A Vélu's like formula for computing isogenies on Abelian Varieties

David Lubicz ${ }^{1,2}$, Damien Robert ${ }^{3}$
${ }^{1}$ CÉLAR
${ }^{2}$ IRMAR, Université de Rennes 1
${ }^{3}$ Nancy Université, CNRS, Inria Nancy Grand Est
Octobre 2010, Réunion CHIC

Vélu's formula

Théorème

Let $\mathrm{E}: y^{2}=f(x)$ be an elliptic curve. Let $\mathrm{G} \subset \mathrm{E}(k)$ be a finite subgroup. Then E / G is given by $\mathrm{Y}^{2}=g(\mathrm{X})$ where

$$
\begin{aligned}
& \mathrm{X}(\mathrm{P})=x(\mathrm{P})+\sum_{\mathrm{Q} \in \mathrm{G} \backslash\left\{0_{\mathrm{E}}\right\}} x(\mathrm{P}+\mathrm{Q})-x(\mathrm{Q}) \\
& \mathrm{Y}(\mathrm{P})=y(\mathrm{P})+\sum_{\mathrm{Q} \in \mathrm{G} \backslash\left\{0_{\mathrm{E}}\right\}} y(\mathrm{P}+\mathrm{Q})-y(\mathrm{Q})
\end{aligned}
$$

- Uses the fact that x and y are characterised in $k(\mathrm{E})$ by

$$
\begin{array}{rll}
v_{0_{\mathrm{E}}}(x)=-3 & v_{\mathrm{P}}(x) \geq 0 & \text { if } \mathrm{P} \neq 0_{\mathrm{E}} \\
v_{0_{\mathrm{E}}}(y)=-2 & v_{\mathrm{P}}(y) \geq 0 & \text { if } \mathrm{P} \neq 0_{\mathrm{E}} \\
y^{2} / x^{3}\left(\mathrm{O}_{\mathrm{E}}\right)=1 & &
\end{array}
$$

- No such characterisation in genus $g \geq 2$.

Vélu's formula

Théorème

Let $\mathrm{E}: y^{2}=f(x)$ be an elliptic curve. Let $\mathrm{G} \subset \mathrm{E}(k)$ be a finite subgroup. Then E / G is given by $\mathrm{Y}^{2}=g(\mathrm{X})$ where

$$
\begin{aligned}
& \mathrm{X}(\mathrm{P})=x(\mathrm{P})+\sum_{\mathrm{Q} \in \mathrm{G} \backslash\left\{0_{\mathrm{E}}\right\}} x(\mathrm{P}+\mathrm{Q})-x(\mathrm{Q}) \\
& \mathrm{Y}(\mathrm{P})=y(\mathrm{P})+\sum_{\mathrm{Q} \in \mathrm{G} \backslash\left\{0_{\mathrm{E}}\right\}} y(\mathrm{P}+\mathrm{Q})-y(\mathrm{Q})
\end{aligned}
$$

- Uses the fact that x and y are characterised in $k(\mathrm{E})$ by

$$
\begin{array}{rll}
v_{0_{\mathrm{E}}}(x)=-3 & v_{\mathrm{P}}(x) \geq 0 & \text { if } \mathrm{P} \neq 0_{\mathrm{E}} \\
v_{0_{\mathrm{E}}}(y)=-2 & v_{\mathrm{P}}(y) \geq 0 & \text { if } \mathrm{P} \neq 0_{\mathrm{E}} \\
y^{2} / x^{3}\left(\mathrm{O}_{\mathrm{E}}\right)=1 & &
\end{array}
$$

- No such characterisation in genus $g \geq 2$.

The modular polynomial

Définition

- The modular polynomial is a polynomial $\varphi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\varphi_{n}(x, y)=0$ iff $x=j(\mathrm{E})$ and $y=j\left(\mathrm{E}^{\prime}\right)$ with E and $\mathrm{E}^{\prime} n$-isogeneous.
- If $\mathrm{E}: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(\mathrm{E})=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\varphi_{n}(j(\mathrm{E}),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes : $\varphi_{2}=50 \mathrm{MB}$.
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Définition

- The modular polynomial is a polynomial $\varphi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\varphi_{n}(x, y)=0$ iff $x=j(\mathrm{E})$ and $y=j\left(\mathrm{E}^{\prime}\right)$ with E and $\mathrm{E}^{\prime} n$-isogeneous.
- If $\mathrm{E}: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(\mathrm{E})=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\varphi_{n}(j(\mathrm{E}),.) \Leftrightarrow$ elliptic curves n-isogeneous to E .
- In genus 2 , modular polynomials use Igusa invariants. The height explodes : $\varphi_{2}=50 \mathrm{MB}$.
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Définition

- The modular polynomial is a polynomial $\varphi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\varphi_{n}(x, y)=0$ iff $x=j(\mathrm{E})$ and $y=j\left(\mathrm{E}^{\prime}\right)$ with E and $\mathrm{E}^{\prime} n$-isogeneous.
- If $\mathrm{E}: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(\mathrm{E})=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\varphi_{n}(j(\mathrm{E}),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes : $\varphi_{2}=50 \mathrm{MB}$.
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Définition

- The modular polynomial is a polynomial $\varphi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\varphi_{n}(x, y)=0$ iff $x=j(\mathrm{E})$ and $y=j\left(\mathrm{E}^{\prime}\right)$ with E and $\mathrm{E}^{\prime} n$-isogeneous.
- If $\mathrm{E}: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(\mathrm{E})=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\varphi_{n}(j(\mathrm{E}),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2 , modular polynomials use Igusa invariants. The height explodes : $\varphi_{2}=50 \mathrm{MB}$.
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Définition

- The modular polynomial is a polynomial $\varphi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\varphi_{n}(x, y)=0$ iff $x=j(\mathrm{E})$ and $y=j\left(\mathrm{E}^{\prime}\right)$ with E and $\mathrm{E}^{\prime} n$-isogeneous.
- If $\mathrm{E}: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(\mathrm{E})=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\varphi_{n}(j(\mathrm{E}),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2 , modular polynomials use Igusa invariants. The height explodes : $\varphi_{2}=50 \mathrm{MB}$.
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

Complex abelian varieties

- Abelian variety over $\mathbb{C}: \mathrm{A}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$, where $\Omega \in \mathcal{H}_{g}(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g}.

