A Vélu-like formula for computing isogenies on Abelian Varieties

Algorithmique et Arithmétique, avec applications à la cryptographie

Romain Cosset¹, David Lubicz^{2,3}, **Damien Robert**¹

¹Caramel team, Nancy Université, CNRS, Inria Nancy Grand Est

²CÉLAR

³IRMAR, Université de Rennes 1

18-05-2010, Moscow

2 Theta functions

3 Computing isogenies

Damien Robert (Caramel, LORIA)

2 Theta functions

3 Computing isogenies

Damien Robert (Caramel, LORIA)

2 Theta functions

3 Computing isogenies

-

・ロト ・ 日 ・ ・ 日 ・ ・

2 Theta functions

3 Computing isogenies

Damien Robert (Caramel, LORIA)

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

- Abelian variety = points on a projective space (locus of homogeneous polynomials)
 + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law.
- *Example:* Elliptic curves, Jacobians of genus *g* curves...

ヘロト ヘヨト ヘヨト ヘ

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

- Abelian variety = points on a projective space (locus of homogeneous polynomials)
 + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law.
- Example: Elliptic curves, Jacobians of genus g curves...

ヘロト ヘヨト ヘヨト ヘ

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

- Abelian variety = points on a projective space (locus of homogeneous polynomials)
 + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law.
- Example: Elliptic curves, Jacobians of genus g curves...

イロト イロト イヨト イ

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

- Abelian variety = points on a projective space (locus of homogeneous polynomials)
 + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law.
- *Example:* Elliptic curves, Jacobians of genus *g* curves...

< □ > < 同 > < 回 > <

• Public key cryptography with the Discrete Logarithm Problem.

- \Rightarrow Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
- Pairing based cryptography.
- ⇒ Abelian varieties of dimension $g \leq 4$.

イロト イヨト イヨト イ

- Public key cryptography with the Discrete Logarithm Problem.
- \Rightarrow Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
- Pairing based cryptography.
- ⇒ Abelian varieties of dimension $g \leq 4$.

• • • • • • • • • • • •

- Public key cryptography with the Discrete Logarithm Problem.
- \Rightarrow Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
- Pairing based cryptography.
- ⇒ Abelian varieties of dimension $g \leq 4$.

• • • • • • • • • • • •

- Public key cryptography with the Discrete Logarithm Problem.
- \Rightarrow Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
- Pairing based cryptography.
- ⇒ Abelian varieties of dimension $g \leq 4$.

• • • • • • • • • • • •

Working with Jacobian of hyperelliptic curves

Let $C: y^2 = f(x)$ be a smooth irreducible hyperelliptic curve of genus g, with a rational point at infinity (deg f = 2g - 1).

• Every divisor *D* on *C* has a unique representative $(k \leq g)$

$$D=\sum_{i=1}^k P_i-P_\infty.$$

- Mumford coordinates: D = (u, v) where $u = \prod (x x_i)$ and $v(x_i) = y_i$ (deg $v < \deg u$).
- Cantor algorithm: Given a divisor *D* compute the Mumford representation $D = (u, v) \Rightarrow$ addition law.

Remark

- For elliptic curves: more efficient coordinates (Edwards...).
- Pairing computation: use Miller algorithm.

Working with Jacobian of hyperelliptic curves

Let $C: y^2 = f(x)$ be a smooth irreducible hyperelliptic curve of genus g, with a rational point at infinity (deg f = 2g - 1).

• Every divisor *D* on *C* has a unique representative $(k \leq g)$

$$D=\sum_{i=1}^k P_i-P_\infty.$$

- Mumford coordinates: D = (u, v) where $u = \prod (x x_i)$ and $v(x_i) = y_i$ (deg v <deg u).
- Cantor algorithm: Given a divisor *D* compute the Mumford representation $D = (u, v) \Rightarrow$ addition law.

Remark

- For elliptic curves: more efficient coordinates (Edwards...).
- Pairing computation: use Miller algorithm.

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies ⇔ Finite subgroups.

$$(f: A \to B) \mapsto \operatorname{Ker} f$$

 $(A \to A/H) \leftrightarrow H$

• *Example:* Multiplication by $\ell \implies \ell$ -torsion), Frobenius (non separable).

Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

• Isogenies = Rational map + group morphism + finite kernel.

● Isogenies ⇔ Finite subgroups.

$$(f: A \to B) \mapsto \operatorname{Ker} f$$

 $(A \to A/H) \leftrightarrow H$

• *Example*: Multiplication by $\ell \implies \ell$ -torsion), Frobenius (non separable).

Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies ⇔ Finite subgroups.

$$(f : A \to B) \mapsto \operatorname{Ker} f$$

 $(A \to A/H) \leftrightarrow H$

• *Example*: Multiplication by $\ell \implies \ell$ -torsion), Frobenius (non separable).

・ ロ ト ・ 日 ト ・ 日 ト ・

Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies ⇔ Finite subgroups.

$$(f : A \to B) \mapsto \operatorname{Ker} f$$

 $(A \to A/H) \leftrightarrow H$

• *Example*: Multiplication by $\ell \implies \ell$ -torsion), Frobenius (non separable).

イロト イヨト イヨト イ

Transfert the DLP from one Abelian variety to another.

- Point counting algorithms (ℓ -adic or *p*-adic). ۲
- Compute the class field polynomials (CM-method). ۲
- Compute the modular polynomials. ۲
- Determine End(A). ۲

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ -adic or *p*-adic). ۲
- Compute the class field polynomials (CM-method). ۲
- Compute the modular polynomials. ۲
- Determine End(A).

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ -adic or *p*-adic). ۲
- Compute the class field polynomials (CM-method). ٥
- Compute the modular polynomials. ۲
- Determine End(A).

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ -adic or *p*-adic). ۲
- Compute the class field polynomials (CM-method). ۲
- Compute the modular polynomials. ۲
- Determine End(A).

< □ ト < 同 ト < 三 ト < 三

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ -adic or *p*-adic). ۲
- Compute the class field polynomials (CM-method). ۲
- Compute the modular polynomials. ۲
- Determine End(A). ۲

< □ ト < 同 ト < 三 ト < 三

Vélu's formula

Theorem

Let $E: y^2 = f(x)$ be an elliptic curve. Let $G \subset E(k)$ be a finite subgroup. Then E/G is given by $Y^2 = g(X)$ where

$$X(P) = x(P) + \sum_{Q \in G \setminus \{0_E\}} x(P+Q) - x(Q)$$

$$Y(P) = y(P) + \sum_{Q \in G \setminus \{0_E\}} y(P+Q) - y(Q)$$

• Uses the fact that x and y are characterised in k(E) by

$$v_{0_E}(x) = -2 \qquad v_P(x) \ge 0 \quad \text{if } P \neq 0_E$$

$$v_{0_E}(y) = -3 \qquad v_P(y) \ge 0 \quad \text{if } P \neq 0_E$$

$$y^2/x^3(O_E) = 1$$

• No such characterisation in genus $g \ge 2$.

・ ロ ト ・ 日 ト ・ 日 ト ・

Vélu's formula

Theorem

Let $E: y^2 = f(x)$ be an elliptic curve. Let $G \subset E(k)$ be a finite subgroup. Then E/G is given by $Y^2 = g(X)$ where

$$X(P) = x(P) + \sum_{Q \in G \setminus \{0_E\}} x(P+Q) - x(Q)$$

$$Y(P) = y(P) + \sum_{Q \in G \setminus \{0_E\}} y(P+Q) - y(Q)$$

• Uses the fact that x and y are characterised in k(E) by

$$v_{0_E}(x) = -2 \qquad v_P(x) \ge 0 \quad \text{if } P \neq 0_E$$

$$v_{0_E}(y) = -3 \qquad v_P(y) \ge 0 \quad \text{if } P \neq 0_E$$

$$y^2/x^3(O_E) = 1$$

• No such characterisation in genus $g \ge 2$.

・ ロ ト ・ 日 ト ・ 日 ト ・

Definition

- The modular polynomial is a polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_n(x, y) = 0$ iff x = j(E) and y = j(E') with *E* and *E' n*-isogeneous.
- If $E: y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: the compressed coefficients of ϕ_2 take 26.8 MB.
- \Rightarrow Use the moduli space given by theta functions.
- $\Rightarrow\,$ Fix the form of the isogeny and look for coordinates compatible with the isogeny.

Definition

- The modular polynomial is a polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_n(x, y) = 0$ iff x = j(E) and y = j(E') with *E* and *E' n*-isogeneous.
- If $E: y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: the compressed coefficients of ϕ_2 take 26.8 MB.
- \Rightarrow Use the moduli space given by theta functions.
- \Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

Definition

- The modular polynomial is a polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_n(x, y) = 0$ iff x = j(E) and y = j(E') with *E* and *E' n*-isogeneous.
- If $E: y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: the compressed coefficients of ϕ_2 take 26.8 MB.
- \Rightarrow Use the moduli space given by theta functions.
- $\Rightarrow\,$ Fix the form of the isogeny and look for coordinates compatible with the isogeny.

