Computing isogenies of small degrees on Abelian Varieties

Jean-Charles Faugère¹, David Lubicz^{2,3}, Damien Robert⁴

¹INRIA, Centre Paris-Rocquencourt, SALSA Project

²CÉLAR

³IRMAR, Université de Rennes 1

⁴Nancy Université, CNRS, Inria Nancy Grand Est

17 Avril 2009, Rennes

ヘロト 人間 とうほう 人 回 と

Computing isogenies

Computing isogenies

Computing isogenies

Definition and cryptographic usage Computing isogenies in genus 1

Discrete logarithm

Definition (DLP)

Let *G* be a commutative finite group, $g \in G$ and $x \in \mathbb{N}$. Let $h = x \cdot g$. The discrete logarithm $\log_a(h)$ is *x*.

- The DLP is hard (in a generic group) if the order of *g* is divisible by a large prime.
 - \Rightarrow Usual tools of public key cryptography (and more!)
 - \Rightarrow Find suitable abelian groups.

Definition and cryptographic usage Computing isogenies in genus 1

Discrete logarithm

Definition (DLP)

Let *G* be a commutative finite group, $g \in G$ and $x \in \mathbb{N}$. Let $h = x \cdot g$. The discrete logarithm $\log_a(h)$ is *x*.

- The DLP is hard (in a generic group) if the order of *g* is divisible by a large prime.
 - \Rightarrow Usual tools of public key cryptography (and more!)
 - \Rightarrow Find suitable abelian groups.

Discrete logarithm

Definition (DLP)

Let *G* be a commutative finite group, $g \in G$ and $x \in \mathbb{N}$. Let $h = x \cdot g$. The discrete logarithm $\log_a(h)$ is *x*.

- The DLP is hard (in a generic group) if the order of *g* is divisible by a large prime.
 - \Rightarrow Usual tools of public key cryptography (and more!)
 - \Rightarrow Find suitable abelian groups.

Discrete logarithm

Definition (DLP)

Let *G* be a commutative finite group, $g \in G$ and $x \in \mathbb{N}$. Let $h = x \cdot g$. The discrete logarithm $\log_a(h)$ is *x*.

- The DLP is hard (in a generic group) if the order of *g* is divisible by a large prime.
 - \Rightarrow Usual tools of public key cryptography (and more!)
 - \Rightarrow Find suitable abelian groups.

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law.
- *Example:* Elliptic curves, Jacobians of genus g curves...

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law.
- Example: Elliptic curves, Jacobians of genus g curves...

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law.
- *Example:* Elliptic curves, Jacobians of genus g curves...

Definition

An Abelian variety is a complete connected group variety over a base field *k*.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an algebraic group law.
- Abelian varieties are projective, smooth, irreducible with an Abelian group law.
- Example: Elliptic curves, Jacobians of genus g curves...

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies ⇔ Finite subgroups.

$$(f: A \to B) \mapsto \operatorname{Ker} f$$

 $(A \to A/H) \leftrightarrow H$

• *Example:* Multiplication by $\ell \iff \ell$ -torsion), Frobenius (non separable).

・ロト ・ 四ト ・ ヨト・

Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies ⇔ Finite subgroups.

$$(f : A \to B) \mapsto \operatorname{Ker} f$$

 $(A \to A/H) \leftrightarrow H$

• *Example:* Multiplication by $\ell \iff \ell$ -torsion), Frobenius (non separable).

Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$(f : A \to B) \mapsto \operatorname{Ker} f$$

 $(A \to A/H) \leftrightarrow H$

• *Example:* Multiplication by $\ell \Rightarrow \ell$ -torsion), Frobenius (non separable).

Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies \Leftrightarrow Finite subgroups.

$$(f : A \to B) \mapsto \operatorname{Ker} f$$

 $(A \to A/H) \leftrightarrow H$

• *Example:* Multiplication by $\ell \iff \ell$ -torsion), Frobenius (non separable).

Definition and cryptographic usage Computing isogenies in genus 1

Cryptographic usage of isogenies

• Transfert the DLP from one Abelian variety to another.

- Point counting algorithms (*l*-addic or *p*-addic).
- Compute the class field polynomials.
- Compute the modular polynomials.
- Determine End(A).

Definition and cryptographic usage Computing isogenies in genus 1

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (*l*-addic or *p*-addic).
- Compute the class field polynomials.
- Compute the modular polynomials.
- Determine End(A).

Definition and cryptographic usage Computing isogenies in genus 1

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (*l*-addic or *p*-addic).
- Compute the class field polynomials.
- Compute the modular polynomials.
- Determine End(A).

Definition and cryptographic usage Computing isogenies in genus 1

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (*l*-addic or *p*-addic).
- Compute the class field polynomials.
- Compute the modular polynomials.
- Determine End(A).

Definition and cryptographic usage Computing isogenies in genus 1

Cryptographic usage of isogenies

- Transfert the DLP from one Abelian variety to another.
- Point counting algorithms (*l*-addic or *p*-addic).
- Compute the class field polynomials.
- Compute the modular polynomials.
- Determine End(A).

Vélu's formula

Theorem

Let $E: y^2 = f(x)$ be an elliptic curve. Let $G \subset E(k)$ be a finite subgroup. Then E/G is given by $Y^2 = g(X)$ where

$$X(P) = x(P) + \sum_{Q \in G \setminus \{0_E\}} x(P+Q) - x(Q)$$

$$Y(P) = y(P) + \sum_{Q \in G \setminus \{0_E\}} y(P+Q) - y(Q)$$

• Uses the fact that x and y are characterised in k(E) by

$$v_{0_E}(x) = -3 \qquad v_P(x) \ge 0 \quad \text{if } P \neq 0_E$$

$$v_{0_E}(y) = -2 \qquad v_P(y) \ge 0 \quad \text{if } P \neq 0_E$$

$$^2/x^3(O_E) = 1$$

• No such characterisation in genus $g \ge 2$.

V

Vélu's formula

Theorem

Let $E: y^2 = f(x)$ be an elliptic curve. Let $G \subset E(k)$ be a finite subgroup. Then E/G is given by $Y^2 = g(X)$ where

$$X(P) = x(P) + \sum_{Q \in G \setminus \{0_E\}} x(P+Q) - x(Q)$$

$$Y(P) = y(P) + \sum_{Q \in G \setminus \{0_E\}} y(P+Q) - y(Q)$$

• Uses the fact that x and y are characterised in k(E) by

$$v_{0_E}(x) = -3 \qquad v_P(x) \ge 0 \quad \text{if } P \neq 0_E$$

$$v_{0_E}(y) = -2 \qquad v_P(y) \ge 0 \quad \text{if } P \neq 0_E$$

$$^2/x^3(O_E) = 1$$

• No such characterisation in genus $g \ge 2$.