$$
\begin{gathered}
\vartheta(z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i n^{\prime} \Omega n+2 \pi i n^{\prime} z} \\
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=e^{\pi i a^{\prime} \Omega a+2 \pi i a^{\prime}(z+b)} \vartheta(z+\Omega a+b, \Omega) a, b \in \mathbb{Q}^{g}
\end{gathered}
$$

- The quasi-periodicity is given by

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z+m+\Omega n, \Omega)=e^{2 \pi i\left(a^{\prime} m-b^{\prime} n\right)-\pi i n^{\prime} \Omega n-2 \pi i n^{\prime} z} \mathcal{\vartheta}\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)
$$

Complex abelian varieties

- Abelian variety over $\mathbb{C}: \mathrm{A}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$, where $\Omega \in \mathcal{H}_{g}(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g}.

$$
\begin{gathered}
\vartheta(z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i n^{\prime} \Omega n+2 \pi i n^{\prime} z} \\
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=e^{\pi i a^{\prime} \Omega a+2 \pi i a^{\prime}(z+b)} \vartheta(z+\Omega a+b, \Omega) a, b \in \mathbb{Q}^{g}
\end{gathered}
$$

- The quasi-periodicity is given by

$$
9\left[\begin{array}{l}
a \\
b
\end{array}\right](z+m+\Omega n, \Omega)=e^{2 \pi i\left(a^{\prime} m-b^{\prime} n\right)-\pi i n^{\prime} \Omega n-2 \pi i n^{\prime} z} \mathfrak{g}\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)
$$

Projective embeddings given by theta functions

Théorème

- Let \mathcal{L}_{ℓ} be the space of analytic functions f satisfying :

$$
\begin{aligned}
f(z+n) & =f(z) \\
f(z+n \Omega) & =\exp \left(-\ell \cdot \pi i n^{\prime} \Omega n-\ell \cdot 2 \pi i n^{\prime} z\right) f(z)
\end{aligned}
$$

- A basis of \mathcal{L}_{ℓ} is given by

$$
\left\{\vartheta\left[\begin{array}{l}
0 \\
b
\end{array}\right](z, \Omega / \ell)\right\}_{b \in \frac{1}{\frac{1}{2}} \mathbb{Z}^{g} / \mathbb{Z}^{9}}
$$

- Let $\mathcal{Z}_{\ell}=\mathbb{Z}^{g} / \ell \mathbb{Z}^{g}$. If $i \in \mathcal{Z}_{\ell}$ we define $\vartheta_{i}=\vartheta\left[\begin{array}{c}0 \\ i / \ell\end{array}\right](., \Omega / \ell)$. If $l \geq 3$ then

$$
z \mapsto\left(\vartheta_{i}(z)\right)_{i \in \mathcal{Z}_{\ell}}
$$

is a projective embedding $\mathrm{A} \rightarrow \mathbb{P}_{\mathbb{C}}^{\ell^{9}-1}$.

Projective embeddings given by theta functions

Théorème

- Let \mathcal{L}_{ℓ} be the space of analytic functions f satisfying :

$$
\begin{aligned}
f(z+n) & =f(z) \\
f(z+n \Omega) & =\exp \left(-\ell \cdot \pi i n^{\prime} \Omega n-\ell \cdot 2 \pi i n^{\prime} z\right) f(z)
\end{aligned}
$$

- A basis of \mathcal{L}_{ℓ} is given by

$$
\left\{\vartheta\left[\begin{array}{l}
0 \\
b
\end{array}\right](z, \Omega / \ell)\right\}_{b \in \frac{1}{\ell} \mathbb{Z}^{9} / \mathbb{Z}^{9}}
$$

- Let $\mathcal{Z}_{\ell}=\mathbb{Z}^{g} / \ell \mathbb{Z}^{g}$. If $i \in \mathcal{Z}_{\ell}$ we define $\vartheta_{i}=9\left[\begin{array}{c}0 \\ i / \ell\end{array}\right](., \Omega / \ell)$. If $l \geq 3$ then

$$
z \mapsto\left(\vartheta_{i}(z)\right)_{i \in \mathcal{Z}_{\ell}}
$$

is a projective embedding $\mathrm{A} \rightarrow \mathbb{P}_{\mathbb{C}}^{\ell^{9}-1}$.

The action of the Theta group

- The point $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}:=\left(\mathcal{\vartheta}_{i}(0)\right)_{i \in \mathcal{Z}_{\ell}}$ is called the theta null point of level ℓ of the Abelian Variety $\mathrm{A}:=\mathbb{C}^{g} /\left(\mathbb{Z}^{9}+\Omega \mathbb{Z}^{g}\right)$.
- $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ determines the equations of the projective embedding of A of level ℓ.
- The symplectic basis $\mathbb{Z}^{g} \oplus \Omega \mathbb{Z}^{g}$ induce a decomposition into isotropic subgroups for the commutator pairing :

$$
\begin{aligned}
\mathrm{A}[\ell] & =\mathrm{A}[\ell]_{1} \oplus \mathrm{~A}[\ell]_{2} \\
& =\frac{1}{\ell} \mathbb{Z}^{g} / \mathbb{Z}^{g} \oplus \frac{1}{\ell} \Omega \mathbb{Z}^{g} / \Omega \mathbb{Z}^{g}
\end{aligned}
$$

This decomposition can be recovered by $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$.

- The action by translation is given by

$$
\vartheta_{k}\left(z-\frac{i}{\ell}-\Omega \frac{j}{\ell}\right)=e_{\mathcal{L}_{\ell}}(i+k, j) \vartheta_{i+k}
$$

where $e_{\mathcal{L}_{\ell}}(x, y)=e^{2 \pi i / \ell \cdot x^{\prime} y}$ is the commutator pairing.

The action of the Theta group

- The point $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}:=\left(\mathcal{Y}_{i}(0)\right)_{i \in \mathcal{Z}_{\ell}}$ is called the theta null point of level ℓ of the Abelian Variety A := $\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ determines the equations of the projective embedding of A of level ℓ.
- The symplectic basis $\mathbb{Z}^{9} \oplus \Omega \mathbb{Z}^{9}$ induce a decomposition into isotropic subgroups for the commutator pairing :

$$
\begin{aligned}
\mathrm{A}[\ell] & =\mathrm{A}[\ell]_{1} \oplus \mathrm{~A}[\ell]_{2} \\
& =\frac{1}{\ell} \mathbb{Z}^{g} / \mathbb{Z}^{g} \oplus \frac{1}{\ell} \Omega \mathbb{Z}^{g} / \Omega \mathbb{Z}^{g}
\end{aligned}
$$

This decomposition can be recovered by $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$.

