Computing isogenies of small degrees on Abelian Varieties

Jean-Charles Faugère ${ }^{1}$, David Lubicz ${ }^{2,3}$, Damien Robert ${ }^{4}$
${ }^{1}$ INRIA, Centre Paris-Rocquencourt, SALSA Project
${ }^{2}$ CÉLAR
${ }^{3}$ IRMAR, Université de Rennes 1
${ }^{4}$ Nancy Université, CNRS, Inria Nancy Grand Est
7 July 2009, Journées Arithmétiques

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law \Rightarrow can be used for public key cryptography (Discrete Logarithm Problem).
- Example: Elliptic curves, Jacobians of genus g curves...

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law \Rightarrow can be used for public key cryptography (Discrete Logarithm Problem).
- Example: Elliptic curves, Jacobians of genus g curves...

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law \Rightarrow can be used for public key cryptography (Discrete Logarithm Problem).
- Example: Elliptic curves, Jacobians of genus g curves...

Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law \Rightarrow can be used for public key cryptography (Discrete Logarithm Problem).
- Example: Elliptic curves, Jacobians of genus g curves...

Tsogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies $=$ Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \leftrightarrow H
\end{aligned}
$$

- Example: Multiplication by $\ell(\Rightarrow \ell$-torsion), Frobenius (non separable).

Tsogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies $=$ Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \leftrightarrow H
\end{aligned}
$$

- Example: Multiplication by $\ell(\Rightarrow \ell$-torsion), Frobenius (non separable).

Tsogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies $=$ Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \leftrightarrow H
\end{aligned}
$$

- Example: Multiplication by $\ell(\Rightarrow \ell$-torsion), Frobenius (non separable).

Tsogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies $=$ Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$
\begin{aligned}
& (f: A \rightarrow B) \mapsto \operatorname{Ker} f \\
& (A \rightarrow A / H) \leftrightarrow H
\end{aligned}
$$

- Example: Multiplication by $\ell(\Rightarrow \ell$-torsion), Frobenius (non separable).

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-addic or p-addic).
- Compute the class field polynomials.
- Compute the modular polynomials.
- Determine End (A).

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-addic or p-addic).
- Compute the class field polynomials.
- Compute the modular polynomials.
- Determine $\operatorname{End}(A)$.

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-addic or p-addic).
- Compute the class field polynomials.
- Compute the modular polynomials.
- Determine End (A).

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-addic or p-addic).
- Compute the class field polynomials.
- Compute the modular polynomials.
- Determine End (A).

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (ℓ-addic or p-addic).
- Compute the class field polynomials.
- Compute the modular polynomials.
- Determine End (A).

Vélu's formula

Theorem

Let $E: y^{2}=f(x)$ be an elliptic curve. Let $G \subset E(k)$ be a finite subgroup. Then E / G is given by $Y^{2}=g(X)$ where

$$
\begin{aligned}
& X(P)=x(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}} x(P+Q)-x(Q) \\
& Y(P)=y(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}} y(P+Q)-y(Q)
\end{aligned}
$$

- Uses the fact that x and y are characterised in $k(E)$ by

$$
\begin{array}{rll}
v_{0_{E}}(x)=-3 & v_{P}(x) \geq 0 & \text { if } P \neq 0_{E} \\
v_{0_{E}}(y)=-2 & v_{P}(y) \geq 0 & \text { if } P \neq 0_{E} \\
y^{2} / x^{3}\left(O_{E}\right)=1 & &
\end{array}
$$

- No such characterisation in genus $g \geq 2$.

Vélu's formula

Theorem

Let $E: y^{2}=f(x)$ be an elliptic curve. Let $G \subset E(k)$ be a finite subgroup. Then E / G is given by $Y^{2}=g(X)$ where

$$
\begin{aligned}
& X(P)=x(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}} x(P+Q)-x(Q) \\
& Y(P)=y(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}} y(P+Q)-y(Q)
\end{aligned}
$$

- Uses the fact that x and y are characterised in $k(E)$ by

$$
\begin{array}{rll}
v_{0_{E}}(x)=-3 & v_{P}(x) \geq 0 & \text { if } P \neq 0_{E} \\
v_{0_{E}}(y)=-2 & v_{P}(y) \geq 0 & \text { if } P \neq 0_{E} \\
y^{2} / x^{3}\left(O_{E}\right)=1 & &
\end{array}
$$

- No such characterisation in genus $g \geq 2$.

Vélu's formula

Theorem

Let $E: y^{2}=f(x)$ be an elliptic curve. Let $G \subset E(k)$ be a finite subgroup. Then E / G is given by $Y^{2}=g(X)$ where

$$
\begin{aligned}
& X(P)=x(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}} x(P+Q)-x(Q) \\
& Y(P)=y(P)+\sum_{Q \in G \backslash\left\{0_{E}\right\}} y(P+Q)-y(Q)
\end{aligned}
$$

- Uses the fact that x and y are characterised in $k(E)$ by

$$
\begin{array}{rll}
v_{0_{E}}(x)=-3 & v_{P}(x) \geq 0 & \text { if } P \neq 0_{E} \\
v_{0_{E}}(y)=-2 & v_{P}(y) \geq 0 & \text { if } P \neq 0_{E} \\
y^{2} / x^{3}\left(O_{E}\right)=1 & &
\end{array}
$$

- No such characterisation in genus $g \geq 2$.

The modular polynomial

Definition

- The modular polynomial is a polynomial $\varphi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\varphi_{n}(x, y)=0$ iff $x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\varphi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: $\varphi_{2}=50 \mathrm{MB}$.
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Definition

- The modular polynomial is a polynomial $\varphi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\varphi_{n}(x, y)=0$ iff $x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\varphi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: $\varphi_{2}=50 \mathrm{MB}$.
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Definition

- The modular polynomial is a polynomial $\varphi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\varphi_{n}(x, y)=0$ iff $x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\varphi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2 , modular polynomials use Igusa invariants. The height explodes: $\varphi_{2}=50 \mathrm{MB}$.
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Definition

- The modular polynomial is a polynomial $\varphi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\varphi_{n}(x, y)=0$ iff $x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\varphi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: $\varphi_{2}=50 M B$.
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Definition

- The modular polynomial is a polynomial $\varphi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\varphi_{n}(x, y)=0$ iff $x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\varphi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: $\varphi_{2}=50 M B$.
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

The modular polynomial

Definition

- The modular polynomial is a polynomial $\varphi_{n}(x, y) \in \mathbb{Z}[x, y]$ such that $\varphi_{n}(x, y)=0$ iff $x=j(E)$ and $y=j\left(E^{\prime}\right)$ with E and $E^{\prime} n$-isogeneous.
- If $E: y^{2}=x^{3}+a x+b$ is an elliptic curve, the j-invariant is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- Roots of $\varphi_{n}(j(E),.) \Leftrightarrow$ elliptic curves n-isogeneous to E.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: $\varphi_{2}=50 M B$.
\Rightarrow Use the moduli space given by theta functions.
\Rightarrow Fix the form of the isogeny and look for coordinates compatible with the isogeny.