Definition

- The modular polynomial is a polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_n(x, y) = 0$ iff x = j(E) and y = j(E') with *E* and *E' n*-isogeneous.
- If $E: y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: the compressed coefficients of ϕ_2 take 26.8 MB.
- \Rightarrow Use the moduli space given by theta functions.
- \Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

Definition

- The modular polynomial is a polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_n(x, y) = 0$ iff x = j(E) and y = j(E') with *E* and *E' n*-isogeneous.
- If $E: y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: the compressed coefficients of ϕ_2 take 26.8 MB.
- \Rightarrow Use the moduli space given by theta functions.
- \Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

2 Theta functions

3 Computing isogenies

Damien Robert (Caramel, LORIA)

The theta group

Definition

Let (A, \mathcal{L}) be a (separably) polarized abelian variety over an algebraically closed field k. The polarisation \mathcal{L} induces an isogeny

$$\begin{array}{rccc} p_{\mathcal{L}}:A & \longrightarrow & \widehat{A}_k \\ x & \longmapsto & t_x^*\mathcal{L} \otimes \mathcal{L}^{-1} \end{array}$$

.

We note $K(\mathcal{L}) = \text{Ker } \phi_{\mathcal{L}}$, the theta group is $G(\mathcal{L}) = \{(x, \psi) \mid \psi : t_x^* \mathcal{L} \xrightarrow{\sim} \mathcal{L}\}$. $G(\mathcal{L})$ is a central extension of $K(\mathcal{L})$:

$$0 \longrightarrow k^* \longrightarrow G(\mathcal{L}) \longrightarrow K(\mathcal{L}) \longrightarrow 0.$$

• Group law: $(x, \phi) \cdot (y, \psi) = (x + y, t_x^* \psi \circ \phi)$:

$$\mathcal{L} \xrightarrow{\phi} t_x^* \mathcal{L} \xrightarrow{t_x^* \psi} t_x^* (t_y^* \mathcal{L}) = t_{x+y}^* \mathcal{L}.$$

• Descent theory: If $K \subset K(\mathcal{L})$ is isotropic, sections $s : K \to G(\mathcal{L}) \Leftrightarrow$ descent data $\pi : (X, \mathcal{L}) \to (X/K, \mathcal{M}).$

The theta group

Definition

Let (A, \mathcal{L}) be a (separably) polarized abelian variety over an algebraically closed field k. The polarisation \mathcal{L} induces an isogeny

$$\begin{array}{rccc} p_{\mathcal{L}}:A & \longrightarrow & \widehat{A}_k \\ x & \longmapsto & t_x^*\mathcal{L} \otimes \mathcal{L}^{-1} \end{array}$$

.

We note $K(\mathcal{L}) = \text{Ker } \phi_{\mathcal{L}}$, the theta group is $G(\mathcal{L}) = \{(x, \psi) \mid \psi : t_x^* \mathcal{L} \xrightarrow{\sim} \mathcal{L}\}$. $G(\mathcal{L})$ is a central extension of $K(\mathcal{L})$:

$$0 \longrightarrow k^* \longrightarrow G(\mathcal{L}) \longrightarrow K(\mathcal{L}) \longrightarrow 0.$$

• Group law: $(x, \phi).(y, \psi) = (x + y, t_x^* \psi \circ \phi)$:

$$\mathcal{L} \xrightarrow{\phi} t_x^* \mathcal{L} \xrightarrow{t_x^* \psi} t_x^* (t_y^* \mathcal{L}) = t_{x+y}^* \mathcal{L}.$$

• Descent theory: If $K \subset K(\mathcal{L})$ is isotropic, sections $s : K \to G(\mathcal{L}) \Leftrightarrow$ descent data $\pi : (X, \mathcal{L}) \to (X/K, \mathcal{M}).$

The theta group

Definition

Let (A, \mathcal{L}) be a (separably) polarized abelian variety over an algebraically closed field k. The polarisation \mathcal{L} induces an isogeny

$$\begin{array}{rccc} p_{\mathcal{L}}:A & \longrightarrow & \widehat{A}_k \\ x & \longmapsto & t_x^*\mathcal{L} \otimes \mathcal{L}^{-1} \end{array}$$

٠

We note $K(\mathcal{L}) = \text{Ker } \phi_{\mathcal{L}}$, the theta group is $G(\mathcal{L}) = \{(x, \psi) \mid \psi : t_x^* \mathcal{L} \xrightarrow{\sim} \mathcal{L}\}$. $G(\mathcal{L})$ is a central extension of $K(\mathcal{L})$:

$$0 \longrightarrow k^* \longrightarrow G(\mathcal{L}) \longrightarrow K(\mathcal{L}) \longrightarrow 0.$$

• Group law: $(x, \phi).(y, \psi) = (x + y, t_x^* \psi \circ \phi)$:

$$\mathcal{L} \xrightarrow{\phi} t_x^* \mathcal{L} \xrightarrow{t_x^* \psi} t_x^* (t_y^* \mathcal{L}) = t_{x+y}^* \mathcal{L}.$$

• Descent theory: If $K \subset K(\mathcal{L})$ is isotropic, sections $s : K \to G(\mathcal{L}) \Leftrightarrow$ descent data $\pi : (X, \mathcal{L}) \to (X/K, \mathcal{M}).$

Heisenberg group

Definition

The Heisenberg group of level *n* is $H(n) = k^* \times Z(n) \times \hat{Z}(n)$ where $Z(n) \coloneqq \mathbb{Z}^g/n\mathbb{Z}^g$ and $\hat{Z}(n)$ is the dual of Z(n). The group law is given by

$$(\alpha, x_1, x_2)(\beta, y_1, y_2) = (\langle x_1, y_2 \rangle \alpha \beta, x_1 + y_1, x_2 + y_2),$$

where $\langle x_1, y_2 \rangle = y_2(x_1)$ is the canonical pairing.

- A polarised abelian variety (A, \mathcal{L}) is of level *n* if $K(\mathcal{L}) \simeq Z(n)$.
- A theta structure on (A, \mathcal{L}) is an isomorphism $\Theta_{\mathcal{L}} : H(n) \to G(\mathcal{L})$.
- The theta structure $\Theta_{\mathcal{L}}$ induces a symplectic isomorphism (for the commutator pairing) $\overline{\Theta}_{\mathcal{L}} : K(n) \coloneqq Z(n) \oplus \hat{Z}(n) \xrightarrow{\sim} K(\mathcal{L}).$
- The symplectic decomposition $K(n) = Z(n) \oplus \hat{Z}(n)$ induces a decomposition $K(\mathcal{L}) = K_1(\mathcal{L}) \oplus K_2(\mathcal{L})$.
Definition

The Heisenberg group of level *n* is $H(n) = k^* \times Z(n) \times \hat{Z}(n)$ where $Z(n) \coloneqq \mathbb{Z}^g/n\mathbb{Z}^g$ and $\hat{Z}(n)$ is the dual of Z(n). The group law is given by

$$(\alpha, x_1, x_2)(\beta, y_1, y_2) = (\langle x_1, y_2 \rangle \alpha \beta, x_1 + y_1, x_2 + y_2),$$

where $\langle x_1, y_2 \rangle = y_2(x_1)$ is the canonical pairing.

- A polarised abelian variety (A, \mathcal{L}) is of level *n* if $K(\mathcal{L}) \simeq Z(n)$.
- A theta structure on (A, \mathcal{L}) is an isomorphism $\Theta_{\mathcal{L}} : H(n) \to G(\mathcal{L})$.
- The theta structure $\Theta_{\mathcal{L}}$ induces a symplectic isomorphism (for the commutator pairing) $\overline{\Theta}_{\mathcal{L}} : K(n) \coloneqq Z(n) \oplus \hat{Z}(n) \xrightarrow{\sim} K(\mathcal{L}).$
- The symplectic decomposition $K(n) = Z(n) \oplus \hat{Z}(n)$ induces a decomposition $K(\mathcal{L}) = K_1(\mathcal{L}) \oplus K_2(\mathcal{L})$.

Definition

The Heisenberg group of level *n* is $H(n) = k^* \times Z(n) \times \hat{Z}(n)$ where $Z(n) \coloneqq \mathbb{Z}^g/n\mathbb{Z}^g$ and $\hat{Z}(n)$ is the dual of Z(n). The group law is given by

$$(\alpha, x_1, x_2)(\beta, y_1, y_2) = (\langle x_1, y_2 \rangle \alpha \beta, x_1 + y_1, x_2 + y_2),$$

where $\langle x_1, y_2 \rangle = y_2(x_1)$ is the canonical pairing.

- A polarised abelian variety (A, \mathcal{L}) is of level *n* if $K(\mathcal{L}) \simeq Z(n)$.
- A theta structure on (A, \mathcal{L}) is an isomorphism $\Theta_{\mathcal{L}} : H(n) \to G(\mathcal{L})$.
- The theta structure $\Theta_{\mathcal{L}}$ induces a symplectic isomorphism (for the commutator pairing) $\overline{\Theta}_{\mathcal{L}} : K(n) \coloneqq Z(n) \oplus \hat{Z}(n) \xrightarrow{\sim} K(\mathcal{L}).$
- The symplectic decomposition $K(n) = Z(n) \oplus \hat{Z}(n)$ induces a decomposition $K(\mathcal{L}) = K_1(\mathcal{L}) \oplus K_2(\mathcal{L})$.