- The action by translation is given by

$$
\vartheta_{k}\left(z-\frac{i}{\ell}-\Omega \frac{j}{\ell}\right)=e_{\mathcal{L}_{\ell}}(i+k, j) \vartheta_{i+k}
$$

where $e_{\mathcal{L}_{\ell}}(x, y)=e^{2 \pi i / \ell \cdot x^{\prime} y}$ is the commutator pairing.

The action of the Theta group

- The point $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}:=\left(\mathcal{9}_{i}(0)\right)_{i \in \mathcal{Z}_{\ell}}$ is called the theta null point of level ℓ of the Abelian Variety A := $\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ determines the equations of the projective embedding of A of level ℓ.
- The symplectic basis $\mathbb{Z}^{g} \oplus \Omega \mathbb{Z}^{g}$ induce a decomposition into isotropic subgroups for the commutator pairing :

$$
\begin{aligned}
\mathrm{A}[\ell] & =\mathrm{A}[\ell]_{1} \oplus \mathrm{~A}[\ell]_{2} \\
& =\frac{1}{\ell} \mathbb{Z}^{g} / \mathbb{Z}^{g} \oplus \frac{1}{\ell} \Omega \mathbb{Z}^{g} / \Omega \mathbb{Z}^{g}
\end{aligned}
$$

This decomposition can be recovered by $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$.

- The action by translation is given by

$$
\mathfrak{\vartheta}_{k}\left(z-\frac{i}{\ell}-\Omega \frac{j}{\ell}\right)=e_{\mathcal{L}_{\ell}}(i+k, j) \mathfrak{\vartheta}_{i+k}
$$

where $e_{\mathcal{L}_{\ell}}(x, y)=e^{2 \pi i / \rho \cdot x^{\prime} y}$ is the commutator pairing.

The isogeny theorem

Théorème

- Let $\ell=n . m$, and $\varphi: \mathcal{Z}_{n} \rightarrow \mathcal{Z}_{\ell}, x \mapsto m . x$ be the canonical embedding. Let $\mathrm{K}=\mathrm{A}[\mathrm{m}]_{2} \subset \mathrm{~A}[\ell]_{2}$.
- Let $\left(\vartheta_{i}^{\mathrm{A}}\right)_{i \in \mathcal{Z}_{\ell}}$ be the theta functions of level ℓ on $\mathrm{A}=\mathbb{C}^{g} /\left(\mathbb{Z}^{9}+\Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\vartheta_{i}^{\mathrm{B}}\right)_{i \in \mathcal{Z}_{n}}$ be the theta functions of level n of $\mathrm{B}=\mathrm{A} / \mathrm{K}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\frac{\Omega}{m} \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\vartheta_{i}^{\mathrm{B}}(x)\right)_{i \in \mathcal{Z}_{n}}=\left(\vartheta_{\varphi(i)}^{\mathrm{A}}(x)\right)_{i \in \mathcal{Z}_{n}}
$$

Démonstration.

$$
\vartheta_{i}^{\mathrm{B}}(z)=\vartheta\left[\begin{array}{c}
0 \\
i / n
\end{array}\right]\left(z, \frac{\Omega}{m} / n\right)=\vartheta\left[\begin{array}{c}
0 \\
m i / \ell
\end{array}\right](z, \Omega / \ell)=\vartheta_{m \cdot i}^{\mathrm{A}}(z)
$$

The isogeny theorem

Théorème

- Let $\ell=n . m$, and $\varphi: \mathcal{Z}_{n} \rightarrow \mathcal{Z}_{\ell}, x \mapsto m . x$ be the canonical embedding. Let $\mathrm{K}=\mathrm{A}[m]_{2} \subset \mathrm{~A}[\ell]_{2}$.
- Let $\left(\vartheta_{i}^{\mathrm{A}}\right)_{i \in \mathcal{Z}_{\ell}}$ be the theta functions of level ℓ on $\mathrm{A}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\vartheta_{i}^{\mathrm{B}}\right)_{i \in \mathcal{Z}_{n}}$ be the theta functions of level n of $\mathrm{B}=\mathrm{A} / \mathrm{K}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\frac{\Omega}{m} \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\mathcal{\vartheta}_{i}^{\mathrm{B}}(x)\right)_{i \in \mathcal{Z}_{n}}=\left(\mathcal{\vartheta}_{\varphi(i)}^{\mathrm{A}}(x)\right)_{i \in \mathcal{Z}_{n}}
$$

Démonstration.

$$
\vartheta_{i}^{\mathrm{B}}(z)=\vartheta\left[\begin{array}{c}
0 \\
i / n
\end{array}\right]\left(z, \frac{\Omega}{m} / n\right)=\vartheta\left[\begin{array}{c}
0 \\
m i / \ell
\end{array}\right](z, \Omega / \ell)=\vartheta_{m \cdot i}^{\mathrm{A}}(z)
$$

The isogeny theorem

Théorème

- Let $\ell=n . m$, and $\varphi: \mathcal{Z}_{n} \rightarrow \mathcal{Z}_{\ell}, x \mapsto m . x$ be the canonical embedding. Let $\mathrm{K}=\mathrm{A}[m]_{2} \subset \mathrm{~A}[\ell]_{2}$.
- Let $\left(\vartheta_{i}^{\mathrm{A}}\right)_{i \in \mathcal{Z}_{\ell}}$ be the theta functions of level ℓ on $\mathrm{A}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\vartheta_{i}^{\mathrm{B}}\right)_{i \in \mathcal{Z}_{n}}$ be the theta functions of level n of $\mathrm{B}=\mathrm{A} / \mathrm{K}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\frac{\Omega}{m} \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\mathcal{Y}_{i}^{\mathrm{B}}(x)\right)_{i \in \mathcal{Z}_{n}}=\left(\mathcal{Y}_{\varphi(i)}^{\mathrm{A}}(x)\right)_{i \in \mathcal{Z}_{n}}
$$

Démonstration.

$$
\vartheta_{i}^{\mathrm{B}}(z)=\vartheta\left[\begin{array}{c}
0 \\
i / n
\end{array}\right]\left(z, \frac{\Omega}{m} / n\right)=\vartheta\left[\begin{array}{c}
0 \\
m i / \ell
\end{array}\right](z, \Omega / \ell)=\vartheta_{m \cdot i}^{\mathrm{A}}(z)
$$