Complex abelian varieties

- Abelian variety over $\mathbb{C}: A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$, where $\Omega \in \mathcal{H}_{g}(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g}.

$$
\begin{gathered}
\vartheta(z, \Omega)=\sum_{n \in \mathbb{Z} g} e^{\pi i n^{\prime} \Omega n+2 \pi i n^{\prime} z} \\
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=e^{\pi i a^{\prime} \Omega a+2 \pi i a^{\prime}(z+b)} \vartheta(z+\Omega a+b, \Omega) a, b \in \mathbb{Q}^{g}
\end{gathered}
$$

- The quasi-periodicity is given by

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z+m+\Omega n, \Omega)=e^{2 \pi i\left(a^{\prime} m-b^{\prime} n\right)-\pi i n^{\prime} \Omega n-2 \pi i n^{\prime} z} \vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)
$$

Complex abelian varieties

- Abelian variety over $\mathbb{C}: A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$, where $\Omega \in \mathcal{H}_{g}(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g}.

$$
\begin{gathered}
\mathcal{\vartheta}(z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i n^{\prime} \Omega n+2 \pi i n^{\prime} z} \\
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=e^{\pi i a^{\prime} \Omega a+2 \pi i a^{\prime}(z+b)} \vartheta(z+\Omega a+b, \Omega) a, b \in \mathbb{Q}^{g}
\end{gathered}
$$

- The quasi-periodicity is given by

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z+m+\Omega n, \Omega)=e^{2 \pi i\left(a^{\prime} m-b^{\prime} n\right)-\pi i n^{\prime} \Omega n-2 \pi i n^{\prime} z} \vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)
$$

Complex abelian varieties

- Abelian variety over $\mathbb{C}: A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$, where $\Omega \in \mathcal{H}_{g}(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g}.

$$
\begin{gathered}
\mathcal{\vartheta}(z, \Omega)=\sum_{n \in \mathbb{Z}^{g}} e^{\pi i n^{\prime} \Omega n+2 \pi i n^{\prime} z} \\
\vartheta \\
\vartheta
\end{gathered}\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)=e^{\pi i a^{\prime} \Omega a+2 \pi i a^{\prime}(z+b)} \vartheta(z+\Omega a+b, \Omega) a, b \in \mathbb{Q}^{g} .
$$

- The quasi-periodicity is given by

$$
\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right](z+m+\Omega n, \Omega)=e^{2 \pi i\left(a^{\prime} m-b^{\prime} n\right)-\pi i n^{\prime} \Omega n-2 \pi i n^{\prime} z} \mathcal{\vartheta}\left[\begin{array}{l}
a \\
b
\end{array}\right](z, \Omega)
$$

Projective embeddings given by theta functions

Theorem

- Let \mathcal{L}_{ℓ} be the space of analytic functions f satisfying:

$$
\begin{aligned}
f(z+n) & =f(z) \\
f(z+n \Omega) & =\exp \left(-\ell \cdot \pi i n^{\prime} \Omega n-\ell \cdot 2 \pi i n^{\prime} z\right) f(z)
\end{aligned}
$$

- A basis of \mathcal{L}_{ℓ} is given by

$$
\left\{\vartheta\left[\begin{array}{l}
0 \\
b
\end{array}\right](z, \Omega / \ell)\right\}_{b \in \frac{1}{2} \mathbb{Z}^{9} / \mathbb{Z}^{9}}
$$

- Let $\mathcal{Z}_{\ell}=\mathbb{Z}^{g} /$ e \mathbb{Z}^{g}. If $i \in \mathcal{Z}_{\ell}$ we define $\vartheta_{i}=\vartheta\left[\begin{array}{c}0 \\ i / \ell\end{array}\right](., \Omega / \ell)$. If $l \geq 3$ then

$$
z \mapsto\left(\vartheta_{i}(z)\right)_{i \in \mathcal{Z}_{l}}
$$

is a projective embedding $A \rightarrow \mathbb{P}_{\mathbb{C}}^{\ell^{9}-1}$.

Projective embeddings given by theta functions

Theorem

- Let \mathcal{L}_{ℓ} be the space of analytic functions f satisfying:

$$
\begin{aligned}
f(z+n) & =f(z) \\
f(z+n \Omega) & =\exp \left(-\ell \cdot \pi i n^{\prime} \Omega n-\ell \cdot 2 \pi i n^{\prime} z\right) f(z)
\end{aligned}
$$

- A basis of \mathcal{L}_{ℓ} is given by

$$
\left\{\vartheta\left[\begin{array}{l}
0 \\
b
\end{array}\right](z, \Omega / \ell)\right\}_{b \in \frac{1}{\ell} \mathbb{Z}^{g} / \mathbb{Z}^{g}}
$$

- Let $\mathcal{Z}_{\ell}=\mathbb{Z}^{g} / \ell \mathbb{Z}^{g}$. If $i \in \mathcal{Z}_{\ell}$ we define $\vartheta_{i}=\vartheta\left[\begin{array}{c}0 \\ i / \ell\end{array}\right](., \Omega / \ell)$. If $l \geq 3$ then

$$
z \mapsto\left(\vartheta_{i}(z)\right)_{i \in \mathcal{Z}_{\ell}}
$$

is a projective embedding $A \rightarrow \mathbb{P}_{\mathbb{C}}^{\ell^{9}-1}$.

Projective embeddings given by theta functions

Theorem

- Let \mathcal{L}_{ℓ} be the space of analytic functions f satisfying:

$$
\begin{aligned}
f(z+n) & =f(z) \\
f(z+n \Omega) & =\exp \left(-\ell \cdot \pi i n^{\prime} \Omega n-\ell \cdot 2 \pi i n^{\prime} z\right) f(z)
\end{aligned}
$$

- A basis of \mathcal{L}_{ℓ} is given by

$$
\left\{\vartheta\left[\begin{array}{l}
0 \\
b
\end{array}\right](z, \Omega / \ell)\right\}_{b \in \frac{1}{\ell} \mathbb{Z}^{g} / \mathbb{Z}^{g}}
$$

- Let $\mathcal{Z}_{\ell}=\mathbb{Z}^{g} / \ell \mathbb{Z}^{g}$. If $i \in \mathcal{Z}_{\ell}$ we define $\vartheta_{i}=\vartheta\left[\begin{array}{c}0 \\ i / \ell\end{array}\right](., \Omega / \ell)$. If $l \geq 3$ then

$$
z \mapsto\left(\vartheta_{i}(z)\right)_{i \in \mathcal{Z}_{\ell}}
$$

is a projective embedding $A \rightarrow \mathbb{P}_{\mathbb{C}}^{\ell^{g}-1}$.

The action of the Theta group

- The point $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}:=\left(\vartheta_{i}(0)\right)_{i \in \mathcal{Z}_{\ell}}$ is called the theta null point of level ℓ of the Abelian Variety $A:=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ determines the equations of the projective embedding of A of level ℓ.
- The symplectic basis $\mathbb{Z}^{g} \oplus \Omega \mathbb{Z}^{g}$ induce a decomposition into isotropic subgroups for the commutator pairing:

$$
\begin{aligned}
A[\ell] & =A[\ell]_{1} \oplus A[\ell]_{2} \\
& =\frac{1}{\ell} \mathbb{Z}^{g} / \mathbb{Z}^{g} \oplus \frac{1}{\ell} \Omega \mathbb{Z}^{g} / \Omega \mathbb{Z}^{g}
\end{aligned}
$$

This decomposition can be recovered by $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$.

