construct a secure curve.
- Compute the modular polynomials \Rightarrow Compute isogenies.
- Determine $\operatorname{End}(A) \Rightarrow$ CRT method for class field polynomials.

Explicit isogeny computation

- Given an isotropic subgroup $K \subset A(\bar{k})$ compute the isogeny $A \mapsto A / K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety A and B find the isogeny $A \mapsto B$. (Clever use of Vélu's formula \Rightarrow SEA algorithm).

Explicit isogeny computation

- Given an isotropic subgroup $K \subset A(\bar{k})$ compute the isogeny $A \mapsto A / K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety A and B find the isogeny $A \mapsto B$. (Clever use of Vélu's formula \Rightarrow SEA algorithm).

Explicit isogeny computation

- Given an isotropic subgroup $K \subset A(\bar{k})$ compute the isogeny $A \mapsto A / K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety A and B find the isogeny $A \mapsto B$. (Clever use of Vélu's formula \Rightarrow SEA algorithm).

Explicit isogeny computation

- Given an isotropic subgroup $K \subset A(\bar{k})$ compute the isogeny $A \mapsto A / K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety A and B find the isogeny $A \mapsto B$. (Clever use of Vélu's formula \Rightarrow SEA algorithm).

Vélu's formula

Theorem

Let $E: y^{2}=f(x)$ be an elliptic curve and $G \subset E(k)$ a finite subgroup. Then E / G is given by $Y^{2}=g(X)$ where

$$
\begin{aligned}
& X(P)=x(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}}(x(P+Q)-x(Q)) \\
& Y(P)=y(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}}(y(P+Q)-y(Q)) .
\end{aligned}
$$

- Uses the fact that x and y are characterised in $k(E)$ by

$$
\begin{array}{rlr}
v_{0_{E}}(x)=-2 & v_{P}(x) \geqslant 0 & \text { if } P \neq 0_{E} \\
v_{0_{E}}(y)=-3 & v_{P}(y) \geqslant 0 & \text { if } P \neq 0_{E} \\
y^{2} / x^{3}\left(0_{E}\right)=1 & &
\end{array}
$$

- No such characterisation in genus $g \geqslant 2$ for Mumford coordinates.

Complex abelian varieties and theta functions of level n

- $\left(\vartheta_{i}\right)_{i \in Z(\bar{n})}$: basis of the theta functions of level n.
$\left(Z(\bar{n}):=\mathbb{Z}^{g} / n \mathbb{Z}^{g}\right)$
$\Leftrightarrow A[n]=A_{1}[n] \oplus A_{2}[n]:$ symplectic decomposition.
- $\left(\vartheta_{i}\right)_{i \in Z(\bar{n})}= \begin{cases}\text { coordinates system } & n \geqslant 3 \\ \text { coordinates on the Kummer variety } A / \pm 1 & n=2\end{cases}$
- Theta null point: $\mathcal{\vartheta}_{i}(0)_{i \in Z(\bar{n})}=$ modular invariant.

Example ($k=\mathbb{C}$)

Abelian variety over $\mathbb{C}: A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right) ; \Omega \in \mathcal{H}_{g}(\mathbb{C})$ the Siegel upper half space (Ω symmetric, $\operatorname{Im} \Omega$ positive definite).

$$
\mathcal{\vartheta}_{i}:=\Theta\left[\begin{array}{c}
0 \\
i / n
\end{array}\right](z, \Omega / n) .
$$

Changing level

Theorem (Koizumi-Kempf)

Let F be a matrix of rank r such that ${ }^{t} F F=\ell \operatorname{Id}_{r}$. Let $X \in\left(\mathbb{C}^{g}\right)^{r}$ and $Y=F(X) \in\left(\mathbb{C}^{g}\right)^{r}$. Let $j \in\left(\mathbb{Q}^{g}\right)^{r}$ and $i=F(j)$. Then we have

$$
\begin{aligned}
& \vartheta\left[\begin{array}{c}
0 \\
i_{1}
\end{array}\right]\left(Y_{1}, \frac{\Omega}{n}\right) \ldots \vartheta\left[\begin{array}{c}
0 \\
i_{r}
\end{array}\right]\left(Y_{r}, \frac{\Omega}{n}\right)= \\
& \\
& \qquad \begin{array}{c}
t_{1}, \ldots, t_{r} \in \frac{1}{\ell} \mathbb{Z}^{g} 9 \mathbb{Z}^{9} \\
F\left(t_{1}, \ldots, t_{r}\right)=(0, \ldots, 0)
\end{array}
\end{aligned}
$$