Definition

The Heisenberg group of level *n* is $H(n) = k^* \times Z(n) \times \hat{Z}(n)$ where $Z(n) \coloneqq \mathbb{Z}^g/n\mathbb{Z}^g$ and $\hat{Z}(n)$ is the dual of Z(n). The group law is given by

$$(\alpha, x_1, x_2)(\beta, y_1, y_2) = (\langle x_1, y_2 \rangle \alpha \beta, x_1 + y_1, x_2 + y_2),$$

where $\langle x_1, y_2 \rangle = y_2(x_1)$ is the canonical pairing.

- A polarised abelian variety (A, \mathcal{L}) is of level *n* if $K(\mathcal{L}) \simeq Z(n)$.
- A theta structure on (A, \mathcal{L}) is an isomorphism $\Theta_{\mathcal{L}} : H(n) \to G(\mathcal{L})$.
- The theta structure $\Theta_{\mathcal{L}}$ induces a symplectic isomorphism (for the commutator pairing) $\overline{\Theta}_{\mathcal{L}} : K(n) \coloneqq Z(n) \oplus \hat{Z}(n) \xrightarrow{\sim} K(\mathcal{L}).$
- The symplectic decomposition $K(n) = Z(n) \oplus \hat{Z}(n)$ induces a decomposition $K(\mathcal{L}) = K_1(\mathcal{L}) \oplus K_2(\mathcal{L})$.

Definition

The Heisenberg group of level *n* is $H(n) = k^* \times Z(n) \times \hat{Z}(n)$ where $Z(n) \coloneqq \mathbb{Z}^g/n\mathbb{Z}^g$ and $\hat{Z}(n)$ is the dual of Z(n). The group law is given by

$$(\alpha, x_1, x_2)(\beta, y_1, y_2) = (\langle x_1, y_2 \rangle \alpha \beta, x_1 + y_1, x_2 + y_2),$$

where $\langle x_1, y_2 \rangle = y_2(x_1)$ is the canonical pairing.

- A polarised abelian variety (A, \mathcal{L}) is of level *n* if $K(\mathcal{L}) \simeq Z(n)$.
- A theta structure on (A, \mathcal{L}) is an isomorphism $\Theta_{\mathcal{L}} : H(n) \to G(\mathcal{L})$.
- The theta structure $\Theta_{\mathcal{L}}$ induces a symplectic isomorphism (for the commutator pairing) $\overline{\Theta}_{\mathcal{L}} : K(n) \coloneqq Z(n) \oplus \hat{Z}(n) \xrightarrow{\sim} K(\mathcal{L}).$
- The symplectic decomposition $K(n) = Z(n) \oplus \hat{Z}(n)$ induces a decomposition $K(\mathcal{L}) = K_1(\mathcal{L}) \oplus K_2(\mathcal{L})$.

• The Heisenberg group H(n) admits a unique irreducible representation:

$$(\alpha, i, j).\delta_k = \langle i+k, -j\rangle\delta_{i+k}.$$

• The action of $G(\mathcal{L})$ on $\Gamma(\mathcal{L})$ given by

$$(x, \psi).\vartheta \mapsto \psi(t_x^*\vartheta)$$

is irreducible.

• The basis of theta functions (induced by $\Theta_{\mathcal{L}})$ is the unique basis (up to a constant) such that

$$(\alpha, i, j) \cdot \vartheta_k = e_{\mathcal{L}}(i+k, -j) \vartheta_{i+k}$$

where $e_{\mathcal{L}}$ is the commutator pairing.

• If $l \ge 3$ then

$$z \mapsto (\vartheta_i(z))_{i \in Z(\overline{n})}$$

is a projective embedding $A \to \mathbb{P}_k^{n^g-1}$.

• The Heisenberg group H(n) admits a unique irreducible representation:

$$(\alpha, i, j).\delta_k = \langle i+k, -j\rangle\delta_{i+k}.$$

• The action of $G(\mathcal{L})$ on $\Gamma(\mathcal{L})$ given by

$$(x, \psi). \vartheta \mapsto \psi(t_x^* \vartheta)$$

is irreducible.

• The basis of theta functions (induced by $\Theta_{\mathcal{L}})$ is the unique basis (up to a constant) such that

$$(\alpha, i, j) \cdot \vartheta_k = e_{\mathcal{L}}(i+k, -j) \vartheta_{i+k}$$

where $e_{\mathcal{L}}$ is the commutator pairing.

• If $l \ge 3$ then

$$z \mapsto (\vartheta_i(z))_{i \in Z(\overline{n})}$$

is a projective embedding $A \to \mathbb{P}_k^{n^g-1}$.

• The Heisenberg group H(n) admits a unique irreducible representation:

$$(\alpha, i, j).\delta_k = \langle i+k, -j\rangle\delta_{i+k}.$$

• The action of $G(\mathcal{L})$ on $\Gamma(\mathcal{L})$ given by

$$(x, \psi). \vartheta \mapsto \psi(t_x^* \vartheta)$$

is irreducible.

• The basis of theta functions (induced by $\Theta_{\mathcal{L}}$) is the unique basis (up to a constant) such that

$$(\alpha, i, j) \cdot \vartheta_k = e_{\mathcal{L}}(i+k, -j) \vartheta_{i+k}$$

where $e_{\mathcal{L}}$ is the commutator pairing.

• If $l \ge 3$ then

$$z \mapsto (\vartheta_i(z))_{i \in Z(\overline{n})}$$

is a projective embedding $A \to \mathbb{P}_k^{n^g-1}$.

• The Heisenberg group H(n) admits a unique irreducible representation:

$$(\alpha, i, j).\delta_k = \langle i+k, -j\rangle\delta_{i+k}.$$

• The action of $G(\mathcal{L})$ on $\Gamma(\mathcal{L})$ given by

$$(x, \psi). \vartheta \mapsto \psi(t_x^* \vartheta)$$

is irreducible.

• The basis of theta functions (induced by $\Theta_{\mathcal{L}}$) is the unique basis (up to a constant) such that

$$(\alpha, i, j) \cdot \vartheta_k = e_{\mathcal{L}}(i+k, -j) \vartheta_{i+k}$$

where $e_{\mathcal{L}}$ is the commutator pairing.

• If $l \ge 3$ then

$$z\mapsto (\vartheta_i(z))_{i\in Z(\overline{n})}$$

is a projective embedding $A \to \mathbb{P}_k^{n^g-1}$.

Complex abelian varieties

- Abelian variety over \mathbb{C} : $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$, where $\Omega \in \mathcal{H}_g(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g} .

$$\vartheta(z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i t_n \Omega n + 2\pi i t_n z}$$
$$\vartheta\left[\begin{smallmatrix}a\\b\end{smallmatrix}\right](z,\Omega) = e^{\pi i t_a \Omega a + 2\pi i t_a(z+b)} \vartheta(z+\Omega a+b,\Omega) \ a,b \in \mathbb{Q}^g$$

• The quasi-periodicity is given by

$$\vartheta\left[\begin{smallmatrix}a\\b\end{smallmatrix}\right]\left(z+m+\Omega n,\Omega\right)=e^{2\pi i\left(\begin{smallmatrix}t\\am-t\\bn\end{smallmatrix}\right)-\pi i\begin{smallmatrix}t\\n\Omega n-2\pi i\end{smallmatrix}^{t}nz}\vartheta\left[\begin{smallmatrix}a\\b\end{smallmatrix}\right]\left(z,\Omega\right)$$

• Ω induces a theta structure of level ∞ . The corresponding theta basis of level *n* is given by

$$\left\{\vartheta\left[\begin{smallmatrix}0\\b\end{smallmatrix}
ight](z,\Omega/n)
ight\}_{b\inrac{1}{n}\mathbb{Z}^g/\mathbb{Z}^g}$$

Complex abelian varieties

- Abelian variety over \mathbb{C} : $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$, where $\Omega \in \mathcal{H}_g(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g} .

$$\vartheta(z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i t n\Omega n + 2\pi i t nz}$$
$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z,\Omega) = e^{\pi i t a\Omega a + 2\pi i t a(z+b)} \vartheta(z+\Omega a+b,\Omega) a, b \in \mathbb{Q}^g$$

• The quasi-periodicity is given by

$$\vartheta\left[\begin{smallmatrix}a\\b\end{smallmatrix}\right]\left(z+m+\Omega n,\Omega\right)=e^{2\pi i\left(\begin{smallmatrix}t\\am-t\\bn\end{smallmatrix}\right)-\pi i\begin{smallmatrix}t\\n\Omega n-2\pi i\end{smallmatrix}^{t}n\Omega n-2\pi i\begin{smallmatrix}t\\am\\b\\b\end{bmatrix}\left(z,\Omega\right)$$

• Ω induces a theta structure of level ∞ . The corresponding theta basis of level *n* is given by

$$\left\{\vartheta\left[\begin{smallmatrix}0\\b\end{smallmatrix}
ight](z,\Omega/n)
ight\}_{b\inrac{1}{n}\mathbb{Z}^g/\mathbb{Z}^g}$$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Complex abelian varieties