V

Vélu's formula

Theorem

Let $E: y^2 = f(x)$ be an elliptic curve. Let $G \subset E(k)$ be a finite subgroup. Then E/G is given by $Y^2 = g(X)$ where

$$X(P) = x(P) + \sum_{Q \in G \setminus \{0_E\}} x(P+Q) - x(Q)$$

$$Y(P) = y(P) + \sum_{Q \in G \setminus \{0_E\}} y(P+Q) - y(Q)$$

• Uses the fact that x and y are characterised in k(E) by

$$v_{0_E}(x) = -3 \qquad v_P(x) \ge 0 \quad \text{if } P \neq 0_E$$

$$v_{0_E}(y) = -2 \qquad v_P(y) \ge 0 \quad \text{if } P \neq 0_E$$

$$^2/x^3(O_E) = 1$$

• No such characterisation in genus $g \ge 2$.

V

- The modular polynomial is a polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_n(x, y) = 0$ iff x = j(E) and y = j(E') with *E* and *E' n*-isogeneous.
- If $E : y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: $\phi_2 = 50MB$.
- \Rightarrow Use the modulai space given by theta functions.
- ⇒ Fix the form of the isogeny and look for coordinates compatible with the isogeny.

- The modular polynomial is a polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_n(x, y) = 0$ iff x = j(E) and y = j(E') with *E* and *E' n*-isogeneous.
- If $E: y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: $\phi_2 = 50MB$.
- \Rightarrow Use the modulai space given by theta functions.
- ⇒ Fix the form of the isogeny and look for coordinates compatible with the isogeny.

- The modular polynomial is a polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_n(x, y) = 0$ iff x = j(E) and y = j(E') with *E* and *E' n*-isogeneous.
- If $E: y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: $\phi_2 = 50MB$.
- \Rightarrow Use the modulai space given by theta functions.
- ⇒ Fix the form of the isogeny and look for coordinates compatible with the isogeny.

- The modular polynomial is a polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_n(x, y) = 0$ iff x = j(E) and y = j(E') with *E* and *E' n*-isogeneous.
- If $E: y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: $\phi_2 = 50MB$.
- \Rightarrow Use the modulai space given by theta functions.
- ⇒ Fix the form of the isogeny and look for coordinates compatible with the isogeny.

- The modular polynomial is a polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_n(x, y) = 0$ iff x = j(E) and y = j(E') with *E* and *E' n*-isogeneous.
- If $E: y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: $\phi_2 = 50MB$.
- \Rightarrow Use the modulai space given by theta functions.
- ⇒ Fix the form of the isogeny and look for coordinates compatible with the isogeny.

- The modular polynomial is a polynomial $\phi_n(x, y) \in \mathbb{Z}[x, y]$ such that $\phi_n(x, y) = 0$ iff x = j(E) and y = j(E') with *E* and *E' n*-isogeneous.
- If $E: y^2 = x^3 + ax + b$ is an elliptic curve, the *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

- Roots of $\phi_n(j(E), .) \Leftrightarrow$ elliptic curves *n*-isogeneous to *E*.
- In genus 2, modular polynomials use Igusa invariants. The height explodes: $\phi_2 = 50MB$.
- \Rightarrow Use the modulai space given by theta functions.
- ⇒ Fix the form of the isogeny and look for coordinates compatible with the isogeny.

Theta functions of level *ℓ* Theta structures The isogeny theorem

Outline

Theta functions

Computing isogenies

Theta functions of level *6* Theta structures The isogeny theorem

Complex abelian varieties

- Abelian variety over \mathbb{C} : $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$, where $\Omega \in \mathcal{H}_g(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g} .

$$\theta(z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i n' \Omega n + 2\pi i n' z}$$
$$\theta \begin{bmatrix} a \\ b \end{bmatrix} (z,\Omega) = e^{\pi i a' \Omega a + 2\pi i a' (z+b)} \theta(z+\Omega a+b,\Omega) \ a,b \in \mathbb{Q}^g$$

• The quasi-periodicity is given by

$$\theta(z+m+\Omega n,\Omega)=e^{2\pi i (a'm-b'n)-\pi i n'\Omega n-2\pi i n'z}\theta(z,\Omega)$$

Theta functions of level (Theta structures The isogeny theorem

Complex abelian varieties

- Abelian variety over \mathbb{C} : $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$, where $\Omega \in \mathcal{H}_g(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g} .

$$\theta(z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i n' \Omega n + 2\pi i n' z}$$
$$\theta \begin{bmatrix} a \\ b \end{bmatrix} (z,\Omega) = e^{\pi i a' \Omega a + 2\pi i a' (z+b)} \theta(z+\Omega a+b,\Omega) \ a,b \in \mathbb{Q}^g$$

• The quasi-periodicity is given by

$$\theta(z+m+\Omega n,\Omega) = e^{2\pi i (a'm-b'n) - \pi i n'\Omega n - 2\pi i n'z} \theta(z,\Omega)$$

3

Theta functions of level & Theta structures The isogeny theorem

Complex abelian varieties

- Abelian variety over \mathbb{C} : $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$, where $\Omega \in \mathcal{H}_g(\mathbb{C})$ the Siegel upper half space.
- The theta functions with characteristic give a lot of analytic (quasi periodic) functions on \mathbb{C}^{g} .

$$\theta(z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i n' \Omega n + 2\pi i n' z}$$
$$\theta \begin{bmatrix} a \\ b \end{bmatrix} (z,\Omega) = e^{\pi i a' \Omega a + 2\pi i a' (z+b)} \theta(z+\Omega a+b,\Omega) \ a,b \in \mathbb{Q}^g$$

• The quasi-periodicity is given by

$$\theta(z+m+\Omega n,\Omega)=e^{2\pi i (a'm-b'n)-\pi i n'\Omega n-2\pi i n'z}\theta(z,\Omega)$$

Abelian varieties and isogenies Theta functions Computing isogenies The isogeny theorem