- If $\ell=a^{2}+b^{2}$, we take $F=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$, so $r=2$.
- In general, $\ell=a^{2}+b^{2}+c^{2}+d^{2}$, we take F to be the matrix of multiplication by $a+b i+c j+d k$ in the quaternions, so $r=4$.

Changing level and isogenies

Corollary

Let $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$ and $B=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right)$. We can express the isogeny $A \rightarrow B, z \mapsto \ell z$ of kernel $K=\frac{1}{\ell} \mathbb{Z}^{9} / \mathbb{Z}^{g}$ in term of the theta functions of level n on A and B :

$$
\begin{aligned}
& \vartheta\left[\begin{array}{l}
0 \\
i_{1}
\end{array}\right]\left(\ell z, \ell \frac{\Omega}{n}\right) \vartheta\left[\begin{array}{l}
0 \\
i_{2}
\end{array}\right]\left(0, \ell \frac{\Omega}{n}\right) \ldots \vartheta\left[\begin{array}{c}
0 \\
i_{r}
\end{array}\right]\left(0, \ell \frac{\Omega}{n}\right)= \\
& \sum_{\substack{t_{1}, \ldots, t_{r} \in K \\
F\left(t_{1}, \ldots, t_{r}\right)=(0, \ldots, 0)}} \vartheta\left[\begin{array}{l}
0 \\
j_{1}
\end{array}\right]\left(X_{1}+t_{1}, \frac{\Omega}{n}\right) \ldots \vartheta\left[\begin{array}{l}
0 \\
j_{r}
\end{array}\right]^{\mathcal{L}}\left(X_{r}+t_{r}, \frac{\Omega}{n}\right),
\end{aligned}
$$

where $X=F^{-1}(\ell z, 0, \ldots, 0)$.

Remark

We need a way to compute the coordinates $\vartheta\left[\begin{array}{l}0 \\ j_{i}\end{array}\right]\left(X_{i}+t_{i}, \frac{\Omega}{n}\right)$ not in A but in \mathbb{C}^{g}.

The differential addition law $(k=\mathbb{C})$

Applying twice the level formulas to $F=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)(l=2)$ yields:

$$
\begin{aligned}
& \left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
& \quad\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right) .
\end{aligned}
$$

$$
\text { where } \quad \chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\bar{n})
$$

$$
\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=A(i, j, k, l)
$$

$$
A=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

An example with $g=1, n=2, \ell=3$

$$
\begin{gathered}
z \in \mathbb{C} /\left(\mathbb{Z g}+\ell \Omega \not \mathbb{Z}_{s}\right) \xrightarrow{[\ell]} \ell \ell \in \mathbb{C} /\left(\mathbb{Z}_{s} g+\ell \Omega \mathbb{Z} g\right) \\
z \in \mathbb{C} g /\left(\mathbb{Z}_{s}+\Omega \mathbb{Z}^{g}\right)
\end{gathered}
$$

An example with $g=1, n=2, \ell=3$

$$
z \in \mathbb{C} g /\left(\mathbb{Z} g+\ell \Omega \not \mathbb{Z}_{s} g\right) \xrightarrow{[\ell]} \ell \ell \in \mathbb{C} /\left(\mathbb{Z}_{s} g+\ell \Omega \mathbb{Z} g\right)
$$

An example with $g=1, n=2, \ell=3$

$$
z \in \mathbb{C} g /\left(\mathbb{Z} g+\ell \Omega \not \mathbb{Z}_{s} g\right) \xrightarrow{[\ell]} \ell \ell \in \mathbb{C} g /\left(\mathbb{Z}_{s} g+\ell \Omega \mathbb{Z}_{s} g\right)
$$

An example with $g=1, n=2, \ell=3$

$$
z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right) \xrightarrow{[\ell]} \ell z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right)
$$