- Abelian variety over \mathbb{C} : $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$, where $\Omega \in \mathcal{H}_g(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g} .

$$\vartheta(z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i t n\Omega n + 2\pi i t nz}$$
$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z,\Omega) = e^{\pi i t a\Omega a + 2\pi i t a(z+b)} \vartheta(z+\Omega a+b,\Omega) a, b \in \mathbb{Q}^g$$

• The quasi-periodicity is given by

$$\vartheta\left[\begin{smallmatrix}a\\b\end{smallmatrix}\right]\left(z+m+\Omega n,\Omega\right)=e^{2\pi i\left(\begin{smallmatrix}t\\am-{}^{t}bn\right)-\pi i\begin{smallmatrix}t\\n\Omega n-2\pi i\end{smallmatrix}^{t}nz}\vartheta\left[\begin{smallmatrix}a\\b\end{smallmatrix}\right]\left(z,\Omega\right)$$

• Ω induces a theta structure of level ∞. The corresponding theta basis of level *n* is given by

$$\left\{ \vartheta \left[\begin{smallmatrix} 0 \\ b \end{smallmatrix}
ight] (z, \Omega/n)
ight\}_{b \in rac{1}{n} \mathbb{Z}^g / \mathbb{Z}^g}$$

The isogeny theorem

Theorem

Let $(A, \mathcal{L}, \Theta_{\mathcal{L}})$ be a marked abelian variety of level ℓn . The canonical section $\hat{Z}(\ell n) \to H(\ell n), j \mapsto (1, 0, j)$ induce via $\Theta_{\mathcal{L}}$ a section $K = K_2(\mathcal{L})[\ell] \to G(\mathcal{L})$. The theta structure $\Theta_{\mathcal{L}}$ descend to a theta structure $(B, \mathcal{L}_0, \Theta_{\mathcal{L}_0})$ such that B = A/K and if $\pi : A \to B$ is the corresponding isogeny:

$$\pi^*\vartheta_i^{\mathcal{L}_0}=\lambda\vartheta_i^{\mathcal{L}}.$$

Here $Z(n) \hookrightarrow Z(\ell n)$ *is the canonical embedding* $x \mapsto \ell x$ *.*

Proof with $k = \mathbb{C}$.

$$\vartheta_{i}^{B}(z) = \vartheta\left[\begin{smallmatrix} 0\\i/n \end{smallmatrix}\right]\left(z, \frac{\Omega}{\ell}/n\right) = \vartheta\left[\begin{smallmatrix} 0\\\ell i/\ell \end{smallmatrix}\right]\left(z, \Omega/\ell n\right) = \vartheta_{\ell \cdot i}^{A}(z)$$

• • • • • • • • • • • •

The isogeny theorem

Theorem

Let $(A, \mathcal{L}, \Theta_{\mathcal{L}})$ be a marked abelian variety of level ℓn . The canonical section $\hat{Z}(\ell n) \to H(\ell n), j \mapsto (1, 0, j)$ induce via $\Theta_{\mathcal{L}}$ a section $K = K_2(\mathcal{L})[\ell] \to G(\mathcal{L})$. The theta structure $\Theta_{\mathcal{L}}$ descend to a theta structure $(B, \mathcal{L}_0, \Theta_{\mathcal{L}_0})$ such that B = A/K and if $\pi : A \to B$ is the corresponding isogeny:

$$\pi^*\vartheta_i^{\mathcal{L}_0}=\lambda\vartheta_i^{\mathcal{L}}.$$

Here $Z(n) \hookrightarrow Z(\ell n)$ *is the canonical embedding* $x \mapsto \ell x$ *.*

Proof with $k = \mathbb{C}$.

$$\vartheta_i^B(z) = \vartheta\left[\begin{smallmatrix} 0\\ i/n \end{smallmatrix}\right] \left(z, \frac{\Omega}{\ell}/n\right) = \vartheta\left[\begin{smallmatrix} 0\\ \ell i/\ell \end{smallmatrix}\right] \left(z, \Omega/\ell n\right) = \vartheta_{\ell \cdot i}^A(z)$$

< □ > < 同 > < 回 > <

Mumford: On equations defining Abelian varieties

Theorem (car k + n)

• The theta null point of level $n(a_i)_{i \in Z(\overline{n})} \coloneqq (\vartheta_i(0))_{i \in Z(n)}$ satisfy the Riemann Relations:

$$\sum_{t \in Z(\overline{2})} a_{x+t} a_{y+t} \sum_{t \in Z(\overline{2})} a_{u+t} a_{v+t} = \sum_{t \in Z(\overline{2})} a_{x'+t} a_{y'+t} \sum_{t \in Z(\overline{2})} a_{u'+t} a_{v'+t}$$
(1)

We note $\mathcal{M}_{\overline{e}}$ the moduli space given by these relations together with the relations of symmetry:

$$a_x = a_{-x}$$

• $\mathcal{M}_{\overline{n}}(k)$ is the modular space of k-Abelian variety with a theta structure of level n: The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\overline{n}}^{0}(k)$ of $\mathcal{M}_{\overline{n}}(k)$.

Remark

- Analytic action: $\operatorname{Sp}_{2g}(\mathbb{Z})$ acts on \mathcal{H}_g (and preserves the isomorphic classes).
- Algebraic action: $\operatorname{Sp}_{2q}(Z(\overline{n}))$ acts on $\mathcal{M}_{\overline{n}}$.

Mumford: On equations defining Abelian varieties

Theorem (car k + n)

• The theta null point of level $n(a_i)_{i \in Z(\overline{n})} \coloneqq (\vartheta_i(0))_{i \in Z(n)}$ satisfy the Riemann Relations:

$$\sum_{t \in Z(\overline{2})} a_{x+t} a_{y+t} \sum_{t \in Z(\overline{2})} a_{u+t} a_{v+t} = \sum_{t \in Z(\overline{2})} a_{x'+t} a_{y'+t} \sum_{t \in Z(\overline{2})} a_{u'+t} a_{v'+t}$$
(1)

We note $\mathcal{M}_{\overline{\ell}}$ the moduli space given by these relations together with the relations of symmetry:

$$a_x = a_{-x}$$

• $\mathcal{M}_{\overline{n}}(k)$ is the modular space of k-Abelian variety with a theta structure of level n: The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\overline{n}}^{0}(k)$ of $\mathcal{M}_{\overline{n}}(k)$.

Remark

- Analytic action: $\operatorname{Sp}_{2g}(\mathbb{Z})$ acts on \mathcal{H}_g (and preserves the isomorphic classes).
- Algebraic action: $\operatorname{Sp}_{2q}(Z(\overline{n}))$ acts on $\mathcal{M}_{\overline{n}}$.

Mumford: On equations defining Abelian varieties

Theorem $(\operatorname{car} k + n)$

• The theta null point of level $n(a_i)_{i \in Z(\overline{n})} \coloneqq (\vartheta_i(0))_{i \in Z(n)}$ satisfy the Riemann Relations:

$$\sum_{t \in Z(\overline{2})} a_{x+t} a_{y+t} \sum_{t \in Z(\overline{2})} a_{u+t} a_{v+t} = \sum_{t \in Z(\overline{2})} a_{x'+t} a_{y'+t} \sum_{t \in Z(\overline{2})} a_{u'+t} a_{v'+t}$$
(1)

We note $\mathcal{M}_{\overline{\ell}}$ the moduli space given by these relations together with the relations of symmetry:

$$a_x = a_{-x}$$

• $\mathcal{M}_{\overline{n}}(k)$ is the modular space of k-Abelian variety with a theta structure of level n: The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\overline{n}}^{0}(k)$ of $\mathcal{M}_{\overline{n}}(k)$.

Remark

- Analytic action: $\operatorname{Sp}_{2q}(\mathbb{Z})$ acts on \mathcal{H}_g (and preserves the isomorphic classes).
- Algebraic action: $\operatorname{Sp}_{2g}(Z(\overline{n}))$ acts on $\mathcal{M}_{\overline{n}}$.

- The kernel of π is $A_k[n]_2 \subset A_k[\ell n]_2$.
- The kernel of $\hat{\pi}$ is $\pi(A_k[\ell]_1)$.
- Every *l*-isogeny (with an isotropic kernel) comes from a modular solution.

$$A_{k}, A_{k}[\ell n] = A_{k}[\ell n]_{1} \oplus A_{k}[\ell n]_{2} \qquad (a_{i})_{i \in \mathbb{Z}(\overline{\ell})} \in \mathcal{M}_{\overline{\ell n}}(k)$$

determines
$$\hat{\pi} \left\| \pi \right\|_{B_{k}, B_{k}[n] = B_{k}[n]_{1} \oplus B_{k}[n]_{2} < \cdots < (b_{i})_{i \in \mathbb{Z}(\overline{n})} \in \mathcal{M}_{\overline{n}}(k)$$

- The kernel of π is $A_k[n]_2 \subset A_k[\ell n]_2$.
- The kernel of $\hat{\pi}$ is $\pi(A_k[\ell]_1)$.
- Every *l*-isogeny (with an isotropic kernel) comes from a modular solution.

