Theta functions and applications in cryptography Fonctions thêta et applications en cryptographie Thèse d'informatique

Damien Robert ${ }^{1}$

${ }^{1}$ Caramel team, Nancy Universités, CNRS, INRIA Nancy Grand Est
21/07/2010 (Nancy)

Nancy-Université

Outline

(1) Public-key cryptography
(2) Abelian varieties
(3) Theta functions
(4) Pairings
(5) Isogenies
(6) Perspectives

Outline

(1) Public-key cryptography

Abelian varieties

Theta functions

4 Pairings
(5) Isogenies

6 Perspectives

A brief history of public-key cryptography

- Secret-key cryptography: Vigenère (1553), One time pad (1917), AES (NIST, 2001).
- Public-key cryptography:
- Diffie-Hellman key exchange (1976).
- RSA (1978): multiplication/factorisation.
- ElGamal: exponentiation/discrete logarithm in $G=\mathbb{F}_{q}^{*}$.
- ECC/HECC (1985): discrete logarithm in $G=A\left(\mathbb{F}_{q}\right)$.
- Lattices, NTRU (1996), Ideal Lattices (2006): perturbate a lattice point/Closest Vector Problem, Bounded Distance Decoding.
- Polynomial systems, HFE (1996): evaluating polynomials/finding roots.
- Coding-based cryptography, McEliece (1978): Matrix.vector/decoding a linear code.
\Rightarrow Encryption, Signature (+Pseudo Random Number Generator, Zero Knowledge).
- Pairing-based cryptography (2000-2001).
- Homomorphic cryptography (2009).

RSA versus (H)ECC

Security (bits level)	RSA	ECC
72	1008	144
80	1248	160
96	1776	192
112	2432	224
128	3248	256
256	15424	512

Key length comparison between RSA and ECC

- Factorisation of a 768-bit RSA modulus [Kle+1o].
- Currently: attempt to attack a 130-bit Koblitz elliptic curve.

Discrete logarithm

Definition (DLP)

Let $G=\langle g\rangle$ be a cyclic group of prime order. Let $x \in \mathbb{N}$ and $h=g^{x}$. The discrete logarithm $\log _{g}(h)$ is x.

- Exponentiation: $O(\log p)$. DLP: $\widetilde{O}(\sqrt{p})$ (in a generic group).
- $G=\mathbb{F}_{p}^{*}$: sub-exponential attacks.
\Rightarrow Find secure groups with efficient law, compact representation.

Protocol [Diffie-Hellman Key Exchange]

Alice sends g^{a}, Bob sends g^{b}, the common key is

$$
g^{a b}=\left(g^{b}\right)^{a}=\left(g^{a}\right)^{b}
$$

Pairing-based cryptography

Definition

A pairing is a bilinear application $e: G_{1} \times G_{1} \rightarrow G_{2}$.

- Identity-based cryptography [BFo3].
- Short signature [BLSo4].
- One way tripartite Diffie-Hellman [Jouo4].
- Self-blindable credential certificates [Vero1].
- Attribute based cryptography [SW05].
- Broadcast encryption [Goy+o6].

Tripartite Diffie-Helman

Alice sends g^{a}, Bob sends g^{b}, Charlie sends g^{c}. The common key is

$$
e(g, g)^{a b c}=e\left(g^{b}, g^{c}\right)^{a}=e\left(g^{c}, g^{a}\right)^{b}=e\left(g^{a}, g^{b}\right)^{c} \in G_{2} .
$$

Outline

(1) Public-key cryptography

(2) Abelian varieties

Theta functions

4 Pairings
(5) Isogenies
(6) Perspectives

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.
\Rightarrow Use $G=A(k)$ with $k=\mathbb{F}_{q}$ for the DLP.
\Rightarrow Pairing-based cryptography with the Weil or Tate pairing. (Only available on abelian varieties.)

Elliptic curves

Definition ($\operatorname{car} k \neq 2,3$)

$E: y^{2}=x^{3}+a x+b . \quad 4 a^{3}+27 b^{2} \neq 0$.

