Speeding up the CRT method to compute class polynomials in genus 2
 MSR end of internship talk

Damien Robert ${ }^{1}$
${ }^{1}$ Mentor: Kristin Lauter
09/23/2010

Hyperelliptic curve cryptography

- $H: y^{2}=f(x)$ hyperelliptic curve of genus 2 over $\mathbb{F}_{q}(\operatorname{deg} f=5,6)$.
- The Jacobian J of H is a finite abelian group of cardinal $n \approx q^{2}$.
\Rightarrow Public key cryptosystem based on the discrete logarithm problem.
\Rightarrow Pairings.
- We want to find a secure hyperelliptic curve of genus 2 .
- Security: $\sqrt{n_{0}}$ where n_{0} is the largest prime dividing n.
\Rightarrow Take a random curve and count \#J.
\Rightarrow Generate a curve with a prescribed number of points (also useful for pairings).

Hyperelliptic curve cryptography

- $H: y^{2}=f(x)$ hyperelliptic curve of genus 2 over $\mathbb{F}_{q}(\operatorname{deg} f=5,6)$.
- The Jacobian J of H is a finite abelian group of cardinal $n \approx q^{2}$.
\Rightarrow Public key cryptosystem based on the discrete logarithm problem.
\Rightarrow Pairings.
- We want to find a secure hyperelliptic curve of genus 2 .
- Security: $\sqrt{n_{0}}$ where n_{0} is the largest prime dividing n.
\Rightarrow Take a random curve and count \#J.
\Rightarrow Generate a curve with a prescribed number of points (also useful for pairings).

Class polynomials

- Let K be a primitive CM field of degree 4 : K is a totally imaginary quadratic extension of a totally real field K_{0}. (K is then cyclic Galois, or dihedral)
- The class polynomials H_{1}, H_{2}, H_{3} parametrize the Igusa invariants of Jacobians J whose endomorphism rings is isomorphic to O_{K}, the maximal ring of K.
These Jacobians are defined over the Hilbert class field $H K_{r}$ of the reflex class field K_{r} of K.
- If \mathfrak{P} is a prime of good reduction in $H K_{r}$, the typenorm of \mathfrak{P} give the Frobenius polynomial of $J_{\mathfrak{P}}$.
\Rightarrow select $p \in \mathbb{Z}$ of cryptographic size such that $\#_{\mathbb{F}_{p}}$ is prime.
\Rightarrow Reduce H_{1}, H_{2}, H_{3} modulo p to find $J_{\mathbb{F}_{p}}$.

Constructing class polynomials

- Analytic method: compute the Igusa invariants in \mathbb{C} with sufficient precision to recover the class polynomials.
- p-adic lifting: lift the Igusa invariants in \mathbb{Q}_{p} with sufficient precision to recover the class polynomials (require specific splitting behavior of p in K).
- CRT: compute the class polynomials modulo small primes, and use the CRT to reconstruct the class polynomials.

Remark

In genus 1 , the analytic and CRT method are quasi-linear in the size of the output
\Rightarrow computation bounded by memory. But we can construct directly the class
polynomials modulo p with the explicit CRT.

Complexity of constructing class polynomials in genus 2

Let k be the precision needed.

- Analytic method: compute the invariants using theta functions $\widetilde{O}\left(k^{2}\right)$. (Remark: available implementation for K_{0} of class number one, huge precision loss.)
- p-adic lifting: lifting $\widetilde{O}(k)$, recovery $\widetilde{O}\left(k^{2}\right)$.
- CRT method: we need to use $O(k)$ prime of size $O(k)$. For each prime we check all isomorphism classes of curves: $O\left(k^{3}\right)$. We need to speed up the CRT!

Review of the CRT algorithm

1. Select a prime p.
2. For each Jacobian J in the p^{3} isomorphic classes:
2.1 Check if J is in the right isogeny class by computing the characteristic polynomial of the Frobenius (do some trial tests to check for \#J before).
2.2 Check if $\operatorname{End}(J)=O_{K}$.
3. From the invariants of the maximal curves, reconstruct $H_{i} \bmod p$.

Remark
Algorithm developed by Eisenträger, Freeman and Lauter, with ameliorations from Bröker, Gruenewald and Lauter by using the (3,3)-Galois action.

Selecting the prime p

- Usual method: find a prime p that splits completely into principal ideals in K_{r}, and splits completely in K.
- But we only need the typenorm of the ideals above p to be principal ideals.
\Rightarrow We can work with more prime!
\Rightarrow And the typenorm are generated by the frobenius!

