A Vélu-like formula for computing isogenies on Abelian Varieties

Algorithmique et Arithmétique, avec applications à la cryptographie

Romain Cosset 1, David Lubicz ${ }^{2,3}$, Damien Robert ${ }^{1}$
${ }^{1}$ Caramel team, Nancy Université, CNRS, Inria Nancy Grand Est ${ }^{2}$ CÉLAR
${ }^{3}$ IRMAR, Université de Rennes 1
18-05-2010, Moscow

Outline

(1) Abelian varieties and isogenies

(2) Theta functions

(3) Computing isogenies

Outline

(1) Abelian varieties and isogenies
(2) Theta functions
(3) Computing isogenies

Outline

(1) Abelian varieties and isogenies
(2) Theta functions
(3) Computing isogenies

Outline

(1) Abelian varieties and isogenies

Theta functions

(3) Computing isogenies

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law.
- Example: Elliptic curves, Jacobians of genus g curves...

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law.
- Example: Elliptic curves, Jacobians of genus g curves...

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law.
- Example: Elliptic curves, Jacobians of genus g curves...

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law.
- Example: Elliptic curves, Jacobians of genus g curves...

Usage of Abelian varieties in cryptography

- Public key cryptography with the Discrete Logarithm Problem.
\Rightarrow Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
- Pairing based cryptography.
\Rightarrow Abelian varieties of dimension $g \leqslant 4$.

Usage of Abelian varieties in cryptography

- Public key cryptography with the Discrete Logarithm Problem.
\Rightarrow Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
- Pairing based cryptography.
\Rightarrow Abelian varieties of dimension $g \leqslant 4$.

Usage of Abelian varieties in cryptography

- Public key cryptography with the Discrete Logarithm Problem.
\Rightarrow Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
- Pairing based cryptography.
\Rightarrow Abelian varieties of dimension $g \leqslant 4$.

Usage of Abelian varieties in cryptography

- Public key cryptography with the Discrete Logarithm Problem.
\Rightarrow Elliptic curves, Jacobian of hyperelliptic curves of genus 2.
- Pairing based cryptography.
\Rightarrow Abelian varieties of dimension $g \leqslant 4$.

Working with Jacobian of hyperelliptic curves

Let $C: y^{2}=f(x)$ be a smooth irreducible hyperelliptic curve of genus g, with a rational point at infinity ($\operatorname{deg} f=2 g-1$).

- Every divisor D on C has a unique representative $(k \leqslant g)$

$$
D=\sum_{i=1}^{k} P_{i}-P_{\infty}
$$

- Mumford coordinates: $D=(u, v)$ where $u=\Pi\left(x-x_{i}\right)$ and $v\left(x_{i}\right)=y_{i}$ ($\operatorname{deg} v<\operatorname{deg} u$).
- Cantor algorithm: Given a divisor D compute the Mumford representation $D=(u, v) \Rightarrow$ addition law.

Remark

Working with Jacobian of hyperelliptic curves

Let $C: y^{2}=f(x)$ be a smooth irreducible hyperelliptic curve of genus g, with a rational point at infinity ($\operatorname{deg} f=2 g-1$).

- Every divisor D on C has a unique representative $(k \leqslant g)$

$$
D=\sum_{i=1}^{k} P_{i}-P_{\infty}
$$

- Mumford coordinates: $D=(u, v)$ where $u=\Pi\left(x-x_{i}\right)$ and $v\left(x_{i}\right)=y_{i}$ ($\operatorname{deg} v<\operatorname{deg} u$).
- Cantor algorithm: Given a divisor D compute the Mumford representation $D=(u, v) \Rightarrow$ addition law.

Remark

- For elliptic curves: more efficient coordinates (Edwards...).
- Pairing computation: use Miller algorithm.

Tsogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies $=$ Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \leftrightarrow H
\end{aligned}
$$

- Example: Multiplication by $\ell(\Rightarrow \ell$-torsion), Frobenius (non separable).

Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies $=$ Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \leftrightarrow H
\end{aligned}
$$

- Example: Multiplication by $\ell(\Rightarrow \ell$-torsion), Frobenius (non separable).

Tsogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies $=$ Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \leftrightarrow H
\end{aligned}
$$

- Example: Multiplication by $\ell(\Rightarrow \ell$-torsion), Frobenius (non separable).

Tsogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies $=$ Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \leftrightarrow H
\end{aligned}
$$

- Example: Multiplication by $\ell(\Rightarrow \ell$-torsion), Frobenius (non separable).

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-adic or p-adic).
- Compute the class field polynomials (CM-method).
- Compute the modular polynomials.
- Determine End (A).

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-adic or p-adic).
- Compute the class field polynomials (CM-method).
- Compute the modular polynomials.
- Determine End (A).

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-adic or p-adic).
- Compute the class field polynomials (CM-method).
- Compute the modular polynomials.
- Determine End (A).

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-adic or p-adic).
- Compute the class field polynomials (CM-method).
- Compute the modular polynomials.
- Determine End (A).

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-adic or p-adic).
- Compute the class field polynomials (CM-method).
- Compute the modular polynomials.
- Determine End (A).

Vélu's formula

Theorem

Let $E: y^{2}=f(x)$ be an elliptic curve. Let $G \subset E(k)$ be a finite subgroup. Then E / G is given by $Y^{2}=g(X)$ where

$$
\begin{aligned}
& X(P)=x(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}} x(P+Q)-x(Q) \\
& Y(P)=y(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}} y(P+Q)-y(Q)
\end{aligned}
$$

- Uses the fact that x and y are characterised in $k(E)$ by

$$
\begin{array}{rll}
v_{0_{E}}(x)=-2 & v_{P}(x) \geqslant 0 & \text { if } P \neq 0_{E} \\
v_{0_{E}}(y)=-3 & v_{P}(y) \geqslant 0 & \text { if } P \neq 0_{E} \\
y^{2} / x^{3}\left(O_{E}\right)=1 & &
\end{array}
$$

- No such characterisation in genus $g \geqslant 2$.

Vélu's formula

Theorem

Let $E: y^{2}=f(x)$ be an elliptic curve. Let $G \subset E(k)$ be a finite subgroup. Then E / G is given by $Y^{2}=g(X)$ where

$$
\begin{aligned}
& X(P)=x(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}} x(P+Q)-x(Q) \\
& Y(P)=y(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}} y(P+Q)-y(Q)
\end{aligned}
$$

- Uses the fact that x and y are characterised in $k(E)$ by

$$
\begin{array}{rll}
v_{0_{E}}(x)=-2 & v_{P}(x) \geqslant 0 & \text { if } P \neq 0_{E} \\
v_{0_{E}}(y)=-3 & v_{P}(y) \geqslant 0 & \text { if } P \neq 0_{E} \\
y^{2} / x^{3}\left(O_{E}\right)=1 & &
\end{array}
$$

- No such characterisation in genus $g \geqslant 2$.

The modular polynomial

Definition

- The modular polynomial is a polynomial $\phi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_{n}(x, y)=0$ iff $x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\phi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: the compressed coefficients of ϕ_{2} take 26.8 MB .
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Definition

- The modular polynomial is a polynomial $\phi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_{n}(x, y)=0$ iff $x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\phi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: the compressed coefficients of ϕ_{2} take 26.8 MB .
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Definition

- The modular polynomial is a polynomial $\phi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_{n}(x, y)=0$ iff $x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\phi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: the compressed coefficients of ϕ_{2} take 26.8 MB .
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Definition

- The modular polynomial is a polynomial $\phi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_{n}(x, y)=0$ iff $x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\phi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: the compressed coefficients of ϕ_{2} take 26.8 MB .
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Definition

- The modular polynomial is a polynomial $\phi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_{n}(x, y)=0$ iff $x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\phi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: the compressed coefficients of ϕ_{2} take 26.8 MB .
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

Outline

(1) Abelian varieties and isogenies

2) Theta functions
(3) Computing isogenies

The theta group

Definition

Let (A, \mathcal{L}) be a (separably) polarized abelian variety over an algebraically closed field k. The polarisation \mathcal{L} induces an isogeny

$$
\begin{array}{rll}
\phi_{\mathcal{L}}: A & \longrightarrow & \widehat{A}_{k} \\
x & \longmapsto & t_{x}^{*} \mathcal{L} \otimes \mathcal{L}^{-1}
\end{array}
$$

We note $K(\mathcal{L})=\operatorname{Ker} \phi_{\mathcal{L}}$, the theta group is $G(\mathcal{L})=\left\{(x, \psi) \mid \psi: t_{x}^{*} \mathcal{L} \xrightarrow{\sim} \mathcal{L}\right\}$. $G(\mathcal{L})$ is a central extension of $K(\mathcal{L})$:

$$
0 \longrightarrow k^{*} \longrightarrow G(\mathcal{L}) \longrightarrow K(\mathcal{L}) \longrightarrow 0 .
$$

- Group law: $(x, \phi) \cdot(y, \psi)=\left(x+y, t_{x}^{*} \psi \circ \phi\right)$:

$$
\mathcal{L} \xrightarrow{\phi} t_{x}^{*} \mathcal{L} \xrightarrow{t_{x}^{*} \psi} t_{x}^{*}\left(t_{y}^{*} \mathcal{L}\right)=t_{x+y}^{*} \mathcal{L} .
$$

- Descent theory: If $K \subset K(\mathcal{L})$ is isotropic, sections $s: K \rightarrow G(\mathcal{L}) \Leftrightarrow$ descent data $\pi:(X, \mathcal{L}) \rightarrow(X / K, \mathcal{M})$.

