Generalizing Vélu's formulas and some applications ECC 2010

Romain Cosser¹, David LUBICZ^{2,3}, **Damien ROBERT**⁴

¹Nancy Université, CNRS, Inria Nancy Grand Est

²CÉLAR

³IRMAR, Université de Rennes 1

⁴Inria Bordeaux Sud-Ouest

21/10/2010 (Redmond)

< □ > < @ > < 注 > < 注 > ... 注

Isogenies	1 heory 0000000000	Implementation 00000	Examples and Applications
Outline			

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

3 Implementation

Examples and Applications

Abelian vari	eties		
Isogenies	Theory	Implementation	Examples and Applications
●00000	000000000	00000	

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

- (Polarised) abelian varieties = higher dimensional equivalent of elliptic curves.
- If *C* is a curve of genus *g*, it's Jacobian is a (principally polarised) abelian variety of dimension *g*.
- For C: y² = f(x) (deg f = 2g − 1) hyperelliptic curve, Mumford coordinates:

$$D = \sum_{i=1}^{k} (P_i - P_\infty) \qquad k \leq g, \quad -P_i \neq P_j$$

= (u, v) with $u = \prod (x - x_i), v(x_i) = y_i.$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 善臣・のへで

		Implementation	Examples and Applications
00000	000000000	00000	000000000000000000000000000000000000000
Isogenies			

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

● Isogenies ⇔ Finite subgroups.

 $(f : A \to B) \mapsto \operatorname{Ker} f$ $(A \to A/H) \leftrightarrow H$

- The kernel of the dual isogeny \hat{f} is the Cartier dual of the kernel of $f \Rightarrow$ pairings!
- We want isogenies compatible with the polarizations \Rightarrow isotropic kernels.

- Transfer the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ -adic or p-adic) \Rightarrow Verify a curve is secure.
- Compute the class field polynomials (CM-method) ⇒ Construct a secure curve.

- Compute the modular polynomials \Rightarrow Compute isogenies.
- Determine $End(A) \Rightarrow CRT$ method for class field polynomials.

Explicit isogeny	computation		
Isogenies	Theory	Implementation	Examples and Applications
000000	000000000	00000	

- Given an isotropic subgroup $K \subset A(\overline{k})$ compute the isogeny $A \mapsto A/K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety *A* and *B* find the isogeny $A \mapsto B$. ("Inverse Vélu's formula" \Rightarrow SEA algorithm).

Explicit isogeny	computation		
Isogenies	Theory	Implementation	Examples and Applications
000000	000000000	00000	

- Given an isotropic subgroup $K \subset A(\overline{k})$ compute the isogeny $A \mapsto A/K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety *A* and *B* find the isogeny $A \mapsto B$. ("Inverse Vélu's formula" \Rightarrow SEA algorithm).

Explicit isogeny	computation		
Isogenies	Theory	Implementation	Examples and Applications
000000	000000000	00000	

- Given an isotropic subgroup $K \subset A(\overline{k})$ compute the isogeny $A \mapsto A/K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety *A* and *B* find the isogeny $A \mapsto B$. ("Inverse Vélu's formula" \Rightarrow SEA algorithm).

Explicit isogeny	computation		
Isogenies	Theory	Implementation	Examples and Applications
000000	000000000	00000	

- Given an isotropic subgroup $K \subset A(\overline{k})$ compute the isogeny $A \mapsto A/K$. (Vélu's formula.)
- Given an abelian variety compute all the isogeneous varieties. (Modular polynomials.)
- Given two isogeneous abelian variety *A* and *B* find the isogeny $A \mapsto B$. ("Inverse Vélu's formula" \Rightarrow SEA algorithm).

Vélu's formul	a		
000000	000000000	00000	000000000000000000000000000000000000000
	Theory	Implementation	Examples and Applications

Theorem

Let $E: y^2 = f(x)$ be an elliptic curve and $G \subset E(k)$ a finite subgroup. Then E/G is given by $Y^2 = g(X)$ where

$$X(P) = x(P) + \sum_{Q \in G \setminus \{0_E\}} (x(P+Q) - x(Q))$$

$$Y(P) = y(P) + \sum_{Q \in G \setminus \{0_E\}} (y(P+Q) - y(Q)).$$

• Uses the fact that x and y are characterised in k(E) by

J

$$v_{0_E}(x) = -2 \qquad v_P(x) \ge 0 \quad \text{if } P \neq 0_E$$

$$v_{0_E}(y) = -3 \qquad v_P(y) \ge 0 \quad \text{if } P \neq 0_E$$

$$v_P(y) \ge 0 \quad \text{if } P \neq 0_E$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

• No such characterisation in genus $g \ge 2$ for Mumford coordinates.