- An elliptic curve is a plane curve of genus 1 .
- Elliptic curves = Abelian varieties of dimension 1.

$$
\begin{gathered}
P+Q=-R=\left(x_{R},-y_{R}\right) \\
\lambda=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}} \\
x_{R}=\lambda^{2}-x_{P}-x_{Q} \\
y_{R}=y_{P}+\lambda\left(x_{R}-x_{P}\right)
\end{gathered}
$$

Jacobian of hyperelliptic curves

$C: y^{2}=f(x)$, hyperelliptic curve of genus $g . \quad(\operatorname{deg} f=2 g-1)$

- Divisor: formal sum $D=\sum n_{i} P_{i}, \quad P_{i} \in C(\bar{k})$. $\operatorname{deg} D=\sum n_{i}$.
- Principal divisor: $\sum_{P \in C(\bar{k})} v_{P}(f) . P ; \quad f \in \bar{k}(C)$.
- Jacobian of $C=$ Divisors of degree 0 modulo principal divisors

$$
=\text { Abelian variety of dimension } g \text {. }
$$

- Divisor class $D \Rightarrow$ unique representative (Riemann-Roch):

$$
D=\sum_{i=1}^{k}\left(P_{i}-P_{\infty}\right) \quad k \leqslant g, \quad \text { symmetric } P_{i} \neq P_{j}
$$

- Mumford coordinates: $D=(u, v) \Rightarrow u=\Pi\left(x-x_{i}\right), v\left(x_{i}\right)=y_{i}$.
- Cantor algorithm: addition law.

Example of the addition law in genus 2

$$
\begin{aligned}
& D=P_{1}+P_{2}-2 \infty \\
& D^{\prime}=Q_{1}+Q_{2}-2 \infty
\end{aligned}
$$

Example of the addition law in genus 2

$$
\begin{aligned}
& D=P_{1}+P_{2}-2 \infty \\
& D^{\prime}=Q_{1}+Q_{2}-2 \infty
\end{aligned}
$$

Example of the addition law in genus 2

Security of Jacobians

g	\# points	DLP
1	$O(q)$	$\widetilde{O}\left(q^{1 / 2}\right)$
2	$O\left(q^{2}\right)$	$\widetilde{O}(q)$
3	$O\left(q^{3}\right)$	$\widetilde{O}\left(q^{4 / 3}\right)$ (Jacobian of hyperelliptic curve) $\widetilde{O}(q) \quad$ (Jacobian of non hyperelliptic curve)
$\stackrel{g}{g>\log (q)}$	$O\left(q^{g}\right)$	$\begin{aligned} & \widetilde{O}\left(q^{2-2 / g}\right) \\ & L_{1 / 2}\left(q^{g}\right)=\exp \left(O(1) \log (x)^{1 / 2} \log \log (x)^{1 / 2}\right) \end{aligned}$

- Weak curves (MOV attack, Weil descent, anomal curves).
\Rightarrow Public-key cryptography with the DLP: Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
\Rightarrow Pairing-based cryptography: Abelian varieties of dimension $g \leqslant 4$.

Security of Jacobians

g	\# points	DLP
1	$O(q)$	$\widetilde{O}\left(q^{1 / 2}\right)$
2	$O\left(q^{2}\right)$	$\widetilde{O}(q)$
3	$O\left(q^{3}\right)$	$\widetilde{O}\left(q^{4 / 3}\right)$ (Jacobian of hyperelliptic curve)
$(q) \quad$ (Jacobian of non hyperelliptic curve)		
g	$O\left(q^{g}\right)$	$\widetilde{O}\left(q^{2-2 / g}\right)$
$L_{1 / 2}\left(q^{g}\right)=\exp \left(O(1) \log (x)^{1 / 2} \log \log (x)^{1 / 2}\right)$		
	Security of the DLP	

- Weak curves (MOV attack, Weil descent, anomal curves).
\Rightarrow Public-key cryptography with the DLP: Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
\Rightarrow Pairing-based cryptography: Abelian varieties of dimension $g \leqslant 4$.

Tsogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies $=$ Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \leftrightarrow H
\end{aligned}
$$

- Example: Multiplication by $\ell(\Rightarrow \ell$-torsion), Frobenius (non separable).

Cryptographic usage of isogenies

- Transfer the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-adic or p-adic) \Rightarrow Verify a curve is secure.
- Compute the class field polynomials (CM-method) \Rightarrow Construct a secure curve.
- Compute the modular polynomials \Rightarrow Compute isogenies.
- Determine $\operatorname{End}(A) \Rightarrow$ CRT method for class field polynomials.