The theta group

Definition

Let (A, \mathcal{L}) be a (separably) polarized abelian variety over an algebraically closed field k. The polarisation \mathcal{L} induces an isogeny

$$
\begin{array}{rll}
\phi_{\mathcal{L}}: A & \longrightarrow & \widehat{A}_{k} \\
x & \longmapsto & t_{x}^{*} \mathcal{L} \otimes \mathcal{L}^{-1}
\end{array}
$$

We note $K(\mathcal{L})=\operatorname{Ker} \phi_{\mathcal{L}}$, the theta group is $G(\mathcal{L})=\left\{(x, \psi) \mid \psi: t_{x}^{*} \mathcal{L} \xrightarrow{\sim} \mathcal{L}\right\}$. $G(\mathcal{L})$ is a central extension of $K(\mathcal{L})$:

$$
0 \longrightarrow k^{*} \longrightarrow G(\mathcal{L}) \longrightarrow K(\mathcal{L}) \longrightarrow 0 .
$$

- Group law: $(x, \phi) \cdot(y, \psi)=\left(x+y, t_{x}^{*} \psi \circ \phi\right)$:

$$
\mathcal{L} \xrightarrow{\phi} t_{x}^{*} \mathcal{L} \xrightarrow{t_{x}^{*} \psi} t_{x}^{*}\left(t_{y}^{*} \mathcal{L}\right)=t_{x+y}^{*} \mathcal{L} .
$$

- Descent theory: If $K \subset K(\mathcal{L})$ is isotropic, sections $s: K \rightarrow G(\mathcal{L}) \Leftrightarrow$ descent data $\pi:(X, \mathcal{L}) \rightarrow(X / K, \mathcal{M})$.

The theta group

Definition

Let (A, \mathcal{L}) be a (separably) polarized abelian variety over an algebraically closed field k. The polarisation \mathcal{L} induces an isogeny

$$
\begin{array}{rll}
\phi_{\mathcal{L}}: A & \longrightarrow & \widehat{A}_{k} \\
x & \longmapsto & t_{x}^{*} \mathcal{L} \otimes \mathcal{L}^{-1}
\end{array}
$$

We note $K(\mathcal{L})=\operatorname{Ker} \phi_{\mathcal{L}}$, the theta group is $G(\mathcal{L})=\left\{(x, \psi) \mid \psi: t_{x}^{*} \mathcal{L} \xrightarrow{\sim} \mathcal{L}\right\}$. $G(\mathcal{L})$ is a central extension of $K(\mathcal{L})$:

$$
0 \longrightarrow k^{*} \longrightarrow G(\mathcal{L}) \longrightarrow K(\mathcal{L}) \longrightarrow 0 .
$$

- Group law: $(x, \phi) \cdot(y, \psi)=\left(x+y, t_{x}^{*} \psi \circ \phi\right)$:

$$
\mathcal{L} \xrightarrow{\phi} t_{x}^{*} \mathcal{L} \xrightarrow{t_{x}^{*} \psi} t_{x}^{*}\left(t_{y}^{*} \mathcal{L}\right)=t_{x+y}^{*} \mathcal{L} .
$$

- Descent theory: If $K \subset K(\mathcal{L})$ is isotropic, sections $s: K \rightarrow G(\mathcal{L}) \Leftrightarrow$ descent data $\pi:(X, \mathcal{L}) \rightarrow(X / K, \mathcal{M})$.

Heisenberg group

Definition

The Heisenberg group of level n is $H(n)=k^{*} \times Z(n) \times \hat{Z}(n)$ where $Z(n):=\mathbb{Z}^{g} / n \mathbb{Z}^{g}$ and $\hat{Z}(n)$ is the dual of $Z(n)$. The group law is given by

$$
\left(\alpha, x_{1}, x_{2}\right)\left(\beta, y_{1}, y_{2}\right)=\left(\left\langle x_{1}, y_{2}\right\rangle \alpha \beta, x_{1}+y_{1}, x_{2}+y_{2}\right),
$$

where $\left\langle x_{1}, y_{2}\right\rangle=y_{2}\left(x_{1}\right)$ is the canonical pairing.

- A polarised abelian variety (A, \mathcal{L}) is of level n if $K(\mathcal{L}) \simeq Z(n)$.
- A theta structure on (A, \mathcal{L}) is an isomorphism $\Theta_{\mathcal{L}}: H(n) \rightarrow G(\mathcal{L})$.
- The theta structure $\Theta_{\mathcal{L}}$ induces a symplectic isomorphism (for the commutator pairing) $\bar{\Theta}_{\mathcal{L}}: K(n):=Z(n) \oplus \hat{Z}(n) \xrightarrow{\sim} K(\mathcal{L})$.
- The symplectic decomposition $K(n)=Z(n) \oplus \hat{Z}(n)$ induces a decomposition $K(\mathcal{L})=K_{1}(\mathcal{L}) \oplus K_{2}(\mathcal{L})$.

Heisenberg group

Definition

The Heisenberg group of level n is $H(n)=k^{*} \times Z(n) \times \hat{Z}(n)$ where $Z(n):=\mathbb{Z}^{g} / n \mathbb{Z}^{g}$ and $\hat{Z}(n)$ is the dual of $Z(n)$. The group law is given by

$$
\left(\alpha, x_{1}, x_{2}\right)\left(\beta, y_{1}, y_{2}\right)=\left(\left\langle x_{1}, y_{2}\right\rangle \alpha \beta, x_{1}+y_{1}, x_{2}+y_{2}\right),
$$

where $\left\langle x_{1}, y_{2}\right\rangle=y_{2}\left(x_{1}\right)$ is the canonical pairing.

- A polarised abelian variety (A, \mathcal{L}) is of level n if $K(\mathcal{L}) \simeq Z(n)$.
- A theta structure on (A, \mathcal{L}) is an isomorphism $\Theta_{\mathcal{L}}: H(n) \rightarrow G(\mathcal{L})$.
- The theta structure $\Theta_{\mathcal{L}}$ induces a symplectic isomorphism (for the commutator pairing) $\bar{\Theta}_{\mathcal{L}}: K(n):=Z(n) \oplus \hat{Z}(n) \xrightarrow{\sim} K(\mathcal{L})$.
- The symplectic decomposition $K(n)=Z(n) \oplus \hat{Z}(n)$ induces a decomposition $K(\mathcal{L})=K_{1}(\mathcal{L}) \oplus K_{2}(\mathcal{L})$.

Heisenberg group

Definition

The Heisenberg group of level n is $H(n)=k^{*} \times Z(n) \times \hat{Z}(n)$ where $Z(n):=\mathbb{Z}^{g} / n \mathbb{Z}^{g}$ and $\hat{Z}(n)$ is the dual of $Z(n)$. The group law is given by

$$
\left(\alpha, x_{1}, x_{2}\right)\left(\beta, y_{1}, y_{2}\right)=\left(\left\langle x_{1}, y_{2}\right\rangle \alpha \beta, x_{1}+y_{1}, x_{2}+y_{2}\right),
$$

where $\left\langle x_{1}, y_{2}\right\rangle=y_{2}\left(x_{1}\right)$ is the canonical pairing.

- A polarised abelian variety (A, \mathcal{L}) is of level n if $K(\mathcal{L}) \simeq Z(n)$.
- A theta structure on (A, \mathcal{L}) is an isomorphism $\Theta_{\mathcal{L}}: H(n) \rightarrow G(\mathcal{L})$.
- The theta structure $\Theta_{\mathcal{L}}$ induces a symplectic isomorphism (for the commutator pairing) $\bar{\Theta}_{\mathcal{L}}: K(n):=Z(n) \oplus \hat{Z}(n) \xrightarrow{\sim} K(\mathcal{L})$.
- The symplectic decomposition $K(n)=Z(n) \oplus \hat{Z}(n)$ induces a decomposition $K(\mathcal{L})=K_{1}(\mathcal{L}) \oplus K_{2}(\mathcal{L})$.

Heisenberg group

Definition

The Heisenberg group of level n is $H(n)=k^{*} \times Z(n) \times \hat{Z}(n)$ where $Z(n):=\mathbb{Z}^{g} / n \mathbb{Z}^{g}$ and $\hat{Z}(n)$ is the dual of $Z(n)$. The group law is given by

$$
\left(\alpha, x_{1}, x_{2}\right)\left(\beta, y_{1}, y_{2}\right)=\left(\left\langle x_{1}, y_{2}\right\rangle \alpha \beta, x_{1}+y_{1}, x_{2}+y_{2}\right),
$$

where $\left\langle x_{1}, y_{2}\right\rangle=y_{2}\left(x_{1}\right)$ is the canonical pairing.

- A polarised abelian variety (A, \mathcal{L}) is of level n if $K(\mathcal{L}) \simeq Z(n)$.
- A theta structure on (A, \mathcal{L}) is an isomorphism $\Theta_{\mathcal{L}}: H(n) \rightarrow G(\mathcal{L})$.
- The theta structure $\Theta_{\mathcal{L}}$ induces a symplectic isomorphism (for the commutator pairing) $\bar{\Theta}_{\mathcal{L}}: K(n):=Z(n) \oplus \hat{Z}(n) \xrightarrow{\sim} K(\mathcal{L})$.
- The symplectic decomposition $K(n)=Z(n) \oplus \hat{Z}(n)$ induces a decomposition $K(\mathcal{L})=K_{1}(\mathcal{L}) \oplus K_{2}(\mathcal{L})$.