An example with $g=1, n=2, \ell=3$

$$
z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right) \xrightarrow{[\ell]} \ell z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right)
$$

An example with $g=1, n=2, \ell=3$

$$
z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right) \xrightarrow{[\ell]} \ell z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right)
$$

An example with $g=1, n=2, \ell=3$

$$
z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right) \xrightarrow{[\ell]} \ell z \in \mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\ell \Omega \mathbb{Z}^{g}\right)
$$

Computing isogenies [

- Let A / k be an abelian variety of dimension g over k given in theta coordinates. Let $K \subset A$ be a maximal isotropic subgroup of $A[\ell]$ (ℓ prime to 2 and the characteristic). Then we have an algorithm to compute the isogeny $A \mapsto A / K$.
- Need $O(\# K)$ differential additions in A
$+O\left(\ell^{g}\right)$ or $O\left(\ell^{2 g}\right)$ multiplications \Rightarrow fast.
- The formulas are rational if the kernel K is rational.
- Blocking part: compute $K \Rightarrow$ compute all the ℓ-torsion on B. $g=2$: ℓ-torsion, $\widetilde{O}\left(\ell^{6}\right)$ vs $O\left(\ell^{2}\right)$ or $O\left(\ell^{4}\right)$ for the isogeny.
- Theta coordinates are not rationnal.
\Rightarrow Work in level 2.
\Rightarrow Convert back and forth to Mumford coordinates:

Avisogenies

- Avisogenies: Magma code written by Bisson, Cosset and R.
- Released under LGPL2+.
- Implement isogeny computation (and applications thereof) for abelian varieties using theta functions.
- Current release o.1: isogenies in genus 2.

Implementation

H hyperelliptic curve of genus 2 over $k=\mathbb{F}_{q}, J=\operatorname{Jac}(H), \ell$ odd prime, $2 \ell \wedge \operatorname{car} k=1$. Compute all rational (ℓ, ℓ)-isogenies $J \mapsto \operatorname{Jac}\left(H^{\prime}\right)$ (we suppose the zeta function known):

- Compute the extension $\mathbb{F}_{q^{n}}$ where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
(2) Compute a "symplectic" basis of $J[\ell]\left(\mathbb{F}_{q^{n}}\right)$.
- Find the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
© Compute the other points in K in theta coordinates using differential additions.
(6) Apply the change level formula to recover the theta null point of J / K.
- Compute the Igusa invariants of J / K ("Inverse Thomae").
((Distinguish between the isogeneous curve and its twist.

Implementation

H hyperelliptic curve of genus 2 over $k=\mathbb{F}_{q}, J=\operatorname{Jac}(H), \ell$ odd prime, $2 \ell \wedge \operatorname{car} k=1$. Compute all rational (ℓ, ℓ)-isogenies $J \mapsto \operatorname{Jac}\left(H^{\prime}\right)$ (we suppose the zeta function known):
(c) Compute the extension $\mathbb{F}_{q^{n}}$ where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.

- Compute a "symplectic" basis of $J[\ell]\left(\mathbb{F}_{q^{n}}\right)$.
- Find the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in K in theta coordinates using differential additions.
© Apply the change level formula to recover the theta null point of J / K.
- Compute the Igusa invariants of J / K ("Inverse Thomae").
- Distinguish between the isogeneous curve and its twist.

Implementation

H hyperelliptic curve of genus 2 over $k=\mathbb{F}_{q}, J=\operatorname{Jac}(H), \ell$ odd prime, $2 \ell \wedge \operatorname{car} k=1$. Compute all rational (ℓ, ℓ)-isogenies $J \mapsto \operatorname{Jac}\left(H^{\prime}\right)$ (we suppose the zeta function known):

- Compute the extension $\mathbb{F}_{q^{n}}$ where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Compute a "symplectic" basis of $J[\ell]\left(\mathbb{F}_{q^{n}}\right)$.
- Find the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in K in theta coordinates using differential additions.
(Apply the change level formula to recover the theta null point of J / K.
- Compute the Igusa invariants of J / K ("Inverse Thomae").
- Distinguish between the isogeneous curve and its twist.