π1.1.	. 1 1		
000000	000000000	00000	000000000000000000000000000000000000000
	Theory	Implementation	Examples and Applications

The modular polynomial

Definition

- Modular polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$: $\phi_n(x, y) = 0 \Leftrightarrow x = j(E)$ and y = j(E') with *E* and *E' n*-isogeneous.
- If $E: y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes.
- \Rightarrow Genus 2: (2, 2)-isogenies [Richelot]. Genus 3: (2, 2, 2)-isogenies [Smio9].

ション 小田 マイビット ビー シックション

- \Rightarrow Moduli space given by invariants with more structure.
- \Rightarrow Fix the form of the isogeny and look for compatible coordinates.

π1.1.	. 1 1		
000000	000000000	00000	000000000000000000000000000000000000000
	Theory	Implementation	Examples and Applications

The modular polynomial

Definition

- Modular polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$: $\phi_n(x, y) = 0 \Leftrightarrow x = j(E)$ and y = j(E') with *E* and *E' n*-isogeneous.
- If $E: y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes.
- \Rightarrow Genus 2: (2, 2)-isogenies [Richelot]. Genus 3: (2, 2, 2)-isogenies [Smio9].
- \Rightarrow Moduli space given by invariants with more structure.
- \Rightarrow Fix the form of the isogeny and look for compatible coordinates.

• $(\vartheta_i)_{i \in \mathbb{Z}(\overline{n})}$: basis of the theta functions of level *n*. $(\mathbb{Z}(\overline{n}) \coloneqq \mathbb{Z}^g/n\mathbb{Z}^g)$ $\Leftrightarrow A[n] = A_1[n] \oplus A_2[n]$: symplectic decomposition.

• $(\vartheta_i)_{i \in \mathbb{Z}(\overline{n})} = \begin{cases} \text{coordinates system} & n \ge 3\\ \text{coordinates on the Kummer variety } A/\pm 1 & n = 2 \end{cases}$

• Theta null point: $\vartheta_i(0)_{i \in \mathbb{Z}(\overline{n})} = \text{modular invariant.}$

Example ($k = \mathbb{C}$)

Abelian variety over \mathbb{C} : $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$; $\Omega \in \mathcal{H}_g(\mathbb{C})$ the Siegel upper half space (Ω symmetric, Im Ω positive definite).

 $\vartheta_i \coloneqq \Theta\left[\begin{smallmatrix} 0\\ i/n \end{smallmatrix}\right](z,\Omega/n).$

- ロト・日本・日本・日本・日本・日本

$$\left(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{i+t}(x+y)\vartheta_{j+t}(x-y)\right) \cdot \left(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k+t}(0)\vartheta_{l+t}(0)\right) = \\ \left(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{-i'+t}(y)\vartheta_{j'+t}(y)\right) \cdot \left(\sum_{t\in Z(\overline{2})}\chi(t)\vartheta_{k'+t}(x)\vartheta_{l'+t}(x)\right).$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

Isogenies		Implementation	Examples and Applications
000000	000000000	00000	000000000000000000000000000000000000000
The isogeny	[,] theorem		

Theorem

- Let $\ell \wedge n = 1$, and $\phi : Z(\overline{n}) \to Z(\overline{\ell n})$, $x \mapsto \ell . x$ be the canonical embedding. Let $K_0 = A[\ell]_2 \subset A[\ell n]_2$.
- Let $(\vartheta_i^A)_{i \in \mathbb{Z}(\overline{\ell}n)}$ be the theta functions of level ℓn on $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$.
- Let $(\vartheta_i^B)_{i \in \mathbb{Z}(\overline{n})}$ be the theta functions of level n of $B = A/K_0 = \mathbb{C}^g/(\mathbb{Z}^g + \frac{\Omega}{\ell}\mathbb{Z}^g).$

• We have:

$$(\vartheta_i^B(x))_{i\in Z(\overline{n})} = (\vartheta_{\phi(i)}^A(x))_{i\in Z(\overline{n})}$$

ション 小田 マイビット ビックタン

Example

 $\pi: (x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}) \mapsto (x_0, x_3, x_6, x_9)$ is a 3-isogeny between elliptic curves.