Heisenberg group

Definition

The Heisenberg group of level n is $H(n)=k^{*} \times Z(n) \times \hat{Z}(n)$ where $Z(n):=\mathbb{Z}^{g} / n \mathbb{Z}^{g}$ and $\hat{Z}(n)$ is the dual of $Z(n)$. The group law is given by

$$
\left(\alpha, x_{1}, x_{2}\right)\left(\beta, y_{1}, y_{2}\right)=\left(\left\langle x_{1}, y_{2}\right\rangle \alpha \beta, x_{1}+y_{1}, x_{2}+y_{2}\right),
$$

where $\left\langle x_{1}, y_{2}\right\rangle=y_{2}\left(x_{1}\right)$ is the canonical pairing.

- A polarised abelian variety (A, \mathcal{L}) is of level n if $K(\mathcal{L}) \simeq Z(n)$.
- A theta structure on (A, \mathcal{L}) is an isomorphism $\Theta_{\mathcal{L}}: H(n) \rightarrow G(\mathcal{L})$.
- The theta structure $\Theta_{\mathcal{L}}$ induces a symplectic isomorphism (for the commutator pairing) $\bar{\Theta}_{\mathcal{L}}: K(n):=Z(n) \oplus \hat{Z}(n) \xrightarrow{\sim} K(\mathcal{L})$.
- The symplectic decomposition $K(n)=Z(n) \oplus \hat{Z}(n)$ induces a decomposition $K(\mathcal{L})=K_{1}(\mathcal{L}) \oplus K_{2}(\mathcal{L})$.

Theta functions

- The Heisenberg group $H(n)$ admits a unique irreducible representation:

$$
(\alpha, i, j) . \delta_{k}=\langle i+k,-j\rangle \delta_{i+k} .
$$

- The action of $G(\mathcal{L})$ on $\Gamma(\mathcal{L})$ given by

$$
(x, \psi) \cdot \vartheta \mapsto \psi\left(t_{x}^{*} \vartheta\right)
$$

is irreducible.

- The basis of theta functions (induced by $\Theta_{\mathcal{L}}$) is the unique basis (up to a constant) such that

$$
(\alpha, i, j) \cdot \vartheta_{k}=e_{\mathcal{L}}(i+k,-j) \vartheta_{i+k}
$$

where $e_{\mathcal{L}}$ is the commutator pairing.

- If $l \geqslant 3$ then

$$
z \mapsto\left(\vartheta_{i}(z)\right)_{i \in Z(\bar{n})}
$$

is a projective embedding $A \rightarrow \mathbb{P}_{k}^{n^{9}-1}$.

Theta functions

- The Heisenberg group $H(n)$ admits a unique irreducible representation:

$$
(\alpha, i, j) . \delta_{k}=\langle i+k,-j\rangle \delta_{i+k} .
$$

- The action of $G(\mathcal{L})$ on $\Gamma(\mathcal{L})$ given by

$$
(x, \psi) . \vartheta \mapsto \psi\left(t_{x}^{*} \vartheta\right)
$$

is irreducible.

- The basis of theta functions (induced by $\Theta_{\mathcal{L}}$) is the unique basis (up to a constant) such that

$$
(\alpha, i, j) \cdot \vartheta_{k}=e_{\mathcal{L}}(i+k,-j) \vartheta_{i+k}
$$

where $e_{\mathcal{L}}$ is the commutator pairing.

- If $l \geqslant 3$ then

$$
z \mapsto\left(\vartheta_{i}(z)\right)_{i \in Z(\bar{n})}
$$

is a projective embedding $A \rightarrow \mathbb{P}_{k}^{n^{9}-1}$.

Theta functions

- The Heisenberg group $H(n)$ admits a unique irreducible representation:

$$
(\alpha, i, j) . \delta_{k}=\langle i+k,-j\rangle \delta_{i+k} .
$$

- The action of $G(\mathcal{L})$ on $\Gamma(\mathcal{L})$ given by

$$
(x, \psi) . \vartheta \mapsto \psi\left(t_{x}^{*} \vartheta\right)
$$

is irreducible.

- The basis of theta functions (induced by $\Theta_{\mathcal{L}}$) is the unique basis (up to a constant) such that

$$
(\alpha, i, j) \cdot \vartheta_{k}=e_{\mathcal{L}}(i+k,-j) \vartheta_{i+k}
$$

where $e_{\mathcal{L}}$ is the commutator pairing.

- If $l \geqslant 3$ then

$$
z \mapsto\left(\vartheta_{i}(z)\right)_{i \in Z(\bar{n})}
$$

is a projective embedding $A \rightarrow \mathbb{P}_{k}^{n^{9}-1}$.

Theta functions

- The Heisenberg group $H(n)$ admits a unique irreducible representation:

$$
(\alpha, i, j) . \delta_{k}=\langle i+k,-j\rangle \delta_{i+k} .
$$

- The action of $G(\mathcal{L})$ on $\Gamma(\mathcal{L})$ given by

$$
(x, \psi) . \vartheta \mapsto \psi\left(t_{x}^{*} \vartheta\right)
$$

is irreducible.

- The basis of theta functions (induced by $\Theta_{\mathcal{L}}$) is the unique basis (up to a constant) such that

$$
(\alpha, i, j) \cdot \vartheta_{k}=e_{\mathcal{L}}(i+k,-j) \vartheta_{i+k}
$$

where $e_{\mathcal{L}}$ is the commutator pairing.

- If $l \geqslant 3$ then

$$
z \mapsto\left(\mathcal{\vartheta}_{i}(z)\right)_{i \in Z(\bar{n})}
$$

is a projective embedding $A \rightarrow \mathbb{P}_{k}^{n^{9}-1}$.

Complex abelian varieties

- Abelian variety over $\mathbb{C}: A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$, where $\Omega \in \mathcal{H}_{g}(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g}.

$$
\begin{gathered}
\mathcal{\vartheta}(z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i^{t_{n}} n n+2 \pi i^{t_{n z}}} \\
\mathcal{\vartheta}\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=e^{\pi i^{t} a \Omega a+2 \pi i^{t} a(z+b)} \vartheta(z+\Omega a+b, \Omega) a, b \in \mathbb{Q}^{g}
\end{gathered}
$$

- The quasi-periodicity is given by

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z+m+\Omega n, \Omega)=e^{2 \pi i\left(^{t}{ }_{a m-}{ }^{t} b n\right)-\pi i^{t} n \Omega n-2 \pi i^{t} n z} \vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)
$$

- Ω induces a theta structure of level ∞. The corresponding theta basis of level n is given by

$$
\left\{\vartheta\left[\begin{array}{l}
0 \\
b
\end{array}\right](z, \Omega / n)\right\}_{b \in \frac{1}{n} \mathbb{Z} \cdot / \mathbb{Z}^{9}}
$$

Complex abelian varieties

- Abelian variety over $\mathbb{C}: A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$, where $\Omega \in \mathcal{H}_{g}(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g}.

$$
\begin{gathered}
\vartheta(z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i^{t} n \Omega n+2 \pi i^{t} n z} \\
\vartheta\left[\begin{array}{c}
a \\
b
\end{array}\right](z, \Omega)=e^{\pi i^{t} a \Omega a+2 \pi i^{t} a(z+b)} \vartheta(z+\Omega a+b, \Omega) a, b \in \mathbb{Q}^{g}
\end{gathered}
$$

- The quasi-periodicity is given by

$$
\mathcal{\vartheta}\left[\begin{array}{l}
a \\
b
\end{array}\right](z+m+\Omega n, \Omega)=e^{2 \pi i\left({ }^{t}{ }_{a m-}{ }^{t} b n\right)-\pi i^{t_{n \Omega n-2 \pi i}{ }^{t} n z} \mathcal{V}\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega), ~(z)}
$$

- Ω induces a theta structure of level ∞. The corresponding theta basis of level n is given by

$$
\left\{\vartheta\left[\begin{array}{l}
0 \\
b
\end{array}\right](z, \Omega / n)\right\}_{b \in \frac{1}{n} \mathbb{Z}^{g} / \mathbb{Z}^{g}}
$$

Complex abelian varieties

- Abelian variety over $\mathbb{C}: A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$, where $\Omega \in \mathcal{H}_{g}(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g}.

$$
\begin{gathered}
\vartheta(z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i^{t} n \Omega n+2 \pi i^{t} n z} \\
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=e^{\pi i^{t} a \Omega a+2 \pi i^{t} a(z+b)} \vartheta(z+\Omega a+b, \Omega) a, b \in \mathbb{Q}^{g}
\end{gathered}
$$

- The quasi-periodicity is given by

$$
\mathcal{\vartheta}\left[\begin{array}{l}
a \\
b
\end{array}\right](z+m+\Omega n, \Omega)=e^{2 \pi i\left({ }^{t} a m-{ }^{t} b n\right)-\pi i^{t} n \Omega n-2 \pi i^{t} n z} \mathcal{\vartheta}\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)
$$

- Ω induces a theta structure of level ∞. The corresponding theta basis of level n is given by

$$
\left\{\mathcal{\vartheta}\left[\begin{array}{l}
0 \\
b
\end{array}\right](z, \Omega / n)\right\}_{b \in \frac{1}{n} \mathbb{Z} \cdot / \mathbb{Z} a}
$$

The isogeny theorem

Theorem

Let $\left(A, \mathcal{L}, \Theta_{\mathcal{L}}\right)$ be a marked abelian variety of level $\mathrm{\ell n}$. The canonical section $\hat{Z}(\ell n) \rightarrow H(\ell n), j \mapsto(1,0, j)$ induce via $\Theta_{\mathcal{L}}$ a section $K=K_{2}(\mathcal{L})[\ell] \rightarrow G(\mathcal{L})$. The theta structure $\Theta_{\mathcal{L}}$ descend to a theta structure $\left(B, \mathcal{L}_{0}, \Theta_{\mathcal{L}_{0}}\right)$ such that $B=A / K$ and if $\pi: A \rightarrow B$ is the corresponding isogeny:

$$
\pi^{*} \vartheta_{i}^{\mathcal{L}_{0}}=\lambda \vartheta_{i}^{\mathcal{L}} .
$$

Here $Z(n) \hookrightarrow Z(\ell n)$ is the canonical embedding $x \mapsto \ell x$.