- The action by translation is given by

$$
\vartheta_{k}\left(z-\frac{i}{\ell}-\Omega \frac{j}{\ell}\right)=e_{\mathcal{L}_{\ell}}(i+k, j) \vartheta_{i+k}
$$

where $e_{\mathcal{L}_{\ell}}(x, y)=e^{2 \pi i / \ell \cdot x^{\prime} y}$ is the commutator pairing.

The action of the Theta group

- The point $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}:=\left(\vartheta_{i}(0)\right)_{i \in \mathcal{Z}_{\ell}}$ is called the theta null point of level ℓ of the Abelian Variety $A:=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ determines the equations of the projective embedding of A of level ℓ.
- The symplectic basis $\mathbb{Z}^{9} \oplus \Omega^{9}$ induce a decomposition into isotropic subgroups for the commutator pairing:

$$
\begin{aligned}
A[\ell] & =A[\ell]_{1} \oplus A[\ell]_{2} \\
& =\frac{1}{\ell} \mathbb{Z}^{g} / \mathbb{Z}^{g} \oplus \frac{1}{\ell} \Omega \mathbb{Z}^{g} / \Omega \mathbb{Z}^{g}
\end{aligned}
$$

This decomposition can be recovered by $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$.

- The action by translation is given by

$$
\vartheta_{k}\left(z-\frac{i}{\ell}-\Omega \frac{j}{\ell}\right)=e_{\mathcal{L}_{\ell}}(i+k, j) \vartheta_{i+k}
$$

where $e_{\mathcal{L}_{\ell}}(x, y)=e^{2 \pi i / \ell \cdot x^{\prime} y}$ is the commutator pairing.

The action of the Theta group

- The point $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}:=\left(\vartheta_{i}(0)\right)_{i \in \mathcal{Z}_{\ell}}$ is called the theta null point of level ℓ of the Abelian Variety $A:=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ determines the equations of the projective embedding of A of level ℓ.
- The symplectic basis $\mathbb{Z}^{g} \oplus \Omega \mathbb{Z}^{g}$ induce a decomposition into isotropic subgroups for the commutator pairing:

$$
\begin{aligned}
A[\ell] & =A[\ell]_{1} \oplus A[\ell]_{2} \\
& =\frac{1}{\ell} \mathbb{Z}^{g} / \mathbb{Z}^{g} \oplus \frac{1}{\ell} \Omega \mathbb{Z}^{g} / \Omega \mathbb{Z}^{g}
\end{aligned}
$$

This decomposition can be recovered by $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$.

- The action by translation is given by

$$
\vartheta_{k}\left(z-\frac{i}{\ell}-\Omega \frac{j}{\ell}\right)=e_{\mathcal{L}_{\ell}}(i+k, j) \vartheta_{i+k}
$$

where $e_{\mathcal{L}_{\ell}}(x, y)=e^{2 \pi i / \ell \cdot x^{\prime} y}$ is the commutator pairing.

The action of the Theta group

- The point $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}:=\left(\vartheta_{i}(0)\right)_{i \in \mathcal{Z}_{\ell}}$ is called the theta null point of level ℓ of the Abelian Variety $A:=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ determines the equations of the projective embedding of A of level ℓ.
- The symplectic basis $\mathbb{Z}^{g} \oplus \Omega \mathbb{Z}^{g}$ induce a decomposition into isotropic subgroups for the commutator pairing:

$$
\begin{aligned}
A[\ell] & =A[\ell]_{1} \oplus A[\ell]_{2} \\
& =\frac{1}{\ell} \mathbb{Z}^{g} / \mathbb{Z}^{g} \oplus \frac{1}{\ell} \Omega \mathbb{Z}^{g} / \Omega \mathbb{Z}^{g}
\end{aligned}
$$

This decomposition can be recovered by $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$.

- The action by translation is given by

$$
\vartheta_{k}\left(z-\frac{i}{\ell}-\Omega \frac{j}{\ell}\right)=e_{\mathcal{L}_{\ell}}(i+k, j) \vartheta_{i+k}
$$

where $e_{\mathcal{L}_{\ell}}(x, y)=e^{2 \pi i / \ell \cdot x^{\prime} y}$ is the commutator pairing.

The isogeny theorem

Theorem

- Let $\ell=n . m$, and $\varphi: \mathcal{Z}_{n} \rightarrow \mathcal{Z}_{\ell}, x \mapsto m . x$ be the canonical embedding. Let $K=A[m]_{2} \subset A[\ell]_{2}$.
- Let $\left(\vartheta_{i}^{A}\right)_{i \in \mathcal{Z}_{\ell}}$ be the theta functions of level ℓ on $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\vartheta_{i}^{B}\right)_{i \in \mathcal{Z}_{n}}$ be the theta functions of level n of $B=A / K=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\frac{\Omega}{m} \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\vartheta_{i}^{B}(x)\right)_{i \in \mathcal{Z}_{n}}=\left(\vartheta_{\varphi(i)}^{A}(x)\right)_{i \in \mathcal{Z}_{n}}
$$

Proof.

$$
\vartheta_{i}^{B}(z)=\vartheta\left[\begin{array}{c}
0 \\
i / n
\end{array}\right]\left(z, \frac{\Omega}{m} / n\right)=\vartheta\left[\begin{array}{c}
0 \\
m i / \ell
\end{array}\right](z, \Omega / \ell)=\vartheta_{m \cdot i}^{A}(z)
$$

The isogeny theorem

Theorem

- Let $\ell=n . m$, and $\varphi: \mathcal{Z}_{n} \rightarrow \mathcal{Z}_{\ell}, x \mapsto m . x$ be the canonical embedding. Let $K=A[m]_{2} \subset A[\ell]_{2}$.
- Let $\left(\vartheta_{i}^{A}\right)_{i \in \mathcal{Z}_{\ell}}$ be the theta functions of level ℓ on $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{9}+\Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\vartheta_{i}^{B}\right)_{i \in \mathcal{Z}_{n}}$ be the theta functions of level n of $B=A / K=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\frac{\Omega}{m} \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\vartheta_{i}^{B}(x)\right)_{i \in \mathcal{Z}_{n}}=\left(\vartheta_{\varphi(i)}^{A}(x)\right)_{i \in \mathcal{Z}_{n}}
$$

Proof.

$$
\vartheta_{i}^{B}(z)=\vartheta\left[\begin{array}{c}
0 \\
i / n
\end{array}\right]\left(z, \frac{\Omega}{m} / n\right)=\vartheta\left[\begin{array}{c}
0 \\
m i / \ell
\end{array}\right](z, \Omega / \ell)=\vartheta_{m \cdot i}^{A}(z)
$$

The isogeny theorem

Theorem

- Let $\ell=n . m$, and $\varphi: \mathcal{Z}_{n} \rightarrow \mathcal{Z}_{\ell}, x \mapsto m . x$ be the canonical embedding. Let $K=A[m]_{2} \subset A[\ell]_{2}$.
- Let $\left(\vartheta_{i}^{A}\right)_{i \in \mathcal{Z}_{\ell}}$ be the theta functions of level ℓ on $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\vartheta_{i}^{B}\right)_{i \in \mathcal{Z}_{n}}$ be the theta functions of level n of $B=A / K=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\frac{\Omega}{m} \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\vartheta_{i}^{B}(x)\right)_{i \in \mathcal{Z}_{n}}=\left(\vartheta_{\varphi(i)}^{A}(x)\right)_{i \in \mathcal{Z}_{n}}
$$