The isogeny theorem

Théorème

- Let $\ell=n . m$, and $\varphi: \mathcal{Z}_{n} \rightarrow \mathcal{Z}_{\ell}, x \mapsto m . x$ be the canonical embedding. Let $\mathrm{K}=\mathrm{A}[m]_{2} \subset \mathrm{~A}[\ell]_{2}$.
- Let $\left(\vartheta_{i}^{\mathrm{A}}\right)_{i \in \mathcal{Z}_{\ell}}$ be the theta functions of level ℓ on $\mathrm{A}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\mathcal{\vartheta}_{i}^{\mathrm{B}}\right)_{i \in \mathcal{Z}_{n}}$ be the theta functions of level n of $\mathrm{B}=\mathrm{A} / \mathrm{K}=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\frac{\Omega}{m} \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\mathcal{Y}_{i}^{\mathrm{B}}(x)\right)_{i \in \mathcal{Z}_{n}}=\left(\mathcal{Y}_{\varphi(i)}^{\mathrm{A}}(x)\right)_{i \in \mathcal{Z}_{n}}
$$

Démonstration.

$$
\vartheta_{i}^{\mathrm{B}}(z)=9\left[\begin{array}{c}
0 \\
i / n
\end{array}\right]\left(z, \frac{\Omega}{m} / n\right)=9\left[\begin{array}{c}
0 \\
m i / \ell
\end{array}\right](z, \Omega / \ell)=9_{m \cdot i}^{\mathrm{A}}(z)
$$

Jumford: On equations defining Abelian varieties

Théorème $(\operatorname{car} k+\ell)$

- The theta null point of level $\ell\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ satisfy the Riemann Relations :

$$
\begin{equation*}
\sum_{t \in \mathcal{Z}_{2}} a_{x+t} a_{y+t} \sum_{t \in \mathcal{Z}_{2}} a_{u+t} a_{v+t}=\sum_{t \in \mathcal{Z}_{2}} a_{z-u+t} a_{z-y+t} \sum_{t \in \mathcal{Z}_{2}} a_{z-x+t} a_{z-v+t} \tag{1}
\end{equation*}
$$

We note \mathcal{M}_{ℓ} the moduli space given by these relations together with the relations of symmetry:

$$
a_{x}=a_{-x}
$$

- $\mathcal{M}_{\ell}(k)$ is the modular space of k-Abelian variety with a theta structure of level ℓ. The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\ell}^{0}(k)$ of $\mathcal{M}_{\ell}(k)$.

Remark

\qquad
Algebraic action: $\operatorname{Sp}_{2 g}\left(\mathcal{Z}_{\ell}\right)$ acts on \mathcal{M}

Mumford: On equations defining $\mathcal{A b e l i a n}$ varieties

Théorème $(\operatorname{car} k+\ell)$

- The theta null point of level $\ell\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ satisfy the Riemann Relations :

$$
\begin{equation*}
\sum_{t \in \mathcal{Z}_{2}} a_{x+t} a_{y+t} \sum_{t \in \mathcal{Z}_{2}} a_{u+t} a_{v+t}=\sum_{t \in \mathcal{Z}_{2}} a_{z-u+t} a_{z-y+t} \sum_{t \in \mathcal{Z}_{2}} a_{z-x+t} a_{z-v+t} \tag{1}
\end{equation*}
$$

We note \mathcal{M}_{ℓ} the moduli space given by these relations together with the relations of symmetry:

$$
a_{x}=a_{-x}
$$

- $\mathcal{M}_{\ell}(k)$ is the modular space of k-Abelian variety with a theta structure of level ℓ. The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\ell}^{0}(k)$ of $\mathcal{M}_{\ell}(k)$.

Remark

- Analytic action : $\mathrm{Sp}_{2 g}(\mathbb{Z})$ acts on \mathcal{H}_{g} (and preserve the isomorphic classes).
- Algebraic action: $\operatorname{Sp}_{2 g}\left(\mathcal{Z}_{\ell}\right)$ acts on \mathcal{M}_{ℓ}.

Jumford: On equations defining Abelian varieties

Théorème $(\operatorname{car} k+\ell)$

- The theta null point of level $\ell\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ satisfy the Riemann Relations :

$$
\begin{equation*}
\sum_{t \in \mathcal{Z}_{2}} a_{x+t} a_{y+t} \sum_{t \in \mathcal{Z}_{2}} a_{u+t} a_{v+t}=\sum_{t \in \mathcal{Z}_{2}} a_{z-u+t} a_{z-y+t} \sum_{t \in \mathcal{Z}_{2}} a_{z-x+t} a_{z-v+t} \tag{1}
\end{equation*}
$$

We note \mathcal{M}_{ℓ} the moduli space given by these relations together with the relations of symmetry:

$$
a_{x}=a_{-x}
$$

- $\mathcal{M}_{\ell}(k)$ is the modular space of k-Abelian variety with a theta structure of level ℓ. The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\ell}^{0}(k)$ of $\mathcal{M}_{\ell}(k)$.

Remark

- Analytic action : $\mathrm{Sp}_{2 g}(\mathbb{Z})$ acts on \mathcal{H}_{g} (and preserve the isomorphic classes).
- Algebraic action: $\operatorname{Sp}_{2 g}\left(\mathcal{Z}_{\ell}\right)$ acts on \mathcal{M}_{ℓ}.

Summary

- The kernel of π is $A_{k}[m]_{2} \subset A_{k}[\ell]_{2}$.
- The kernel of $\hat{\pi}$ is $\pi\left(A_{k}\lceil m\rceil_{1}\right)$.
- Every isogeny comes from a modular solution.

Summary

Summary

Summary

Summary

Summary

Summary

- The kernel of π is $\mathrm{A}_{k}[m]_{2} \subset \mathrm{~A}_{k}[\ell]_{2}$.
- The kernel of $\hat{\pi}$ is $\pi\left(\mathrm{A}_{k}[m]_{1}\right)$.
- Every isogeny comes from a modular solution.