Proof with $k=\mathbb{C}$.

$$
\vartheta_{i}^{B}(z)=\vartheta[i / n]\left(z, \frac{\Omega}{\ell} / n\right)=\vartheta\left[\begin{array}{c}
0 \\
\ell i / \ell
\end{array}\right](z, \Omega / \ell n)=\vartheta_{\ell . i}^{A}(z)
$$

The isogeny theorem

Theorem

Let $\left(A, \mathcal{L}, \Theta_{\mathcal{L}}\right)$ be a marked abelian variety of level $\mathrm{\ell n}$. The canonical section $\hat{Z}(\ell n) \rightarrow H(\ell n), j \mapsto(1,0, j)$ induce via $\Theta_{\mathcal{L}}$ a section $K=K_{2}(\mathcal{L})[\ell] \rightarrow G(\mathcal{L})$. The theta structure $\Theta_{\mathcal{L}}$ descend to a theta structure $\left(B, \mathcal{L}_{0}, \Theta_{\mathcal{L}_{0}}\right)$ such that $B=A / K$ and if $\pi: A \rightarrow B$ is the corresponding isogeny:

$$
\pi^{*} \vartheta_{i}^{\mathcal{L}_{0}}=\lambda \vartheta_{i}^{\mathcal{L}} .
$$

Here $Z(n) \hookrightarrow Z(\ell n)$ is the canonical embedding $x \mapsto \ell x$.

Proof with $k=\mathbb{C}$.

$$
\vartheta_{i}^{B}(z)=\mathcal{\vartheta}\left[\begin{array}{c}
0 \\
i / n
\end{array}\right]\left(z, \frac{\Omega}{\ell} / n\right)=\vartheta\left[\begin{array}{c}
0 \\
\ell i / \ell
\end{array}\right](z, \Omega / \ell n)=\vartheta_{\ell \cdot i}^{A}(z)
$$

Mumford: On equations defining Abelian varieties

Theorem (cark $k n$)

- The theta null point of level $n\left(a_{i}\right)_{i \in Z(\bar{n})}:=\left(\vartheta_{i}(0)\right)_{i \in Z(n)}$ satisfy the Riemann Relations:

$$
\begin{equation*}
\sum_{t \in Z(\overline{2})} a_{x+t} a_{y+t} \sum_{t \in Z(\overline{2})} a_{u+t} a_{v+t}=\sum_{t \in Z(\overline{2})} a_{x^{\prime}+t} a_{y^{\prime}+t} \sum_{t \in Z(\overline{2})} a_{u^{\prime}+t} a_{v^{\prime}+t} \tag{1}
\end{equation*}
$$

We note $\mathcal{M}_{\bar{\ell}}$ the moduli space given by these relations together with the relations of symmetry:

$$
a_{x}=a_{-x}
$$

- $\mathcal{M}_{\bar{n}}(k)$ is the modular space of k-Abelian variety with a theta structure of level n : The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\bar{n}}^{0}(k)$ of $\mathcal{M}_{\bar{n}}(k)$.

Remark

\qquad
\qquad

Numford: On equations defining $\mathcal{A b} b$ lian varieties

Theorem (cark $k n$)

- The theta null point of level $n\left(a_{i}\right)_{i \in Z(\bar{n})}:=\left(\mathcal{Y}_{i}(0)\right)_{i \in Z(n)}$ satisfy the Riemann Relations:

$$
\begin{equation*}
\sum_{t \in Z(\overline{2})} a_{x+t} a_{y+t} \sum_{t \in Z(\overline{2})} a_{u+t} a_{v+t}=\sum_{t \in Z(\overline{2})} a_{x^{\prime}+t} a_{y^{\prime}+t} \sum_{t \in Z(\overline{2})} a_{u^{\prime}+t} a_{v^{\prime}+t} \tag{1}
\end{equation*}
$$

We note $\mathcal{M}_{\bar{\ell}}$ the moduli space given by these relations together with the relations of symmetry:

$$
a_{x}=a_{-x}
$$

- $\mathcal{M}_{\bar{n}}(k)$ is the modular space of k-Abelian variety with a theta structure of level n : The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\bar{n}}^{0}(k)$ of $\mathcal{M}_{\bar{n}}(k)$.

Remark

- Analytic action: $\mathrm{Sp}_{2 g}(\mathbb{Z})$ acts on \mathcal{H}_{g} (and preserves the isomorphic classes).
- Algebraic action: $\mathrm{Sp}_{2 g}(Z(\bar{n}))$ acts on $\mathcal{M}_{\bar{n}}$.

Numford: On equations defining $\mathcal{A b} b$ lian varieties

Theorem (cark $k n$)

- The theta null point of level $n\left(a_{i}\right)_{i \in Z(\bar{n})}:=\left(\mathcal{Y}_{i}(0)\right)_{i \in Z(n)}$ satisfy the Riemann Relations:

$$
\begin{equation*}
\sum_{t \in Z(\overline{2})} a_{x+t} a_{y+t} \sum_{t \in Z(\overline{2})} a_{u+t} a_{v+t}=\sum_{t \in Z(\overline{2})} a_{x^{\prime}+t} a_{y^{\prime}+t} \sum_{t \in Z(\overline{2})} a_{u^{\prime}+t} a_{v^{\prime}+t} \tag{1}
\end{equation*}
$$

We note $\mathcal{M}_{\bar{\ell}}$ the moduli space given by these relations together with the relations of symmetry:

$$
a_{x}=a_{-x}
$$

- $\mathcal{M}_{\bar{n}}(k)$ is the modular space of k-Abelian variety with a theta structure of level n : The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\bar{n}}^{0}(k)$ of $\mathcal{M}_{\bar{n}}(k)$.

Remark

- Analytic action: $\mathrm{Sp}_{2 g}(\mathbb{Z})$ acts on \mathcal{H}_{g} (and preserves the isomorphic classes).
- Algebraic action: $\mathrm{Sp}_{2 g}(Z(\bar{n}))$ acts on $\mathcal{M}_{\bar{n}}$.

Summary

- The kernel of π is $A_{k}[n]_{2} \subset A_{k}[\ell n]_{2}$.
- The kernel of $\hat{\pi}$ is $\pi\left(A_{2}[\rho\rceil_{1}\right)$.
- Every ℓ-isogeny (with an isotropic kernel) comes from a modular solution.

Summary

Summary

Summary

Summary

Summary

- The kernel of π is $A_{k}[n]_{2} \subset A_{k}[\ell n]_{2}$.
- The kernel of $\hat{\pi}$ is $\pi\left(A_{k}[\ell]_{1}\right)$.
- Every ℓ-isogeny (with an isotropic kernel) comes from a modular solution.

Outline

(1) Abelian varieties and isogenies

2 Theta functions
(3) Computing isogenies

An Example with $n \wedge \ell=1$

We will show an example with $g=1, n=4$ and $\ell n=12(\ell=3)$.

- Let B be the elliptic curve $y^{2}=x^{3}+23 x+3$ over $k=\mathbb{F}_{31}$. The corresponding theta null point $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ of level 4 is $(3: 1: 18: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{31}\right)$.

An Example with $n \wedge \ell=1$

We will show an example with $g=1, n=4$ and $\ell n=12(\ell=3)$.

- Let B be the elliptic curve $y^{2}=x^{3}+23 x+3$ over $k=\mathbb{F}_{31}$. The corresponding theta null point $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ of level 4 is $(3: 1: 18: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{31}\right)$.
- We note $V_{B}(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$
a_{0}=b_{0}, a_{3}=b_{1}, a_{6}=b_{2}, a_{9}=b_{3}
$$

- By the isogeny theorem, to every valid theta null point $\left(a_{i}\right)_{i \in Z(\overline{e n})} \in V_{B}^{0}(k)$ corresponds a 3-isogeny $\pi: A \rightarrow B$:

$$
\pi\left(\vartheta_{i}^{A}(x)_{i \in Z(12)}\right)=\left(\vartheta_{0}^{A}(x), \vartheta_{3}^{A}(x), \vartheta_{6}^{A}(x), \vartheta_{9}^{A}(x)\right)
$$

- Program:

An Example with $n \wedge \ell=1$

We will show an example with $g=1, n=4$ and $\ell n=12(\ell=3)$.