Vélu's formula

Theorem

Let $E: y^{2}=f(x)$ be an elliptic curve and $G \subset E(k)$ a finite subgroup. Then E / G is given by $Y^{2}=g(X)$ where

$$
\begin{aligned}
& X(P)=x(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}}(x(P+Q)-x(Q)) \\
& Y(P)=y(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}}(y(P+Q)-y(Q)) .
\end{aligned}
$$

- Uses the fact that x and y are characterised in $k(E)$ by

$$
\begin{array}{rlr}
v_{0_{E}}(x)=-2 & v_{P}(x) \geqslant 0 & \text { if } P \neq 0_{E} \\
v_{0_{E}}(y)=-3 & v_{P}(y) \geqslant 0 & \text { if } P \neq 0_{E} \\
y^{2} / x^{3}\left(0_{E}\right)=1 & &
\end{array}
$$

- No such characterisation in genus $g \geqslant 2$.

The modular polynomial

Definition

- Modular polynomial $\phi_{n}(x, y) \in \mathbb{Z}[x, y]: \phi_{n}(x, y)=0 \Leftrightarrow x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\phi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes.
\Rightarrow Genus 2: $(2,2)$-isogenies [Richelot]. Genus 3: $(2,2,2)$-isogenies [Smio9].
\Rightarrow Moduli space given by invariants with more structure.
\Rightarrow Fix the form of the isogeny and look for compatible coordinates.

The modular polynomial

Definition

- Modular polynomial $\phi_{n}(x, y) \in \mathbb{Z}[x, y]: \phi_{n}(x, y)=0 \Leftrightarrow x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\phi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes.
\Rightarrow Genus 2: $(2,2)$-isogenies [Richelot]. Genus 3: $(2,2,2)$-isogenies [Smio9].
\Rightarrow Moduli space given by invariants with more structure.
\Rightarrow Fix the form of the isogeny and look for compatible coordinates.

Outline

(1) Public-key cryptography

2 Abelian varieties
(3) Theta functions

4 Pairings
(5) Isogenies
(6) Perspectives

Complex abelian varieties and theta functions of level n

- $\left(\mathcal{\vartheta}_{i}\right)_{i \in Z(\bar{n})}$: basis of the theta functions of level n. $\left(Z(\bar{n}):=\mathbb{Z}^{9} / n \mathbb{Z}^{9}\right)$
$\Leftrightarrow A[n]=A_{1}[n] \oplus A_{2}[n]:$ symplectic decomposition.
- $\left(\vartheta_{i}\right)_{i \in Z(\bar{n})}= \begin{cases}\text { coordinates system } & n \geqslant 3 \\ \text { coordinates on the Kummer variety } A / \pm 1 & n=2\end{cases}$
- Theta null point: $\mathcal{Y}_{i}(0)_{i \in Z(\bar{n})}=$ modular invariant.

Example $(k=\mathbb{C})$

Abelian variety over $\mathbb{C}: A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right) ; \Omega \in \mathcal{H}_{g}(\mathbb{C})$ the Siegel upper half space $(\Omega$ symmetric, $\operatorname{Im} \Omega$ positive definite).

$$
\mathcal{\vartheta}_{i}:=\Theta\left[\begin{array}{c}
0 \\
i / n
\end{array}\right](z, \Omega / n) .
$$

The differential addition law $(k=\mathbb{C})$

$$
\begin{aligned}
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
&\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \quad \chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\bar{n}) \\
& \qquad\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=A(i, j, k, l) \\
& A=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

Arithmetic with low level theta functions ($\operatorname{car} k \neq 2$)

	Mumford	Level 2	Level 4
	[Lano5]	[Gauo7]	
Doubling	$34 M+7 S$	$7 M+12 S+9 m_{0}$	$49 M+36 S+27 m_{0}$
Mixed Addition	$37 M+6 S$		

Multiplication cost in genus 2 (one step).
$\left.\begin{array}{lcccc}\hline & \text { Montgomery } & \text { Level 2 } & \text { Jacobians } & \text { Level 4 } \\ \text { Doubling } & 5 M+4 S+1 m_{0} & 3 M+6 S+3 m_{0} & 3 M+5 S & 7 M+6 S+1 m_{0}\end{array}\right) 9 M+10 S+5 m_{0} \quad$.

Multiplication cost in genus 1 (one step).