Checking if a curve is maximal

- Let J be the Jacobian of a curve in the right isogeny class. Then $\mathbb{Z}[\pi, \bar{\pi}] \subset \operatorname{End}(J) \subset O_{K}$.
- Let $\gamma \in O_{K} \backslash \mathbb{Z}[\pi, \bar{\pi}]$. We want to check if $\gamma \in \operatorname{End}(J)$.
- Since $\left(O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right)$ is prime to p we have $\gamma \in \operatorname{End}(J) \Leftrightarrow p \gamma \in \operatorname{End}(J)$.
- Let n be the smallest integer thus that $n \gamma \in \mathbb{Z}[\pi, \bar{\pi}]$. Since $(\mathbb{Z}[\pi, \bar{\pi}]: \mathbb{Z}[\pi])=p$, we can write $n p \gamma=P(\pi)$.
- Then $\gamma \in \operatorname{End}(J) \Leftrightarrow P(\pi)=0$ on $J[n]$.
- In practice: compute $J\left[\ell^{d}\right]$ for $\ell^{d} \mid\left(O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right)$ and check the action of the generators of O_{K} on it.

Remark

If $1, \alpha, \beta, \gamma$ are generators of O_{K} as a \mathbb{Z}-module, it can happen that $\gamma=P(\alpha, \beta)$, so that we don't need to check that $\gamma \in \operatorname{End}(J)$.

Field of definition of the ℓ^{d}-torsion

Proposition

- The geometric points of $J\left[\ell^{d}\right]$ are defined over $\mathbb{F}_{p^{\alpha_{d}}} \Leftrightarrow \pi^{\alpha_{d}}-1 \in \ell^{d} \operatorname{End}(J)$.
- $\alpha_{d} \mid \alpha_{1} e^{d-1}$. If $\operatorname{End}(J)=O_{K}$ this is an equality: $\alpha_{d}=\alpha_{1} e^{d-1}$.

Corollary

Let α be thus that $\pi^{\alpha}-1 \in \ell O_{K}$. We first check that $\left(\pi^{\alpha}-1\right) / \ell$ is an element of $\operatorname{End}(J)\left(\Leftrightarrow J[\ell]\right.$ defined over $\left.\mathbb{F}_{p^{\alpha}}\right)$. Then $J\left[\ell^{d}\right]$ is defined over $\mathbb{F}_{p^{\alpha \alpha^{d-1}}}$.

Remark
It may happen that we get a factor two on the degrees by working over the twist: that is by working with $-\pi$.

Computing the ℓ^{d}-torsion

- We compute $\# J\left(\mathbb{F}_{p^{\alpha_{d}}}\right)=\ell^{\beta} c$.
- If P_{0} is a random point of $J\left(\mathbb{F}_{p^{\alpha}}\right)$, then $P=c P_{0}$ is a random point of ℓ^{∞}-torsion, and P multiplied by a suitable power of ℓ is a random point of ℓ^{d}-torsion.
- Usual method: take a lot of random points of ℓ^{d}-torsion, and hope they generate it over $\mathbb{F}_{p^{\alpha_{d}}}$.
- Problems: the random points of ℓ^{d}-torsion are not uniform \Rightarrow require a lot of random points, and the result is probabilistic.
- Our solution: Compute the whole ℓ^{∞}-torsion. "Correct" points to find uniform points of ℓ^{d}-torsion. Use pairings to save memory.
\Rightarrow We can check if a curve is maximal faster.
\Rightarrow We can abort early.

Obtaining all the maximal curves

- If J is a maximal curve, and ℓ does not divide ($O_{K}: \mathbb{Z}[\pi, \bar{\pi}]$), then any (ℓ, ℓ)-isogenous curve is maximal.
- The maximal Jacobians form a principal homogeneous space under the Shimura class group $\mathfrak{C}\left(O_{K}\right)=\left\{(I, \rho) \mid \bar{I}=(\rho)\right.$ and $\left.\rho \in K_{0}^{+}\right\}$.
- (ℓ, ℓ)-isogenies between maximal Jacobians correspond to element of the form $(I, \ell) \in \mathfrak{C}\left(O_{K}\right)$. We can use the structure of $\mathfrak{C}\left(O_{K}\right)$ to determine the number of new curves we will obtain with (ℓ, ℓ)-isogenies.
\Rightarrow Don't compute unneeded isogenies.
- It can be faster to compute (ℓ, ℓ)-isogenies with $\ell \mid\left(O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right)$ to find new maximal Jacobians when ℓ and $\operatorname{val}_{\ell}\left(\left(O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right)\right)$ is small.