- Let B be the elliptic curve $y^{2}=x^{3}+23 x+3$ over $k=\mathbb{F}_{31}$. The corresponding theta null point $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ of level 4 is $(3: 1: 18: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{31}\right)$.
- We note $V_{B}(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$
a_{0}=b_{0}, a_{3}=b_{1}, a_{6}=b_{2}, a_{9}=b_{3}
$$

- By the isogeny theorem, to every valid theta null point $\left(a_{i}\right)_{i \in Z(\overline{\ell n})} \in V_{B}^{0}(k)$ corresponds a 3-isogeny $\pi: A \rightarrow B$:

$$
\pi\left(\vartheta_{i}^{A}(x)_{i \in Z(12)}\right)=\left(\vartheta_{0}^{A}(x), \vartheta_{3}^{A}(x), \vartheta_{6}^{A}(x), \vartheta_{9}^{A}(x)\right)
$$

- Program:

An Example with $n \wedge \ell=1$

We will show an example with $g=1, n=4$ and $\ell n=12(\ell=3)$.

- Let B be the elliptic curve $y^{2}=x^{3}+23 x+3$ over $k=\mathbb{F}_{31}$. The corresponding theta null point $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ of level 4 is $(3: 1: 18: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{31}\right)$.
- We note $V_{B}(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$
a_{0}=b_{0}, a_{3}=b_{1}, a_{6}=b_{2}, a_{9}=b_{3}
$$

- By the isogeny theorem, to every valid theta null point $\left(a_{i}\right)_{i \in Z(\overline{\ell n})} \in V_{B}^{0}(k)$ corresponds a 3-isogeny $\pi: A \rightarrow B$:

$$
\pi\left(\vartheta_{i}^{A}(x)_{i \in Z(12)}\right)=\left(\vartheta_{0}^{A}(x), \vartheta_{3}^{A}(x), \vartheta_{6}^{A}(x), \vartheta_{9}^{A}(x)\right)
$$

- Program:
- Compute $\widehat{\pi}$ from a valid theta null point $\left(a_{i}\right)_{i \in Z\left(\overline{\left.\ell_{n}\right)}\right.} \in V_{B}^{0}(k)$.
- Compute a valid theta null point $\left(a_{i}\right)_{i \in Z\left(\overline{e_{n}}\right)}$ from the kernel K of $\widehat{\pi}$.
- Compute a theta null point $\left(a_{i}^{\prime}\right)_{i \in Z(\bar{n})}$ of level n corresponding to $A=B / K$.

An Example with $n \wedge \ell=1$

We will show an example with $g=1, n=4$ and $\ell n=12(\ell=3)$.

- Let B be the elliptic curve $y^{2}=x^{3}+23 x+3$ over $k=\mathbb{F}_{31}$. The corresponding theta null point $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ of level 4 is $(3: 1: 18: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{31}\right)$.
- We note $V_{B}(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$
a_{0}=b_{0}, a_{3}=b_{1}, a_{6}=b_{2}, a_{9}=b_{3}
$$

- By the isogeny theorem, to every valid theta null point $\left(a_{i}\right)_{i \in Z(\overline{\ell n})} \in V_{B}^{0}(k)$ corresponds a 3-isogeny $\pi: A \rightarrow B$:

$$
\pi\left(\vartheta_{i}^{A}(x)_{i \in Z(12)}\right)=\left(\vartheta_{0}^{A}(x), \vartheta_{3}^{A}(x), \vartheta_{6}^{A}(x), \vartheta_{9}^{A}(x)\right)
$$

- Program:
- Compute $\widehat{\pi}$ from a valid theta null point $\left(a_{i}\right)_{i \in Z(\overline{\ell n})} \in V_{B}^{0}(k)$.
- Compute a valid theta null point $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$ from the kernel K of $\widehat{\pi}$.
- Compute a theta null point $\left(a_{i}^{\prime}\right)_{i \in Z(\bar{n})}$ of level n corresponding to $A=B / K$.

An Example with $n \wedge \ell=1$

We will show an example with $g=1, n=4$ and $\ell n=12(\ell=3)$.

- Let B be the elliptic curve $y^{2}=x^{3}+23 x+3$ over $k=\mathbb{F}_{31}$. The corresponding theta null point $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ of level 4 is $(3: 1: 18: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{31}\right)$.
- We note $V_{B}(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$
a_{0}=b_{0}, a_{3}=b_{1}, a_{6}=b_{2}, a_{9}=b_{3}
$$

- By the isogeny theorem, to every valid theta null point $\left(a_{i}\right)_{i \in Z(\overline{\ell n})} \in V_{B}^{0}(k)$ corresponds a 3-isogeny $\pi: A \rightarrow B$:

$$
\pi\left(\vartheta_{i}^{A}(x)_{i \in Z(12)}\right)=\left(\vartheta_{0}^{A}(x), \vartheta_{3}^{A}(x), \vartheta_{6}^{A}(x), \vartheta_{9}^{A}(x)\right)
$$

- Program:
- Compute $\widehat{\pi}$ from a valid theta null point $\left(a_{i}\right)_{i \in Z(\overline{\ell n})} \in V_{B}^{0}(k)$.
- Compute a valid theta null point $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$ from the kernel K of $\widehat{\pi}$.
- Compute a theta null point $\left(a_{i}^{\prime}\right)_{i \in Z(\bar{n})}$ of level n corresponding to $A=B / K$.

Program

(3) Computing isogenies

- Computing the contragredient isogeny
- Vélu-like formula in dimension g
- Changing level

The kernel of $\widehat{\pi}$

- Let $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$ be a valid theta null point solution. Let ζ be a primitive ℓ root of unity.
The kernel of π is

$$
\begin{gathered}
\left\{\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}\right),\right. \\
\left(a_{0}, \zeta a_{1}, \zeta^{2} a_{2}, a_{3}, \zeta a_{4}, \zeta^{2} a_{5}, a_{6}, \zeta a_{7}, \zeta^{2} a_{8}, a_{9}, \zeta a_{10}, \zeta^{2} a_{11}\right), \\
\left.\left(a_{0}, \zeta^{2} a_{1}, \zeta a_{2}, a_{3}, \zeta^{2} a_{4}, \zeta a_{5}, a_{6}, \zeta^{2} a_{7}, \zeta a_{8}, a_{9}, \zeta^{2} a_{10}, \zeta a_{11}\right)\right\}
\end{gathered}
$$

- If $i \in Z(\bar{\ell})$ we define

$$
\pi_{i}(x)=\left(x_{n i+\ell j}\right)_{j \in Z(\bar{n})}
$$

Let $R_{0}:=\pi_{0}\left(0_{A}\right)=\left(a_{0}, a_{3}, a_{6}, a_{9}\right), R_{1}:=\pi_{1}\left(0_{A}\right)=\left(a_{4}, a_{7}, a_{10}, a_{1}\right)$, $R_{2}:=\pi_{2}\left(0_{A}\right)=\left(a_{8}, a_{11}, a_{2}, a_{5}\right)$.

- The kernel K of $\hat{\pi}$ is

$$
K=\left\{\left(a_{0}, a_{3}, a_{6}, a_{9}\right),\left(a_{4}, a_{7}, a_{10}, a_{1}\right),\left(a_{8}, a_{11}, a_{2}, a_{5}\right)\right\}
$$

The kernel of $\widehat{\pi}$

- Let $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$ be a valid theta null point solution. Let ζ be a primitive ℓ root of unity.
The kernel of π is

$$
\begin{gathered}
\left\{\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}\right)\right. \\
\left(a_{0}, \zeta a_{1}, \zeta^{2} a_{2}, a_{3}, \zeta a_{4}, \zeta^{2} a_{5}, a_{6}, \zeta a_{7}, \zeta^{2} a_{8}, a_{9}, \zeta a_{10}, \zeta^{2} a_{11}\right) \\
\left.\left(a_{0}, \zeta^{2} a_{1}, \zeta a_{2}, a_{3}, \zeta^{2} a_{4}, \zeta a_{5}, a_{6}, \zeta^{2} a_{7}, \zeta a_{8}, a_{9}, \zeta^{2} a_{10}, \zeta a_{11}\right)\right\}
\end{gathered}
$$

- If $i \in Z(\bar{\ell})$ we define

$$
\pi_{i}(x)=\left(x_{n i+\ell j}\right)_{j \in Z(\bar{n})}
$$

Let $R_{0}:=\pi_{0}\left(0_{A}\right)=\left(a_{0}, a_{3}, a_{6}, a_{9}\right), R_{1}:=\pi_{1}\left(0_{A}\right)=\left(a_{4}, a_{7}, a_{10}, a_{1}\right)$, $R_{2}:=\pi_{2}\left(0_{A}\right)=\left(a_{8}, a_{11}, a_{2}, a_{5}\right)$.

- The kernel K of $\widehat{\pi}$ is

$$
K=\left\{\left(a_{0}, a_{3}, a_{6}, a_{9}\right),\left(a_{4}, a_{7}, a_{10}, a_{1}\right),\left(a_{8}, a_{11}, a_{2}, a_{5}\right)\right\}
$$

The kernel of $\widehat{\pi}$

- Let $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$ be a valid theta null point solution. Let ζ be a primitive ℓ root of unity.
The kernel of π is

$$
\begin{gathered}
\left\{\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}\right)\right. \\
\left(a_{0}, \zeta a_{1}, \zeta^{2} a_{2}, a_{3}, \zeta a_{4}, \zeta^{2} a_{5}, a_{6}, \zeta a_{7}, \zeta^{2} a_{8}, a_{9}, \zeta a_{10}, \zeta^{2} a_{11}\right) \\
\left.\left(a_{0}, \zeta^{2} a_{1}, \zeta a_{2}, a_{3}, \zeta^{2} a_{4}, \zeta a_{5}, a_{6}, \zeta^{2} a_{7}, \zeta a_{8}, a_{9}, \zeta^{2} a_{10}, \zeta a_{11}\right)\right\}
\end{gathered}
$$

- If $i \in Z(\bar{\ell})$ we define

$$
\pi_{i}(x)=\left(x_{n i+\ell j}\right)_{j \in Z(\bar{n})}
$$

Let $R_{0}:=\pi_{0}\left(0_{A}\right)=\left(a_{0}, a_{3}, a_{6}, a_{9}\right), R_{1}:=\pi_{1}\left(0_{A}\right)=\left(a_{4}, a_{7}, a_{10}, a_{1}\right)$, $R_{2}:=\pi_{2}\left(0_{A}\right)=\left(a_{8}, a_{11}, a_{2}, a_{5}\right)$.