The addition law

Théorème

$$
\begin{aligned}
&\left(\sum_{t \in \mathcal{Z}_{2}} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y)\right) \cdot\left(\sum_{t \in \mathcal{Z}_{2}} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0)\right)= \\
&\left(\sum_{t \in \mathcal{Z}_{2}} \chi(t) \vartheta_{-i^{\prime}+t}(y) \vartheta_{j^{\prime}+t}(y)\right) \cdot\left(\sum_{t \in \mathcal{Z}_{2}} \chi(t) \vartheta_{k^{\prime}+t}(x) \vartheta_{l^{\prime}+t}(x)\right) .
\end{aligned}
$$

where $A=\frac{1}{2}\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$

$$
\begin{gathered}
\chi \in \hat{\mathcal{Z}}_{2}, i, j, k, l \in \mathcal{Z}_{n} \\
\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)=\mathrm{A}(i, j, k, l)
\end{gathered}
$$

Addition and isogenies

- Let $x \in$ A. $x=\left(\mathcal{Y}_{i}(x)\right)_{i \in \mathcal{Z}_{\ell n}}$. Let $\tilde{\pi}$ be the affine cone of π.

$$
\tilde{\pi}(x)=\left(\vartheta_{\ell j}(x)\right)_{j \in \mathcal{Z}_{n}}
$$

- We have an isomorphism $\mathcal{Z}_{n} \times \mathcal{Z}_{\ell} \rightarrow \mathcal{Z}_{\ell n},(j, i) \mapsto \ell j+n i$. If $i \in \mathcal{Z}_{\ell}$ we define :

$$
\tilde{\pi}_{i}(x)=\tilde{\pi}((1, i, 0) \dot{x})=\left(\vartheta_{\ell j+n i}(x)\right)_{j \in \mathcal{Z}_{n}}
$$

- We remark that x is entirely determined by $\left\{\tilde{\pi}_{i}(x)\right\}_{i \in \mathcal{Z}_{\ell}}$

Proposition

$$
\tilde{\pi}_{i+j}(x+y)=\text { chaine_add }\left(\tilde{\pi}_{i}(x), \tilde{\pi}_{j}(y), \tilde{\pi}_{i-j}(x-y)\right.
$$

Addition and isogenies

- Let $x \in$ A. $x=\left(\mathcal{Y}_{i}(x)\right)_{i \in \mathcal{Z}_{\ell n}}$. Let $\tilde{\pi}$ be the affine cone of π.

$$
\tilde{\pi}(x)=\left(\vartheta_{\ell j}(x)\right)_{j \in \mathcal{Z}_{n}}
$$

- We have an isomorphism $\mathcal{Z}_{n} \times \mathcal{Z}_{\ell} \rightarrow \mathcal{Z}_{\ell n},(j, i) \mapsto \ell j+n i$. If $i \in \mathcal{Z}_{\ell}$ we define :

$$
\tilde{\pi}_{i}(x)=\tilde{\pi}((1, i, 0) \dot{x})=\left(\vartheta_{\ell j+n i}(x)\right)_{j \in \mathcal{Z}_{n}}
$$

- We remark that x is entirely determined by $\left\{\tilde{\pi}_{i}(x)\right\}_{i \in \mathcal{Z}_{e}}$

Proposition

$$
\tilde{\pi}_{i+j}(x+y)=\text { chaine_add }\left(\tilde{\pi}_{i}(x), \tilde{\pi}_{j}(y), \tilde{\pi}_{i-j}(x-y)\right.
$$

Addition and isogenies

- Let $x \in$ A. $x=\left(\mathcal{Y}_{i}(x)\right)_{i \in \mathcal{Z}_{\ell n}}$. Let $\tilde{\pi}$ be the affine cone of π.

$$
\tilde{\pi}(x)=\left(\vartheta_{\ell j}(x)\right)_{j \in \mathcal{Z}_{n}}
$$

- We have an isomorphism $\mathcal{Z}_{n} \times \mathcal{Z}_{\ell} \rightarrow \mathcal{Z}_{\ell n},(j, i) \mapsto \ell j+n i$. If $i \in \mathcal{Z}_{\ell}$ we define :

$$
\tilde{\pi}_{i}(x)=\tilde{\pi}((1, i, 0) \dot{x})=\left(\vartheta_{\ell j+n i}(x)\right)_{j \in \mathcal{Z}_{n}}
$$

- We remark that x is entirely determined by $\left\{\tilde{\pi}_{i}(x)\right\}_{i \in \mathcal{Z}_{e}}$

Proposition

$$
\tilde{\pi}_{i+j}(x+y)=\text { chaine_add }\left(\tilde{\pi}_{i}(x), \tilde{\pi}_{j}(y), \tilde{\pi}_{i-j}(x-y)\right.
$$

Addition and isogenies

- Let $x \in$ A. $x=\left(\mathcal{Y}_{i}(x)\right)_{i \in \mathcal{Z}_{\ell n}}$. Let $\tilde{\pi}$ be the affine cone of π.

$$
\tilde{\pi}(x)=\left(\vartheta_{\ell j}(x)\right)_{j \in \mathcal{Z}_{n}}
$$

- We have an isomorphism $\mathcal{Z}_{n} \times \mathcal{Z}_{\ell} \rightarrow \mathcal{Z}_{\ell n},(j, i) \mapsto \ell j+n i$. If $i \in \mathcal{Z}_{\ell}$ we define :

$$
\tilde{\pi}_{i}(x)=\tilde{\pi}((1, i, 0) \dot{x})=\left(\vartheta_{\ell j+n i}(x)\right)_{j \in \mathcal{Z}_{n}}
$$

- We remark that x is entirely determined by $\left\{\tilde{\pi}_{i}(x)\right\}_{i \in \mathcal{Z}_{\ell}}$

Proposition

$$
\tilde{\pi}_{i+j}(x+y)=\text { chaine_add }\left(\tilde{\pi}_{i}(x), \tilde{\pi}_{j}(y), \tilde{\pi}_{i-j}(x-y)\right.
$$

Point compression

- Let e_{1}, \cdots, e_{g} be a basis of \mathcal{Z}_{ℓ}. We note

$$
\mathrm{R}_{i}=\tilde{\pi}_{i}\left(0_{\mathrm{A}}\right)
$$

- We have

$$
\tilde{\pi}_{i+j}(x)=\text { chaine } _\operatorname{add}\left(\tilde{\pi}_{i}(x), \mathrm{R}_{j}, \tilde{\pi}_{i-j}(x)\right)
$$

Corollaire

- Use $(1+g(g+1) / 2) n^{g}$ coordinates rather than $(\ell n)^{g}$
- The decomnrescinn use $\cap(\rho g)$ chain additions
- Can still do chain additions with this representation.