Theta functions

- Every projective embedding comes from a polarization \mathcal{L} . A polarization \mathcal{L} =
 - a factor of automorphy $e_L(x, y) = e^{2\pi i E_{\mathcal{L}}(x, y)}$ (where $E_{\mathcal{L}}$ is a symplectic form on \mathbb{Z}^{2g})
 - a maximal isotropic decomposition of the kernel of the polarisation:

$$K(\mathcal{L}) := \left\{ z \in \mathbb{Q}^g + \Omega \mathbb{Q}^g | E_{\mathcal{L}}(z, \mathbb{Z}^g + \Omega \mathbb{Z}^g) \subset \mathbb{Z} \right\}$$
$$= K(\mathcal{L})_1 \oplus K(\mathcal{L})_2$$

• The polarization \mathcal{L}_{ℓ} of level ℓ is given by analytic functions f satisfying:

$$f(z+n) = f(z)$$

$$f(z+n\Omega) = \exp(-\ell \cdot \pi i n' \Omega n - \ell \cdot 2\pi i n' z) f(z)$$
Abelian varieties and isogenies
 Theta functions of level &

 Theta functions
 Theta structures

 Computing isogenies
 The isogeny theorem

Theta functions

- Every projective embedding comes from a polarization \mathcal{L} . A polarization $\mathcal{L} =$
 - a factor of automorphy $e_L(x, y) = e^{2\pi i E_{\mathcal{L}}(x, y)}$ (where $E_{\mathcal{L}}$ is a symplectic form on \mathbb{Z}^{2g})
 - a maximal isotropic decomposition of the kernel of the polarisation:

$$K(\mathcal{L}) := \left\{ z \in \mathbb{Q}^g + \Omega \mathbb{Q}^g | E_{\mathcal{L}}(z, \mathbb{Z}^g + \Omega \mathbb{Z}^g) \subset \mathbb{Z} \right\}$$
$$= K(\mathcal{L})_1 \oplus K(\mathcal{L})_2$$

• The polarization \mathcal{L}_{ℓ} of level ℓ is given by analytic functions f satisfying:

$$f(z+n) = f(z)$$

$$f(z+n\Omega) = \exp(-\ell \cdot \pi i n' \Omega n - \ell \cdot 2\pi i n' z) f(z)$$

 Abelian varieties and isogenies
 Theta functions of level &

 Theta functions
 Theta structures

 Computing isogenies
 The isogeny theorem

Theta functions

- Every projective embedding comes from a polarization \mathcal{L} . A polarization \mathcal{L} =
 - a factor of automorphy $e_L(x, y) = e^{2\pi i E_{\mathcal{L}}(x, y)}$ (where $E_{\mathcal{L}}$ is a symplectic form on \mathbb{Z}^{2g})
 - a maximal isotropic decomposition of the kernel of the polarisation:

$$\begin{split} K(\mathcal{L}) &\coloneqq \left\{ z \in \mathbb{Q}^g + \Omega \mathbb{Q}^g | E_{\mathcal{L}}(z, \mathbb{Z}^g + \Omega \mathbb{Z}^g) \subset \mathbb{Z} \right\} \\ &= K(\mathcal{L})_1 \oplus K(\mathcal{L})_2 \end{split}$$

• The polarization \mathcal{L}_{ℓ} of level ℓ is given by analytic functions f satisfying:

$$f(z+n) = f(z)$$

$$f(z+n\Omega) = \exp(-\ell \cdot \pi i n' \Omega n - \ell \cdot 2\pi i n' z) f(z)$$

 Abelian varieties and isogenies
 Theta functions of level &

 Theta functions
 Theta structures

 Computing isogenies
 The isogeny theorem

Theta functions

- Every projective embedding comes from a polarization \mathcal{L} . A polarization \mathcal{L} =
 - a factor of automorphy $e_L(x, y) = e^{2\pi i E_{\mathcal{L}}(x, y)}$ (where $E_{\mathcal{L}}$ is a symplectic form on \mathbb{Z}^{2g})
 - a maximal isotropic decomposition of the kernel of the polarisation:

$$\begin{split} K(\mathcal{L}) &\coloneqq \left\{ z \in \mathbb{Q}^g + \Omega \mathbb{Q}^g | E_{\mathcal{L}}(z, \mathbb{Z}^g + \Omega \mathbb{Z}^g) \subset \mathbb{Z} \right\} \\ &= K(\mathcal{L})_1 \oplus K(\mathcal{L})_2 \end{split}$$

• The polarization \mathcal{L}_{ℓ} of level ℓ is given by analytic functions f satisfying:

$$f(z+n) = f(z)$$

$$f(z+n\Omega) = \exp(-\ell \cdot \pi i n' \Omega n - \ell \cdot 2\pi i n' z) f(z)$$

lheta functions of level *é* lheta structures lhe isogeny theorem

Projective embeddings given by theta functions

Theorem

• A basis of \mathcal{L}_{ℓ} is given by

$$\begin{cases} \theta \begin{bmatrix} 0 \\ b \end{bmatrix} (z, \Omega/\ell) _{b \in \frac{1}{\ell} \mathbb{Z}^g / \mathbb{Z}^g} \end{cases}$$
(1)
$$\begin{cases} \theta \begin{bmatrix} a \\ 0 \end{bmatrix} (\ell z, \ell \Omega) _{a \in \frac{1}{\ell} \mathbb{Z}^g / \mathbb{Z}^g} \end{cases}$$
(2)

• Let
$$Z_{\ell} = \mathbb{Z}^{g}/\ell\mathbb{Z}^{g}$$
. If $i \in Z_{\ell}$ we define $\theta_{i} = \theta \begin{bmatrix} 0\\ i/\ell \end{bmatrix} (., \Omega/\ell)$. If $l \ge 3$ then

$$z\mapsto (\theta_i(z))_{i\in\mathcal{Z}_\ell}$$

is a projective embedding $A \to \mathbb{P}_{\mathbb{C}}^{\ell^g - 1}$.