- The kernel K of $\widehat{\pi}$ is

$$
K=\left\{\left(a_{0}, a_{3}, a_{6}, a_{9}\right),\left(a_{4}, a_{7}, a_{10}, a_{1}\right),\left(a_{8}, a_{11}, a_{2}, a_{5}\right)\right\}
$$

The pseudo addition law $(k=\mathbb{C})$

Theorem

$$
\begin{aligned}
& \left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
& \quad\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in Z(\overline{2})} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right) .
\end{aligned}
$$

$$
\begin{gathered}
\text { where } A=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) \\
\chi \in \hat{Z}(\overline{2}), i, j, k, l \in Z(\bar{n}) \\
\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=A(i, j, k, l)
\end{gathered}
$$

Addition and isogenies

Proposition

$\pi_{i}(x)=\pi_{0}(x)+R_{i}$ so we have:

$$
\begin{aligned}
& \pi_{i+j}(x+y)=\pi_{i}(x)+\pi_{j}(y) \\
& \pi_{i-j}(x-y)=\pi_{i}(x)-\pi_{j}(y)
\end{aligned}
$$

- $x \in A$ is entirely determined by $\pi_{0}(x), \pi_{1}(x), \pi_{2}(x)$.
- $\pi_{2}(x)=\pi_{1}(x)+R_{1}, \pi_{1}(x)-R_{1}=\pi_{0}(x)=y$.

Corollary

- x is entirely determined by
- Use $(1+g(g+1) / 2) n^{g}$ coordinates rather than (ℓn)
- Tha docombwacoion wes $n(o g)$ chaim additions.
- Can still do chain additions with this representation.

Addition and isogenies

Proposition

$\pi_{i}(x)=\pi_{0}(x)+R_{i}$ so we have:

$$
\begin{aligned}
& \pi_{i+j}(x+y)=\pi_{i}(x)+\pi_{j}(y) \\
& \pi_{i-j}(x-y)=\pi_{i}(x)-\pi_{j}(y)
\end{aligned}
$$

- $x \in A$ is entirely determined by $\pi_{0}(x), \pi_{1}(x), \pi_{2}(x)$.
- $\pi_{2}(x)=\pi_{1}(x)+R_{1}, \pi_{1}(x)-R_{1}=\pi_{0}(x)=y$.

Corollary

- x is entirely determined by

$$
\left\{\pi_{i}(x)\right\} i_{\in}\left\{0, e_{1}, \cdots, e_{g}, e_{1}+e_{2}, \ldots, e^{\prime}\right.
$$

Use $(1+g(g+1) / 2) n^{g}$ coordinates rather than (en
The decompression use $O\left(e^{g}\right)$ chain additions.
Can still do chain additions with this representation.

Addition and isogenies

Proposition

$\pi_{i}(x)=\pi_{0}(x)+R_{i}$ so we have:

$$
\begin{aligned}
& \pi_{i+j}(x+y)=\pi_{i}(x)+\pi_{j}(y) \\
& \pi_{i-j}(x-y)=\pi_{i}(x)-\pi_{j}(y)
\end{aligned}
$$

- $x \in A$ is entirely determined by $\pi_{0}(x), \pi_{1}(x), \pi_{2}(x)$.
- $\pi_{2}(x)=\pi_{1}(x)+R_{1}, \pi_{1}(x)-R_{1}=\pi_{0}(x)=y$.

Corollary

Addition and isogenies

Proposition

$\pi_{i}(x)=\pi_{0}(x)+R_{i}$ so we have:

$$
\begin{aligned}
& \pi_{i+j}(x+y)=\pi_{i}(x)+\pi_{j}(y) \\
& \pi_{i-j}(x-y)=\pi_{i}(x)-\pi_{j}(y)
\end{aligned}
$$

- $x \in A$ is entirely determined by $\pi_{0}(x), \pi_{1}(x), \pi_{2}(x)$.
- $\pi_{2}(x)=\pi_{1}(x)+R_{1}, \pi_{1}(x)-R_{1}=\pi_{0}(x)=y$.

Corollary

- x is entirely determined by

$$
\left\{\pi_{i}(x)\right\}_{i \in\left\{0, e_{1}, \cdots, e_{g}, e_{1}+e_{2}, \cdots, e_{g-1}+e_{g}\right\}}
$$

- Use $(1+g(g+1) / 2) n^{g}$ coordinates rather than $(\ell n)^{g}$.
- The decompression use $O\left(\ell^{g}\right)$ chain additions.
- Can still do chain additions with this representation.

The contragredient isogeny

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z\left(\overline{\ell_{n}}\right)}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

The contragredient isogeny

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z\left(\overline{\ell_{n}}\right)}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

The contragredient isogeny

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z\left(\overline{\ell_{n}}\right)}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

The contragredient isogeny

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

The contragredient isogeny

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

The contragredient isogeny

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

Let $y \in B$. We can compute $y_{i}=y \oplus R_{i}$ with a normal addition. We have $y_{i}=\lambda_{i} \pi_{i}(x)$.

$$
\begin{gathered}
y=\left[\pi_{i}(x)+(\ell-1) \cdot R_{i}\right]=\lambda_{i}^{\ell}\left[y_{i}+(\ell) R_{i}\right] \\
\pi_{i}(\ell \cdot x)=\left[\pi_{i}(x)+(\ell) \cdot y\right]=\lambda_{i}^{\ell}\left[y_{i}+(\ell) \cdot y\right]
\end{gathered}
$$

Corollary

We can compute $\pi_{i}(\ell . x)$ with two fast multiplications of length ℓ. To recover the compressed coordinates of $\widehat{\pi}(y)$, we need $g(g+1) / 2 \cdot O(\log (\ell))$ additions.

The contragredient isogeny

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{i}\right)_{i \in Z(\overline{\ell n})}$. Let $y \in B$ and $x \in A$ be one of the ℓ^{g} antecedents. Then

$$
\widehat{\pi}(y)=\ell \cdot x
$$

Let $y \in B$. We can compute $y_{i}=y \oplus R_{i}$ with a normal addition. We have $y_{i}=\lambda_{i} \pi_{i}(x)$.

$$
\begin{gathered}
y=\left[\pi_{i}(x)+(\ell-1) \cdot R_{i}\right]=\lambda_{i}^{\ell}\left[y_{i}+(\ell) R_{i}\right] \\
\pi_{i}(\ell \cdot x)=\left[\pi_{i}(x)+(\ell) \cdot y\right]=\lambda_{i}^{\ell}\left[y_{i}+(\ell) \cdot y\right]
\end{gathered}
$$

Corollary

We can compute $\pi_{i}(\ell . x)$ with two fast multiplications of length ℓ. To recover the compressed coordinates of $\widehat{\pi}(y)$, we need $g(g+1) / 2 \cdot O(\log (\ell))$ additions.

Example

Let $K=\{(3: 1: 18: 1),(22: 15: 4: 1),(18: 29: 23: 1)\}$, a point solution corresponding to this kernel is given by $\left(3, \eta^{14233}, \eta^{2317}, 1, \eta^{1324}, \eta^{5296}, 18, \eta^{5296}, \eta^{1324}, 1, \eta^{2317}, \eta^{14233}\right)$ where $\eta^{3}+\eta+28=0$.
Let $y=\left(\eta^{19406}, \eta^{19805}, \eta^{10720}, 1\right)$. We want to determine $\pi_{1}(x)$, we have to compute:

$$
\begin{array}{cccc}
& y & & \\
R_{1} & y+R_{1} & y+2 R_{1} & y+3 R_{1}=y \\
& 2 y+R_{1} & & \\
& 3 y+R_{1} & &
\end{array}
$$

Example

Let $K=\{(3: 1: 18: 1),(22: 15: 4: 1),(18: 29: 23: 1)\}$, a point solution corresponding to this kernel is given by $\left(3, \eta^{14233}, \eta^{2317}, 1, \eta^{1324}, \eta^{5296}, 18, \eta^{5296}, \eta^{1324}, 1, \eta^{2317}, \eta^{14233}\right)$ where $\eta^{3}+\eta+28=0$.

$$
\begin{gathered}
R_{1}=\left(\eta^{1324}, \eta^{5296}, \eta^{2317}, \eta^{14233}\right) \quad y=\left(\eta^{19406}, \eta^{19805}, \eta^{10720}, 1\right) \\
y+R_{1}=\lambda_{1}\left(\eta^{2722}, \eta^{28681}, \eta^{26466}, \eta^{2096}\right) \\
y+2 R_{1}=\lambda_{1}^{2}\left(\eta^{28758}, \eta^{11337}, \eta^{27602}, \eta^{22972}\right) \\
y+3 R_{1}=\lambda_{1}^{3}\left(\eta^{18374}, \eta^{18773}, \eta^{9688}, \eta^{28758}\right)=y / \eta^{1032} \\
2 y+R_{1}=\lambda_{1}^{2}\left(\eta^{17786}, \eta^{12000}, \eta^{16630}, \eta^{365}\right) \\
3 y+R_{1}=\lambda_{1}^{3}\left(\eta^{7096}, \eta^{11068}, \eta^{8089,} \eta^{20005}\right)=\eta^{5772} R_{1}
\end{gathered}
$$