Arithmetic with high level theta functions [L Rioa]

- Algorithms for
- Additions and differential additions in level 4.
- Computing $P \pm Q$ in level 2 (need one square root). [LRiob]
- Fast differential multiplication.
- Compressing coordinates $O(1)$:
- Level $2 n$ theta null point $\Rightarrow 1+g(g+1) / 2$ level 2 theta null points.
- Level $2 n \Rightarrow 1+g$ level 2 theta functions.
- Decompression: n^{g} differential additions.

Outline

(1) Public-key cryptography

2 Abelian varieties
(3) Theta functions

4 Pairings
(5) Isogenies
(6) Perspectives

Pairings on abelian varieties

E / k : elliptic curve.

- Weil pairing: $E[\ell] \times E[\ell] \rightarrow \mu_{\ell}$.

$$
P, Q \in E[\ell] . \exists f_{\ell, P} \in k(E),\left(f_{\ell, P}\right)=\ell\left(P-0_{E}\right) .
$$

$$
e_{W, \ell}(P, Q)=\frac{f_{\ell, P}\left(Q-0_{E}\right)}{f_{\ell, Q}\left(P-0_{E}\right)} .
$$

- Tate pairing: $e_{T, \ell}(P, Q)=f_{\ell, P}\left(Q-0_{E}\right)$.
- Miller algorithm: pairing with Mumford coordinates.

The Weil and Tate pairing with theta coordinates [L Riob]

P and Q points of ℓ-torsion.

0_{A}	P	$2 P$	\cdots	$\ell P=\lambda_{P}^{0} 0_{A}$
Q	$P \oplus Q$	$2 P+Q$	\ldots	$\ell P+Q=\lambda_{P}^{1} Q$
$2 Q$	$P+2 Q$			
\ldots	\cdots			
$\ell Q=\lambda_{Q}^{0} 0_{A}$	$P+\ell Q=\lambda_{Q}^{1} P$			

- $e_{W, \ell}(P, Q)=\frac{\lambda_{p}^{1} \lambda_{Q}^{0}}{\lambda_{P}^{1} \lambda_{Q}^{1}}$.
- $e_{T, \ell}(P, Q)=\frac{\lambda_{p}^{1}}{\lambda_{p}^{0}}$.

Comparison with Miller algorithm

$$
\begin{array}{ll}
g=1 & 7 \mathbf{M}+7 \mathbf{S}+2 \mathbf{m}_{\mathbf{0}} \\
g=2 & 17 \mathbf{M}+13 \mathbf{S}+6 \mathbf{m}_{\mathbf{0}} \\
\hline
\end{array}
$$

Tate pairing with theta coordinates, $P, Q \in A[\ell]\left(\mathbb{F}_{q^{d}}\right)$ (one step)

		Miller		Theta coordinates
		Doubling	Addition	One step
$g=1$	d even	$1 \mathbf{M}+1 \mathbf{S}+1 \mathbf{m}$	$1 \mathbf{M}+1 \mathbf{m}$	$1 \mathbf{M}+2 \mathbf{S}+2 \mathbf{m}$
	d odd	$2 \mathbf{M}+2 \mathbf{S}+1 \mathbf{m}$	$2 \mathbf{M}+1 \mathbf{m}$	
$g=2$	Q degenerate + denominator elimination General case	$1 \mathbf{M}+1 \mathbf{S}+3 \mathbf{m}$	$1 \mathbf{M}+3 \mathbf{m}$	$3 \mathbf{M}+4 \mathbf{S}+4 \mathbf{m}$

$$
\left.P \in A[\ell]\left(\mathbb{F}_{q}\right), Q \in A[\ell]\left(\mathbb{F}_{q^{d}}\right) \text { (counting only operations in } \mathbb{F}_{q^{d}}\right) .
$$

Outline

(1) Public-key cryptography

2 Abelian varieties
(3) Theta functions

4 Pairings
(5) Isogenies
(6) Perspectives

The isogeny theorem

Theorem

- Let $\ell \wedge n=1$, and $\phi: Z(\bar{n}) \rightarrow Z(\overline{\ell n}), x \mapsto \ell . x$ be the canonical embedding. Let $K_{0}=A[\ell]_{2} \subset A[\ell n]_{2}$.
- Let $\left(\vartheta_{i}^{A}\right)_{i \in Z(\overline{\ell n})}$ be the theta functions of level 误 on $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\vartheta_{i}^{B}\right)_{i \in Z(\bar{n})}$ be the theta functions of level n of $B=A / K_{0}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\frac{\Omega}{\ell} \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\vartheta_{i}^{B}(x)\right)_{i \in Z(\bar{n})}=\left(\vartheta_{\phi(i)}^{A}(x)\right)_{i \in Z(\bar{n})}
$$

Example

$\pi:\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}\right) \mapsto\left(x_{0}, x_{3}, x_{6}, x_{9}\right)$ is a 3-isogeny between elliptic curves.