Proof.

$$
\vartheta_{i}^{B}(z)=\vartheta\left[\begin{array}{c}
0 \\
i / n
\end{array}\right]\left(z, \frac{\Omega}{m} / n\right)=\vartheta\left[\begin{array}{c}
0 \\
m i / \ell
\end{array}\right](z, \Omega / \ell)=\vartheta_{m \cdot i}^{A}(z)
$$

The isogeny theorem

Theorem

- Let $\ell=n . m$, and $\varphi: \mathcal{Z}_{n} \rightarrow \mathcal{Z}_{\ell}, x \mapsto m . x$ be the canonical embedding. Let $K=A[m]_{2} \subset A[\ell]_{2}$.
- Let $\left(\vartheta_{i}^{A}\right)_{i \in \mathcal{Z}_{\ell}}$ be the theta functions of level ℓ on $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\vartheta_{i}^{B}\right)_{i \in \mathcal{Z}_{n}}$ be the theta functions of level n of $B=A / K=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\frac{\Omega}{m} \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\vartheta_{i}^{B}(x)\right)_{i \in \mathcal{Z}_{n}}=\left(\vartheta_{\varphi(i)}^{A}(x)\right)_{i \in \mathcal{Z}_{n}}
$$

Proof.

$$
\vartheta_{i}^{B}(z)=\vartheta\left[\begin{array}{c}
0 \\
i / n
\end{array}\right]\left(z, \frac{\Omega}{m} / n\right)=\vartheta\left[\begin{array}{c}
0 \\
m i / \ell
\end{array}\right](z, \Omega / \ell)=\vartheta_{m \cdot i}^{A}(z)
$$

The isogeny theorem

Theorem

- Let $\ell=n . m$, and $\varphi: \mathcal{Z}_{n} \rightarrow \mathcal{Z}_{\ell}, x \mapsto m . x$ be the canonical embedding. Let $K=A[m]_{2} \subset A[\ell]_{2}$.
- Let $\left(\vartheta_{i}^{A}\right)_{i \in \mathcal{Z}_{\ell}}$ be the theta functions of level ℓ on $A=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\Omega \mathbb{Z}^{g}\right)$.
- Let $\left(\vartheta_{i}^{B}\right)_{i \in \mathcal{Z}_{n}}$ be the theta functions of level n of $B=A / K=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\frac{\Omega}{m} \mathbb{Z}^{g}\right)$.
- We have:

$$
\left(\vartheta_{i}^{B}(x)\right)_{i \in \mathcal{Z}_{n}}=\left(\vartheta_{\varphi(i)}^{A}(x)\right)_{i \in \mathcal{Z}_{n}}
$$

Proof.

$$
\vartheta_{i}^{B}(z)=\vartheta\left[\begin{array}{c}
0 \\
i / n
\end{array}\right]\left(z, \frac{\Omega}{m} / n\right)=\vartheta\left[\begin{array}{c}
0 \\
m i / \ell
\end{array}\right](z, \Omega / \ell)=\vartheta_{m \cdot i}^{A}(z)
$$

Mumford: On equations defining Abelian varieties

Theorem ($\operatorname{car} k+\ell$)

- The theta null point of level $\ell\left(a_{i}\right)_{i \in \mathcal{Z} \ell}$ satisfy the Riemann Relations:

$$
\begin{equation*}
\sum_{t \in \mathcal{Z}_{2}} a_{x+t} a_{y+t} \sum_{t \in \mathcal{Z}_{2}} a_{u+t} a_{v+t}=\sum_{t \in \mathcal{Z}_{2}} a_{z-u+t} a_{z-y+t} \sum_{t \in \mathcal{Z}_{2}} a_{z-x+t} a_{z-v+t} \tag{1}
\end{equation*}
$$

We note \mathcal{M}_{ℓ} the moduli space given by these relations together with the relations of symmetry:

$$
a_{x}=a_{-x}
$$

- $\mathcal{M}_{\ell}(k)$ is the modular space of k-Abelian variety with a theta structure of level ℓ. The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\ell}^{0}(k)$ of $\mathcal{M}_{\ell}(k)$.

Remark

Analytic action: $\mathrm{Sp}_{2 g}(\mathbb{Z})$ acts on \mathcal{H}_{g} (and preserve the isomorphic classes).

- Algebraic action: $\mathrm{Sp}_{2}\left(\mathcal{Z}_{\rho}\right)$ acts on \mathcal{M}

Mumford: On equations defining Abelian varieties

Theorem ($\operatorname{car} k+\ell$)

- The theta null point of level $\ell\left(a_{i}\right)_{i \in \mathcal{Z}}$ satisfy the Riemann Relations:

$$
\begin{equation*}
\sum_{t \in \mathcal{Z}_{2}} a_{x+t} a_{y+t} \sum_{t \in \mathcal{Z}_{2}} a_{u+t} a_{v+t}=\sum_{t \in \mathcal{Z}_{2}} a_{z-u+t} a_{z-y+t} \sum_{t \in \mathcal{Z}_{2}} a_{z-x+t} a_{z-v+t} \tag{1}
\end{equation*}
$$

We note \mathcal{M}_{ℓ} the moduli space given by these relations together with the relations of symmetry:

$$
a_{x}=a_{-x}
$$

- $\mathcal{M}_{\ell}(k)$ is the modular space of k-Abelian variety with a theta structure of level ℓ. The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\ell}^{0}(k)$ of $\mathcal{M}_{\ell}(k)$.

Remark

\qquad
Algebraic action: $\operatorname{Sp}_{2 g}\left(\mathcal{Z}_{\ell}\right)$ acts on \mathcal{M}_{ℓ}

Numford: On equations defining $\mathcal{A b} b$ lian varieties

Theorem (car $k+\ell$)

- The theta null point of level $\ell\left(a_{i}\right)_{i \in \mathcal{Z}}$ satisfy the Riemann Relations:

$$
\begin{equation*}
\sum_{t \in \mathcal{Z}_{2}} a_{x+t} a_{y+t} \sum_{t \in \mathcal{Z}_{2}} a_{u+t} a_{v+t}=\sum_{t \in \mathcal{Z}_{2}} a_{z-u+t} a_{z-y+t} \sum_{t \in \mathcal{Z}_{2}} a_{z-x+t} a_{z-v+t} \tag{1}
\end{equation*}
$$

We note \mathcal{M}_{ℓ} the moduli space given by these relations together with the relations of symmetry:

$$
a_{x}=a_{-x}
$$

- $\mathcal{M}_{\ell}(k)$ is the modular space of k-Abelian variety with a theta structure of level ℓ. The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\ell}^{0}(k)$ of $\mathcal{M}_{\ell}(k)$.

Remark

- Analytic action: $\mathrm{Sp}_{2 g}(\mathbb{Z})$ acts on \mathcal{H}_{g} (and preserve the isomorphic classes).
- Algebraic action: $\operatorname{Sp}_{2 g}\left(\mathcal{Z}_{\ell}\right)$ acts on \mathcal{M}_{ℓ}.