We have $\lambda_{1}^{3}=\eta^{28758}$ and

$$
\widehat{\pi}(y)=\left(3, \eta^{21037}, \eta^{15925}, 1, \eta^{8128}, \eta^{18904}, 18, \eta^{12100}, \eta^{14932}, 1, \eta^{9121}, \eta^{27841}\right)
$$

Program

(3) Computing isogenies

- Computing the contragredient isogeny
- Vélu-like formula in dimension g
- Changing level

The action of the symplectic group on the modular space

- Let $K \subset B[\ell]$ be an isotropic subgroup of maximal rank. Let $\left(a_{i}\right)_{i \in Z\left(\overline{\rho_{n}}\right)}$ be a theta null point corresponding to the isogeny $\pi: B \rightarrow B / K$.
- The actions of the symplectic group compatible with the isogeny π are generated by

$$
\begin{gather*}
\left\{R_{i}\right\}_{i \in Z(\overline{\ell n})} \mapsto\left\{R_{\psi_{1}(i)}\right\}_{i \in Z(\overline{\ell n})} \tag{2}\\
\left\{R_{i}\right\}_{i \in Z(\overline{\overline{\ell n}})} \mapsto\left\{e\left(\psi_{2}(i), i\right) R_{i}\right\}_{i \in Z(\overline{(\overline{l n}})} \tag{3}
\end{gather*}
$$

where ψ_{1} is an automorphism of $Z(\bar{\ell})$ and ψ_{2} is a symmetric endomorphism of $Z(\overline{\ell n})$.

- In particular by action (2), if $\left\{T_{e_{i}}\right\}_{i \in[1 . . g]}$ is a basis of K, we may suppose that $R_{e_{i}}=\lambda_{e_{i}} T_{e_{i}}$.

The action of the symplectic group on the modular space

- Let $K \subset B[\ell]$ be an isotropic subgroup of maximal rank. Let $\left(a_{i}\right)_{i \in Z\left(\overline{\left(\ell_{n}\right)}\right.}$ be a theta null point corresponding to the isogeny $\pi: B \rightarrow B / K$.

Example

These points corresponds to the same isogeny:

$$
\begin{gathered}
\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}\right) \\
\left(a_{0}, \zeta a_{1}, \zeta^{2} a_{2}, a_{3}, \zeta a_{4}, \zeta^{2} a_{5}, a_{6}, \zeta a_{7}, \zeta^{2} a_{8}, a_{9}, \zeta a_{10}, \zeta^{2} a_{11}\right) \\
\left(a_{0}, \zeta^{2} a_{1}, \zeta^{2} a_{2}, a_{3}, \zeta^{2} a_{4}, \zeta^{2} a_{5}, a_{6}, \zeta^{2} a_{7}, \zeta^{2} a_{8}, a_{9} \zeta^{2} a_{10}, \zeta^{2} a_{11}\right) \\
\left(a_{0}, a_{5}, a_{10}, a_{3}, a_{8}, a_{1}, a_{6}, a_{11}, a_{4}, a_{9}, a_{2}, a_{7}\right) \\
\left(a_{0}, \zeta a_{5}, \zeta a_{10}, a_{3}, \zeta a_{8}, \zeta a_{1}, a_{6}, \zeta a_{11}, \zeta a_{4}, a_{9}, \zeta a_{2}, \zeta a_{7}\right) \\
\left(a_{0}, \zeta^{2} a_{5}, \zeta^{2} a_{10}, a_{3}, \zeta^{2} a_{8}, \zeta^{2} a_{1}, a_{6}, \zeta^{2} a_{11}, \zeta^{2} a_{4}, a_{9}, \zeta^{2} a_{2}, \zeta^{2} a_{7}\right)
\end{gathered}
$$

Recovering the projective factors

- Since we are working with symmetric Theta structures, we have $\mathcal{\vartheta}_{i}(-x)=\mathcal{\vartheta}_{-i}(x)$.
- In particular if $\ell=2 \ell^{\prime}+1$

$$
\begin{gathered}
\left(\ell^{\prime}+1\right) \cdot R_{i}=-\ell^{\prime} \cdot R_{i} \\
\lambda_{i}^{\left(\ell^{\prime}+1\right)^{2}}\left(\ell^{\prime}+1\right) \cdot T_{i}=\lambda_{i}^{\ell^{\prime 2}} \ell^{\prime} \cdot T_{i}
\end{gathered}
$$

So we may recover λ_{i} up to a ℓ-root of unity.

- But we only need to recover R_{i} for $i \in\left\{e_{1}, \cdots, e_{g-1}+e_{g}\right\}$ and the action (3) shows that each choice of a ℓ-root of unity corresponds to a valid theta null point.

Corollary

We have Vélu-like formulas to recover the compressed modular point solution, by computing $g(g+1) / 2 \ell$-roots and $g(g+1) / 2 \cdot O(\log (\ell))$ additions. The compressed coordinates are sufficient to compute the compressed coordinates of the associated isogeny.

Recovering the projective factors

- Since we are working with symmetric Theta structures, we have $\mathcal{\vartheta}_{i}(-x)=\mathcal{\vartheta}_{-i}(x)$.
- In particular if $\ell=2 \ell^{\prime}+1$

$$
\begin{gathered}
\left(\ell^{\prime}+1\right) \cdot R_{i}=-\ell^{\prime} \cdot R_{i} \\
\lambda_{i}^{\left(\ell^{\prime}+1\right)^{2}}\left(\ell^{\prime}+1\right) \cdot T_{i}=\lambda_{i}^{\ell^{\prime 2}} \ell^{\prime} \cdot T_{i}
\end{gathered}
$$

So we may recover λ_{i} up to a ℓ-root of unity.

- But we only need to recover R_{i} for $i \in\left\{e_{1}, \cdots, e_{g-1}+e_{g}\right\}$ and the action (3) shows that each choice of a ℓ-root of unity corresponds to a valid theta null point.

Corollary

We have Velu-like formulas to recover the compressed modular point solution, by computing $g(g+1) / 2 \ell$-roots and $g(g+1) / 2 \cdot O(\log (\ell))$ additions. The compressed coordinates are sufficient to compute the compressed coordinates of the associated isogeny.

Recovering the projective factors

- Since we are working with symmetric Theta structures, we have $\vartheta_{i}(-x)=\vartheta_{-i}(x)$.
- In particular if $\ell=2 \ell^{\prime}+1$

$$
\begin{gathered}
\left(\ell^{\prime}+1\right) \cdot R_{i}=-\ell^{\prime} \cdot R_{i} \\
\lambda_{i}^{\left(\ell^{\prime}+1\right)^{2}}\left(\ell^{\prime}+1\right) \cdot T_{i}=\lambda_{i}^{\ell^{\prime 2}} \ell^{\prime} \cdot T_{i}
\end{gathered}
$$

So we may recover λ_{i} up to a ℓ-root of unity.

- But we only need to recover R_{i} for $i \in\left\{e_{1}, \cdots, e_{g-1}+e_{g}\right\}$ and the action (3) shows that each choice of a ℓ-root of unity corresponds to a valid theta null point.

Corollary

We have Vélu-like formulas to recover the compressed modular point solution, by computing $g(g+1) / 2 \ell$-roots and $g(g+1) / 2 \cdot O(\log (\ell))$ additions. The compressed coordinates are sufficient to compute the compressed coordinates of the associated isogeny.

Program

(3) Computing isogenies

- Computing the contragredient isogeny
- Vélu-like formula in dimension g
- Changing level

Changing level by taking an isogeny

- $\pi_{2} \circ \widehat{\pi}$ is an ℓ^{2} isogeny between two varieties of level n.
- Each choice of the ℓ-roots of unity in the Vélu's-like formulas give a different decomposition $A[\ell]=A[\ell]_{1} \oplus K$. All the ℓ^{2}-isogenies $B \rightarrow C$ containing K come from these choices.
- We know the kernel of the contragredient isogeny $C \rightarrow A$, this is helpful for computing isogeny graphs.

Changing level by taking an isogeny

- $\pi_{2} \circ \widehat{\pi}$ is an ℓ^{2} isogeny between two varieties of level n.
- Each choice of the ℓ-roots of unity in the Vélu's-like formulas give a different decomposition $A[\ell]=A[\ell]_{1} \oplus K$. All the ℓ^{2}-isogenies $B \rightarrow C$ containing K come from these choices.
- We know the kernel of the contragredient isogeny $C \rightarrow A$, this is helpful for computing isogeny graphs.

Changing level by taking an isogeny

- $\pi_{2} \circ \widehat{\pi}$ is an ℓ^{2} isogeny between two varieties of level n.
- Each choice of the ℓ-roots of unity in the Vélu's-like formulas give a different decomposition $A[\ell]=A[\ell]_{1} \oplus K$. All the ℓ^{2}-isogenies $B \rightarrow C$ containing K come from these choices.
- We know the kernel of the contragredient isogeny $C \rightarrow A$, this is helpful for computing isogeny graphs.