• The point $(\theta_i(0))_{i \in \mathbb{Z}_\ell}$ is called the theta null point of the Theta structure Ω .

lheta functions of level *é* lheta structures lhe isogeny theorem

Projective embeddings given by theta functions

Theorem

• A basis of \mathcal{L}_{ℓ} is given by

$$\begin{cases} \theta \begin{bmatrix} 0 \\ b \end{bmatrix} (z, \Omega/\ell) _{b \in \frac{1}{\ell} \mathbb{Z}^g / \mathbb{Z}^g} \end{cases}$$
(1)
$$\begin{cases} \theta \begin{bmatrix} a \\ 0 \end{bmatrix} (\ell z, \ell \Omega) _{a \in \frac{1}{\ell} \mathbb{Z}^g / \mathbb{Z}^g} \end{cases}$$
(2)

• Let
$$Z_{\ell} = \mathbb{Z}^{g}/\ell\mathbb{Z}^{g}$$
. If $i \in Z_{\ell}$ we define $\theta_{i} = \theta \begin{bmatrix} 0\\ i/\ell \end{bmatrix} (., \Omega/\ell)$. If $l \ge 3$ then

$$z\mapsto (\theta_i(z))_{i\in\mathcal{Z}_\ell}$$

is a projective embedding $A \to \mathbb{P}_{\mathbb{C}}^{\ell^g - 1}$.

• The point $(\theta_i(0))_{i \in \mathbb{Z}_{\ell}}$ is called the theta null point of the Theta structure Ω .

Theta functions of level *t* Theta structures The isogeny theorem

Projective embeddings given by theta functions

Theorem

• A basis of \mathcal{L}_{ℓ} is given by

$$\begin{cases} \theta \begin{bmatrix} 0 \\ b \end{bmatrix} (z, \Omega/\ell) _{b \in \frac{1}{\ell} \mathbb{Z}^g / \mathbb{Z}^g} \end{cases}$$
(1)
$$\begin{cases} \theta \begin{bmatrix} a \\ 0 \end{bmatrix} (\ell z, \ell \Omega) _{a \in \frac{1}{\ell} \mathbb{Z}^g / \mathbb{Z}^g} \end{cases}$$
(2)

• Let
$$Z_{\ell} = \mathbb{Z}^{g}/\ell\mathbb{Z}^{g}$$
. If $i \in Z_{\ell}$ we define $\theta_{i} = \theta \begin{bmatrix} 0\\ i/\ell \end{bmatrix} (., \Omega/\ell)$. If $l \ge 3$ then

$$z\mapsto (\theta_i(z))_{i\in\mathcal{Z}_\ell}$$

is a projective embedding $A \to \mathbb{P}_{\mathbb{C}}^{\ell^g - 1}$.

• The point $(\theta_i(0))_{i \in \mathbb{Z}_\ell}$ is called the theta null point of the Theta structure Ω .

Theta functions of level *l* Theta structures The isogeny theorem

The action of the Theta group

• $K(\mathcal{L}_{\ell})$ is the subgroup of ℓ -torsion

$$A[\ell] = \left\{\frac{i}{\ell} + \Omega \frac{j}{\ell}\right\} \ i, j \in \mathbb{Z}^{g}$$

• The action by translation is given by

$$(i, j).\theta_{k}(z) \coloneqq \theta_{k}\left(z - \frac{i}{\ell} - \Omega \frac{j}{\ell}\right)$$
(3)
$$= e_{\mathcal{L}_{\ell}}(i + k, j)\theta_{i+k}$$
(4)

where $e_{\mathcal{L}_{\ell}}(x, y) = e^{2\pi i/\ell \cdot x' y}$ is the commutator pairing.

Theta functions of level *l* Theta structures The isogeny theorem

The action of the Theta group

• $K(\mathcal{L}_{\ell})$ is the subgroup of ℓ -torsion

$$A[\ell] = \left\{\frac{i}{\ell} + \Omega \frac{j}{\ell}\right\} \ i, j \in \mathbb{Z}^{g}$$

• The action by translation is given by

$$(i, j).\theta_{k}(z) \coloneqq \theta_{k}\left(z - \frac{i}{\ell} - \Omega \frac{j}{\ell}\right)$$
(3)
$$= e_{\mathcal{L}_{\ell}}(i + k, j)\theta_{i+k}$$
(4)

where $e_{\mathcal{L}_{\ell}}(x, y) = e^{2\pi i/\ell \cdot x' y}$ is the commutator pairing.

Theta functions of level *l* Theta structures The isogeny theorem

Equations of the Abelian varieties

Theorem (Riemann Relations)

Let $(q_i)_{i \in \mathbb{Z}_{\ell}}$ be the theta null point. Then if $4|\ell$, the homogeneous ideal of the Abelian variety is given by the Riemann Relations:

$$\sum_{\epsilon \in \mathbb{Z}_2} X_{x+t} X_{y+t} \sum_{t \in \mathbb{Z}_2} q_{u+t} q_{v+t} = \sum_{t \in \mathbb{Z}_2} X_{z-u+t} X_{z-v+t} \sum_{t \in \mathbb{Z}_2} q_{z-x+t} q_{z-y+t}$$
(5)

for every $x, y, u, v \in \mathbb{Z}_{\ell}$ such that $\exists z, x + y + u + v = -2z$.

Corollary

$$\sum_{t \in \mathbb{Z}_2} q_{x+t} q_{y+t} \sum_{t \in \mathbb{Z}_2} q_{u+t} q_{v+t} = \sum_{t \in \mathbb{Z}_2} q_{z-u+t} q_{z-y+t} \sum_{t \in \mathbb{Z}_2} q_{z-x+t} q_{z-v+t}$$
(6)

We note \mathcal{M}_{ℓ} the moduli space given by these relations together with the relations of symmetry:

$$q_x = q_{-x}$$

イロト イポト イヨト イヨト

Theta functions of level *l* Theta structures The isogeny theorem

Equations of the Abelian varieties

Theorem (Riemann Relations)

Let $(q_i)_{i \in \mathbb{Z}_{\ell}}$ be the theta null point. Then if $4|\ell$, the homogeneous ideal of the Abelian variety is given by the Riemann Relations:

$$\sum_{\epsilon \in \mathbb{Z}_2} X_{x+t} X_{y+t} \sum_{t \in \mathbb{Z}_2} q_{u+t} q_{v+t} = \sum_{t \in \mathbb{Z}_2} X_{z-u+t} X_{z-v+t} \sum_{t \in \mathbb{Z}_2} q_{z-x+t} q_{z-y+t}$$
(5)

for every $x, y, u, v \in \mathbb{Z}_{\ell}$ such that $\exists z, x + y + u + v = -2z$.