The modular space of theta null points of level $n(\operatorname{car} k+n)$

Definition

The modular space $\mathcal{M}_{\bar{n}}$ of theta null points is:

$$
\sum_{t \in Z(\overline{2})} a_{x+t} a_{y+t} \sum_{t \in Z(\overline{2})} a_{u+t} a_{v+t}=\sum_{t \in Z(\overline{2})} a_{x^{\prime}+t} a_{y^{\prime}+t} \sum_{t \in Z(\overline{2})} a_{u^{\prime}+t} a_{v^{\prime}+t}
$$

with the relations of symmetry $a_{x}=a_{-x}$.

- Abelian varieties with a n-structure $=$ open locus of $\mathcal{M}_{\bar{n}}$.

Isogenies and modular correspondence [FL Ro9]

$A_{k}, A_{k}[\ell n]=A_{k}[\ell n]_{1} \oplus A_{k}[\ell n]_{2}$		determines	$\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$	$\in \mathcal{M}_{\overline{\ell_{n}}}(k)$
$\widehat{\pi}$	π			ϕ_{1}
	k, $B_{k}[n]=B_{k}[n]_{1} \oplus B_{k}[n]_{2}$		$\left(b_{i}\right)_{i \in Z(\bar{n})}$	$\in \mathcal{M}_{\bar{n}}(k)$

- Every isogeny (with isotropic kernel K) comes from a modular solution.
- We can detect degenerate solutions.

Isogenies and modular correspondence [FL Ro9]

	, $A_{k}[\ell n]=A_{k}[\ell n]_{1} \oplus A_{k}[\ell$	determines	$\left(a_{i}\right)_{i \in Z(\overline{\ell n})} \in \mathcal{M}_{\overline{\ell n}}(k)$
π	π		ϕ_{1}
	${ }_{k}, B_{k}[n]=B_{k}[n]_{1} \oplus B_{k}[n]_{2}$		$\left(b_{i}\right)_{i \in Z(\bar{n})} \in \mathcal{M}_{\bar{n}}(k)$

- Every isogeny (with isotropic kernel K) comes from a modular solution.
- We can detect degenerate solutions.

Isogenies and modular correspondence [FL Ro9]

- Every isogeny (with isotropic kernel K) comes from a modular solution.
- We can detect degenerate solutions.

The contragredient isogeny [L Rioa]

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z\left(\overline{\ell_{n}}\right)}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

The contragredient isogeny [L Rioa]

[$\ell]$	
$x \in A \longrightarrow z \in A$	Let $\pi: A \rightarrow B$ be the isogeny associated to
	$\left(a_{i}\right)_{i \in Z\left(\overline{e_{n}}\right)}$. Let $y \in B$ and $x \in A$ be one of the $\ell 9$ antecedents. Then
$\prime \in$	
$y \in B$	$\widehat{\pi}(y)=\ell . x$

The contragredient isogeny [L Rioa]

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

The contragredient isogeny [L Rioa]

$$
x \in A \xrightarrow{[\ell]} z \in A
$$

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

The contragredient isogeny [L Rioa]

$$
x \in A \xrightarrow{[\ell]} z \in A
$$

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

The contragredient isogeny [L Rioa]

$$
x \in A \xrightarrow{[\ell]} z \in A
$$

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z\left(\overline{\ell_{n}}\right)}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

The contragredient isogeny [L Rioa]

$$
x \in A \xrightarrow{[\ell]} z \in A
$$

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z\left(\overline{\ell_{n}}\right)}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

The contragredient isogeny [L Rioa]

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

Explicit isogenies algorithm

- (Compressed) modular point from $K: g(g+1) / 2 e^{\text {th }}$-roots and $g(g+1) / 2 \cdot O(\log (\ell))$ chain additions.
\Rightarrow (Compressed) isogeny: $g \cdot O(\log (\ell))$ chain additions.