Numford: On equations defining $\mathcal{A b} b$ lian varieties

Theorem (car $k+\ell$)

- The theta null point of level $\ell\left(a_{i}\right)_{i \in \mathcal{Z}}$ satisfy the Riemann Relations:

$$
\begin{equation*}
\sum_{t \in \mathcal{Z}_{2}} a_{x+t} a_{y+t} \sum_{t \in \mathcal{Z}_{2}} a_{u+t} a_{v+t}=\sum_{t \in \mathcal{Z}_{2}} a_{z-u+t} a_{z-y+t} \sum_{t \in \mathcal{Z}_{2}} a_{z-x+t} a_{z-v+t} \tag{1}
\end{equation*}
$$

We note \mathcal{M}_{ℓ} the moduli space given by these relations together with the relations of symmetry:

$$
a_{x}=a_{-x}
$$

- $\mathcal{M}_{\ell}(k)$ is the modular space of k-Abelian variety with a theta structure of level ℓ. The locus of theta null points of level ℓ is an open subset $\mathcal{M}_{\ell}^{0}(k)$ of $\mathcal{M}_{\ell}(k)$.

Remark

- Analytic action: $\mathrm{Sp}_{2 g}(\mathbb{Z})$ acts on \mathcal{H}_{g} (and preserve the isomorphic classes).
- Algebraic action: $\operatorname{Sp}_{2 g}\left(\mathcal{Z}_{\ell}\right)$ acts on \mathcal{M}_{ℓ}.

Summary

Summary

$$
\begin{aligned}
& A_{k}, A_{k}[\ell]=A_{k}[\ell]_{1} \oplus A_{k}[\ell]_{2} \longleftarrow \text { determines } \quad\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell} \in} \in \mathcal{M}_{\ell}(k) \\
& \text {.. } \\
& B_{k}, B_{k}[n]=B_{k}[n]_{1} \oplus B_{k}[n]_{2}<\ldots \ldots \ldots \ldots \ldots . . \quad\left(b_{i}\right)_{i \in \mathcal{Z}_{n}} \in \mathcal{M}_{n}(k)
\end{aligned}
$$

Summary

$$
\begin{array}{ll}
A_{k}, A_{k}[\ell]=A_{k}[\ell]_{1} \oplus A_{k}[\ell]_{2}<\text { determines } & \left(a_{i}\right)_{i \in \mathcal{Z}_{\ell} \in \mathcal{M}_{\ell}(k)} \\
\hat{\pi} \|_{\pi} & \\
B_{k}, B_{k}[n]=B_{k}[n]_{1} \oplus B_{k}[n]_{2} & \left(b_{i}\right)_{i \in \mathcal{Z}_{n} \in \mathcal{M}_{n}(k)}
\end{array}
$$

Summary

Summary

Summary

Summary

- The kernel of π is $A_{k}[m]_{2} \subset A_{k}[\ell]_{2}$.
- The kernel of $\hat{\pi}$ is $\pi\left(A_{k}[m]_{1}\right)$.

Summary

- The kernel of π is $A_{k}[m]_{2} \subset A_{k}[\ell]_{2}$.
- The kernel of $\hat{\pi}$ is $\pi\left(A_{k}[m]_{1}\right)$.

An Example with $n \wedge m=1$

We will show an example with $g=1, n=4$ and $\ell=12$.

- Let B be the elliptic curve $y^{2}=x^{3}+11 . x+47$ over $k=\mathbb{F}_{79}$. The corresponding theta null point $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ of level 4 is $(1: 1: 12: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{79}\right)$.

An Example with $n \wedge m=1$

We will show an example with $g=1, n=4$ and $\ell=12$.

- Let B be the elliptic curve $y^{2}=x^{3}+11 \cdot x+47$ over $k=\mathbb{F}_{79}$. The corresponding theta null point $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ of level 4 is $(1: 1: 12: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{79}\right)$.
- We note $V_{B}(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$
a_{0}=b_{0}, a_{3}=b_{1}, a_{6}=b_{2}, a_{9}=b_{3}
$$

- By the isogeny theorem, to every valid theta null point $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}} \in V_{B}^{0}(k)$ corresponds a 3-isogeny $\pi: A \rightarrow B$:

$$
\pi\left(\vartheta_{i}^{A}(x)_{i \in \mathcal{Z}_{12}}\right)=\left(\vartheta_{0}^{A}(x), \vartheta_{3}^{A}(x), \vartheta_{6}^{A}(x), \vartheta_{9}^{A}(x)\right)
$$

- Program:

An Example with $n \wedge m=1$

We will show an example with $g=1, n=4$ and $\ell=12$.

- Let B be the elliptic curve $y^{2}=x^{3}+11 \cdot x+47$ over $k=\mathbb{F}_{79}$. The corresponding theta null point $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ of level 4 is $(1: 1: 12: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{79}\right)$.
- We note $V_{B}(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$
a_{0}=b_{0}, a_{3}=b_{1}, a_{6}=b_{2}, a_{9}=b_{3}
$$

- By the isogeny theorem, to every valid theta null point $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}} \in V_{B}^{0}(k)$ corresponds a 3-isogeny $\pi: A \rightarrow B$:

$$
\pi\left(\vartheta_{i}^{A}(x)_{i \in \mathcal{Z}_{12}}\right)=\left(\vartheta_{0}^{A}(x), \vartheta_{3}^{A}(x), \vartheta_{6}^{A}(x), \vartheta_{9}^{A}(x)\right)
$$

- Program:

An Example with $n \wedge m=1$

We will show an example with $g=1, n=4$ and $\ell=12$.

- Let B be the elliptic curve $y^{2}=x^{3}+11 \cdot x+47$ over $k=\mathbb{F}_{79}$. The corresponding theta null point $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ of level 4 is $(1: 1: 12: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{79}\right)$.
- We note $V_{B}(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$
a_{0}=b_{0}, a_{3}=b_{1}, a_{6}=b_{2}, a_{9}=b_{3}
$$

- By the isogeny theorem, to every valid theta null point $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}} \in V_{B}^{0}(k)$ corresponds a 3-isogeny $\pi: A \rightarrow B$:

$$
\pi\left(\vartheta_{i}^{A}(x)_{i \in \mathcal{Z}_{12}}\right)=\left(\vartheta_{0}^{A}(x), \vartheta_{3}^{A}(x), \vartheta_{6}^{A}(x), \vartheta_{9}^{A}(x)\right)
$$

- Program:
- Compute the solutions.
- Identify the valid theta null points.
- Compute the dual isogeny.

An Example with $n \wedge m=1$

We will show an example with $g=1, n=4$ and $\ell=12$.

- Let B be the elliptic curve $y^{2}=x^{3}+11 \cdot x+47$ over $k=\mathbb{F}_{79}$. The corresponding theta null point $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ of level 4 is $(1: 1: 12: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{79}\right)$.
- We note $V_{B}(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$
a_{0}=b_{0}, a_{3}=b_{1}, a_{6}=b_{2}, a_{9}=b_{3}
$$

- By the isogeny theorem, to every valid theta null point $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}} \in V_{B}^{0}(k)$ corresponds a 3-isogeny $\pi: A \rightarrow B$:

$$
\pi\left(\vartheta_{i}^{A}(x)_{i \in \mathcal{Z}_{12}}\right)=\left(\vartheta_{0}^{A}(x), \vartheta_{3}^{A}(x), \vartheta_{6}^{A}(x), \vartheta_{9}^{A}(x)\right)
$$

- Program:
- Compute the solutions.
- Identify the valid theta null points.
- Compute the dual isogeny.