Corollary

$$\sum_{t \in \mathbb{Z}_2} q_{x+t} q_{y+t} \sum_{t \in \mathbb{Z}_2} q_{u+t} q_{v+t} = \sum_{t \in \mathbb{Z}_2} q_{z-u+t} q_{z-y+t} \sum_{t \in \mathbb{Z}_2} q_{z-x+t} q_{z-v+t}$$
(6)

We note M_{ℓ} the moduli space given by these relations together with the relations of symmetry:

$$q_x = q_{-x}$$

Theorem (car $k \neq \ell$)

- Let k be a field. Then every projective embedding is given by the Riemann Relations.
 - More precisely, for every projective embedding φ_L : A_k → ℙ^N_k of level ℓ, there is a unique basis of ℙ^N_k such that the theta group acts as in (4).
- The locus of theta null points giving an Abelian Variety is an open subset *M*⁰_ℓ of *M*_ℓ.

Remark

- Analytic action: $\operatorname{Sp}_{2g}(\mathbb{Z})$ acts on \mathcal{H}_g (and preserve the isomorphic classes).
- Algebraic action: $\operatorname{Sp}_{2g}(\mathcal{Z}_{\ell})$ acts on \mathcal{M}_{ℓ} .

・ロト ・ 四ト ・ ヨト・

Theorem (car $k \neq \ell$)

- Let k be a field. Then every projective embedding is given by the Riemann Relations.
 - More precisely, for every projective embedding φ_L : A_k → ℙ^N_k of level ℓ, there is a unique basis of ℙ^N_k such that the theta group acts as in (4).
- The locus of theta null points giving an Abelian Variety is an open subset *M*⁰_ℓ of *M*_ℓ.

Remark

- Analytic action: $\operatorname{Sp}_{2g}(\mathbb{Z})$ acts on \mathcal{H}_g (and preserve the isomorphic classes).
- Algebraic action: $\operatorname{Sp}_{2g}(\mathcal{Z}_{\ell})$ acts on \mathcal{M}_{ℓ} .

・ロト ・ 四ト ・ ヨト・

Theorem (car $k \neq \ell$)

- Let k be a field. Then every projective embedding is given by the Riemann Relations.
 - More precisely, for every projective embedding φ_L : A_k → ℙ^N_k of level ℓ, there is a unique basis of ℙ^N_k such that the theta group acts as in (4).
- The locus of theta null points giving an Abelian Variety is an open subset *M*⁰_ℓ of *M*_ℓ.

Remark

- Analytic action: $\operatorname{Sp}_{2g}(\mathbb{Z})$ acts on \mathcal{H}_g (and preserve the isomorphic classes).
- Algebraic action: $\operatorname{Sp}_{2g}(\mathcal{Z}_{\ell})$ acts on \mathcal{M}_{ℓ} .

・ロト ・ 一下・ ・ ヨト・

Theorem (car $k \neq \ell$)

- Let k be a field. Then every projective embedding is given by the Riemann Relations.
 - More precisely, for every projective embedding φ_L : A_k → ℙ^N_k of level ℓ, there is a unique basis of ℙ^N_k such that the theta group acts as in (4).
- The locus of theta null points giving an Abelian Variety is an open subset *M*⁰_ℓ of *M*_ℓ.

Remark

- Analytic action: $\operatorname{Sp}_{2g}(\mathbb{Z})$ acts on \mathcal{H}_g (and preserve the isomorphic classes).
- Algebraic action: $\operatorname{Sp}_{2g}(\mathcal{Z}_{\ell})$ acts on \mathcal{M}_{ℓ} .

Theorem (car $k \neq \ell$)

- Let k be a field. Then every projective embedding is given by the Riemann Relations.
 - More precisely, for every projective embedding φ_L : A_k → ℙ^N_k of level ℓ, there is a unique basis of ℙ^N_k such that the theta group acts as in (4).
- The locus of theta null points giving an Abelian Variety is an open subset *M*⁰_ℓ of *M*_ℓ.

Remark

- Analytic action: $\operatorname{Sp}_{2g}(\mathbb{Z})$ acts on \mathcal{H}_g (and preserve the isomorphic classes).
- Algebraic action: $\operatorname{Sp}_{2g}(\mathcal{Z}_{\ell})$ acts on \mathcal{M}_{ℓ} .

Theta functions of level *l* Theta structures The isogeny theorem

The isogeny theorem

Theorem

Let $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$ be an Abelian variety with a theta structure of level ℓ . Suppose that $\ell = kn$ and let $K = \frac{1}{k} \Omega \mathbb{Z}^g$, and $\pi : A \to B = A/K$ the corresponding isogeny. There is an induced theta structure of level n on B such that

$$\theta_i^B = \theta_{\phi(i)}^A \tag{7}$$

where $\phi : \mathbb{Z}_n \to \mathbb{Z}_\ell$ is the canonical inclusion $x \mapsto k \cdot x$.

Proof.

$$\theta_i^B(z) = \theta \begin{bmatrix} 0\\i/n \end{bmatrix} \left(z, \frac{\Omega}{k}/n \right) = \theta \begin{bmatrix} 0\\ki/\ell \end{bmatrix} \left(z, \Omega/\ell \right) = \theta_{k\cdot i}^A(z)$$

Theta functions of level *l* Theta structures The isogeny theorem

The isogeny theorem

Theorem

Let $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$ be an Abelian variety with a theta structure of level ℓ . Suppose that $\ell = kn$ and let $K = \frac{1}{k} \Omega \mathbb{Z}^g$, and $\pi : A \to B = A/K$ the corresponding isogeny. There is an induced theta structure of level n on B such that

$$\theta_i^B = \theta_{\phi(i)}^A \tag{7}$$

where $\phi : \mathbb{Z}_n \to \mathbb{Z}_\ell$ is the canonical inclusion $x \mapsto k \cdot x$.

Proof.

$$\theta_i^B(z) = \theta \begin{bmatrix} 0\\ i/n \end{bmatrix} \left(z, \frac{\Omega}{k}/n \right) = \theta \begin{bmatrix} 0\\ ki/\ell \end{bmatrix} \left(z, \Omega/\ell \right) = \theta_{k \cdot i}^A(z)$$

- The equations of the Abelian variety *A*.
- A symplectic basis $A[\ell] \simeq \mathcal{Z}_{\ell} \times \hat{\mathcal{Z}}_{\ell}$.
- The action of points of *l*-torsion.
- An isogeny $A \to B = A/K_2$ (where K_2 is the subgroup $\hat{Z}_k \subset \hat{Z}_\ell$).

Remark

- The level ℓ of an Abelian variety A with a polarization is fixed. ($\ell = 4$ if A is the Jacobian of an hyperelliptic curve).
- The only way to change the level is given by the isogeny theorem.