Example

- B: elliptic curve $y^{2}=x^{3}+23 x+3$ over $k=\mathbb{F}_{31}$
\Rightarrow Theta null point of level $4:(3: 1: 18: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{31}\right)$.
- $K=\{(3: 1: 18: 1),(22: 15: 4: 1),(18: 29: 23: 1)\} \Rightarrow$ modular solution:
$\left(3, \eta^{14233}, \eta^{2317}, 1, \eta^{1324}, \eta^{5296}, 18, \eta^{5296}, \eta^{1324}, 1, \eta^{2317}, \eta^{14233}\right) \quad\left(\eta^{3}+\eta+28=0\right)$.
- $y=\left(\eta^{19406}, \eta^{19805}, \eta^{10720}, 1\right) ; \quad \widehat{\pi}(y)$?

Example

$$
\begin{gathered}
R_{1}=\left(\eta^{1324}, \eta^{5296}, \eta^{2317}, \eta^{14233}\right) \quad y=\left(\eta^{19406}, \eta^{19805}, \eta^{10720}, 1\right) \\
y \oplus R_{1}=\lambda_{1}\left(\eta^{2722}, \eta^{28681}, \eta^{26466}, \eta^{2096}\right)
\end{gathered}
$$

Example

$$
\begin{gathered}
R_{1}=\left(\eta^{1324}, \eta^{5296}, \eta^{2317}, \eta^{14233}\right) \quad y=\left(\eta^{19406}, \eta^{19805}, \eta^{10720}, 1\right) \\
y \oplus R_{1}=\lambda_{1}\left(\eta^{2722}, \eta^{28681}, \eta^{26466}, \eta^{2096}\right) \\
y+2 R_{1}=\lambda_{1}^{2}\left(\eta^{28758}, \eta^{11337}, \eta^{27602}, \eta^{22972}\right) \\
y+3 R_{1}=\lambda_{1}^{3}\left(\eta^{18374}, \eta^{18773}, \eta^{9688}, \eta^{28758}\right)=y / \eta^{1032} \text { so } \lambda_{1}^{3}=\eta^{28758}
\end{gathered}
$$

Example

$$
\begin{gathered}
R_{1}=\left(\eta^{1324}, \eta^{5296}, \eta^{2317}, \eta^{14233}\right) \quad y=\left(\eta^{19406}, \eta^{19805}, \eta^{10720}, 1\right) \\
y \oplus R_{1}=\lambda_{1}\left(\eta^{2722}, \eta^{28681}, \eta^{26466}, \eta^{2096}\right) \\
y+2 R_{1}=\lambda_{1}^{2}\left(\eta^{28758}, \eta^{11337}, \eta^{27602}, \eta^{22972}\right) \\
y+3 R_{1}=\lambda_{1}^{3}\left(\eta^{18374}, \eta^{18773}, \eta^{9688}, \eta^{28758}\right)=y / \eta^{1032} \text { so } \lambda_{1}^{3}=\eta^{28758} \\
2 y+R_{1}=\lambda_{1}^{2}\left(\eta^{17786}, \eta^{12000}, \eta^{16630}, \eta^{365}\right) \\
3 y+R_{1}=\lambda_{1}^{3}\left(\eta^{7096}, \eta^{11068}, \eta^{8089}, \eta^{20005}\right)=\eta^{5772} R_{1}
\end{gathered}
$$

Example

$$
\begin{gathered}
R_{1}=\left(\eta^{1324}, \eta^{5296}, \eta^{2317}, \eta^{14233}\right) \quad y=\left(\eta^{19406}, \eta^{19805}, \eta^{10720}, 1\right) \\
y \oplus R_{1}=\lambda_{1}\left(\eta^{2722}, \eta^{28681}, \eta^{26466}, \eta^{2096}\right) \\
y+2 R_{1}=\lambda_{1}^{2}\left(\eta^{28758}, \eta^{11337}, \eta^{27602}, \eta^{22972}\right) \\
y+3 R_{1}=\lambda_{1}^{3}\left(\eta^{18374}, \eta^{18773}, \eta^{9688}, \eta^{28758}\right)=y / \eta^{1032} \text { so } \lambda_{1}^{3}=\eta^{28758} \\
2 y+R_{1}=\lambda_{1}^{2}\left(\eta^{17786}, \eta^{12000}, \eta^{16630}, \eta^{365}\right) \\
3 y+R_{1}=\lambda_{1}^{3}\left(\eta^{7096}, \eta^{11068}, \eta^{8089}, \eta^{20005}\right)=\eta^{5772} R_{1} \\
\widehat{\pi}(y)=\left(3, \eta^{21037}, \eta^{15925}, 1, \eta^{8128}, \eta^{18904}, 18, \eta^{12100}, \eta^{14932}, 1, \eta^{9121}, \eta^{27841}\right)
\end{gathered}
$$