An Example with $n \wedge m=1$

We will show an example with $g=1, n=4$ and $\ell=12$.

- Let B be the elliptic curve $y^{2}=x^{3}+11 \cdot x+47$ over $k=\mathbb{F}_{79}$. The corresponding theta null point $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$ of level 4 is $(1: 1: 12: 1) \in \mathcal{M}_{4}\left(\mathbb{F}_{79}\right)$.
- We note $V_{B}(k)$ the subvariety of $\mathcal{M}_{12}(k)$ defined by

$$
a_{0}=b_{0}, a_{3}=b_{1}, a_{6}=b_{2}, a_{9}=b_{3}
$$

- By the isogeny theorem, to every valid theta null point $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell n}} \in V_{B}^{0}(k)$ corresponds a 3-isogeny $\pi: A \rightarrow B$:

$$
\pi\left(\vartheta_{i}^{A}(x)_{i \in \mathcal{Z}_{12}}\right)=\left(\vartheta_{0}^{A}(x), \vartheta_{3}^{A}(x), \vartheta_{6}^{A}(x), \vartheta_{9}^{A}(x)\right)
$$

- Program:
- Compute the solutions.
- Identify the valid theta null points.
- Compute the dual isogeny.

The kernel of the dual isogeny

- Let $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ be a valid theta null point solution. Let ζ be a primitive 3-th root of unity.
The kernel K of π is

$$
\begin{gathered}
\left\{\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}\right)\right. \\
\left(a_{0}, \zeta a_{1}, \zeta^{2} a_{2}, a_{3}, \zeta a_{4}, \zeta^{2} a_{5}, a_{6}, \zeta a_{7}, \zeta^{2} a_{8}, a_{9}, \zeta a_{10}, \zeta^{2} a_{11}\right) \\
\left.\left(a_{0}, \zeta^{2} a_{1}, \zeta a_{2}, a_{3}, \zeta^{2} a_{4}, \zeta a_{5}, a_{6}, \zeta^{2} a_{7}, \zeta a_{8}, a_{9}, \zeta^{2} a_{10}, \zeta a_{11}\right)\right\}
\end{gathered}
$$

- The kernel \tilde{K} of the dual isogeny is given by the projection of the dual of K :

$$
\tilde{K}=\left\{\left(a_{0}, a_{3}, a_{6}, a_{9}\right),\left(a_{4}, a_{7}, a_{10}, a_{1}\right),\left(a_{8}, a_{11}, a_{2}, a_{5}\right)\right\}
$$

Theorem

Let $\left(a_{i}\right)_{i \in \mathcal{Z}_{12}}$ be any solution. Then $\left(a_{i}\right)_{i \in \mathcal{Z}_{12}}$ is valid if and only if

$$
\#\left\{\left(a_{0}, a_{3}, a_{6}, a_{9}\right),\left(a_{4}, a_{7}, a_{10}, a_{1}\right),\left(a_{8}, a_{11}, a_{2}, a_{5}\right)\right\}=3
$$

The kernel of the dual isogeny

- Let $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ be a valid theta null point solution. Let ζ be a primitive 3-th root of unity.
The kernel K of π is

$$
\begin{gathered}
\left\{\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}\right)\right. \\
\left(a_{0}, \zeta a_{1}, \zeta^{2} a_{2}, a_{3}, \zeta a_{4}, \zeta^{2} a_{5}, a_{6}, \zeta a_{7}, \zeta^{2} a_{8}, a_{9}, \zeta a_{10}, \zeta^{2} a_{11}\right) \\
\left.\left(a_{0}, \zeta^{2} a_{1}, \zeta a_{2}, a_{3}, \zeta^{2} a_{4}, \zeta a_{5}, a_{6}, \zeta^{2} a_{7}, \zeta a_{8}, a_{9}, \zeta^{2} a_{10}, \zeta a_{11}\right)\right\}
\end{gathered}
$$

- The kernel \tilde{K} of the dual isogeny is given by the projection of the dual of K :

$$
\tilde{K}=\left\{\left(a_{0}, a_{3}, a_{6}, a_{9}\right),\left(a_{4}, a_{7}, a_{10}, a_{1}\right),\left(a_{8}, a_{11}, a_{2}, a_{5}\right)\right\}
$$

Theorem

Let $\left(a_{i}\right)_{i \in \mathcal{Z}_{12}}$ be any solution. Then $\left(a_{i}\right)_{i \in \mathcal{Z}_{12}}$ is valid if and only if

$$
\#\left\{\left(a_{0}, a_{3}, a_{6}, a_{9}\right),\left(a_{4}, a_{7}, a_{10}, a_{1}\right),\left(a_{8}, a_{11}, a_{2}, a_{5}\right)\right\}=3
$$

The kernel of the dual isogeny

- Let $\left(a_{i}\right)_{i \in \mathcal{Z}_{\ell}}$ be a valid theta null point solution. Let ζ be a primitive 3-th root of unity.
The kernel K of π is

$$
\begin{gathered}
\left\{\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}\right)\right. \\
\left(a_{0}, \zeta a_{1}, \zeta^{2} a_{2}, a_{3}, \zeta a_{4}, \zeta^{2} a_{5}, a_{6}, \zeta a_{7}, \zeta^{2} a_{8}, a_{9}, \zeta a_{10}, \zeta^{2} a_{11}\right) \\
\left.\left(a_{0}, \zeta^{2} a_{1}, \zeta a_{2}, a_{3}, \zeta^{2} a_{4}, \zeta a_{5}, a_{6}, \zeta^{2} a_{7}, \zeta a_{8}, a_{9}, \zeta^{2} a_{10}, \zeta a_{11}\right)\right\}
\end{gathered}
$$

- The kernel \tilde{K} of the dual isogeny is given by the projection of the dual of K :

$$
\tilde{K}=\left\{\left(a_{0}, a_{3}, a_{6}, a_{9}\right),\left(a_{4}, a_{7}, a_{10}, a_{1}\right),\left(a_{8}, a_{11}, a_{2}, a_{5}\right)\right\}
$$

Theorem

Let $\left(a_{i}\right)_{i \in \mathcal{Z}_{12}}$ be any solution. Then $\left(a_{i}\right)_{i \in \mathcal{Z}_{12}}$ is valid if and only if

$$
\#\left\{\left(a_{0}, a_{3}, a_{6}, a_{9}\right),\left(a_{4}, a_{7}, a_{10}, a_{1}\right),\left(a_{8}, a_{11}, a_{2}, a_{5}\right)\right\}=3
$$