- The equations of the Abelian variety *A*.
- A symplectic basis $A[\ell] \simeq \mathcal{Z}_{\ell} \times \hat{\mathcal{Z}}_{\ell}$.
- The action of points of ℓ -torsion.
- An isogeny $A \to B = A/K_2$ (where K_2 is the subgroup $\hat{Z}_k \subset \hat{Z}_\ell$).

Remark

- The level ℓ of an Abelian variety *A* with a polarization is fixed. ($\ell = 4$ if *A* is the Jacobian of an hyperelliptic curve).
- The only way to change the level is given by the isogeny theorem.

- The equations of the Abelian variety *A*.
- A symplectic basis $A[\ell] \simeq \mathcal{Z}_{\ell} \times \hat{\mathcal{Z}}_{\ell}$.
- The action of points of *l*-torsion.
- An isogeny $A \to B = A/K_2$ (where K_2 is the subgroup $\hat{Z}_k \subset \hat{Z}_\ell$).

Remark

- The level ℓ of an Abelian variety A with a polarization is fixed. ($\ell = 4$ if A is the Jacobian of an hyperelliptic curve).
- The only way to change the level is given by the isogeny theorem.

Summary

Given a valid theta null point $(a_i)_{i \in \mathbb{Z}_{\ell}}$, we have

- The equations of the Abelian variety A.
- A symplectic basis $A[\ell] \simeq \mathcal{Z}_{\ell} \times \hat{\mathcal{Z}}_{\ell}$.
- The action of points of ℓ -torsion.
- An isogeny $A \to B = A/K_2$ (where K_2 is the subgroup $\hat{Z}_k \subset \hat{Z}_\ell$).

Remark

- The level ℓ of an Abelian variety *A* with a polarization is fixed. ($\ell = 4$ if *A* is the Jacobian of an hyperelliptic curve).
- The only way to change the level is given by the isogeny theorem.

- The equations of the Abelian variety *A*.
- A symplectic basis $A[\ell] \simeq \mathcal{Z}_{\ell} \times \hat{\mathcal{Z}}_{\ell}$.
- The action of points of ℓ -torsion.
- An isogeny $A \to B = A/K_2$ (where K_2 is the subgroup $\hat{\mathcal{Z}}_k \subset \hat{\mathcal{Z}}_\ell$).

Remark

- The level ℓ of an Abelian variety *A* with a polarization is fixed. ($\ell = 4$ if *A* is the Jacobian of an hyperelliptic curve).
- The only way to change the level is given by the isogeny theorem.

- The equations of the Abelian variety A.
- A symplectic basis $A[\ell] \simeq \mathcal{Z}_{\ell} \times \hat{\mathcal{Z}}_{\ell}$.
- The action of points of ℓ -torsion.
- An isogeny $A \to B = A/K_2$ (where K_2 is the subgroup $\hat{Z}_k \subset \hat{Z}_\ell$).

Remark

- The level ℓ of an Abelian variety *A* with a polarization is fixed. ($\ell = 4$ if *A* is the Jacobian of an hyperelliptic curve).
- The only way to change the level is given by the isogeny theorem.

・ロト ・ 四ト ・ ヨト・

- The equations of the Abelian variety A.
- A symplectic basis $A[\ell] \simeq \mathcal{Z}_{\ell} \times \hat{\mathcal{Z}}_{\ell}$.
- The action of points of ℓ -torsion.
- An isogeny $A \to B = A/K_2$ (where K_2 is the subgroup $\hat{Z}_k \subset \hat{Z}_\ell$).

Remark

- The level ℓ of an Abelian variety *A* with a polarization is fixed. ($\ell = 4$ if *A* is the Jacobian of an hyperelliptic curve).
- The only way to change the level is given by the isogeny theorem.

Outline

Theta functions

イロト イポト イヨト イヨト

æ

Definition

• Let *B* be an Abelian variety with a theta structure of level *n*, and $(b_i)_{i \in \mathbb{Z}_n}$ the corresponding theta null point. We note V_B the subvariety of $\mathcal{M}_{\ell n}$ defined by

$$\left\{q_{\phi(i)}=b_i\right\}$$

- By the isogeny theorem, to every valid theta null point $(a_i)_{i \in \mathbb{Z}_{\ell n}} \in V_B^0(k)$ corresponds a ℓ -isogeny $\pi : A \to B$.
- The algorithm is as follows:
 - Compute the solutions $V_B(k)$.
 - Identify the valid theta null points.
 - Compute the dual isogeny $\tilde{\pi} : B \to A$.
- For the examples, we will use g = 1, n = 4 and $\ell = 3$.

Definition

• Let *B* be an Abelian variety with a theta structure of level *n*, and $(b_i)_{i \in \mathbb{Z}_n}$ the corresponding theta null point. We note V_B the subvariety of $\mathcal{M}_{\ell n}$ defined by

$$\left\{q_{\phi(i)}=b_i\right\}$$

- By the isogeny theorem, to every valid theta null point $(a_i)_{i \in \mathbb{Z}_{\ell n}} \in V_B^0(k)$ corresponds a ℓ -isogeny $\pi : A \to B$.
- The algorithm is as follows:
 - Compute the solutions $V_B(k)$.
 - Identify the valid theta null points.
 - Compute the dual isogeny $\tilde{\pi} : B \to A$.
- For the examples, we will use g = 1, n = 4 and $\ell = 3$.

Definition

• Let *B* be an Abelian variety with a theta structure of level *n*, and $(b_i)_{i \in \mathbb{Z}_n}$ the corresponding theta null point. We note V_B the subvariety of $\mathcal{M}_{\ell n}$ defined by

$$\left\{q_{\phi(i)}=b_i\right\}$$

• By the isogeny theorem, to every valid theta null point $(a_i)_{i \in \mathbb{Z}_{\ell n}} \in V_B^0(k)$ corresponds a ℓ -isogeny $\pi : A \to B$.

• The algorithm is as follows:

- Compute the solutions $V_B(k)$.
- Identify the valid theta null points.
- Compute the dual isogeny $\tilde{\pi}: B \to A$.
- For the examples, we will use g = 1, n = 4 and $\ell = 3$.