The modular space of theta null points of level n (car k + n)

Definition

The modular space $\mathcal{M}_{\overline{n}}$ of theta null points is:

$$\sum_{t \in Z(\overline{2})} a_{x+t} a_{y+t} \sum_{t \in Z(\overline{2})} a_{u+t} a_{v+t} = \sum_{t \in Z(\overline{2})} a_{x'+t} a_{y'+t} \sum_{t \in Z(\overline{2})} a_{u'+t} a_{v'+t},$$

◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

with the relations of symmetry $a_x = a_{-x}$.

• Abelian varieties with a *n*-structure = open locus of $\mathcal{M}_{\overline{n}}$.

 Isogenies
 Theory
 Implementation
 Examples and Applications

 00000
 00000
 00000
 00000
 000000

 Isogenies and modular correspondence [TLIRos]

• Every isogeny (with isotropic kernel *K*) comes from a modular solution.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

3

• We can detect degenerate solutions.

 Isogenies
 Theory
 Implementation
 Examples and Applications

 00000
 00000
 00000
 00000
 000000

 Isogenies and modular correspondence [TLIRos]

• Every isogeny (with isotropic kernel *K*) comes from a modular solution.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

• We can detect degenerate solutions.

 Isogenies
 Theory
 Implementation
 Examples and Applications

 00000
 00000
 00000
 00000
 000000

 Isogenies and modular correspondence [TLIRos]

• Every isogeny (with isotropic kernel *K*) comes from a modular solution.

◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

• We can detect degenerate solutions.

 Isogenies
 Theory
 Jmplementation
 Examples and Applications

 000000
 00000
 00000
 00000

 The contragredient isogeny [1:Ruoc]
 Examples and Applications

Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 Isogenies
 Theory
 Jmplementation
 Examples and Applications

 000000
 00000
 00000
 00000

 The contragredient isogeny [1:Ruoc]
 Examples and Applications

Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

 $\widehat{\pi}(y) = \ell . x$

▲□▶▲□▶▲□▶▲□▶ □ ● のへで

 Implementation
 Examples and Applications

 000000
 00000
 00000

 The contragredient isogeny [1]Rioc]
 Examples and Applications

Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$

▲□▶▲□▶▲□▶▲□▶ □ ● のへで

 Implementation
 Examples and Applications

 000000
 00000
 00000

 The contragredient isogeny [1]Rioc]
 Examples and Applications

$$\widehat{\pi}(y) = \ell . x$$

 Isogenies
 Theory
 Implementation
 Examples and Applications

 00000
 00000
 00000
 00000
 000000

 The contragredient isogeny [1:Ruoc]
 Examples and Applications
 Examples and Applications

$$\widehat{\pi}(y) = \ell . x$$

 Isogenies
 Theory
 Implementation
 Examples and Applications

 00000
 00000
 00000
 00000
 000000

 The contragredient isogeny [1:Ruoc]
 Examples and Applications
 Examples and Applications

$$\widehat{\pi}(y) = \ell . x$$

 Isogenies
 Theory
 Jmplementation
 Examples and Applications

 000000
 00000
 00000
 00000

 The contragredient isogeny [1:Ruoc]
 Examples and Applications

$$\widehat{\pi}(y) = \ell . x$$

Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell_n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$

◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Explicit isogenies algorithm

- (Compressed) modular point from K: $g(g+1)/2 \ell^{\text{th}}$ -roots and $g(g+1)/2 \cdot O(\log(\ell))$ chain additions.
- \Rightarrow (Compressed) isogeny: $g \cdot O(\log(\ell))$ chain additions.

000000	0000000000	00000	000000000000000000000000000000000000000
Example			

• B: elliptic curve $y^2 = x^3 + 23x + 3$ over $k = \mathbb{F}_{31}$

⇒ Theta null point of level 4: $(3:1:18:1) \in \mathcal{M}_4(\mathbb{F}_{31})$.

• $K = \{(3:1:18:1), (22:15:4:1), (18:29:23:1)\} \Rightarrow$ modular solution: (3, $\eta^{14233}, \eta^{2317}, 1, \eta^{1324}, \eta^{5296}, 18, \eta^{5296}, \eta^{1324}, 1, \eta^{2317}, \eta^{14233})$ ($\eta^3 + \eta + 28 = 0$).