- The kernel of π is $A_k[n]_2 \subset A_k[\ell n]_2$.
- The kernel of $\hat{\pi}$ is $\pi(A_k[\ell]_1)$.
- Every *l*-isogeny (with an isotropic kernel) comes from a modular solution.

(日)

- The kernel of π is $A_k[n]_2 \subset A_k[\ell n]_2$.
- The kernel of $\hat{\pi}$ is $\pi(A_k[\ell]_1)$.
- Every *l*-isogeny (with an isotropic kernel) comes from a modular solution.

イロト イヨト イヨト イ

- The kernel of π is $A_k[n]_2 \subset A_k[\ell n]_2$.
- The kernel of $\hat{\pi}$ is $\pi(A_k[\ell]_1)$.
- Every *l*-isogeny (with an isotropic kernel) comes from a modular solution.

(日)

- The kernel of π is $A_k[n]_2 \subset A_k[\ell n]_2$.
- The kernel of $\hat{\pi}$ is $\pi(A_k[\ell]_1)$.
- Every *l*-isogeny (with an isotropic kernel) comes from a modular solution.

Abelian varieties and isogenies

2 Theta functions

Computing isogenies

Damien Robert (Caramel, LORIA)

We will show an example with g = 1, n = 4 and $\ell n = 12$ ($\ell = 3$).

- Let *B* be the elliptic curve $y^2 = x^3 + 23x + 3$ over $k = \mathbb{F}_{31}$. The corresponding theta null point (b_0, b_1, b_2, b_3) of level 4 is $(3:1:18:1) \in \mathcal{M}_4(\mathbb{F}_{31})$.
- We note $V_B(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$a_0 = b_0, a_3 = b_1, a_6 = b_2, a_9 = b_3$$

• By the isogeny theorem, to every valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell}n)} \in V_B^0(k)$ corresponds a 3-isogeny $\pi : A \to B$:

$$\pi(\vartheta_i^A(x)_{i\in Z(12)}) = (\vartheta_0^A(x), \vartheta_3^A(x), \vartheta_6^A(x), \vartheta_9^A(x))$$

• Program:

- Compute $\widehat{\pi}$ from a valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell_B})} \in V_B^0(k)$.
- Compute a valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{tn})}$ from the kernel K of $\widehat{\pi}$.
- Compute a theta null point $(a'_i)_{i \in Z(\overline{n})}$ of level *n* corresponding to A = B/K.

We will show an example with g = 1, n = 4 and $\ell n = 12$ ($\ell = 3$).

- Let *B* be the elliptic curve $y^2 = x^3 + 23x + 3$ over $k = \mathbb{F}_{31}$. The corresponding theta null point (b_0, b_1, b_2, b_3) of level 4 is $(3:1:18:1) \in \mathcal{M}_4(\mathbb{F}_{31})$.
- We note $V_B(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$a_0 = b_0, a_3 = b_1, a_6 = b_2, a_9 = b_3$$

By the isogeny theorem, to every valid theta null point (a_i)_{i∈Z(ℓn)} ∈ V⁰_B(k) corresponds a 3-isogeny π : A → B:

$$\pi(\vartheta_i^A(x)_{i\in Z(12)}) = (\vartheta_0^A(x), \vartheta_3^A(x), \vartheta_6^A(x), \vartheta_9^A(x))$$

• Program:

- Compute $\widehat{\pi}$ from a valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell_n})} \in V_B^0(k)$.
- Compute a valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell_n})}$ from the kernel K of $\widehat{\pi}$.
- Compute a theta null point $(a'_i)_{i \in \mathbb{Z}(\overline{n})}$ of level *n* corresponding to A = B/K.

We will show an example with g = 1, n = 4 and $\ell n = 12$ ($\ell = 3$).

- Let *B* be the elliptic curve $y^2 = x^3 + 23x + 3$ over $k = \mathbb{F}_{31}$. The corresponding theta null point (b_0, b_1, b_2, b_3) of level 4 is $(3:1:18:1) \in \mathcal{M}_4(\mathbb{F}_{31})$.
- We note $V_B(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$a_0 = b_0, a_3 = b_1, a_6 = b_2, a_9 = b_3$$

• By the isogeny theorem, to every valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell}n)} \in V_B^0(k)$ corresponds a 3-isogeny $\pi : A \to B$:

$$\pi(\vartheta_i^A(x)_{i\in Z(12)}) = (\vartheta_0^A(x), \vartheta_3^A(x), \vartheta_6^A(x), \vartheta_9^A(x))$$

- Program:
 - Compute $\widehat{\pi}$ from a valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell_n})} \in V_B^0(k)$.
 - Compute a valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell_n})}$ from the kernel K of $\widehat{\pi}$.
 - Compute a theta null point $(a'_i)_{i \in \mathbb{Z}(\overline{n})}$ of level *n* corresponding to A = B/K.

We will show an example with g = 1, n = 4 and $\ell n = 12$ ($\ell = 3$).

- Let *B* be the elliptic curve $y^2 = x^3 + 23x + 3$ over $k = \mathbb{F}_{31}$. The corresponding theta null point (b_0, b_1, b_2, b_3) of level 4 is $(3:1:18:1) \in \mathcal{M}_4(\mathbb{F}_{31})$.
- We note $V_B(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$a_0 = b_0, a_3 = b_1, a_6 = b_2, a_9 = b_3$$

• By the isogeny theorem, to every valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell}n)} \in V_B^0(k)$ corresponds a 3-isogeny $\pi : A \to B$:

$$\pi(\vartheta_i^A(x)_{i\in Z(12)}) = (\vartheta_0^A(x), \vartheta_3^A(x), \vartheta_6^A(x), \vartheta_9^A(x))$$

• Program:

- Compute $\widehat{\pi}$ from a valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})} \in V_B^0(k)$.
- Compute a valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell_n})}$ from the kernel *K* of $\widehat{\pi}$.
- Compute a theta null point $(a'_i)_{i \in \mathbb{Z}(\overline{n})}$ of level *n* corresponding to A = B/K.

We will show an example with g = 1, n = 4 and $\ell n = 12$ ($\ell = 3$).

- Let *B* be the elliptic curve $y^2 = x^3 + 23x + 3$ over $k = \mathbb{F}_{31}$. The corresponding theta null point (b_0, b_1, b_2, b_3) of level 4 is $(3:1:18:1) \in \mathcal{M}_4(\mathbb{F}_{31})$.
- We note $V_B(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$a_0 = b_0, a_3 = b_1, a_6 = b_2, a_9 = b_3$$

• By the isogeny theorem, to every valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell}n)} \in V_B^0(k)$ corresponds a 3-isogeny $\pi : A \to B$:

$$\pi(\vartheta_i^A(x)_{i\in Z(12)}) = (\vartheta_0^A(x), \vartheta_3^A(x), \vartheta_6^A(x), \vartheta_9^A(x))$$

- Program:
 - Compute $\widehat{\pi}$ from a valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell_n})} \in V_B^0(k)$.
 - Compute a valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell_n})}$ from the kernel K of $\widehat{\pi}$.
 - Compute a theta null point $(a'_i)_{i \in \mathbb{Z}(\overline{n})}$ of level *n* corresponding to A = B/K.

We will show an example with g = 1, n = 4 and $\ell n = 12$ ($\ell = 3$).

- Let *B* be the elliptic curve $y^2 = x^3 + 23x + 3$ over $k = \mathbb{F}_{31}$. The corresponding theta null point (b_0, b_1, b_2, b_3) of level 4 is $(3:1:18:1) \in \mathcal{M}_4(\mathbb{F}_{31})$.
- We note $V_B(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$a_0 = b_0, a_3 = b_1, a_6 = b_2, a_9 = b_3$$

• By the isogeny theorem, to every valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell}n)} \in V_B^0(k)$ corresponds a 3-isogeny $\pi : A \to B$:

$$\pi(\vartheta_i^A(x)_{i\in Z(12)}) = (\vartheta_0^A(x), \vartheta_3^A(x), \vartheta_6^A(x), \vartheta_9^A(x))$$

- Program:
 - Compute $\widehat{\pi}$ from a valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell_n})} \in V_B^0(k)$.
 - Compute a valid theta null point $(a_i)_{i \in \mathbb{Z}(\overline{\ell_n})}$ from the kernel K of $\widehat{\pi}$.
 - Compute a theta null point $(a'_i)_{i \in \mathbb{Z}(\overline{n})}$ of level *n* corresponding to A = B/K.