Definition

• Let *B* be an Abelian variety with a theta structure of level *n*, and $(b_i)_{i \in \mathbb{Z}_n}$ the corresponding theta null point. We note V_B the subvariety of $\mathcal{M}_{\ell n}$ defined by

$$\left\{q_{\phi(i)}=b_i\right\}$$

- By the isogeny theorem, to every valid theta null point $(a_i)_{i \in \mathbb{Z}_{\ell n}} \in V_B^0(k)$ corresponds a ℓ -isogeny $\pi : A \to B$.
- The algorithm is as follows:
 - Compute the solutions $V_B(k)$.
 - Identify the valid theta null points.
 - Compute the dual isogeny $\tilde{\pi} : B \to A$.
- For the examples, we will use g = 1, n = 4 and $\ell = 3$.

Definition

• Let *B* be an Abelian variety with a theta structure of level *n*, and $(b_i)_{i \in \mathbb{Z}_n}$ the corresponding theta null point. We note V_B the subvariety of $\mathcal{M}_{\ell n}$ defined by

$$\left\{q_{\phi(i)}=b_i\right\}$$

- By the isogeny theorem, to every valid theta null point $(a_i)_{i \in \mathbb{Z}_{\ell n}} \in V_B^0(k)$ corresponds a ℓ -isogeny $\pi : A \to B$.
- The algorithm is as follows:
 - Compute the solutions $V_B(k)$.
 - Identify the valid theta null points.
 - Compute the dual isogeny $\tilde{\pi} : B \to A$.
- For the examples, we will use g = 1, n = 4 and $\ell = 3$.

Definition

• Let *B* be an Abelian variety with a theta structure of level *n*, and $(b_i)_{i \in \mathbb{Z}_n}$ the corresponding theta null point. We note V_B the subvariety of $\mathcal{M}_{\ell n}$ defined by

$$\left\{q_{\phi(i)}=b_i\right\}$$

- By the isogeny theorem, to every valid theta null point $(a_i)_{i \in \mathbb{Z}_{\ell n}} \in V_B^0(k)$ corresponds a ℓ -isogeny $\pi : A \to B$.
- The algorithm is as follows:
 - Compute the solutions $V_B(k)$.
 - Identify the valid theta null points.
 - Compute the dual isogeny $\tilde{\pi} : B \to A$.

• For the examples, we will use g = 1, n = 4 and $\ell = 3$.

Definition

• Let *B* be an Abelian variety with a theta structure of level *n*, and $(b_i)_{i \in \mathbb{Z}_n}$ the corresponding theta null point. We note V_B the subvariety of $\mathcal{M}_{\ell n}$ defined by

$$\left\{q_{\phi(i)}=b_i\right\}$$

- By the isogeny theorem, to every valid theta null point $(a_i)_{i \in \mathbb{Z}_{\ell n}} \in V_B^0(k)$ corresponds a ℓ -isogeny $\pi : A \to B$.
- The algorithm is as follows:
 - Compute the solutions $V_B(k)$.
 - Identify the valid theta null points.
 - Compute the dual isogeny $\tilde{\pi} : B \to A$.
- For the examples, we will use g = 1, n = 4 and $\ell = 3$.

Computing isogenies

- The structure of the system
- Computing the solutions
- Computing the dual isogeny

イロト イポト イヨト イヨト

The structure of the system Computing the solutions Computing the dual isogeny

The kernel of the dual isogeny

 Let (a₀, ···, a₁₁) be a valid solution corresponding to an isogeny π : A → B. We have

$$\pi(\theta_i^A(x)_{i \in \mathbb{Z}_{12}}) = (\theta_0^A(x), \theta_3^A(x), \theta_6^A(x), \theta_9^A(x))$$

$$a_0 = b_0, a_3 = b_1, a_6 = b_2, a_9 = b_3$$

• The kernel *K* of π is

$$\{(\zeta^{ki}a_i)_{i\in\mathcal{Z}_{12}}\}_{k\in\mathcal{Z}_3}\qquad \zeta^3=1$$

The kernel K of the dual isogeny is given by the projection of the dual of K:
 K = {(a₀, a₃, a₆, a₉), (a₄, a₇, a₁₀, a₁), (a₈, a₁₁, a₂, a₅)}

The structure of the system Computing the solutions Computing the dual isogeny

The kernel of the dual isogeny

 Let (a₀, ···, a₁₁) be a valid solution corresponding to an isogeny π : A → B. We have

$$\pi(\theta_i^A(x)_{i \in \mathbb{Z}_{12}}) = (\theta_0^A(x), \theta_3^A(x), \theta_6^A(x), \theta_9^A(x))$$

$$a_0 = b_0, a_3 = b_1, a_6 = b_2, a_9 = b_3$$

• The kernel K of π is

$$\{(\zeta^{ki}a_i)_{i\in\mathcal{Z}_{12}}\}_{k\in\mathcal{Z}_3}\qquad \zeta^3=1$$

The kernel K of the dual isogeny is given by the projection of the dual of K:
 K = {(a₀, a₃, a₆, a₉), (a₄, a₇, a₁₀, a₁), (a₈, a₁₁, a₂, a₅)}

The structure of the system Computing the solutions Computing the dual isogeny

The kernel of the dual isogeny

 Let (a₀, ···, a₁₁) be a valid solution corresponding to an isogeny π : A → B. We have

$$\pi(\theta_i^A(x)_{i \in \mathbb{Z}_{12}}) = (\theta_0^A(x), \theta_3^A(x), \theta_6^A(x), \theta_9^A(x))$$

$$a_0 = b_0, a_3 = b_1, a_6 = b_2, a_9 = b_3$$

• The kernel *K* of π is

$$\{(\zeta^{ki}a_i)_{i\in \mathcal{Z}_{12}}\}_{k\in \mathcal{Z}_3} \qquad \zeta^3=1$$

• The kernel \tilde{K} of the dual isogeny is given by the projection of the dual of K:

 $\tilde{K} = \{(a_0, a_3, a_6, a_9), (a_4, a_7, a_{10}, a_1), (a_8, a_{11}, a_2, a_5)\}$
The valid solutions

Lemma

Let $(a_i)_{i \in \mathbb{Z}_{\ell n}}$ be a solution. Let $\phi : \mathbb{Z}_{\ell} \times \mathbb{Z}_n \to \mathbb{Z}_{\ell n}, (i, j) \mapsto in + j\ell$. If $i \in \mathbb{Z}_{\ell}$, we define

$$P_i = (a_{\phi(i,j)})_{j \in \mathcal{Z}_n}$$

Then the points $\{P_i\}_{i \in \mathbb{Z}_{\ell}}$ that are well defined form a subgroup of the points of ℓ -torsion in B.