The automorphisms of the theta group

- If $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}\right)$ is a valid solution corresponding to an Abelian variety A, the solutions isomorphic to A are given by

$$
\begin{gathered}
\left(a_{0}, \zeta a_{1}, \zeta^{2} a_{2}, a_{3}, \zeta a_{4}, \zeta^{2^{2}} a_{5}, a_{6}, \zeta a_{7}, \zeta^{2^{2}} a_{8}, a_{9}, \zeta a_{10}, \zeta^{2^{2}} a_{11}\right) \\
\left(a_{0}, \zeta^{2} a_{1}, \zeta^{2} a_{2}, a_{3}, \zeta^{2} a_{4}, \zeta^{2} a_{5}, a_{6}, \zeta^{2} a_{7}, \zeta^{2} a_{8}, a_{9}, \zeta^{2} a_{10}, \zeta^{2} a_{11}\right) \\
\left(a_{0}, a_{5}, a_{10}, a_{3}, a_{8}, a_{1}, a_{6}, a_{11}, a_{4}, a_{9}, a_{2}, a_{7}\right) \\
\left(a_{0}, \zeta a_{5}, \zeta a_{10}, a_{3}, \zeta a_{8}, \zeta a_{1}, a_{6}, \zeta a_{11}, \zeta a_{4}, a_{9}, \zeta a_{2}, \zeta a_{7}\right) \\
\left(a_{0}, \zeta^{2} a_{5}, \zeta^{2} a_{10}, a_{3}, \zeta^{2} a_{8}, \zeta^{2} a_{1}, a_{6}, \zeta^{2} a_{11}, \zeta^{2} a_{4}, a_{9}, \zeta^{2} a_{2}, \zeta^{2} a_{7}\right)
\end{gathered}
$$

- In general, for each m-isogeny, there will be $\simeq m^{g^{2}+g(g+1) / 2}$ solutions.

The automorphisms of the theta group

- If $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}\right)$ is a valid solution corresponding to an Abelian variety A, the solutions isomorphic to A are given by

$$
\begin{gathered}
\left(a_{0}, \zeta a_{1}, \zeta^{2^{2}} a_{2}, a_{3}, \zeta a_{4}, \zeta^{2^{2}} a_{5}, a_{6}, \zeta a_{7}, \zeta^{2^{2}} a_{8}, a_{9}, \zeta a_{10}, \zeta^{2^{2}} a_{11}\right) \\
\left(a_{0}, \zeta^{2} a_{1}, \zeta^{2} a_{2}, a_{3}, \zeta^{2} a_{4}, \zeta^{2} a_{5}, a_{6}, \zeta^{2} a_{7}, \zeta^{2} a_{8}, a_{9}, \zeta^{2} a_{10}, \zeta^{2} a_{11}\right) \\
\left(a_{0}, a_{5}, a_{10}, a_{3}, a_{8}, a_{1}, a_{6}, a_{11}, a_{4}, a_{9}, a_{2}, a_{7}\right) \\
\left(a_{0}, \zeta a_{5}, \zeta a_{10}, a_{3}, \zeta a_{8}, \zeta a_{1}, a_{6}, \zeta a_{11}, \zeta a_{4}, a_{9}, \zeta a_{2}, \zeta a_{7}\right) \\
\left(a_{0}, \zeta^{2} a_{5}, \zeta^{2} a_{10}, a_{3}, \zeta^{2} a_{8}, \zeta^{2} a_{1}, a_{6}, \zeta^{2} a_{11}, \zeta^{2} a_{4}, a_{9}, \zeta^{2} a_{2}, \zeta^{2} a_{7}\right)
\end{gathered}
$$

- In general, for each m-isogeny, there will be $\simeq m^{g^{2}+g(g+1) / 2}$ solutions.

The solutions

Solutions of the system

- We have the following valid solutions (v is a primitive root of degree 3):

$$
\begin{aligned}
& \left(v^{490931}: 1: 46: v^{490931}: 37: 54: v^{54782}: 54: 37: v^{490931}: 46: 1\right) \\
& \left(v^{476182}: 1: 68: v^{476182}: 67: 10: v^{40033}: 10: 67: v^{476182}: 68: 1\right) \\
& \left(v^{465647}: 1: 3: v^{465647}: 40: 16: v^{29498}: 16: 40: v^{465647}: 3: 1\right) \\
& \left(v^{450898}: 1: 33: v^{450898}: 69: 24: v^{14749}: 24: 69: v^{450898}: 33: 1\right)
\end{aligned}
$$

- And the following degenerate solutions:

$$
\begin{aligned}
& (1: 1: 12: 1: 1: 1: 12: 1: 1: 1: 12: 1) \\
& (1: 0: 0: 1: 0: 0: 12: 0: 0: 1: 0: 0)
\end{aligned}
$$

The solutions

Solutions of the system

- We have the following valid solutions (v is a primitive root of degree 3):

$$
\begin{aligned}
& \left(v^{490931}: 1: 46: v^{490931}: 37: 54: v^{54782}: 54: 37: v^{490931}: 46: 1\right) \\
& \left(v^{476182}: 1: 68: v^{476182}: 67: 10: v^{40033}: 10: 67: v^{476182}: 68: 1\right) \\
& \left(v^{465647}: 1: 3: v^{465647}: 40: 16: v^{29498}: 16: 40: v^{465647}: 3: 1\right) \\
& \left(v^{450898}: 1: 33: v^{450898}: 69: 24: v^{14749}: 24: 69: v^{450898}: 33: 1\right)
\end{aligned}
$$

- And the following degenerate solutions:

$$
\begin{aligned}
& (1: 1: 12: 1: 1: 1: 12: 1: 1: 1: 12: 1) \\
& (1: 0: 0: 1: 0: 0: 12: 0: 0: 1: 0: 0)
\end{aligned}
$$

The dual isogeny

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{0}, \cdots, a_{11}\right)$. Let $y=\left(y_{0}, y_{1}, y_{2}, y_{3}\right) \in B$. Let $x=\left(x_{0}, \cdots, x_{11}\right)$ be one of the 3 antecedents. Then

$$
\tilde{\pi}(y)=3 x
$$

- Let $P_{1}=\left(a_{4}, a_{7}, a_{10}, a_{1}\right) \in \tilde{K}, P_{1}$ is a point of 3-torsion in B. We have:

$$
\begin{gathered}
y=\left(x_{0}, x_{3}, x_{6}, x_{9}\right) \\
y+P_{1}=\left(x_{4}, x_{7}, x_{10}, x_{1}\right) \\
y+2 P_{1}=\left(x_{8}, x_{11}, x_{2}, x_{5}\right)
\end{gathered}
$$

So x can be recovered from $y, y+P_{1}, y+2 P_{1}$ up to three projective factors $\lambda_{0}, \lambda_{P_{1}}, \lambda_{2 P_{1}}$.

The dual isogeny

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{0}, \cdots, a_{11}\right)$. Let $y=\left(y_{0}, y_{1}, y_{2}, y_{3}\right) \in B$. Let $x=\left(x_{0}, \cdots, x_{11}\right)$ be one of the 3 antecedents. Then

$$
\tilde{\pi}(y)=3 x
$$

- Let $P_{1}=\left(a_{4}, a_{7}, a_{10}, a_{1}\right) \in \tilde{K}, P_{1}$ is a point of 3-torsion in B. We have:

$$
y=\left(x_{0}, x_{3}, x_{6}, x_{9}\right)
$$

So x can be recovered from $y, y+P_{1}, y+2 P_{1}$ up to three projective factors $\lambda_{0}, \lambda_{P_{1}}, \lambda_{2 P_{1}}$.