Point compression

- Let e_{1}, \cdots, e_{g} be a basis of \mathcal{Z}_{ℓ}. We note

$$
\mathrm{R}_{i}=\tilde{\pi}_{i}\left(0_{\mathrm{A}}\right)
$$

- We have

$$
\tilde{\pi}_{i+j}(x)=\text { chaine } _\operatorname{add}\left(\tilde{\pi}_{i}(x), \mathrm{R}_{j}, \tilde{\pi}_{i-j}(x)\right)
$$

Corollaire

Point compression

- Let e_{1}, \cdots, e_{g} be a basis of \mathcal{Z}_{ℓ}. We note

$$
\mathrm{R}_{i}=\tilde{\pi}_{i}\left(0_{\mathrm{A}}\right)
$$

- We have

$$
\tilde{\pi}_{i+j}(x)=\text { chaine } _\operatorname{add}\left(\tilde{\pi}_{i}(x), \mathrm{R}_{j}, \tilde{\pi}_{i-j}(x)\right)
$$

Corollaire

- x is entirely determined by

$$
\left\{\tilde{\pi}_{i}(x)\right\}_{i \in\left\{0, e_{1}, \cdots, e_{g}, e_{1}+e_{2}, \cdots, e_{g-1}+e_{g}\right\}}
$$

- Use $(1+g(g+1) / 2) n^{g}$ coordinates rather than $(\ell n)^{g}$.
- The decompression use $\mathrm{O}\left(\ell^{g}\right)$ chain additions.
- Can still do chain additions with this representation.

The dual isogeny

Let $\pi: \mathrm{A} \rightarrow \mathrm{B}$ be the isogeny associated to $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell_{n}}}$. Let $y \in \mathrm{~B}$ and $x \in \mathrm{~A}$ be one of the ℓ^{g} antecedents. Then

$$
\hat{\pi}(y)=\ell \cdot x
$$

```
- Let \(y \in \mathrm{~B}\). We can compute \(y_{i}=y+\mathrm{R}_{i}\) with a normal addition. We have
    \(y_{i}=\lambda_{i} \tilde{\pi}_{i}(x)\).
\(\tilde{\pi}_{i}(\ell . x)=\) chaine_mult \(\left(\ell, y, \tilde{\pi}_{i}(x)\right)=\lambda_{i}^{\ell}\) chaine_mult \(\left(\ell, y, y_{i}\right)\)
\(y=\) chaine_mult \(\left(\ell, \mathrm{R}_{i}, \tilde{\pi}_{i}(x)\right)=\lambda_{i}^{\ell}\) chaine_mult \(\left(\ell, \mathrm{R}_{i}, y_{i}\right)\)
```


Corollaire

We can comou e $\pi_{1}\left(l_{x}\right)$ with two fast multiplications of length l. To recover the compressed coordinates of $\hat{\pi}(y)$, we need $(1+g(g+1)) / 2 \cdot O(\log (\ell))$ additions.

The dual isogeny

Let $\pi: \mathrm{A} \rightarrow \mathrm{B}$ be the isogeny associated to $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell_{n}}}$. Let $y \in \mathrm{~B}$ and $x \in \mathrm{~A}$ be one of the ℓ^{g} antecedents. Then

$$
\hat{\pi}(y)=\ell \cdot x
$$

\square
Corollaire
\square compressed coordinates of $\hat{\pi}(\gamma)$, we need $(1+g(g+1)) / 2 \cdot O(\log (\ell))$ additions.

The dual isogeny

Let $\pi: \mathrm{A} \rightarrow \mathrm{B}$ be the isogeny associated to $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}}$. Let $y \in \mathrm{~B}$ and $x \in \mathrm{~A}$ be one of the ℓ^{g} antecedents. Then

$$
\hat{\pi}(y)=\ell \cdot x
$$

\square
Coorlate
\square compressed coo dinates of $\pi(y)$, we need $(1+g(g+1)) / 2 \cdot O(\log (l))$ additions

The dual isogeny

Let $\pi: \mathrm{A} \rightarrow \mathrm{B}$ be the isogeny associated to $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}}$. Let $y \in \mathrm{~B}$ and $x \in \mathrm{~A}$ be one of the ℓ^{g} antecedents. Then

$$
\hat{\pi}(y)=\ell \cdot x
$$

The dual isogeny

Let $\pi: \mathrm{A} \rightarrow \mathrm{B}$ be the isogeny associated to $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}}$. Let $y \in \mathrm{~B}$ and $x \in \mathrm{~A}$ be one of the ℓ^{g} antecedents. Then

$$
\hat{\pi}(y)=\ell \cdot x
$$

- Let $y \in \mathrm{~B}$. We can compute $y_{i}=y+\mathrm{R}_{i}$ with a normal addition. We have $y_{i}=\lambda_{i} \tilde{\pi}_{i}(x)$.

$$
\begin{gathered}
\tilde{\pi}_{i}(\ell . x)=\text { chaine_mult }\left(\ell, y, \tilde{\pi}_{i}(x)\right)=\lambda_{i}^{\ell} \text { chaine_mult }\left(\ell, y, y_{i}\right) \\
y=\text { chaine_mult }\left(\ell, \mathrm{R}_{i}, \tilde{\pi}_{i}(x)\right)=\lambda_{i}^{\ell} \text { chaine_mult }\left(\ell, \mathrm{R}_{i}, y_{i}\right)
\end{gathered}
$$

Corollaire

We can compute $\tilde{\pi}_{i}(\ell . x)$ with two fast multiplications of length ℓ. To recover the compressed coordinates of $\hat{\pi}(y)$, we need $(1+g(g+1)) / 2 \cdot \mathrm{O}(\log (\ell))$ additions.

The dual isogeny

Let $\pi: \mathrm{A} \rightarrow \mathrm{B}$ be the isogeny associated to $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}}$. Let $y \in \mathrm{~B}$ and $x \in \mathrm{~A}$ be one of the ℓ^{g} antecedents. Then

$$
\hat{\pi}(y)=\ell \cdot x
$$

- Let $y \in \mathrm{~B}$. We can compute $y_{i}=y+\mathrm{R}_{i}$ with a normal addition. We have $y_{i}=\lambda_{i} \tilde{\pi}_{i}(x)$.

$$
\begin{gathered}
\tilde{\pi}_{i}(\ell . x)=\text { chaine_mult }\left(\ell, y, \tilde{\pi}_{i}(x)\right)=\lambda_{i}^{\ell} \text { chaine_mult }\left(\ell, y, y_{i}\right) \\
y=\text { chaine_mult }\left(\ell, \mathrm{R}_{i}, \tilde{\pi}_{i}(x)\right)=\lambda_{i}^{\ell} \text { chaine_mult }\left(\ell, \mathrm{R}_{i}, y_{i}\right)
\end{gathered}
$$

Corollaire

We can compute $\tilde{\pi}_{i}(\ell . x)$ with two fast multiplications of length ℓ. To recover the compressed coordinates of $\hat{\pi}(y)$, we need $(1+g(g+1)) / 2 \cdot \mathrm{O}(\log (\ell))$ additions.