Implementation

H hyperelliptic curve of genus 2 over $k=\mathbb{F}_{q}, J=\operatorname{Jac}(H), \ell$ odd prime, $2 \ell \wedge \operatorname{car} k=1$. Compute all rational (ℓ, ℓ)-isogenies $J \mapsto \operatorname{Jac}\left(H^{\prime}\right)$ (we suppose the zeta function known):
(compute the extension $\mathbb{F}_{q^{n}}$ where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.

- Compute a "symplectic" basis of $J[\ell]\left(\mathbb{F}_{q^{n}}\right)$.
- Find the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in K in theta coordinates using differential additions.
(Apply the change level formula to recover the theta null point of J / K.
- Compute the Igusa invariants of J / K ("Inverse Thomae").
- Distinguish between the isogeneous curve and its twist.

Implementation

H hyperelliptic curve of genus 2 over $k=\mathbb{F}_{q}, J=\operatorname{Jac}(H), \ell$ odd prime, $2 \ell \wedge \operatorname{car} k=1$. Compute all rational (ℓ, ℓ)-isogenies $J \mapsto \operatorname{Jac}\left(H^{\prime}\right)$ (we suppose the zeta function known):
(compute the extension $\mathbb{F}_{q^{n}}$ where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.

- Compute a "symplectic" basis of $J[\ell]\left(\mathbb{F}_{q^{n}}\right)$.
- Find the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in K in theta coordinates using differential additions.
(Apply the change level formula to recover the theta null point of J / K.
- Compute the Igusa invariants of J / K ("Inverse Thomae").
- Distinguish between the isogeneous curve and its twist.

Implementation

H hyperelliptic curve of genus 2 over $k=\mathbb{F}_{q}, J=\operatorname{Jac}(H), \ell$ odd prime, $2 \ell \wedge \operatorname{car} k=1$. Compute all rational (ℓ, ℓ)-isogenies $J \mapsto \operatorname{Jac}\left(H^{\prime}\right)$ (we suppose the zeta function known):

- Compute the extension $\mathbb{F}_{q^{n}}$ where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Compute a "symplectic" basis of $J[\ell]\left(\mathbb{F}_{q^{n}}\right)$.
- Find the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
(Compute the other points in K in theta coordinates using differential additions.
© Apply the change level formula to recover the theta null point of J / K.
- Compute the Igusa invariants of J / K ("Inverse Thomae").
- Distinguish between the isogeneous curve and its twist.

Implementation

H hyperelliptic curve of genus 2 over $k=\mathbb{F}_{q}, J=\operatorname{Jac}(H), \ell$ odd prime, $2 \ell \wedge \operatorname{car} k=1$. Compute all rational (ℓ, ℓ)-isogenies $J \mapsto \operatorname{Jac}\left(H^{\prime}\right)$ (we suppose the zeta function known):

- Compute the extension $\mathbb{F}_{q^{n}}$ where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Compute a "symplectic" basis of $J[\ell]\left(\mathbb{F}_{q^{n}}\right)$.
- Find the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
(Compute the other points in K in theta coordinates using differential additions.
(0) Apply the change level formula to recover the theta null point of J / K.
- Compute the Igusa invariants of J / K ("Inverse Thomae").
- Distinguish between the isogeneous curve and its twist.

Implementation

H hyperelliptic curve of genus 2 over $k=\mathbb{F}_{q}, J=\operatorname{Jac}(H), \ell$ odd prime, $2 \ell \wedge \operatorname{car} k=1$. Compute all rational (ℓ, ℓ)-isogenies $J \mapsto \operatorname{Jac}\left(H^{\prime}\right)$ (we suppose the zeta function known):

- Compute the extension $\mathbb{F}_{q^{n}}$ where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Compute a "symplectic" basis of $J[\ell]\left(\mathbb{F}_{q^{n}}\right)$.
- Find the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
(Compute the other points in K in theta coordinates using differential additions.
(1) Apply the change level formula to recover the theta null point of J / K.
- Compute the Igusa invariants of J / K ("Inverse Thomae").
- Distinguish between the isogeneous curve and its twist.