• $y = (\eta^{19406}, \eta^{19805}, \eta^{10720}, 1); \quad \widehat{\pi}(y)$?

r

Isogenies	Theory	Implementation	Examples and Applications
000000	0000000000	00000	
Example			

$$\begin{aligned} R_1 &= \left(\eta^{1324}, \eta^{5296}, \eta^{2317}, \eta^{14233}\right) \quad y = \left(\eta^{19406}, \eta^{19805}, \eta^{10720}, 1\right) \\ y \oplus R_1 &= \lambda_1(\eta^{2722}, \eta^{28681}, \eta^{26466}, \eta^{2096}) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Example			
000000	0000000000	00000	000000000000000000000000000000000000000
		Implementation	Examples and Applications

$$R_{1} = (\eta^{1324}, \eta^{5296}, \eta^{2317}, \eta^{14233}) \quad y = (\eta^{19406}, \eta^{19805}, \eta^{10720}, 1)$$
$$y \oplus R_{1} = \lambda_{1}(\eta^{2722}, \eta^{28681}, \eta^{26466}, \eta^{2096})$$
$$y + 2R_{1} = \lambda_{1}^{2}(\eta^{28758}, \eta^{11337}, \eta^{27602}, \eta^{22972})$$
$$y + 3R_{1} = \lambda_{1}^{3}(\eta^{18374}, \eta^{18773}, \eta^{9688}, \eta^{28758}) = y/\eta^{1032} \text{ so } \lambda_{1}^{3} = \eta^{28758}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Example			
Isogenies	Theory	Implementation	Examples and Applications
000000	000000●000	00000	

$$\begin{aligned} R_1 &= (\eta^{1324}, \eta^{5296}, \eta^{2317}, \eta^{14233}) \quad y = (\eta^{19406}, \eta^{19805}, \eta^{10720}, 1) \\ y \oplus R_1 &= \lambda_1 (\eta^{2722}, \eta^{28681}, \eta^{26466}, \eta^{2096}) \\ y + 2R_1 &= \lambda_1^2 (\eta^{28758}, \eta^{11337}, \eta^{27602}, \eta^{22972}) \\ y + 3R_1 &= \lambda_1^3 (\eta^{18374}, \eta^{18773}, \eta^{9688}, \eta^{28758}) = y/\eta^{1032} \quad \text{so } \lambda_1^3 = \eta^{28758} \\ &= 2y + R_1 = \lambda_1^2 (\eta^{17786}, \eta^{12000}, \eta^{16630}, \eta^{365}) \\ &= 3y + R_1 = \lambda_1^3 (\eta^{7096}, \eta^{11068}, \eta^{8089}, \eta^{20005}) = \eta^{5772} R_1 \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Example			
Isogenies	Theory	Implementation	Examples and Applications
000000	00000000000	00000	

$$\begin{aligned} R_1 &= \left(\eta^{1324}, \eta^{5296}, \eta^{2317}, \eta^{14233}\right) \quad y = \left(\eta^{19406}, \eta^{19805}, \eta^{10720}, 1\right) \\ &\qquad y \oplus R_1 = \lambda_1 \left(\eta^{2722}, \eta^{28681}, \eta^{26466}, \eta^{2096}\right) \\ &\qquad y + 2R_1 = \lambda_1^2 \left(\eta^{28758}, \eta^{11337}, \eta^{27602}, \eta^{22972}\right) \\ &\qquad y + 3R_1 = \lambda_1^3 \left(\eta^{18374}, \eta^{18773}, \eta^{9688}, \eta^{28758}\right) = y/\eta^{1032} \quad \text{so} \ \lambda_1^3 = \eta^{28758} \\ &\qquad 2y + R_1 = \lambda_1^2 \left(\eta^{17786}, \eta^{12000}, \eta^{16630}, \eta^{365}\right) \\ &\qquad 3y + R_1 = \lambda_1^3 \left(\eta^{7096}, \eta^{11068}, \eta^{8089}, \eta^{20005}\right) = \eta^{5772} R_1 \end{aligned}$$

 $\widehat{\pi}(y) = \big(3, \eta^{21037}, \eta^{15925}, 1, \eta^{8128}, \eta^{18904}, 18, \eta^{12100}, \eta^{14932}, 1, \eta^{9121}, \eta^{27841}\big)$

▲□▶▲@▶▲≧▶▲≧▶ 差 のへぐ

- $\pi_2 \circ \widehat{\pi}: \ell^2$ isogeny in level *n*.
- Modular points (corresponding to K) $\Leftrightarrow A[\ell] = A[\ell]_1 \oplus \widehat{\pi}(B[\ell])$ $\Leftrightarrow \ell^2$ -isogenies $B \to C$.