The dual isogeny

$$
x \in A \xrightarrow{[\ell]} z \in A \quad \begin{aligned}
& \text { Let } \pi: A \rightarrow B \text { be the isogeny associated to } \\
& \left(a_{0}, \cdots, a_{11}\right) . \text { Let } y=\left(y_{0}, y_{1}, y_{2}, y_{3}\right) \in B . \text { Let } \\
& x=\left(x_{0}, \cdots, x_{11}\right) \text { be one of the } 3 \text { antecedents. } \\
& \boldsymbol{T} \\
& y \in B
\end{aligned}
$$

- Let $P_{1}=\left(a_{4}, a_{7}, a_{10}, a_{1}\right) \in \tilde{K}, P_{1}$ is a point of 3-torsion in B. We have:

So x can be recovered from $y, y+P_{1}, y+2 P_{1}$ up to three projective factors $\lambda_{0}, \lambda_{P_{1}}, \lambda_{2 P_{1}}$.

The dual isogeny

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{0}, \cdots, a_{11}\right)$. Let $y=\left(y_{0}, y_{1}, y_{2}, y_{3}\right) \in B$. Let $x=\left(x_{0}, \cdots, x_{11}\right)$ be one of the 3 antecedents. Then

$$
\tilde{\pi}(y)=3 x
$$

The dual isogeny

Let $\pi: A \rightarrow B$ be the isogeny associated to $\left(a_{0}, \cdots, a_{11}\right)$. Let $y=\left(y_{0}, y_{1}, y_{2}, y_{3}\right) \in B$. Let $x=\left(x_{0}, \cdots, x_{11}\right)$ be one of the 3 antecedents. Then

$$
\tilde{\pi}(y)=3 x
$$

- Let $P_{1}=\left(a_{4}, a_{7}, a_{10}, a_{1}\right) \in \tilde{K}, P_{1}$ is a point of 3-torsion in B. We have:

$$
\begin{gathered}
y=\left(x_{0}, x_{3}, x_{6}, x_{9}\right) \\
y+P_{1}=\left(x_{4}, x_{7}, x_{10}, x_{1}\right) \\
y+2 P_{1}=\left(x_{8}, x_{11}, x_{2}, x_{5}\right)
\end{gathered}
$$

So x can be recovered from $y, y+P_{1}, y+2 P_{1}$ up to three projective factors $\lambda_{0}, \lambda_{P_{1}}, \lambda_{2 P_{1}}$.

The addition formula

Theorem (Addition formula)

$$
\begin{aligned}
& 2^{g} \vartheta\left[\begin{array}{l}
a^{\prime} \\
e^{\prime}
\end{array}\right](x+y) \vartheta\left[\begin{array}{l}
b^{\prime} \\
f^{\prime}
\end{array}\right](x-y) \vartheta\left[\begin{array}{l}
c^{\prime} \\
g^{\prime}
\end{array}\right](0) \vartheta\left[\begin{array}{l}
d^{\prime} \\
h^{\prime}
\end{array}\right](0)= \\
& \quad \sum_{\alpha, \beta \in \frac{1}{2} \mathbb{Z}^{g} / \mathbb{Z}^{g}} e^{2 \pi i \beta^{\prime}(a+b+c+d)} \vartheta\left[\begin{array}{l}
a+\alpha \\
e+\beta
\end{array}\right](x) \vartheta\left[\begin{array}{l}
b+\alpha \\
f+\beta
\end{array}\right](x) \vartheta\left[\begin{array}{l}
c+\alpha \\
g+\beta
\end{array}\right](y) \vartheta\left[\begin{array}{l}
d+\alpha \\
h+\beta
\end{array}\right](y)
\end{aligned}
$$

$$
\text { where } A=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

$$
a, b, c, d, e, f, g, h \in \frac{1}{2} \mathbb{Z}^{g} / \mathbb{Z}^{g}
$$

$$
\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)=A(a, b, c, d),\left(e^{\prime}, f^{\prime}, g^{\prime}, h^{\prime}\right)=A(e, f, g, h)
$$

Computing the projective factors

- Using the addition formulas, we have $\lambda_{2 P_{1}}=\lambda_{P_{1}}^{2}$.
- Since $y+3 P_{1}=y$, we obtain a formula

$$
\lambda_{P_{1}}^{3}=\alpha
$$

hence we can find the three antecedents.

- In fact when computing $3 \cdot x$, the projective factors become $\lambda_{0}^{3}, \lambda_{P_{1}}^{3}, \lambda_{2 P_{1}}^{3}$, so we don't need to extract roots.
- Vélu's like formulas: If we know the kernel \tilde{K} of the isogeny, we can use the same methods to compute the valid theta null points in $\mathcal{M}_{\ell n}(k)$, by determining the $g(g+1) / 2$ indeterminates $\lambda_{i j}$.

Computing the projective factors

- Using the addition formulas, we have $\lambda_{2 P_{1}}=\lambda_{P_{1}}^{2}$.
- Since $y+3 P_{1}=y$, we obtain a formula

$$
\lambda_{P_{1}}^{3}=\alpha
$$

hence we can find the three antecedents.

- In fact when computing $3 \cdot x$, the projective factors become $\lambda_{0}^{3}, \lambda_{P_{1}}^{3}, \lambda_{2 P_{1}}^{3}$ so we don't need to extract roots.
- Vélu's like formulas: If we know the kernel \tilde{K} of the isogeny, we can use the same methods to compute the valid theta null points in $\mathcal{M}_{\ell_{n}}(k)$, by determining the $g(g+1) / 2$ indeterminates $\lambda_{i j}$.

Computing the projective factors

- Using the addition formulas, we have $\lambda_{2 P_{1}}=\lambda_{P_{1}}^{2}$.
- Since $y+3 P_{1}=y$, we obtain a formula

$$
\lambda_{P_{1}}^{3}=\alpha
$$

hence we can find the three antecedents.

- In fact when computing $3 \cdot x$, the projective factors become $\lambda_{0}^{3}, \lambda_{P_{1}}^{3}, \lambda_{2 P_{1}}^{3}$ so we don't need to extract roots.
- Vélu's like formulas: If we know the kernel \tilde{K} of the isogeny, we can use the same methods to compute the valid theta null points in $\mathcal{M}_{\ell n}(k)$, by determining the $g(g+1) / 2$ indeterminates $\lambda_{i j}$.

Computing the projective factors

- Using the addition formulas, we have $\lambda_{2 P_{1}}=\lambda_{P_{1}}^{2}$.
- Since $y+3 P_{1}=y$, we obtain a formula

$$
\lambda_{P_{1}}^{3}=\alpha
$$

hence we can find the three antecedents.

- In fact when computing $3 \cdot x$, the projective factors become $\lambda_{0}^{3}, \lambda_{P_{1}}^{3}, \lambda_{2 P_{1}}^{3}$ so we don't need to extract roots.
- Vélu's like formulas: If we know the kernel \tilde{K} of the isogeny, we can use the same methods to compute the valid theta null points in $\mathcal{M}_{\ell n}(k)$, by determining the $g(g+1) / 2$ indeterminates $\lambda_{i j}$.

Perspective

- The bottleneck of the algorithm is the computation of the modular solutions. Use the action on the solutions to speed-up this part. [In progress]
- By using a method similar to the computation of the dual isogeny, one can compute the commutator pairing. Is this computation competitive?

Perspective

- The bottleneck of the algorithm is the computation of the modular solutions. Use the action on the solutions to speed-up this part. [In progress]
- By using a method similar to the computation of the dual isogeny, one can compute the commutator pairing. Is this computation competitive?