"Going up"

- There is p^{3} classes of isomorphic curves, but only a very small number $\left(\# \mathfrak{C}\left(O_{K}\right)\right)$ with $\operatorname{End}(J)=O_{K}$.
- But there is at most $16 p^{3 / 2}$ isogeny class.
\Rightarrow On average, there is $\approx p^{3 / 2}$ curves in a given isogeny class.
\Rightarrow If we have a curve in the right isogeny class, try to find isogenies giving a maximal curve!

An algorithm for "going up"

1. Let $\gamma \in O_{K} \backslash \operatorname{End}(J)$. We can assume that $\ell^{\infty} \gamma \in \mathbb{Z}[\pi, \bar{\pi}]$.
2. Let d be the minimum such that $\gamma\left(J\left[\ell^{d}\right]\right) \neq\{0\}$, and let $K=\gamma\left(J\left[\ell^{d}\right]\right)$. By definition, $K \subset J[\ell]$.
3. We compute all (ℓ, ℓ)-isogeneous Jacobians J^{\prime} where the kernel intersect K. Keep J^{\prime} if $\# \gamma\left(J^{\prime}\left[\ell^{d}\right]\right)<\# K$ (and be careful to prevent cycles).

- First go up for $\gamma=\left(\pi^{\alpha}-1\right) / \ell$: this minimize the extensions we have to work with.
- It is not always possible to go up. We would need more general isogenies than (ℓ, ℓ)-isogenies. Most frequent case: we can't go up because there is no (ℓ, ℓ)-isogenies at all! (And we can detect this).

Sieving the primes

- We throw a prime p for the CRT if detecting if a curve is maximal is too costly, or there is not enough curves where we can "go up".
- How to estimate this number?

1. Compute the lattice of orders between $\mathbb{Z}[\pi, \bar{\pi}]$ and O_{K}. For all such order O such that $\left(O_{K}: O\right)$ is not divisible by any ℓ where there is no (ℓ, ℓ)-isogeny, compute $\mathfrak{C}(O)$.
This is too costly! (Even computing $\operatorname{Pic}(\mathbb{Z}[\pi, \bar{\pi}])$ is too costly!)
2. Compute

$$
\# \mathfrak{C}(\mathbb{Z}[\pi, \bar{\pi}])=\frac{c\left(O_{K}: Z[\pi, \bar{\pi}]\right) \# \mathrm{Cl}\left(O_{K}\right) \operatorname{Reg}\left(O_{K}\right)\left(\widehat{O}_{K}^{*}: \widehat{\mathbb{Z}}[\pi, \bar{\pi}]^{*}\right)}{2 \# \mathrm{Cl}(\mathbb{Z}[\pi+\bar{\pi}]) \operatorname{Reg}(\mathbb{Z}[\pi+\bar{\pi}])}
$$

and estimate the number of curves as

$$
\sum_{d \mid \# \mathfrak{C}(\mathbb{Z}[\pi, \bar{\pi}])} d
$$

(for d not divisible by a ℓ where we can't go up).

Exploring the curves

1. Go sequentially through the p^{3} Igusa invariants j_{1}, j_{2}, j_{3}. But constructing the curve from the invariants is costly.
2. Construct random curves in Weierstrass form

$$
y^{2}=a_{6} x^{6}+a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

3. If the two torsion is rational (check where $\frac{\pi-1}{2}$ live), construct curves in Rosenhain form

$$
y^{2}=x(x-1)(x-\lambda)(x-\mu)(x-v) .
$$

4. If the Hilbert moduli space is rational, construct the j-invariants from the Gundlach invariants (only p^{2} invariants, parametrizing the space of curves with real multiplication by K_{0}).

p	l^{d}	α_{d}	\# Curves	Estimate	Time (old)	Time (new)
7	2^{2}	4	7	8	$0.5+0.3$	$0+0.2$
17	2	1	39	32	$4+0.2$	$0+0.1$
23	$2^{2}, 7$	4,3	49	51	$9+2.3$	$0+0.2$
71	2^{2}	4	7	8	$255+0.7$	$5.3+0.2$
97	2	1	39	32	$680+0.3$	$2+0.1$
103	$2^{2}, 17$	4,16	119	127	$829+17.6$	$0.5+1$
113	$2^{5}, 7$	16,6	1281	877	$1334+28.8$	$0.2+1.3$
151	$2^{2}, 7,17$	$4,3,16$	-	-	0	0
					$3162 s$	$13 s$