・ロト (雪) (ヨ) (ヨ)

3

- $\pi_2 \circ \widehat{\pi}: \ell^2$ isogeny in level *n*.
- Modular points (corresponding to K) $\Leftrightarrow A[\ell] = A[\ell]_1 \oplus \widehat{\pi}(B[\ell])$ $\Leftrightarrow \ell^2$ -isogenies $B \to C$.

・ロト (雪) (ヨ) (ヨ)

э

Changing le	vel without takir	19 isogenies	
000000	0000000000	00000	000000000000000000000000000000000000000
Isogenies		Implementation	Examples and Applications

Theorem (Koizumi-Kempf)

- Let \mathcal{L} be the space of theta functions of level ℓn and \mathcal{L}' the space of theta functions of level n.
- Let $F \in M_r(\mathbb{Z})$ be such that ${}^tFF = \ell \operatorname{Id}$, and $f : A^r \to A^r$ the corresponding isogeny.

We have $\mathcal{L} = f^* \mathcal{L}'$ and the isogeny f is given by

$$f^* \left(\vartheta_{i_1}^{\mathcal{L}'} \star \ldots \star \vartheta_{i_r}^{\mathcal{L}'} \right) = \lambda \sum_{\substack{(j_1, \ldots, j_r) \in K_1(\mathcal{L}') \times \ldots \times K_1(\mathcal{L}') \\ f(j_1, \ldots, j_r) = (i_1, \ldots, i_r)}} \vartheta_{j_1}^{\mathcal{L}} \star \ldots \star \vartheta_{j_r}^{\mathcal{L}}$$

ション 小田 マイビット ビックタン

- $F = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ gives the Riemann relations. (For general ℓ , use the quaternions.)
- \Rightarrow Go up and down in level without taking isogenies [COSSET+R].

- Compute the isogeny $B \rightarrow A$ while staying in level *n*.
- No need of ℓ -roots. Need only O(#K) differential additions in $B + O(\ell^g)$ or $O(\ell^{2g})$ multiplications \Rightarrow fast.
- The formulas are rational if the kernel K is rational.
- Blocking part: compute $K \Rightarrow$ compute all the ℓ -torsion on B. $g = 2: \ell$ -torsion, $\widetilde{O}(\ell^6)$ vs $O(\ell^2)$ or $O(\ell^4)$ for the isogeny.
- \Rightarrow Work in level 2.
- ⇒ Convert back and forth to Mumford coordinates:

$$B \xrightarrow{\widehat{\pi}} A$$

$$\| \qquad \|$$

$$Jac(C_1) \xrightarrow{} Jac(C_2)$$

◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○
Avisogenies			
000000	0000000000	•0000	000000000000000000000000000000000000000
	Theory		Examples and Applications

- Avisogenies: Magma code written by BISSON, COSSET and R.
- Released under LGPL 2+.
- Implement isogeny computation (and applications thereof) for abelian varieties using theta functions.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

• Current alpha release: isogenies in genus 2.

Implementa	tion		
000000	000000000	0000	000000000000000000000000000000000000000
	Theory		Examples and Applications

- Compute the extension \(\mathbb{F}_{q^n}\) where the geometric points of the maximal isotropic kernel of \(J[\ell]\) lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Find the rational maximal isotropic kernels *K*.
- For each kernel *K*, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of J/K.
- O Compute the Igusa invariants of J/K ("Inverse Thomae").
- O Distinguish between the isogeneous curve and its twist.

			Examples and Applications
000000	000000000	0000	000000000000000000000000000000000000000
Implement	ation		

- Compute the extension F_{qⁿ} where the geometric points of the maximal isotropic kernel of J[l] lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Find the rational maximal isotropic kernels *K*.
- For each kernel *K*, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of J/K.

ション 小田 マイビット ビー シックション

- O Compute the Igusa invariants of J/K ("Inverse Thomae").
- O Distinguish between the isogeneous curve and its twist.

			Examples and Applications
000000	000000000	0000	000000000000000000000000000000000000000
Implement	ation		

- Compute the extension \(\mathbb{F}_{q^n}\) where the geometric points of the maximal isotropic kernel of \(J[\ell]\) lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Find the rational maximal isotropic kernels *K*.
- For each kernel *K*, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of *J*/*K*.

ション 小田 マイビット ビー シックション

- O Compute the Igusa invariants of J/K ("Inverse Thomae").
- O Distinguish between the isogeneous curve and its twist.

			Examples and Applications
000000	000000000	0000	000000000000000000000000000000000000000
Implement	ation		

- Compute the extension \(\mathbb{F}_{q^n}\) where the geometric points of the maximal isotropic kernel of \(J[\ell]\) lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Sind the rational maximal isotropic kernels K.
- For each kernel *K*, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of *J*/*K*.
- O Compute the Igusa invariants of J/K ("Inverse Thomae").
- O Distinguish between the isogeneous curve and its twist.