Computing isogenies

• Computing the contragredient isogeny

- Vélu-like formula in dimension g
- Changing level

The kernel of $\widehat{\pi}$

Let (a_i)_{i∈Z(ℓn)} be a valid theta null point solution. Let ζ be a primitive ℓ root of unity.
 The kernel of π is

$$\{(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}), \\(a_0, \zeta a_1, \zeta^2 a_2, a_3, \zeta a_4, \zeta^2 a_5, a_6, \zeta a_7, \zeta^2 a_8, a_9, \zeta a_{10}, \zeta^2 a_{11}), \\(a_0, \zeta^2 a_1, \zeta a_2, a_3, \zeta^2 a_4, \zeta a_5, a_6, \zeta^2 a_7, \zeta a_8, a_9, \zeta^2 a_{10}, \zeta a_{11})\}$$

• If $i \in Z(\overline{\ell})$ we define

$$\pi_i(x) = (x_{ni+\ell j})_{j \in Z(\overline{n})}$$

Let $R_0 := \pi_0(0_A) = (a_0, a_3, a_6, a_9), R_1 := \pi_1(0_A) = (a_4, a_7, a_{10}, a_1),$ $R_2 := \pi_2(0_A) = (a_8, a_{11}, a_2, a_5).$

• The kernel *K* of $\widehat{\pi}$ is

$$K = \{(a_0, a_3, a_6, a_9), (a_4, a_7, a_{10}, a_1), (a_8, a_{11}, a_2, a_5)\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The kernel of $\widehat{\pi}$

Let (a_i)_{i∈Z(ℓn)} be a valid theta null point solution. Let ζ be a primitive ℓ root of unity.
 The kernel of π is

$$\{(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}), \\(a_0, \zeta a_1, \zeta^2 a_2, a_3, \zeta a_4, \zeta^2 a_5, a_6, \zeta a_7, \zeta^2 a_8, a_9, \zeta a_{10}, \zeta^2 a_{11}), \\(a_0, \zeta^2 a_1, \zeta a_2, a_3, \zeta^2 a_4, \zeta a_5, a_6, \zeta^2 a_7, \zeta a_8, a_9, \zeta^2 a_{10}, \zeta a_{11})\}$$

• If $i \in Z(\overline{\ell})$ we define

$$\pi_i(x) = (x_{ni+\ell j})_{j \in Z(\overline{n})}$$

Let $R_0 := \pi_0(0_A) = (a_0, a_3, a_6, a_9), R_1 := \pi_1(0_A) = (a_4, a_7, a_{10}, a_1), R_2 := \pi_2(0_A) = (a_8, a_{11}, a_2, a_5).$

• The kernel *K* of $\widehat{\pi}$ is

$$K = \{(a_0, a_3, a_6, a_9), (a_4, a_7, a_{10}, a_1), (a_8, a_{11}, a_2, a_5)\}$$

The kernel of $\widehat{\pi}$

Let (a_i)_{i∈Z(ℓn)} be a valid theta null point solution. Let ζ be a primitive ℓ root of unity.
 The kernel of π is

$$\{(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}), \\ (a_0, \zeta a_1, \zeta^2 a_2, a_3, \zeta a_4, \zeta^2 a_5, a_6, \zeta a_7, \zeta^2 a_8, a_9, \zeta a_{10}, \zeta^2 a_{11}), \\ (a_0, \zeta^2 a_1, \zeta a_2, a_3, \zeta^2 a_4, \zeta a_5, a_6, \zeta^2 a_7, \zeta a_8, a_9, \zeta^2 a_{10}, \zeta a_{11})\}$$

• If $i \in Z(\overline{\ell})$ we define

$$\pi_i(x) = (x_{ni+\ell j})_{j \in Z(\overline{n})}$$

Let $R_0 := \pi_0(0_A) = (a_0, a_3, a_6, a_9), R_1 := \pi_1(0_A) = (a_4, a_7, a_{10}, a_1), R_2 := \pi_2(0_A) = (a_8, a_{11}, a_2, a_5).$

• The kernel *K* of $\widehat{\pi}$ is

$$K = \{(a_0, a_3, a_6, a_9), (a_4, a_7, a_{10}, a_1), (a_8, a_{11}, a_2, a_5)\}$$

The pseudo addition law ($k = \mathbb{C}$)

Theorem

$$\begin{split} \Big(\sum_{t\in Z(\bar{2})}\chi(t)\vartheta_{i+t}(x+y)\vartheta_{j+t}(x-y)\Big).\Big(\sum_{t\in Z(\bar{2})}\chi(t)\vartheta_{k+t}(0)\vartheta_{l+t}(0)\Big) = \\ &\Big(\sum_{t\in Z(\bar{2})}\chi(t)\vartheta_{-i'+t}(y)\vartheta_{j'+t}(y)\Big).\Big(\sum_{t\in Z(\bar{2})}\chi(t)\vartheta_{k'+t}(x)\vartheta_{l'+t}(x)\Big). \end{split}$$

・ロト ・ 聞 ト ・ 国 ト ・ 国

Addition and isogenies

Proposition

 $\pi_i(x) = \pi_0(x) + R_i$ so we have:

$$\pi_{i+j}(x+y) = \pi_i(x) + \pi_j(y) \pi_{i-j}(x-y) = \pi_i(x) - \pi_j(y)$$

x ∈ A is entirely determined by π₀(x), π₁(x), π₂(x).
 π₂(x) = π₁(x) + R₁, π₁(x) - R₁ = π₀(x) = y.

Corollary

• *x* is entirely determined by

 $\{\pi_i(x)\}_{i\in\{0,e_1,\cdots,e_g,e_1+e_2,\cdots,e_{g-1}+e_g\}}$

- Use $(1 + g(g+1)/2)n^g$ coordinates rather than $(ln)^g$.
- The decompression use O(l^g) chain additions.
- Can still do chain additions with this representation.

Addition and isogenies

Proposition

 $\pi_i(x) = \pi_0(x) + R_i$ so we have:

$$\pi_{i+j}(x+y) = \pi_i(x) + \pi_j(y) \pi_{i-j}(x-y) = \pi_i(x) - \pi_j(y)$$

x ∈ *A* is entirely determined by π₀(*x*), π₁(*x*), π₂(*x*).
 π₂(*x*) = π₁(*x*) + R₁, π₁(*x*) - R₁ = π₀(*x*) = *y*.

Corollary

• *x* is entirely determined by

 $\{\pi_i(x)\}_{i\in\{0,e_1,\cdots,e_g,e_1+e_2,\cdots,e_{g-1}+e_g\}}$

- Use $(1 + g(g+1)/2)n^g$ coordinates rather than $(ln)^g$.
- The decompression use O(l^g) chain additions.
- Can still do chain additions with this representation.
Addition and isogenies

Proposition

 $\pi_i(x) = \pi_0(x) + R_i$ so we have:

$$\pi_{i+j}(x+y) = \pi_i(x) + \pi_j(y) \pi_{i-j}(x-y) = \pi_i(x) - \pi_j(y)$$

x ∈ A is entirely determined by π₀(x), π₁(x), π₂(x).
 π₂(x) = π₁(x) + R₁, π₁(x) - R₁ = π₀(x) = y.

Corollary

• *x* is entirely determined by

 $\{\pi_i(x)\}_{i\in\{0,e_1,\cdots,e_g,e_1+e_2,\cdots,e_{g-1}+e_g\}}$

- Use $(1 + g(g+1)/2)n^g$ coordinates rather than $(ln)^g$.
- The decompression use O(l^g) chain additions.
- Can still do chain additions with this representation.

Addition and isogenies

Proposition

 $\pi_i(x) = \pi_0(x) + R_i$ so we have:

$$\pi_{i+j}(x+y) = \pi_i(x) + \pi_j(y) \pi_{i-j}(x-y) = \pi_i(x) - \pi_j(y)$$

- $x \in A$ is entirely determined by $\pi_0(x)$, $\pi_1(x)$, $\pi_2(x)$.
- $\pi_2(x) = \pi_1(x) + R_1, \pi_1(x) R_1 = \pi_0(x) = y.$

Corollary

• x is entirely determined by

$${\pi_i(x)}_{i\in\{0,e_1,\cdots,e_g,e_1+e_2,\cdots,e_{g-1}+e_g\}}$$

- Use $(1 + g(g+1)/2)n^g$ coordinates rather than $(\ell n)^g$.
- The decompression use $O(\ell^g)$ chain additions.
- Can still do chain additions with this representation.

Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$

Damien Robert (Caramel, LORIA)

イロト イヨト イヨト イ

Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$

Damien Robert (Caramel, LORIA)

イロト イロト イヨト イ

Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$

Damien Robert (Caramel, LORIA)

・ロト ・ 日 ト ・ ヨ ト

Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$

イロト イロト イヨト イ

イロト イロト イヨト

Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$

Let $y \in B$. We can compute $y_i = y \oplus R_i$ with a normal addition. We have $y_i = \lambda_i \pi_i(x)$.

$$y = [\pi_i(x) + (\ell - 1).R_i] = \lambda_i^{\ell}[y_i + (\ell)R_i]$$

$$\pi_i(\ell . x) = [\pi_i(x) + (\ell).y] = \lambda_i^{\ell}[y_i + (\ell).y]$$

Corollary

We can compute $\pi_i(\ell.x)$ with two fast multiplications of length ℓ . To recover the compressed coordinates of $\widehat{\pi}(y)$, we need $g(g+1)/2 \cdot O(\log(\ell))$ additions.