The action of the automorphisms of the Heisenberg group on the modular space

- Let $\mathrm{K} \subset \mathrm{B}[\ell]$ be an isotropic subgroup of maximal rank. Let $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}}$ be a theta null point corresponding to the isogeny $\pi: B \rightarrow B / K$.
- The actions of the symplectic group compatible with the isogeny π are generated by

$$
\begin{gather*}
\left\{\mathrm{R}_{i}\right\}_{i \in \mathcal{Z}_{\ell}} \mapsto\left\{\mathrm{R}_{\psi_{1}(i)}\right\}_{i \in \mathcal{Z}_{\ell}} \tag{2}\\
\left\{\mathrm{R}_{i}\right\}_{i \in \mathcal{Z}_{\ell}} \mapsto\left\{e\left(\psi_{2}(i), i\right) \mathrm{R}_{i}\right\}_{i \in \mathcal{Z}_{\ell}} \tag{3}
\end{gather*}
$$

where ψ_{1} is an automorphism of \mathcal{Z}_{ℓ} and ψ_{2} is a symmetric endomorphism of \mathcal{Z}_{ℓ}.

- In particular by action ??, if $\left\{\mathrm{T}_{e_{i}}\right\}_{i \in[1 . . g]}$ is a basis of K , we may suppose that $\mathrm{R}_{e_{i}}=\lambda_{e_{i}} \mathrm{~T}_{e_{i}}$.

The action of the automorphisms of the Heisenberg group on the modular space

- Let $\mathrm{K} \subset \mathrm{B}[\ell]$ be an isotropic subgroup of maximal rank. Let $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}}$ be a theta null point corresponding to the isogeny $\pi: B \rightarrow B / K$.
- The actions of the symplectic group compatible with the isogeny π are generated by

$$
\begin{gather*}
\left\{\mathrm{R}_{i}\right\}_{i \in \mathcal{Z}_{\ell}} \mapsto\left\{\mathrm{R}_{\psi_{1}(i)}\right\}_{i \in \mathcal{Z}_{\ell}} \tag{2}\\
\left\{\mathrm{R}_{i}\right\}_{i \in \mathcal{Z}_{\ell}} \mapsto\left\{e\left(\psi_{2}(i), i\right) \mathrm{R}_{i}\right\}_{i \in \mathcal{Z}_{\ell}} \tag{3}
\end{gather*}
$$

where ψ_{1} is an automorphism of \mathcal{Z}_{ℓ} and ψ_{2} is a symmetric endomorphism of \mathcal{Z}_{ℓ}.

- In particular by action ??, if $\left\{\mathrm{T}_{e_{i}}\right\}_{i \in[1 . . g]}$ is a basis of K , we may suppose that $\mathrm{R}_{e_{i}}=\lambda_{e_{i}} \mathrm{~T}_{e_{i}}$.

Recovering the projective factors

- Since we are working with symmetric Theta structures, we have $\vartheta_{i}(-x)=\vartheta_{-i}(x)$.
- In particular if $\ell=2 k+1$

$$
\mathrm{R}_{(k+1) i}=\lambda_{i}^{(k+1)^{2}} \text { chaine_mult }\left(k+1, \mathrm{~T}_{i}\right)=-\mathrm{R}_{k i}=\lambda_{i}^{k^{2}} \text { chaine_mult }\left(k, \mathrm{~T}_{i}\right)
$$

(We say that R_{i} is a true point of ℓ-torsion). So we may recover λ_{i} up to a ℓ-root of unity.

- But we only need to recover R_{i} for $i \in\left\{e_{1}, \cdots, e_{g-1}+e_{g}\right\}$ and the action ?? shows that each choice of a ℓ-root of unity corresponds to a valid theta null point.

Corollaire

We have Vélu's like formulas to recover the compressed modular point solution, by computing $g(g+1) / 2 \ell$-root of unity and $g(g-1) / 2$ additions. The compressed coordinates are sufficient to compute the compressed coordinates of the associated isogeny.

Recovering the projective factors

- Since we are working with symmetric Theta structures, we have $9_{i}(-x)=9_{-i}(x)$.
- In particular if $\ell=2 k+1$

$$
\mathrm{R}_{(k+1) i}=\lambda_{i}^{(k+1)^{2}} \text { chaine_mult }\left(k+1, \mathrm{~T}_{i}\right)=-\mathrm{R}_{k i}=\lambda_{i}^{k^{2}} \text { chaine_mult }\left(k, \mathrm{~T}_{i}\right)
$$

(We say that R_{i} is a true point of ℓ-torsion). So we may recover λ_{i} up to a ℓ-root of unity.

- But we only need to recover R_{i} for $i \in\left\{e_{1}, \cdots, e_{g-1}+e_{g}\right\}$ and the action ?? shows that each choice of a ℓ-root of unity corresponds to a valid theta null point.

Corollaire

We have Vélu's like formulas to recover the compressed modular point solution, by computing $g(g+1) / 2 \ell$-root of unity and $g(g-1) / 2$ additions. The compressed coordinates are sufficient to compute the compressed coordinates of the associated isogeny.

Recovering the projective factors

- Since we are working with symmetric Theta structures, we have $\vartheta_{i}(-x)=\vartheta_{-i}(x)$.
- In particular if $\ell=2 k+1$

$$
\mathrm{R}_{(k+1) i}=\lambda_{i}^{(k+1)^{2}} \text { chaine_mult }\left(k+1, \mathrm{~T}_{i}\right)=-\mathrm{R}_{k i}=\lambda_{i}^{k^{2}} \text { chaine_mult }\left(k, \mathrm{~T}_{i}\right)
$$

(We say that R_{i} is a true point of ℓ-torsion). So we may recover λ_{i} up to a ℓ-root of unity.

- But we only need to recover R_{i} for $i \in\left\{e_{1}, \cdots, e_{g-1}+e_{g}\right\}$ and the action ?? shows that each choice of a ℓ-root of unity corresponds to a valid theta null point.

Corollaire

We have Vélu's like formulas to recover the compressed modular point solution, by computing $g(g+1) / 2 \ell$-root of unity and $g(g-1) / 2$ additions. The compressed coordinates are sufficient to compute the compressed coordinates of the associated isogeny.