Implementation

H hyperelliptic curve of genus 2 over $k=\mathbb{F}_{q}, J=\operatorname{Jac}(H), \ell$ odd prime, $2 \ell \wedge \operatorname{car} k=1$. Compute all rational (ℓ, ℓ)-isogenies $J \mapsto \operatorname{Jac}\left(H^{\prime}\right)$ (we suppose the zeta function known):

- Compute the extension $\mathbb{F}_{q^{n}}$ where the geometric points of the maximal isotropic kernel of $J[\ell]$ lives.
- Compute a "symplectic" basis of $J[\ell]\left(\mathbb{F}_{q^{n}}\right)$.
- Find the rational maximal isotropic kernels K.
- For each kernel K, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
(0) Compute the other points in K in theta coordinates using differential additions.
(0) Apply the change level formula to recover the theta null point of J / K.
- Compute the Igusa invariants of J / K ("Inverse Thomae").
- Distinguish between the isogeneous curve and its twist.

Computing the right extension

- $J=\operatorname{Jac}(H)$ abelian variety of dimension 2. $\chi(X)$ the corresponding zeta function.
- Degree of a point of ℓ-torsion \mid the order of X in $\mathbb{F}_{\ell}[X] / \chi(X)$.
- If K rational, $K(\bar{k}) \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2}$, the degree of a point in $K \mid$ the LCM of orders of X in $\mathbb{F}_{\ell}[X] / P(X)$ for $P \mid \chi$ of degree two.
- Since we are looking to K maximal isotropic, $J[\ell] \simeq K \oplus K^{\prime}$ and we know that $P \mid \chi$ is such that $\chi(X) \equiv P(X) P(\bar{X}) \bmod \ell$ where $\bar{X}=q / X$ represents the Verschiebung.

Remark

The degree n is $\leqslant \ell^{2}$ - . If ℓ is totally split in $\mathbb{Z}[\pi, \bar{\pi}]$ then $n \mid \ell-1$.

Computing the ℓ-torsion

- We want to compute $J\left(\mathbb{F}_{q^{n}}\right)[\ell]$.
- From the zeta function $\chi(X)$ we can compute random points in $J\left(\mathbb{F}_{q^{n}}\right)\left[\ell^{\infty}\right]$ uniformly.
- If P is in $J\left(\mathbb{F}_{q^{n}}\right)\left[\ell^{\infty}\right], \ell^{m} P \in J\left(\mathbb{F}_{q^{n}}\right)[\ell]$ for a suitable m. This does not give uniform points of ℓ-torsion but we can correct the points obtained.

Example

- Suppose $J\left(\mathbb{F}_{q^{n}}\right)\left[\ell^{\infty}\right]=<P_{1}, P_{2}>$ with P_{1} of order ℓ^{2} and P_{2} of order ℓ.
- First random point $Q_{1}=P_{1} \Rightarrow$ we recover the point of ℓ-torsion: $\ell . P_{1}$.
- Second random point $Q_{2}=\alpha P_{1}+\beta P_{2}$. If $\alpha \neq 0$ we recover the point of ℓ-torsion $\alpha \ell P_{1}$ which is not a new generator.
- We correct the original point: $Q_{2}^{\prime}=Q_{2}-\alpha Q_{1}=\beta P_{2}$.

Weil pairing

- Used to decompose a point $P \in J[\ell]$ in term of a basis of the ℓ-torsion (and to construct a symplectic basis).
- The magma implementation is extremely slow in genus 2 for non degenerate divisors.
- But since we convert the points in theta coordinates we can use the pairing in theta coordinates [LR1o].

Timings for isogenies computations

Jacobian of Hyperelliptic Curve defined by $\mathrm{y}^{\wedge} 2=\mathrm{t}^{\wedge} 254 * x^{\wedge} 6+\mathrm{t}^{\wedge} 223 * x^{\wedge} 5+$ t^255*x^4 + t^318*x^3 + t^668*x^2 + t^543*x + t^538 over GF(3^6)
> time RationallyIsogenousCurvesG2(J,7);
** Computing 7 -rationnal isotropic subgroups
-- Computing the 7 -torsion over extension of deg 4
!! Basis: 2 points in Finite field of size 3^24
-- Listing subgroups
1 subgroups over Finite field of size 3^24
-- Convert the subgroups to theta coordinates
Time: 0.060
Computing the 17 -isogenies
** Precomputations for $l=7$ Time: 0.180
** Computing the 7 -isogeny
Computing the l-torsion Time: 0.030
Changing level Time: 0.210
Time: 0.430
Time: 0.490
[< [t^620, t^691, t^477], Jacobian of Hyperelliptic Curve defined by
$y^{\wedge} 2=t^{\wedge} 615 * x^{\wedge} 6+t^{\wedge} 224 * x^{\wedge} 5+t^{\wedge} 37 * x^{\wedge} 4+t^{\wedge} 303 * x^{\wedge} 3+t^{\wedge} 715 * x^{\wedge} 2+t^{\wedge} 128 * x$