Changing level by taking an isogeny

- $\pi_{2} \circ \widehat{\pi}: \ell^{2}$ isogeny in level n.
- Modular points (corresponding to $K) \Leftrightarrow A[\ell]=A[\ell]_{1} \oplus \widehat{\pi}(B[\ell])$ $\Leftrightarrow \ell^{2}$-isogenies $B \rightarrow C$.
- Isogeny graphs: $B[\ell] \Rightarrow \ell^{2 g}$ differential additions.

Changing level by taking an isogeny

- $\pi_{2} \circ \widehat{\pi}: \ell^{2}$ isogeny in level n.
- Modular points (corresponding to $K) \Leftrightarrow A[\ell]=A[\ell]_{1} \oplus \widehat{\pi}(B[\ell])$ $\Leftrightarrow \ell^{2}$-isogenies $B \rightarrow C$.
- Isogeny graphs: $B[\ell] \Rightarrow \ell^{2 g}$ differential additions.

Changing level without taking isogenies

Theorem (Koizumi-Kempf)

- Let \mathcal{L} be the space of theta functions of level ℓn and \mathcal{L}^{\prime} the space of theta functions of level n.
- Let $F \in \mathrm{M}_{r}(\mathbb{Z})$ be such that ${ }^{t} F F=\ell \mathrm{Id}$, and $f: A^{r} \rightarrow A^{r}$ the corresponding isogeny. We have $\mathcal{L}=f^{*} \mathcal{L}^{\prime}$ and the isogeny f is given by

$$
f^{*}\left(\vartheta_{i_{1}}^{\mathcal{L}^{\prime}} \star \ldots \star \vartheta_{\substack{i_{r} \\\left(j_{1}, \ldots, j_{r}\right) \in K_{1}\left(\mathcal{L}^{\prime}\right) \times \ldots \times K_{1}\left(\mathcal{L}^{\prime}\right) \\ f\left(j_{1}, \ldots, j_{r}\right)=\left(i_{1}, \ldots, i_{r}\right)}} \vartheta_{\substack{\mathcal{L}}}^{\mathcal{L}} \star \ldots \vartheta_{j_{r}}^{\mathcal{L}}\right.
$$

- $F=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ gives the Riemann relations. (For general ℓ, use the quaternions.) \Rightarrow Go up and down in level without taking isogenies [Cosset +R].

\mathcal{A} complete generalisation of Velu's algorithm [Cosset $+\mathcal{R}$]

- Compute the isogeny $B \rightarrow A$ while staying in level n.
- No need of ℓ-roots. Need only $O(\# K)$ differential additions in B $+O\left(\ell^{g}\right)$ or $O\left(\ell^{2 g}\right)$ multiplications \Rightarrow fast.
- The formulas are rational if the kernel K is rational.
- Blocking part: compute $K \Rightarrow$ compute all the ℓ-torsion on B. $g=2$: ℓ-torsion, $\widetilde{O}\left(\ell^{6}\right)$ vs $O\left(\ell^{2}\right)$ for the isogeny.
\Rightarrow Work in level 2.
\Rightarrow Convert back and forth to Mumford coordinates:

Example

The Igusa j-invariants $(3908,2195,648)$ correspond to an hyperelliptic curve over \mathbb{F}_{4217} 1069-isogeneous to itself.

Outline

(1) Public-key cryptography

2 Abelian varieties
(3) Theta functions

4 Pairings
(5) Isogenies
(6) Perspectives

An improved modular correspondence?

- $\# B_{k}[\ell]=\ell^{2 g}$.
- Isotropic subspaces: $O\left(\ell^{g(g+1) / 2}\right)$.
- Modular solutions \# $\phi_{1}^{-1}\left(\left(b_{i}\right)_{i \in Z(\bar{n})}\right)=O\left(\ell^{2 g^{2}+g}\right)$.