Computing all modular points

- Let $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}}$ be the theta null point associated to K. The theta structure of level $n \ell$ induces a decomposition $\mathrm{A}[\ell]=\mathrm{A}[\ell]_{1} \oplus \mathrm{~A}[\ell]_{2}$ such that $\mathrm{B}=\mathrm{A} / \mathrm{A}[\ell]_{2}$. Let $\mathrm{C}=\mathrm{A} / \mathrm{A}[\ell]_{1}$, the isogeny theorem allows us to compute the modular point of level n associated to C.
- Each choice of the ℓ-roots of unity give a different theta structure on A, hence a different decomposition $\mathrm{A}[\ell]=\mathrm{A}[\ell]_{1} \oplus \mathrm{~K}$. All the ℓ^{2}-isogenies $\mathrm{B} \rightarrow \mathrm{C}$ containing K comes from these choices. Moreover we know the kernel of the dual isogeny $\mathrm{C} \rightarrow \mathrm{A}$, this is helpfull for computing isogeny graphs.
- Let $\mathrm{T}_{e_{1}}, \cdots, \mathrm{~T}_{e_{2 g}}$ be a basis for $\mathrm{B}[\ell]$. If x, y and $x-y$ are true points of ℓ-torsion, so is $x+y:=$ chaine_add $(x, y, x-y)$. This means we can compute "true" representatives of $\mathrm{B}[\ell]$ with $g(2 g+1) \ell$-root of unity, $g(2 g-1)$ additions and $\ell^{2 g}$ chain additions.
- Warning : When applying our Vélu's formulas to an isotropic kernel, take care of the action of the commutator pairing.

Computing all modular points

- Let $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}}$ be the theta null point associated to K. The theta structure of level $n \ell$ induces a decomposition $\mathrm{A}[\ell]=\mathrm{A}[\ell]_{1} \oplus \mathrm{~A}[\ell]_{2}$ such that $\mathrm{B}=\mathrm{A} / \mathrm{A}[\ell]_{2}$. Let $\mathrm{C}=\mathrm{A} / \mathrm{A}[\ell]_{1}$, the isogeny theorem allows us to compute the modular point of level n associated to C.
- Each choice of the ℓ-roots of unity give a different theta structure on A , hence a different decomposition $\mathrm{A}[\ell]=\mathrm{A}[\ell]_{1} \oplus \mathrm{~K}$. All the ℓ^{2}-isogenies $\mathrm{B} \rightarrow \mathrm{C}$ containing K comes from these choices. Moreover we know the kernel of the dual isogeny $\mathrm{C} \rightarrow \mathrm{A}$, this is helpfull for computing isogeny graphs.
- Let $\mathrm{T}_{e_{1}}, \cdots, \mathrm{~T}_{e_{2 g}}$ be a basis for $\mathrm{B}[\ell]$. If x, y and $x-y$ are true points of ℓ-torsion, so is $x+y:=$ chaine_add $(x, y, x-y)$. This means we can compute "true" representatives of $\mathrm{B}[\ell]$ with $g(2 g+1) \ell$-root of unity, $g(2 g-1)$ additions and $\ell^{2 g}$ chain additions.
- Warning : When applying our Vélu's formulas to an isotropic kernel, take care of the action of the commutator pairing.

Computing all modular points

- Let $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}}$ be the theta null point associated to K. The theta structure of level $n \ell$ induces a decomposition $\mathrm{A}[\ell]=\mathrm{A}[\ell]_{1} \oplus \mathrm{~A}[\ell]_{2}$ such that $\mathrm{B}=\mathrm{A} / \mathrm{A}[\ell]_{2}$. Let $\mathrm{C}=\mathrm{A} / \mathrm{A}[\ell]_{1}$, the isogeny theorem allows us to compute the modular point of level n associated to C.
- Each choice of the ℓ-roots of unity give a different theta structure on A , hence a different decomposition $\mathrm{A}[\ell]=\mathrm{A}[\ell]_{1} \oplus \mathrm{~K}$. All the ℓ^{2}-isogenies $\mathrm{B} \rightarrow \mathrm{C}$ containing K comes from these choices. Moreover we know the kernel of the dual isogeny $\mathrm{C} \rightarrow \mathrm{A}$, this is helpfull for computing isogeny graphs.
- Let $\mathrm{T}_{e_{1}}, \cdots, \mathrm{~T}_{e_{2 g}}$ be a basis for $\mathrm{B}[\ell]$. If x, y and $x-y$ are true points of ℓ-torsion, so is $x+y:=$ chaine_add $(x, y, x-y)$. This means we can compute "true" representatives of $\mathrm{B}[\ell]$ with $g(2 g+1) \ell$-root of unity, $g(2 g-1)$ additions and $\ell^{2 g}$ chain additions.
- Warning : When applying our Vélu's formulas to an isotropic kernel, take care of the action of the commutator pairing.

Computing all modular points

- Let $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}}$ be the theta null point associated to K. The theta structure of level $n \ell$ induces a decomposition $\mathrm{A}[\ell]=\mathrm{A}[\ell]_{1} \oplus \mathrm{~A}[\ell]_{2}$ such that $\mathrm{B}=\mathrm{A} / \mathrm{A}[\ell]_{2}$. Let $\mathrm{C}=\mathrm{A} / \mathrm{A}[\ell]_{1}$, the isogeny theorem allows us to compute the modular point of level n associated to C.
- Each choice of the ℓ-roots of unity give a different theta structure on A , hence a different decomposition $\mathrm{A}[\ell]=\mathrm{A}[\ell]_{1} \oplus \mathrm{~K}$. All the ℓ^{2}-isogenies $\mathrm{B} \rightarrow \mathrm{C}$ containing K comes from these choices. Moreover we know the kernel of the dual isogeny $\mathrm{C} \rightarrow \mathrm{A}$, this is helpfull for computing isogeny graphs.
- Let $\mathrm{T}_{e_{1}}, \cdots, \mathrm{~T}_{e_{2 g}}$ be a basis for $\mathrm{B}[\ell]$. If x, y and $x-y$ are true points of ℓ-torsion, so is $x+y:=$ chaine_add $(x, y, x-y)$. This means we can compute "true" representatives of $\mathrm{B}[\ell]$ with $g(2 g+1) \ell$-root of unity, $g(2 g-1)$ additions and $\ell^{2 g}$ chain additions.
- Warning : When applying our Vélu's formulas to an isotropic kernel, take care of the action of the commutator pairing.