			Examples and Applications
000000	000000000	0000	000000000000000000000000000000000000000
Implement	ation		

- Compute the extension F_{qⁿ} where the geometric points of the maximal isotropic kernel of J[l] lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Find the rational maximal isotropic kernels *K*.
- For each kernel *K*, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of J/K.

ション 小田 マイビット ビー シックション

- O Compute the Igusa invariants of J/K ("Inverse Thomae").
- O Distinguish between the isogeneous curve and its twist.

			Examples and Applications
000000	000000000	0000	000000000000000000000000000000000000000
Implement	ation		

- Compute the extension F_{qⁿ} where the geometric points of the maximal isotropic kernel of J[l] lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Find the rational maximal isotropic kernels *K*.
- For each kernel *K*, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of J/K.
- O Compute the Igusa invariants of J/K ("Inverse Thomae").
- O Distinguish between the isogeneous curve and its twist.

			Examples and Applications
000000	000000000	0000	000000000000000000000000000000000000000
Implement	ation		

- Compute the extension \(\mathbb{F}_{q^n}\) where the geometric points of the maximal isotropic kernel of \(J[\ell]\) lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Find the rational maximal isotropic kernels *K*.
- For each kernel *K*, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of J/K.

- ロト・日本・日本・日本・日本・日本

- O Compute the Igusa invariants of J/K ("Inverse Thomae").
- O Distinguish between the isogeneous curve and its twist.

			Examples and Applications
000000	000000000	0000	000000000000000000000000000000000000000
Implement	ation		

- Compute the extension \(\mathbb{F}_{q^n}\) where the geometric points of the maximal isotropic kernel of \(J[\ell]\) lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Find the rational maximal isotropic kernels *K*.
- For each kernel *K*, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of *J*/*K*.
- Compute the Igusa invariants of J/K ("Inverse Thomae").
- O Distinguish between the isogeneous curve and its twist.

			Examples and Applications
000000	000000000	0000	000000000000000000000000000000000000000
Implement	ation		

- Compute the extension \(\mathbb{F}_{q^n}\) where the geometric points of the maximal isotropic kernel of \(J[\ell]\) lives.
- Sompute a "symplectic" basis of $J[\ell](\mathbb{F}_{q^n})$.
- Find the rational maximal isotropic kernels *K*.
- For each kernel *K*, convert its basis from Mumford to theta coordinates of level 2. (Rosenhain then Thomae).
- Compute the other points in *K* in theta coordinates using differential additions.
- Apply the change level formula to recover the theta null point of *J*/*K*.
- Compute the Igusa invariants of J/K ("Inverse Thomae").
- Oistinguish between the isogeneous curve and its twist.

- J = Jac(H) abelian variety of dimension 2. $\chi(X)$ the corresponding zeta function.
- Degree of a point of ℓ -torsion | the order of X in $\mathbb{F}_{\ell}[X]/\chi(X)$.
- If K rational, K(k̄) ≃ (ℤ/ℓℤ)², the degree of a point in K | the LCM of orders of X in 𝔽_ℓ[X]/P(X) for P | χ of degree two.
- Since we are looking to *K* maximal isotropic, $J[\ell] \simeq K \oplus K'$ and we know that $P \mid \chi$ is such that $\chi(X) \equiv P(X)P(\overline{X}) \mod \ell$ where $\overline{X} = q/X$ represents the Verschiebung.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark

The degree n is $\leq \ell^2 - 1$. *If* ℓ *is totally split in* $\mathbb{Z}[\pi, \overline{\pi}]$ *then n* $| \ell - 1$.

Computing	the <i>l</i> -torsion		
Isogenies	Theory	Implementation	Examples and Applications
000000	000000000	00000	

- We want to compute $J(\mathbb{F}_{q^n})[\ell]$.
- From the zeta function $\chi(X)$ we can compute random points in $J(\mathbb{F}_{q^n})[\ell^{\infty}]$ uniformly.
- If *P* is in $J(\mathbb{F}_{q^n})[\ell^{\infty}]$, $\ell^m P \in J(\mathbb{F}_{q^n})[\ell]$ for a suitable *m*. This does not give uniform points of ℓ -torsion but we can correct the points obtained.