Computing the class polynomial for $K=\mathbb{Q}(i \sqrt{2+\sqrt{2}}), \mathfrak{C}\left(O_{K}\right)=\{0\}$.
$H_{1}=X-1836660096, \quad H_{2}=X-28343520, \quad H_{3}=X-9762768$

p	l^{d}	α_{d}	\# Curves	Estimate	Time (old)	Time (new)
29	3,23	2,264	-	-	-	-
53	3,43	2,924	-	-	-	-
61	3	2	9	6	$167+0.2$	$0.2+0.5$
79	3^{3}	18	81	54	$376+8.1$	$0.3+0.9$
107	$3^{2}, 43$	6,308	-	-	-	-
113	3,53	1,52	159	155	$1118+137.2$	$0.8+25$
131	$3^{2}, 53$	6,52	477	477	$1872+127.4$	$2.2+44.4$
139	3^{5}	81	$?$	486	-	$1+36.7$
157	3^{4}	27	243	164	$3147+16.5$	-

Computing the class polynomial for $K=\mathbb{Q}(i \sqrt{13+2 \sqrt{29}}), \mathfrak{C}\left(O_{K}\right)=\{0\}$.

$$
H_{1}=X-268435456, \quad H_{2}=X+5242880, \quad H_{3}=X+2015232
$$

Checking if a curve is maximal

- Let $H: y^{2}=80 x^{6}+51 x^{5}+49 x^{4}+3 x^{3}+34 x^{2}+40 x+12$ over \mathbb{F}_{139} and J the Jacobian of H. We have $\operatorname{End}(J) \otimes \mathbb{Q}=\mathbb{Q}(i \sqrt{13+2 \sqrt{29}})$ and we want to check if $\operatorname{End}(J)=O_{K}$.
- For that we need to compute $J\left[3^{5}\right]$, that lives over an extension of degree 81 (for the twist it lives over an extension of degree 162).
- With the old randomized algorithm, this computation takes 470 seconds (with 12 Frobenius trials over \mathbb{F}_{139162}).
- With the new algorithm computing the ℓ^{∞}-torsion, it only takes 17.3 seconds (needing only 4 random points over $\mathbb{F}_{139^{s 1}}$, approx 4 seconds needed to get a new random point of ℓ^{∞}-torsion).

p	l^{d}	α_{d}	\# Curves	Estimate	Time (old)	Time (new)
7	-	-	1	1	0.3	$0+0.1$
23	$\mathbf{1 3}$	84	15	$2(16)$	$9+70.7$	$0.4+24.6$
53	7	3	7	7	$105+0.5$	$7.7+0.5$
59	$2, \mathbf{5}$	1,12	322	$48(286)$	$164+6.4$	$1.4+0.6$
83	3,5	4,24	77	108	$431+9.8$	$2.4+1.1$
103	67	1122	-	-	-	-
107	$7, \mathbf{1 3}$	3,21	105	$8(107)$	$963+69.3$	-
139	$\mathbf{5}^{2}, 7$	60,2	259	$9(260)$	$2189+62.1$	-
181	3	1	161	135	$5040+3.6$	$4.5+0.2$
197	5,109	24,5940	-	-	-	-
199	$\mathbf{5}^{2}$	60	37	$2(39)$	$10440+35.1$	-
223	2,23	1,11	1058	$39(914)$	$10440+35.1$	-
227	109	1485	-	-	-	-
233	$5,7, \mathbf{1 3}$	$8,3,28$	735	$55(770)$	$11580+141.6$	$88.3+29.4$
239	7,109	6,297	-	-	-	-
257	$3,7, \mathbf{1 3}$	$4,6,84$	1155	$109(1521)$	$17160+382.8$	-
313	$3, \mathbf{1 3}$	1,14	$?$	$146(2035)$	-	$165+14.7$
373	5,7	6,24	$?$	312	-	$183.4+3.8$
541	$2,7, \mathbf{1 3}$	$1,3,14$	$?$	$294(4106)$	-	$91+5.5$
571	$3, \mathbf{5}, 7$	$2,6,6$	$?$	$1111(6663)$	-	$96.6+3.1$
						56585 s

Computing the class polynomial for $K=\mathbb{Q}(i \sqrt{29+2 \sqrt{29}}), \mathfrak{C}\left(O_{K}\right)=\{0\}$. (The new algorithm also skipped the primes 277, 281, 349, 397, 401, 431, 487, 509, 523.)

$$
H_{1}=244140625 X-2614061544410821165056
$$

Checking if a curve is maximal (2)

- Let $H: y^{2}=10 x^{6}+57 x^{5}+18 x^{4}+11 x^{3}+38 x^{2}+12 x+31$ over \mathbb{F}_{59} and J the Jacobian of H. We have $\operatorname{End}(J) \otimes \mathbb{Q}=\mathbb{Q}(i \sqrt{29+2 \sqrt{29}})$ and we want to check if $\operatorname{End}(J)=O_{K}$.
- O_{K} is generated as a \mathbb{Z}-module by $1, \alpha, \beta, \gamma \cdot \alpha$ is of index 2 in $O_{K} / \mathbb{Z}[\pi, \bar{\pi}], \beta$ of index 4 and γ of index 40.
- So the old algorithm will check $J\left[2^{3}\right]$ and $J[5]$.
- But $O_{K}=\mathbb{Z}_{2}[\pi, \bar{\pi}, \alpha]$, so we only need to check $J[2]$ and $J[5]$.