Let $\pi : A \to B$ be the isogeny associated to $(a_i)_{i \in \mathbb{Z}(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^g antecedents. Then

$$\widehat{\pi}(y) = \ell . x$$

Let $y \in B$. We can compute $y_i = y \oplus R_i$ with a normal addition. We have $y_i = \lambda_i \pi_i(x)$.

$$y = [\pi_i(x) + (\ell - 1).R_i] = \lambda_i^{\ell} [y_i + (\ell)R_i]$$

$$\pi_i(\ell . x) = [\pi_i(x) + (\ell).y] = \lambda_i^{\ell} [y_i + (\ell).y]$$

Corollary

We can compute $\pi_i(\ell . x)$ with two fast multiplications of length ℓ . To recover the compressed coordinates of $\widehat{\pi}(y)$, we need $g(g+1)/2 \cdot O(\log(\ell))$ additions.

Example

Let $K = \{(3:1:18:1), (22:15:4:1), (18:29:23:1)\}$, a point solution corresponding to this kernel is given by $(3, \eta^{14233}, \eta^{2317}, 1, \eta^{1324}, \eta^{5296}, 18, \eta^{5296}, \eta^{1324}, 1, \eta^{2317}, \eta^{14233})$ where $\eta^3 + \eta + 28 = 0$. Let $y = (\eta^{19406}, \eta^{19805}, \eta^{10720}, 1)$. We want to determine $\pi_1(x)$, we have to compute:

$$y$$

$$R_1 \qquad y + R_1 \qquad y + 2R_1 \qquad y + 3R_1 = y$$

$$2y + R_1$$

$$3y + R_1$$

< ロト < 同ト < ヨト < ヨト

Example

Let $K = \{(3:1:18:1), (22:15:4:1), (18:29:23:1)\}$, a point solution corresponding to this kernel is given by $(3, \eta^{14233}, \eta^{2317}, 1, \eta^{1324}, \eta^{5296}, 18, \eta^{5296}, \eta^{1324}, 1, \eta^{2317}, \eta^{14233})$ where $\eta^3 + \eta + 28 = 0$. $R_1 = (\eta^{1324}, \eta^{5296}, \eta^{2317}, \eta^{14233})$ $y = (\eta^{19406}, \eta^{19805}, \eta^{10720}, 1)$ $y + R_1 = \lambda_1(\eta^{2722}, \eta^{28681}, \eta^{26466}, \eta^{2096})$ $y + 2R_1 = \lambda_1^2(\eta^{28758}, \eta^{11337}, \eta^{27602}, \eta^{22972})$ $y + 3R_1 = \lambda_1^3(\eta^{18374}, \eta^{18773}, \eta^{9688}, \eta^{28758}) = y/\eta^{1032}$ $2y + R_1 = \lambda_1^2(\eta^{17786}, \eta^{12000}, \eta^{16630}, \eta^{365})$ $3y + R_1 = \lambda_1^3(\eta^{7096}, \eta^{11068}, \eta^{8089}, \eta^{20005}) = \eta^{5772}R_1$

We have $\lambda_1^3 = \eta^{28758}$ and $\widehat{\pi}(y) = (3, \eta^{21037}, \eta^{15925}, 1, \eta^{8128}, \eta^{18904}, 18, \eta^{12100}, \eta^{14932}, 1, \eta^{9121}, \eta^{27841})$

Computing isogenies

- Computing the contragredient isogeny
- Vélu-like formula in dimension *g*
- Changing level

The action of the symplectic group on the modular space

- Let K ⊂ B[ℓ] be an isotropic subgroup of maximal rank. Let (a_i)_{i∈Z(ℓn)} be a theta null point corresponding to the isogeny π : B → B/K.
- The actions of the symplectic group compatible with the isogeny π are generated by

$$\{R_i\}_{i\in Z(\overline{\ell n})} \mapsto \{R_{\psi_1(i)}\}_{i\in Z(\overline{\ell n})}$$
(2)

$$\{R_i\}_{i \in \mathbb{Z}(\overline{\ell n})} \mapsto \{e(\psi_2(i), i)R_i\}_{i \in \mathbb{Z}(\overline{\ell n})}$$
(3)

where ψ_1 is an automorphism of $Z(\overline{\ell})$ and ψ_2 is a symmetric endomorphism of $Z(\overline{\ell n})$.

• In particular by action (2), if $\{T_{e_i}\}_{i \in [1..g]}$ is a basis of *K*, we may suppose that $R_{e_i} = \lambda_{e_i} T_{e_i}$.

The action of the symplectic group on the modular space

Let K ⊂ B[ℓ] be an isotropic subgroup of maximal rank. Let (a_i)_{i∈Z(ℓn)} be a theta null point corresponding to the isogeny π : B → B/K.

Example

These points corresponds to the same isogeny:

$$(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11})$$

$$(a_{0}, \zeta a_{1}, \zeta^{2^{2}} a_{2}, a_{3}, \zeta a_{4}, \zeta^{2^{2}} a_{5}, a_{6}, \zeta a_{7}, \zeta^{2^{2}} a_{8}, a_{9}, \zeta a_{10}, \zeta^{2^{2}} a_{11})$$

$$(a_{0}, \zeta^{2} a_{1}, \zeta^{2} a_{2}, a_{3}, \zeta^{2} a_{4}, \zeta^{2} a_{5}, a_{6}, \zeta^{2} a_{7}, \zeta^{2} a_{8}, a_{9}, \zeta^{2} a_{10}, \zeta^{2} a_{11})$$

$$(a_{0}, a_{5}, a_{10}, a_{3}, a_{8}, a_{1}, a_{6}, a_{11}, a_{4}, a_{9}, a_{2}, a_{7})$$

$$(a_{0}, \zeta a_{5}, \zeta a_{10}, a_{3}, \zeta a_{8}, \zeta a_{1}, a_{6}, \zeta a_{11}, \zeta a_{4}, a_{9}, \zeta a_{2}, \zeta a_{7})$$

$$(a_{0}, \zeta^{2} a_{5}, \zeta^{2} a_{10}, a_{3}, \zeta^{2} a_{8}, \zeta^{2} a_{1}, a_{6}, \zeta^{2} a_{11}, \zeta^{2} a_{4}, a_{9}, \zeta^{2} a_{2}, \zeta^{2} a_{7})$$

Recovering the projective factors

- Since we are working with symmetric Theta structures, we have $\vartheta_i(-x) = \vartheta_{-i}(x)$.
- In particular if $\ell = 2\ell' + 1$

$$(\ell'+1).R_i = -\ell'.R_i$$
$$\lambda_i^{(\ell'+1)^2}(\ell'+1).T_i = \lambda_i^{\ell'^2}\ell'.T_i$$

So we may recover λ_i up to a ℓ -root of unity.

• But we only need to recover R_i for $i \in \{e_1, \dots, e_{g-1} + e_g\}$ and the action (3) shows that each choice of a ℓ -root of unity corresponds to a valid theta null point.

Corollary

We have Vélu-like formulas to recover the compressed modular point solution, by computing $g(g+1)/2 \ell$ -roots and $g(g+1)/2 \cdot O(\log(\ell))$ additions. The compressed coordinates are sufficient to compute the compressed coordinates of the associated isogeny.

Recovering the projective factors

- Since we are working with symmetric Theta structures, we have $\vartheta_i(-x) = \vartheta_{-i}(x)$.
- In particular if $\ell = 2\ell' + 1$

$$(\ell'+1).R_i = -\ell'.R_i$$
$$\lambda_i^{(\ell'+1)^2}(\ell'+1).T_i = \lambda_i^{{\ell'}^2}\ell'.T_i$$

So we may recover λ_i up to a ℓ -root of unity.

• But we only need to recover R_i for $i \in \{e_1, \dots, e_{g-1} + e_g\}$ and the action (3) shows that each choice of a ℓ -root of unity corresponds to a valid theta null point.

Corollary

We have Vélu-like formulas to recover the compressed modular point solution, by computing $g(g+1)/2 \ell$ -roots and $g(g+1)/2 \cdot O(\log(\ell))$ additions. The compressed coordinates are sufficient to compute the compressed coordinates of the associated isogeny.

Recovering the projective factors

- Since we are working with symmetric Theta structures, we have $\vartheta_i(-x) = \vartheta_{-i}(x)$.
- In particular if $\ell = 2\ell' + 1$

$$(\ell'+1).R_i = -\ell'.R_i$$
$$\lambda_i^{(\ell'+1)^2}(\ell'+1).T_i = \lambda_i^{{\ell'}^2}\ell'.T_i$$

So we may recover λ_i up to a ℓ -root of unity.

• But we only need to recover R_i for $i \in \{e_1, \dots, e_{g-1} + e_g\}$ and the action (3) shows that each choice of a ℓ -root of unity corresponds to a valid theta null point.

Corollary

We have Vélu-like formulas to recover the compressed modular point solution, by computing $g(g+1)/2 \ell$ -roots and $g(g+1)/2 \cdot O(\log(\ell))$ additions. The compressed coordinates are sufficient to compute the compressed coordinates of the associated isogeny.

Computing isogenies

- Computing the contragredient isogeny
- Vélu-like formula in dimension g
- Changing level

• $\pi_2 \circ \widehat{\pi}$ is an ℓ^2 isogeny between two varieties of level *n*.