Example

- Suppose $J(\mathbb{F}_{q^n})[\ell^{\infty}] = \langle P_1, P_2 \rangle$ with P_1 of order ℓ^2 and P_2 of order ℓ .
- First random point $Q_1 = P_1 \Rightarrow$ we recover the point of ℓ -torsion: $\ell.P_1$.
- Second random point $Q_2 = \alpha P_1 + \beta P_2$. If $\alpha \neq 0$ we recover the point of ℓ -torsion $\alpha \ell P_1$ which is not a new generator.
- We correct the original point: $Q'_2 = Q_2 \alpha Q_1 = \beta P_2$.

Weil pairing			
000000	0000000000	00000	000000000000000000000000000000000000000
	Theory		Examples and Applications

- Used to decompose a point $P \in J[\ell]$ in term of a basis of the ℓ -torsion (and to construct a symplectic basis).
- The magma implementation is **extremely** slow in genus 2 for non degenerate divisors.
- But since we convert the points in theta coordinates we can use the pairing in theta coordinates [LR10b].

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

```
•••••••
Timings for isogenies computations
                                                                       (\ell = 7)
    Jacobian of Hyperelliptic Curve defined by y^2 = t^{254}x^6 + t^{223}x^5 + t^{21}y^2
      t^{255*x^4} + t^{318*x^3} + t^{668*x^2} + t^{543*x} + t^{538} over GF(3<sup>6</sup>)
    > time RationallyIsogenousCurvesG2(J,7);
    ** Computing 7 -rationnal isotropic subgroups
      -- Computing the 7 -torsion over extension of deg 4
      !! Basis: 2 points in Finite field of size 3^24
      -- Listing subgroups
      1 subgroups over Finite field of size 3^24
      -- Convert the subgroups to theta coordinates
      Time: 0.060
    Computing the 1 7 -isogenies
      ** Precomputations for l= 7 Time: 0.180
      ** Computing the 7 -isogeny
        Computing the l-torsion Time: 0.030
        Changing level Time: 0.210
      Time: 0.430
    Time: 0.490
    [ <[ t^620, t^691, t^477 ], Jacobian of Hyperelliptic Curve defined by</pre>
    y^2 = t^{615*x^6} + t^{224*x^5} + t^{37*x^4} + t^{303*x^3} + t^{715*x^2} + t^{128*x}
```

```
Timings for isogenies computations
                                                                         (\ell = 5)
    Jacobian of Hyperelliptic Curve defined by y^2 = 39 \times x^6 + 4 \times x^5 + 82 \times x^4
      + 10 \times x^3 + 31 \times x^2 + 39 \times x + 2 over GF(83)
    > time RationallyIsogenousCurvesG2(J,5);
    ** Computing 5 -rationnal isotropic subgroups
       -- Computing the 5 -torsion over extension of deg 24
      Time: 0.940
       !! Basis: 4 points in Finite field of size 83^24
      -- Listing subgroups
      Time: 1.170
      6 subgroups over Finite field of size 83<sup>24</sup>
       -- Convert the subgroups to theta coordinates
      Time: 0.360
    Time: 2.630
    Computing the 6 5 -isogenies
    Time: 0.820
    Time: 3.460
      [ <[ 36, 69, 38 ], Jacobian of Hyperelliptic Curve defined by</pre>
     y^2 = 27 * x^6 + 63 * x^5 + 5 * x^4 + 24 * x^3 + 34 * x^2 + 6 * x + 76 over GF(83)>,
        ...]
```

イロト (母) (ヨ) (ヨ) (ヨ) () ()


```
Jacobian of Hyperelliptic Curve defined by y<sup>2</sup> = 41*x<sup>6</sup> + 131*x<sup>5</sup> +
55*x<sup>4</sup> + 57*x<sup>3</sup> + 233*x<sup>2</sup> + 225*x + 51 over GF(271)
time isograph,jacobians:=IsoGraphG2(J,{3}: save_mem:=-1);
Computed 540 isogenies and found 135 curves.
Time: 14.410
```

- Core 2 with 4BG of RAM.
- Computing kernels: ≈ 5*s*.
- Computing isogenies: ≈ 7s (Torsion: ≈ 2s, Changing level: ≈ 3.5s.)

◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○


```
Going further
                                                                   (\ell = 19)
      Jacobian of Hyperelliptic Curve defined by y^2 = 194 \times x^6 + 554 \times x^5 + y^2
      606*x^4 + 523*x^3 + 642*x^2 + 566*x + 112 over GF(859)
      > time RationallyIsogenousCurvesG2(J,19);
      ** Computing 19 -rationnal isotropic subgroups (extension degree 18)
      Time: 0.760
    Computing the 2 19 -isogenies
      ** Precomputations for l= 19 Time: 11.160
      ** Computing the 19 -isogeny
        Computing the l-torsion Time: 0.250
        Changing level Time: 18.590
      Time: 18.850
      ** Computing the 19 -isogeny
        Computing the l-torsion Time: 0.250
        Changing level Time: 18.640
      Time: 18.900
    Time: 51.060
    [ < [ 341, 740, 389 ], Jacobian of Hyperelliptic Curve defined by y^2 = 72
        680*x^5 + 538*x^4 + 613*x^3 + 557*x^2 + 856*x + 628 over GF(859)>,
      ... 1
```

```
A record isogeny computation!
                                                                   (\ell = 1321)
       • J Jacobian of y^2 = x^5 + 41691x^4 + 24583x^3 + 2509x^2 + 15574x over \mathbb{F}_{42179}.
       • \#I = 2^{10}1321^2.
     > time RationallyIsogenousCurvesG2(J,1321:ext_degree:=1);
     ** Computing 1321 -rationnal isotropic subgroups
     Time: 0.350
     Computing the 1 1321 -isogenies
       ** Precomputations for l= 1321
       Time: 1276.950
       ** Computing the 1321 -isogeny
         Computing the l-torsion
         Time: 1200.270
         Changing level
         Time: 1398.780
       Time: 5727.250
     Time: 7004.240
     Time: 7332.650
     [ <[ 9448, 15263, 31602 ], Jacobian of Hyperelliptic Curve defined by</pre>
       v^2 = 33266 * x^6 + 20155 * x^5 + 31203 * x^4 + 9732 * x^3 +
       4204*x^2 + 18026*x + 29732 over GF(42179)> ]
                                                     ▲□▶▲□▶▲□▶▲□▶ ■ のへで
```

• Core a with as CB of PAM

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

▲□▶▲□▶▲□▶▲□▶ = のへで

Isogenies	Theory	Implementation	Examples and Applications
000000	000000000	00000	
Isogeny graphs	$\ell = q^2 = Q^4$		$(\mathbb{Q} \mapsto K_0 \mapsto K)$

▲ロト▲舂▶▲臣▶▲臣▶ 臣 のへで

- Computing endomorphism ring. Generalize [BS09] to higher genus, work by BISSON.
- Class polynomials in genus 2 using the CRT. If K is a CM field and J/\mathbb{F}_p is such that $\operatorname{End}(J) \otimes_{\mathbb{Z}} \mathbb{Q} = K$, use isogenies to find the Jacobians whose endomorphism ring is O_K . Work by LAUTER+R.
- Modular polynomials in genus 2 using theta null points: computed by GRUENEWALD using analytic methods for $\ell = 3$.

ション 小田 マイビット ビックタン

Question

How to compute $(\ell, 1)$ -isogenies in genus 2?

Isogenies 000000 Theory

Implementatio

Examples and Applications

Thank you for your attention!

genies DOOOO	Theory 000000000	Implementation 00000			
Bibliog	RAPHY				
[BS09]	G. Bisson and A.V. Sutherland elliptic curve over a finite field	G. Bisson and A.V. Sutherland. "Computing the endomorphism ring of an ordinary elliptic curve over a finite field". In: <i>Journal of Number Theory</i> (2009). (Cit. on p. 70).			
[FLR09]	Jean-Charles Faugère, David Lubicz, and Damien Robert. <i>Computing modular</i> correspondences for abelian varieties. May 2009. arXiv: 0910.4668. (Cit. on pp. 17–19).				
[LR10a]	David Lubicz and Damien Rob 2010. arXiv: 1001.2016. (Cit. c	ert. Computing isogenies between pp. 20-27).	en abelian varieties. Jan.		
[LR10b]	David Lubicz and Damien Rot Ed. by Guillaume Hanrot, Fran Symposium, Nancy, France, A http://www.normalesup.org/ (Cit. on p. 49).	ert. Efficient pairing computati içois Morain, and Emmanuel T NTS-IX, July 19-23, 2010, Proce ~robert/pro/publications/a	on with theta functions. homé. 9th International edings. Jan. 2010. URL: rticles/pairings.pdf.		
[Smio9]	Benjamin Smith. Isogenies and Hyperelliptic Curves. Feb. 2009	the Discrete Logarithm Problem . arXiv: 0806.2995. (Cit. on pp	n in Jacobians of Genus 3 . 11, 12).		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