CRT for dihedral fields

- $K=\mathbb{Q}(X) /\left(X^{4}+13 X^{2}+41\right)$ dihedral, $\mathfrak{C}(K) \simeq\{0\}$.
- Primes used: 59, 859, 911, 1439, 2029, 3079.
(Primes skipped: 131, 139, 241, 269, 271, 359, 409, 541, 569, 599, 661, 701, 761, ...)
- Time: 5956 seconds.
- Class polynomials:

$$
\begin{gathered}
H_{1}=64 X^{2}+14761305216 X-11157710083200000, \\
H_{2}=16 X^{2}+72590904 X-8609344200000, \\
H_{3}=16 X^{2}+28820286 X-303718531500 .
\end{gathered}
$$

CRT for non principal fields

- $K=\mathbb{Q}(X) /\left(X^{4}+238 X^{2}+833\right)$ cyclic. $\mathfrak{C}(K) \simeq \mathbb{Z} / 2 \mathbb{Z}$ is generated by (7,7)-isogenies.
- Primes used: $19,59,67,83,149,191,223,229,239,257,349,463,557,613$, $661,733,859,1039,1373,1613,1657,1667,1733,1753,1801,1871,1879,2399$, $3449,3469,3761,3931,4259,4691,5347,5381,6427,6571,6781$.
- For $p \approx 6000$, we keep p if we expect more than $\frac{p^{3 / 2}}{32} \approx 15 \times 10^{6}$ curves. At this size, it takes around 6 seconds to test 10000 curves, so around 2.5 hours are needed for p.
- Total time: 44062 second (not the latest version of the code).
- Class polynomials:

$$
\begin{aligned}
& \quad H_{l}(X)=168451200633545364243594910146286907316572281862280871005795423612829696 X^{2} \\
& +158582528695513934970693031198523489269724119094630145672062735632518026507497890643968 X \\
& -2014843977961649893357675219372115899170378669590465187558574259942250352955092541374464 .
\end{aligned}
$$

- $K=\mathbb{Q}(X) /\left(X^{4}+185 X^{2}+8325\right) \cdot \mathfrak{C}(K) \simeq \mathbb{Z} / 10 \mathbb{Z}$ is generated by $(3,3)$-isogenies (generating a subgroup $\simeq \mathbb{Z} / 5 \mathbb{Z})$ and $(5,5)$-isogenies (generating a subgroup $\simeq \mathbb{Z} / 2 \mathbb{Z}$).
- Primes used for now: 263, 271, 317, 337, 397, 641, 941, 1103, 11699, 1259, 2293, 2341, 2393, 2803, 3203, 3319, 3919, 6151, 6367, 7669, 7759, 9949.
- Time currently spent: ≈ 150000 seconds.

We have ≈ 216 bits of precision, but the denominator are of size ≈ 588 bits.

- Current class polynomials:

$$
\begin{aligned}
H_{1} & =-21480611542361762508723557468335461542930690217345422101435707227 X^{10} \\
& +131226723395697728046645744735668338577537209903840153167551282021 X^{9} \\
& +119945977255497733218873710360493249341055938181798936596623683383 X^{8} \\
& -153714213780179060368348234170174803289200899482268520878793209046 X^{7} \\
& +62638744793599939793495892285517701303753967578884386663315225591 X^{6} \\
& -93677816446063314842418364580720430581350319726187642792340508326 X^{5} \\
& -71691842165741338225610186297897317814938228092904998616608265551 X^{4} \\
& +136981527112264611043485159784332306015708502624769592116848181204 X^{3} \\
& -39477010352126860185603010004604642269566979659155934331715153441 X^{2} \\
& -151371452252448694646593117087635298316650526995194471928188077417 X \\
& -36993265717589384804067106436837614321682950101513031994455394382 .
\end{aligned}
$$

Perspectives

- 6 seconds for 10000 curves is way too slow! Implement this part with C.
- Better estimates for the precision required.
- Compute Gundlach invariants for more real quadratic fields.
- More general isogenies than (ℓ, ℓ)-isogenies!