Timings for isogenies computations

Jacobian of Hyperelliptic Curve defined by $\mathrm{y}^{\wedge} 2=39 * x^{\wedge} 6+4 * x^{\wedge} 5+82 * x^{\wedge} 4$
$+10 * x^{\wedge} 3+31 * x^{\wedge} 2+39 * x+2$ over GF(83)
> time RationallyIsogenousCurvesG2(J,5);
** Computing 5 -rationnal isotropic subgroups
-- Computing the 5 -torsion over extension of deg 24
Time: 0.940
!! Basis: 4 points in Finite field of size $83^{\wedge} 24$
-- Listing subgroups
Time: 1.170
6 subgroups over Finite field of size $83^{\wedge} 24$
-- Convert the subgroups to theta coordinates
Time: 0.360
Time: 2.630
Computing the 65 -isogenies
Time: 0.820
Time: 3.460
[< [36, 69, 38], Jacobian of Hyperelliptic Curve defined by
$y^{\wedge} 2=27 * x^{\wedge} 6+63 * x^{\wedge} 5+5 * x^{\wedge} 4+24 * x^{\wedge} 3+34 * x^{\wedge} 2+6 * x+76$ over GF $(83)>$, ...]

Timings for isogeny graphs

Jacobian of Hyperelliptic Curve defined by $\mathrm{y}^{\wedge} 2=41 * x^{\wedge} 6+131 * x^{\wedge} 5+$ $55 * x^{\wedge} 4+57 * x^{\wedge} 3+233 * x^{\wedge} 2+225 * x+51$ over GF(271)
time isograph,jacobians:=IsoGraphG2(J,\{3\}: save_mem:=-1);
Computed 540 isogenies and found 135 curves.
Time: 14.410

- Core 2 with 4BG of RAM.
- Computing kernels: $\approx 5 s$.
- Computing isogenies: $\approx 7 s$ (Torsion: $\approx 2 s$, Changing level: $\approx 3.5 s$.)

Going further

Jacobian of Hyperelliptic Curve defined by $y^{\wedge} 2=97 * x^{\wedge} 6+77 * x^{\wedge} 5+$ $62 * x^{\wedge} 4+14 * x^{\wedge} 3+33 * x^{\wedge} 2+18 * x+40$ over GF(113)
> time RationallyIsogenousCurvesG2(J,53);
** Computing 53 -rationnal isotropic subgroups
-- Computing the 53 -torsion over extension of deg 52 Time: 8.610
!! Basis: 3 points in Finite field of size 113^52
-- Listing subgroups Time: 1.210
2 subgroups over Finite field of size 113^52
-- Convert the subgroups to theta coordinates Time: 0.100
Time: 9.980
Computing the 253 -isogenies
** Precomputations for l= 53 Time: 0.240
** Computing the 53 -isogeny
Computing the l-torsion Time: 7.570
Changing level Time: 1.170
Time: 8.840
** Computing the 53 -isogeny
Time: 8.850
Time: 27.950

Going further

Jacobian of Hyperelliptic Curve defined by $\mathrm{y}^{\wedge} 2=194 * x^{\wedge} 6+554 * x^{\wedge} 5+$ $606 * x^{\wedge} 4+523 * x^{\wedge} 3+642 * x^{\wedge} 2+566 * x+112$ over GF(859)
> time RationallyIsogenousCurvesG2(J,19);
** Computing 19 -rationnal isotropic subgroups (extension degree 18)
Time: 0.760
Computing the 219 -isogenies
** Precomputations for $\mathrm{l}=19$ Time: 11.160
** Computing the 19 -isogeny
Computing the l-torsion Time: 0.250
Changing level Time: 18.590
Time: 18.850
** Computing the 19 -isogeny
Computing the l-torsion Time: 0.250
Changing level Time: 18.640
Time: 18.900
Time: 51.060
[< [341, 740, 389], Jacobian of Hyperelliptic Curve defined by $\mathrm{y}^{\wedge} 2=72$ $680 * x^{\wedge} 5+538 * x^{\wedge} 4+613 * x^{\wedge} 3+557 * x^{\wedge} 2+856 * x+628$ over GF(859)>,
...]