- Each choice of the ℓ -roots of unity in the Vélu's-like formulas give a different decomposition $A[\ell] = A[\ell]_1 \oplus K$. All the ℓ^2 -isogenies $B \to C$ containing K come from these choices.
- We know the kernel of the contragredient isogeny $C \rightarrow A$, this is helpful for computing isogeny graphs.

- $\pi_2 \circ \widehat{\pi}$ is an ℓ^2 isogeny between two varieties of level *n*.
- Each choice of the ℓ -roots of unity in the Vélu's-like formulas give a different decomposition $A[\ell] = A[\ell]_1 \oplus K$. All the ℓ^2 -isogenies $B \to C$ containing K come from these choices.
- We know the kernel of the contragredient isogeny $C \rightarrow A$, this is helpful for computing isogeny graphs.

- $\pi_2 \circ \widehat{\pi}$ is an ℓ^2 isogeny between two varieties of level *n*.
- Each choice of the ℓ -roots of unity in the Vélu's-like formulas give a different decomposition $A[\ell] = A[\ell]_1 \oplus K$. All the ℓ^2 -isogenies $B \to C$ containing K come from these choices.
- We know the kernel of the contragredient isogeny $C \rightarrow A$, this is helpful for computing isogeny graphs.

- $\pi_2 \circ \widehat{\pi}$ is an ℓ^2 isogeny between two varieties of level *n*.
- Each choice of the ℓ -roots of unity in the Vélu's-like formulas give a different decomposition $A[\ell] = A[\ell]_1 \oplus K$. All the ℓ^2 -isogenies $B \to C$ containing K come from these choices.
- We know the kernel of the contragredient isogeny $C \rightarrow A$, this is helpful for computing isogeny graphs.

Theorem (Koizumi-Kempf)

Let $F \in M_r(\mathbb{Z})$ be such that ${}^tFF = \ell \operatorname{Id}$, and $f : A^r \to A^r$ the corresponding isogeny. There existe a line bundle \mathcal{L}' on A such that $\mathcal{L} = \mathcal{L'}^{\ell}$ and a theta structure on \mathcal{L}' such that the isogeny f is given by

$$f^* \left(\vartheta_{i_1}^{\mathcal{L}'} \star \ldots \star \vartheta_{i_r}^{\mathcal{L}'} \right) = \lambda \sum_{\substack{(j_1, \ldots, j_r) \in K_1(\mathcal{L}') \times \ldots \times K_1(\mathcal{L}') \\ f(j_1, \ldots, j_r) = (i_1, \ldots, i_r)}} \vartheta_{j_1}^{\mathcal{L}} \star \ldots \star \vartheta_{j_r}^{\mathcal{L}}$$

- $F = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ give the Riemann relations. (For general ℓ use the matrix from the quaternions.)
- Can be combined with the preceding method to compute the isogeny $B \rightarrow A$ while staying in level *n*.
- No need of *l*-roots. Need only O(#K) pseudo-additions in B ⇒ full generalisation of Vélu's formulas.
- The formulas are rational if the kernel *K* is rational.

Theorem (Koizumi-Kempf)

Let $F \in M_r(\mathbb{Z})$ be such that ${}^tFF = \ell \operatorname{Id}$, and $f : A^r \to A^r$ the corresponding isogeny. There existe a line bundle \mathcal{L}' on A such that $\mathcal{L} = \mathcal{L'}^{\ell}$ and a theta structure on \mathcal{L}' such that the isogeny f is given by

$$f^* \left(\vartheta_{i_1}^{\mathcal{L}'} \star \ldots \star \vartheta_{i_r}^{\mathcal{L}'} \right) = \lambda \sum_{\substack{(j_1, \ldots, j_r) \in K_1(\mathcal{L}') \times \ldots \times K_1(\mathcal{L}') \\ f(j_1, \ldots, j_r) = (i_1, \ldots, i_r)}} \vartheta_{j_1}^{\mathcal{L}} \star \ldots \star \vartheta_{j_r}^{\mathcal{L}}$$

- $F = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ give the Riemann relations. (For general ℓ use the matrix from the quaternions.)
- Can be combined with the preceding method to compute the isogeny $B \rightarrow A$ while staying in level *n*.
- No need of *l*-roots. Need only O(#K) pseudo-additions in B ⇒ full generalisation of Vélu's formulas.
- The formulas are rational if the kernel *K* is rational.

Theorem (Koizumi-Kempf)

Let $F \in M_r(\mathbb{Z})$ be such that ${}^tFF = \ell \operatorname{Id}$, and $f : A^r \to A^r$ the corresponding isogeny. There existe a line bundle \mathcal{L}' on A such that $\mathcal{L} = {\mathcal{L}'}^{\ell}$ and a theta structure on \mathcal{L}' such that the isogeny f is given by

$$f^* \left(\vartheta_{i_1}^{\mathcal{L}'} \star \ldots \star \vartheta_{i_r}^{\mathcal{L}'} \right) = \lambda \sum_{\substack{(j_1, \ldots, j_r) \in K_1(\mathcal{L}') \times \ldots \times K_1(\mathcal{L}') \\ f(j_1, \ldots, j_r) = (i_1, \ldots, i_r)}} \vartheta_{j_1}^{\mathcal{L}} \star \ldots \star \vartheta_{j_r}^{\mathcal{L}}$$

- $F = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ give the Riemann relations. (For general ℓ use the matrix from the quaternions.)
- Can be combined with the preceding method to compute the isogeny $B \rightarrow A$ while staying in level *n*.
- No need of *ℓ*-roots. Need only *O*(*#K*) pseudo-additions in *B* ⇒ full generalisation of Vélu's formulas.
- The formulas are rational if the kernel *K* is rational.

Theorem (Koizumi-Kempf)

Let $F \in M_r(\mathbb{Z})$ be such that ${}^tFF = \ell \operatorname{Id}$, and $f : A^r \to A^r$ the corresponding isogeny. There existe a line bundle \mathcal{L}' on A such that $\mathcal{L} = \mathcal{L'}^{\ell}$ and a theta structure on \mathcal{L}' such that the isogeny f is given by

$$f^* \left(\vartheta_{i_1}^{\mathcal{L}'} \star \ldots \star \vartheta_{i_r}^{\mathcal{L}'} \right) = \lambda \sum_{\substack{(j_1, \ldots, j_r) \in K_1(\mathcal{L}') \times \ldots \times K_1(\mathcal{L}') \\ f(j_1, \ldots, j_r) = (i_1, \ldots, i_r)}} \vartheta_{j_1}^{\mathcal{L}} \star \ldots \star \vartheta_{j_r}^{\mathcal{L}}$$

- $F = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ give the Riemann relations. (For general ℓ use the matrix from the quaternions.)
- Can be combined with the preceding method to compute the isogeny $B \rightarrow A$ while staying in level *n*.
- No need of *ℓ*-roots. Need only *O*(*#K*) pseudo-additions in *B* ⇒ full generalisation of Vélu's formulas.
- The formulas are rational if the kernel *K* is rational.

Theorem (Koizumi-Kempf)

Let $F \in M_r(\mathbb{Z})$ be such that ${}^tFF = \ell \operatorname{Id}$, and $f : A^r \to A^r$ the corresponding isogeny. There existe a line bundle \mathcal{L}' on A such that $\mathcal{L} = \mathcal{L'}^{\ell}$ and a theta structure on \mathcal{L}' such that the isogeny f is given by

$$f^* \left(\vartheta_{i_1}^{\mathcal{L}'} \star \ldots \star \vartheta_{i_r}^{\mathcal{L}'} \right) = \lambda \sum_{\substack{(j_1, \ldots, j_r) \in K_1(\mathcal{L}') \times \ldots \times K_1(\mathcal{L}') \\ f(j_1, \ldots, j_r) = (i_1, \ldots, i_r)}} \vartheta_{j_1}^{\mathcal{L}} \star \ldots \star \vartheta_{j_r}^{\mathcal{L}}$$

- $F = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ give the Riemann relations. (For general ℓ use the matrix from the quaternions.)
- Can be combined with the preceding method to compute the isogeny $B \rightarrow A$ while staying in level *n*.
- No need of ℓ -roots. Need only O(#K) pseudo-additions in $B \Rightarrow$ full generalisation of Vélu's formulas.
- The formulas are rational if the kernel *K* is rational.

- We need to know the kernel ⇒ find equations for the quotient of the modular space by the action of the symplectic group.
- Theta functions are not rational ⇒ go back and forth between theta functions and Mumford coordinates (Romain Cosset).
- Fast computation of the commutator pairing with theta functions ⇒ ANTS IX, Nancy!

- We need to know the kernel ⇒ find equations for the quotient of the modular space by the action of the symplectic group.
- Theta functions are not rational ⇒ go back and forth between theta functions and Mumford coordinates (Romain Cosset).
- Fast computation of the commutator pairing with theta functions ⇒ ANTS IX, Nancy!

- We need to know the kernel ⇒ find equations for the quotient of the modular space by the action of the symplectic group.
- Theta functions are not rational ⇒ go back and forth between theta functions and Mumford coordinates (Romain Cosset).
- Fast computation of the commutator pairing with theta functions ⇒ ANTS IX, Nancy!