Changing level by taking an isogeny

- $\pi_{2} \circ \widehat{\pi}$ is an ℓ^{2} isogeny between two varieties of level n.
- Each choice of the ℓ-roots of unity in the Vélu's-like formulas give a different decomposition $A[\ell]=A[\ell]_{1} \oplus K$. All the ℓ^{2}-isogenies $B \rightarrow C$ containing K come from these choices.
- We know the kernel of the contragredient isogeny $C \rightarrow A$, this is helpful for computing isogeny graphs.

Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let $F \in \mathrm{M}_{r}(\mathbb{Z})$ be such that ${ }^{t} F F=\ell \mathrm{Id}$, and $f: A^{r} \rightarrow A^{r}$ the corresponding isogeny. There existe a line bundle \mathcal{L}^{\prime} on A such that $\mathcal{L}=\mathcal{L}^{\prime \ell}$ and a theta structure on \mathcal{L}^{\prime} such that the isogeny f is given by

$$
f^{\star}\left(\vartheta_{i_{1}}^{\mathcal{L}^{\prime}} \star \ldots \star \mathcal{\vartheta}_{\substack{\mathcal{L}_{r} \\\left(j_{1}, \ldots, j_{r}\right) \in K_{1}\left(\mathcal{L}^{\prime}\right) \times \ldots \times K_{1}\left(\mathcal{L}^{\prime}\right) \\ f\left(j_{1}, \ldots, j_{r}\right)=\left(i_{1}, \ldots, i_{r}\right)}} \vartheta_{\substack{\mathcal{L}}}^{\mathcal{L}} \star \ldots \mathcal{\vartheta}_{j_{r}}^{\mathcal{L}}\right.
$$

- $F=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ give the Riemann relations. (For general ℓ use the matrix from the quaternions.)
- Can be combined with the preceding method to compute the isogeny $B \rightarrow A$ while staying in level n.
- No need of ℓ-roots. Need only $O(\# K)$ pseudo-additions in $B \Rightarrow$ full generalisation of Vélu's formulas.
- The formulas are rational if the kernel K is rational.

Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let $F \in \mathrm{M}_{r}(\mathbb{Z})$ be such that ${ }^{t} F F=\ell \mathrm{Id}$, and $f: A^{r} \rightarrow A^{r}$ the corresponding isogeny. There existe a line bundle \mathcal{L}^{\prime} on A such that $\mathcal{L}=\mathcal{L}^{\prime \ell}$ and a theta structure on \mathcal{L}^{\prime} such that the isogeny f is given by

$$
f^{*}\left(\mathcal{\vartheta}_{i_{1}}^{\mathcal{L}^{\prime}} \star \ldots \star \mathcal{\vartheta}_{\substack{\mathcal{i}_{r} \\\left(j_{1}, \ldots, j_{r}\right) \in K_{1}\left(\mathcal{L}^{\prime}\right) \times \ldots \times K_{1}\left(\mathcal{L}^{\prime}\right) \\ f\left(j_{1}, \ldots, j_{r}\right)=\left(i_{1}, \ldots, i_{r}\right)}} \mathcal{\vartheta}_{\substack{\mathcal{L}} \ldots \star \mathcal{\vartheta}_{j_{r}}^{\mathcal{L}}}^{\substack{\mathcal{L}}}\right.
$$

- $F=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ give the Riemann relations. (For general ℓ use the matrix from the quaternions.)
- Can be combined with the preceding method to compute the isogeny $B \rightarrow A$ while staying in level n.
- No need of $\boldsymbol{\ell}$-roots. Need only $O(\# K)$ pseudo-additions in $B \Rightarrow$ full generalisation of Vélu's formulas.
- The formulas are rational if the kernel K is rational.

Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let $F \in \mathrm{M}_{r}(\mathbb{Z})$ be such that ${ }^{t} F F=\ell \mathrm{Id}$, and $f: A^{r} \rightarrow A^{r}$ the corresponding isogeny. There existe a line bundle \mathcal{L}^{\prime} on A such that $\mathcal{L}=\mathcal{L}^{\prime \ell}$ and a theta structure on \mathcal{L}^{\prime} such that the isogeny f is given by

$$
f^{*}\left(\mathcal{\vartheta}_{i_{1}}^{\mathcal{L}^{\prime}} \star \ldots \star \mathcal{\vartheta}_{\substack{\mathcal{i}_{r} \\\left(j_{1}, \ldots, j_{r}\right) \in K_{1}\left(\mathcal{L}^{\prime}\right) \times \ldots \times K_{1}\left(\mathcal{L}^{\prime}\right) \\ f\left(j_{1}, \ldots, j_{r}\right)=\left(i_{1}, \ldots, i_{r}\right)}} \mathcal{\vartheta}_{\substack{\mathcal{L}} \ldots \star \mathcal{\vartheta}_{j_{r}}^{\mathcal{L}}}^{\substack{\mathcal{L}}}\right.
$$

- $F=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ give the Riemann relations. (For general ℓ use the matrix from the quaternions.)
- Can be combined with the preceding method to compute the isogeny $B \rightarrow A$ while staying in level n.
- No need of ℓ-roots. Need only $O(\# K)$ pseudo-additions in $B \Rightarrow$ full generalisation of Vélu's formulas.
- The formulas are rational if the kernel K is rational.

Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let $F \in \mathrm{M}_{r}(\mathbb{Z})$ be such that ${ }^{t} F F=\ell \mathrm{Id}$, and $f: A^{r} \rightarrow A^{r}$ the corresponding isogeny. There existe a line bundle \mathcal{L}^{\prime} on A such that $\mathcal{L}=\mathcal{L}^{\prime \ell}$ and a theta structure on \mathcal{L}^{\prime} such that the isogeny f is given by

$$
f^{*}\left(\mathcal{\vartheta}_{i_{1}}^{\mathcal{L}^{\prime}} \star \ldots \star \mathcal{\vartheta}_{\substack{\mathcal{i}_{r} \\\left(j_{1}, \ldots, j_{r}\right) \in K_{1}\left(\mathcal{L}^{\prime}\right) \times \ldots \times K_{1}\left(\mathcal{L}^{\prime}\right) \\ f\left(j_{1}, \ldots, j_{r}\right)=\left(i_{1}, \ldots, i_{r}\right)}} \mathcal{\vartheta}_{\substack{\mathcal{L}} \ldots \star \mathcal{\vartheta}_{j_{r}}^{\mathcal{L}}}^{\substack{\mathcal{L}}}\right.
$$

- $F=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ give the Riemann relations. (For general ℓ use the matrix from the quaternions.)
- Can be combined with the preceding method to compute the isogeny $B \rightarrow A$ while staying in level n.
- No need of ℓ-roots. Need only $O(\# K)$ pseudo-additions in $B \Rightarrow$ full generalisation of Vélu's formulas.
- The formulas are rational if the kernel K is rational.

Changing level without taking isogenies

Theorem (Koizumi-Kempf)

Let $F \in \mathrm{M}_{r}(\mathbb{Z})$ be such that ${ }^{t} F F=\ell \mathrm{Id}$, and $f: A^{r} \rightarrow A^{r}$ the corresponding isogeny. There existe a line bundle \mathcal{L}^{\prime} on A such that $\mathcal{L}=\mathcal{L}^{\prime \ell}$ and a theta structure on \mathcal{L}^{\prime} such that the isogeny f is given by

$$
f^{*}\left(\mathcal{\vartheta}_{i_{1}}^{\mathcal{L}^{\prime}} \star \ldots \star \mathcal{\vartheta}_{\substack{\mathcal{i}_{r} \\\left(j_{1}, \ldots, j_{r}\right) \in K_{1}\left(\mathcal{L}^{\prime}\right) \times \ldots \times K_{1}\left(\mathcal{L}^{\prime}\right) \\ f\left(j_{1}, \ldots, j_{r}\right)=\left(i_{1}, \ldots, i_{r}\right)}} \mathcal{\vartheta}_{\substack{\mathcal{L}} \ldots \star \mathcal{\vartheta}_{j_{r}}^{\mathcal{L}}}^{\substack{\mathcal{L}}}\right.
$$

- $F=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ give the Riemann relations. (For general ℓ use the matrix from the quaternions.)
- Can be combined with the preceding method to compute the isogeny $B \rightarrow A$ while staying in level n.
- No need of ℓ-roots. Need only $O(\# K)$ pseudo-additions in $B \Rightarrow$ full generalisation of Vélu's formulas.
- The formulas are rational if the kernel K is rational.

Perspectives

- We need to know the kernel \Rightarrow find equations for the quotient of the modular space by the action of the symplectic group.
- Theta functions are not rational \Rightarrow go back and forth between theta functions and Mumford coordinates (Romain Cosset).
- Fast computation of the commutator pairing with theta functions \Rightarrow ANTS IX, Nancy!

Perspectives

- We need to know the kernel \Rightarrow find equations for the quotient of the modular space by the action of the symplectic group.
- Theta functions are not rational \Rightarrow go back and forth between theta functions and Mumford coordinates (Romain Cosset).
- Fast computation of the commutator pairing with theta functions \Rightarrow ANTS IX, Nancy!

Perspectives

- We need to know the kernel \Rightarrow find equations for the quotient of the modular space by the action of the symplectic group.
- Theta functions are not rational \Rightarrow go back and forth between theta functions and Mumford coordinates (Romain Cosset).
- Fast computation of the commutator pairing with theta functions \Rightarrow ANTS IX, Nancy!