\mathcal{A} record isogeny computation!

- J Jacobian of $y^{2}=x^{5}+41691 x^{4}+24583 x^{3}+2509 x^{2}+15574 x$ over \mathbb{F}_{42179}.
- $\# J=2^{10} 1321^{2}$.
> time RationallyIsogenousCurvesG2(J,1321:ext_degree:=1);
** Computing 1321 -rationnal isotropic subgroups
Time: 0.350
Computing the 11321 -isogenies
** Precomputations for $l=1321$
Time: 1276.950
** Computing the 1321 -isogeny
Computing the l-torsion
Time: 1200.270
Changing level
Time: 1398.780
Time: 5727.250
Time: 7004.240
Time: 7332.650
[< [9448, 15263, 31602], Jacobian of Hyperelliptic Curve defined by $y^{\wedge} 2=33266 * x^{\wedge} 6+20155 * x^{\wedge} 5+31203 * x^{\wedge} 4+9732 * x^{\wedge} 3+$ $4204 * x^{\wedge} 2+18026 * x+29732$ over GF(42179)>]

Isogeny graphs: $\ell=q_{1} q_{2}=Q_{1} \bar{Q}_{1} Q_{2} \overline{Q_{2}}$

Isogeny graphs: $\ell=q^{2}=Q^{4}$

$\left(\mathbb{Q} \mapsto K_{0} \mapsto K\right)$

Non maximal isogeny graphs $(\ell=q=Q \bar{Q})$

Non maximal isogeny graphs $(\ell=q=Q \bar{Q})$

Non maximal isogeny graphs $(\ell=q=Q \bar{Q})$

Non maximal isogeny graphs $\left(\ell=q_{1} q_{2}=Q_{1} \bar{Q}_{1} Q_{2} \bar{Q}_{2}\right)$

Non maximal isogeny graphs $\left(\ell=q_{1} q_{2}=Q_{1} \bar{Q}_{1} Q_{2} \overline{Q_{2}}\right)$

Non maximal isogeny graphs $\left(\ell=q=Q^{2}\right)$

Non maximal isogeny graphs $\left(\ell=q=Q^{2}\right)$

Applications and perspectives

- Computing endomorphism ring. Generalize [BSo9] to higher genus, work by Bisson.
- Class polynomials in genus 2 using the CRT. If K is a CM field and J / \mathbb{F}_{p} is such that $\operatorname{End}(J) \otimes_{\mathbb{Z}} \mathbb{Q}=K$, use isogenies to find the Jacobians whose endomorphism ring is O_{K}. Work by Lauter +R .
- Modular polynomials in genus 2 using theta null points: computed by Gruenewald using analytic methods for $\ell=3$.
- Isogenies using rational coordinates? Work by Smith using the geometry of Kummer surfaces for $\ell=3(g=2)$. Cassels and Flynn: modification of theta coordinates to have rational coordinates on hyperelliptic curves of genus 2 .
- How to compute $(\ell, 1)$-isogenies in genus 2 ?
- Look at $g=3$ (associate theta coordinates to the Jacobian of a non hyperelliptic curve).

Thank you for your attention!

Bibliography

[BSo9] G. Bisson and A.V. Sutherland. "Computing the endomorphism ring of an ordinary elliptic curve over a finite field". In: Journal of Number Theory (2009). (Cit. on p. 62).
[LR1o] David Lubicz and Damien Robert. Efficient pairing computation with theta functions. Ed. by Guillaume Hanrot, François Morain, and Emmanuel Thomé. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings. Jan. 2010. Url: http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf. (Cit. on p. 41).