Linking theta null points and Jacobians

- Thomae formulas \Rightarrow link between Jacobian of hyperelliptic curves and theta functions.
- Equivalent for non hyperelliptic curves [Sheo8]?

Application

Extends [Smio9] attack on hyperelliptic genus 3 curves.

Some more applications

- Explicit isogeny computation \Rightarrow endomorphism ring, Hilbert class polynomials.
- Modular space in level 2 and equations for the Kummer varieties.
- Improve the algorithm [CLo8] for computing theta null points of the canonical lift of an ordinary abelian variety \Rightarrow point counting in small characteristic.
- Improve the pairing algorithm (Ate pairing).
- Faster additions law (level 3 theta functions, level $(2,4)$ in genus 2).
- Characteristic 2 [GLog].

Thank you for your attention!

BIBLIOGRAPHY	
[BFo3]	D. Boneh and M. Franklin. "Identity-based encryption from the Weil pairing". In: SIAM Journal on Computing 32.3 (2003), pp. 586-615. (Cit. on p. 7).
[BLSo4]	D. Boneh, B. Lynn, and H. Shacham. "Short signatures from the Weil pairing". In: Journal of Cryptology 17.4 (2004), pp. 297-319. (Cit. on p. 7).
[CLo8]	R. Carls and D. Lubicz. "A p-adic quasi-quadratic time and quadratic space point counting algorithm". In: International Mathematics Research Notices (2008). (Cit. on p. 57).
[FLRo9]	Jean-Charles Faugère, David Lubicz, and Damien Robert. Computing modular correspondences for abelian varieties. May 2009. arXiv: 0910.4668. (Cit. on pp. 34-36).
[Gauo7]	P. Gaudry. "Fast genus 2 arithmetic based on Theta functions". In: Journal of Mathematical Cryptology 1.3 (2007), pp. 243-265. (Cit. on p. 25).
[GLo9]	P. Gaudry and D. Lubicz. "The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines". In: Finite Fields and Their Applications 15.2 (2009), pp. 246-260. (Cit. on p. 57).
[Goy+o6]	V. Goyal et al. "Attribute-based encryption for fine-grained access control of encrypted data". In: Proceedings of the 13th ACM conference on Computer and communications security. ACM. 2006, p. 98. (Cit. on p. 7).
[Jouo4]	A. Joux. "A one round protocol for tripartite Diffie-Hellman". In: Journal of Cryptology 17.4 (2004), pp. 263-276. (Cit. on p. 7).
[Kle+10]	T. Kleinjung et al. "Factorization of a 768-bit RSA modulus". In: (2010). (Cit. on p. 5). [Lano5]T. Lange. "Formulae for arithmetic on genus 2 hyperelliptic curves". In: Applicable Algebra in Engineering, Communication and Computing 15.5 (2005), pp. 295-328. (Cit. on p. 25).
[LR10a]	David Lubicz and Damien Robert. Computing isogenies between abelian varieties. Jan. 2010. arXiv: 1001.2016. (Cit. on pp. 26, 37-44).

[LRiob]	David Lubicz and Damien Robert. Efficient pairing computation with theta functions. Ed. by Guillaume Hanrot, François Morain, and Emmanuel Thomé. 9th International Symposium, Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings. Jan. 2010. URL: http://www. normalesup.org/~robert/pro/publications/articles/pairings. pdf. (Cit. on pp. 26, 29).
[SWo5]	A. Sahai and B. Waters. "Fuzzy identity-based encryption". In: Advances in Cryptology-EUROCRYPT 2005 (2005), pp. 457-473. (Cit. on p. 7).
[Sheo8]	N. Shepherd-Barron. "Thomae's formulae for non-hyperelliptic curves and spinorial square roots of theta-constants on the moduli space of curves". In: (2008). (Cit. on p. 56).
[Smio9]	Benjamin Smith. Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3 Hyperelliptic Curves. Feb. 2009. arXiv: 0806.2995. (Cit. on pp. 20, 21, 56).
[Vero1]	E. Verheul. "Self-blindable credential certificates from the Weil pairing". In: Advances in Cryptology-ASIACRYPT 2001 (2001), pp. 533-551. (Cit. on p. 7).