Theorem $(n \land \ell = 1)$

Let $(a_i)_{i \in \mathbb{Z}_{\ell n}}$ be a solution, and $\tilde{K} = \{P_i\}_{i \in \mathbb{Z}_{\ell}}$ the associated subgroup of ℓ -torsion. Then $(a_i)_{i \in \mathbb{Z}_{\ell n}}$ is a valid solution if and only if \tilde{K} is a maximal subgroup of rank g.

The valid solutions

Lemma

Let $(a_i)_{i \in \mathbb{Z}_{\ell n}}$ be a solution. Let $\phi : \mathbb{Z}_{\ell} \times \mathbb{Z}_n \to \mathbb{Z}_{\ell n}, (i, j) \mapsto in + j\ell$. If $i \in \mathbb{Z}_{\ell}$, we define

$$P_i = (a_{\phi(i,j)})_{j \in \mathcal{Z}_n}$$

Then the points $\{P_i\}_{i \in \mathbb{Z}_{\ell}}$ that are well defined form a subgroup of the points of ℓ -torsion in B.

Theorem $(n \land \ell = 1)$

Let $(a_i)_{i \in \mathbb{Z}_{\ell n}}$ be a solution, and $\tilde{K} = \{P_i\}_{i \in \mathbb{Z}_{\ell}}$ the associated subgroup of ℓ -torsion. Then $(a_i)_{i \in \mathbb{Z}_{\ell n}}$ is a valid solution if and only if \tilde{K} is a maximal subgroup of rank g.

The structure of the system Computing the solutions Computing the dual isogeny

The automorphisms of the theta group

 Let (a_i)_{i∈Z_{ℓn}} be a valid solution. The actions of the automorphisms of the theta group compatible with the theta structure of B are generated by

$$(a_u)_{u \in \mathcal{Z}_{\ell n}} \mapsto (a_{\psi_1}(u))_{u \in \mathcal{Z}_{\ell n}} \tag{8}$$

$$(a_u)_{u \in \mathcal{Z}_{\ell_n}} \mapsto (e(\psi_2(u), u). a_u)_{u \in \mathcal{Z}_{\ell_n}}$$
(9)

Where ψ_1 is an automorphism of $Z_{\ell n}$ fixing Z_n and ψ_2 is a morphism $Z_{\ell n} \rightarrow Z_{\ell} \subset Z_{\ell n}$.

Example

If $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11})$ is a valid solution corresponding to an Abelian variety *A*, the solutions isomorphic to *A* are given by

$$(a_0, a_5, a_{10}, a_3, a_8, a_1, a_6, a_{11}, a_4, a_9, a_2, a_7)$$

 $(a_0, \zeta a_1, \zeta^{2^2} a_2, a_3, \zeta a_4, \zeta^{2^2} a_5, a_6, \zeta a_7, \zeta^{2^2} a_8, a_9, \zeta a_{10}, \zeta^{2^2} a_{11})$

The automorphisms of the theta group

 Let (a_i)_{i∈Z_{ℓn}} be a valid solution. The actions of the automorphisms of the theta group compatible with the theta structure of B are generated by

$$(a_u)_{u\in\mathcal{Z}_{\ell n}}\mapsto (a_{\psi_1}(u))_{u\in\mathcal{Z}_{\ell n}}$$
(8)

$$(a_u)_{u \in \mathcal{Z}_{\ell n}} \mapsto (e(\psi_2(u), u).a_u)_{u \in \mathcal{Z}_{\ell n}}$$
(9)

Where ψ_1 is an automorphism of $Z_{\ell n}$ fixing Z_n and ψ_2 is a morphism $Z_{\ell n} \rightarrow Z_{\ell} \subset Z_{\ell n}$.

Example

If $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11})$ is a valid solution corresponding to an Abelian variety *A*, the solutions isomorphic to *A* are given by

$$(a_0, a_5, a_{10}, a_3, a_8, a_1, a_6, a_{11}, a_4, a_9, a_2, a_7)$$
$$(a_0, \zeta a_1, \zeta^{2^2} a_2, a_3, \zeta a_4, \zeta^{2^2} a_5, a_6, \zeta a_7, \zeta^{2^2} a_8, a_9, \zeta a_{10}, \zeta^{2^2} a_{11})$$

The structure of the system Computing the solutions Computing the dual isogeny

The automorphisms of the theta group

 Let (a_i)_{i∈Z_{ℓn}} be a valid solution. The actions of the automorphisms of the theta group compatible with the theta structure of B are generated by

$$(a_u)_{u\in\mathcal{Z}_{\ell n}}\mapsto (a_{\psi_1}(u))_{u\in\mathcal{Z}_{\ell n}}$$
(8)

$$(a_u)_{u \in \mathcal{Z}_{\ell n}} \mapsto (e(\psi_2(u), u).a_u)_{u \in \mathcal{Z}_{\ell n}}$$
(9)

Where ψ_1 is an automorphism of $Z_{\ell n}$ fixing Z_n and ψ_2 is a morphism $Z_{\ell n} \rightarrow Z_{\ell} \subset Z_{\ell n}$.

Example

If $(a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11})$ is a valid solution corresponding to an Abelian variety *A*, the solutions isomorphic to *A* are given by

$$(a_0, a_5, a_{10}, a_3, a_8, a_1, a_6, a_{11}, a_4, a_9, a_2, a_7)$$
$$(a_0, \zeta a_1, \zeta^{2^2} a_2, a_3, \zeta a_4, \zeta^{2^2} a_5, a_6, \zeta a_7, \zeta^{2^2} a_8, a_9, \zeta a_{10}, \zeta^{2^2} a_{11})$$

The structure of the system Computing the solutions Computing the dual isogeny

Proof of the theorem (Outline)

Proof.

- Every solutions giving the same set of associated points {P_i}_{i∈Zℓ} differ by an action of type (8) or (9)
- Let $\tilde{K} = \{P_i\}_{i \in \mathbb{Z}_{\ell}}$ be the associated subgroup of rank g in B. Let $A = B/\tilde{K}$, and $\pi : A \to B$ be the dual isogeny. We construct a theta structure on A such that π is the associated isogeny.

Corollary

 $\#V_B^0(\overline{k}) \simeq \ell^g \text{ (number of isogenies)} \times \ell^{2g} \text{ (cardinal of each orbit)}$

The structure of the system Computing the solutions Computing the dual isogeny

Proof of the theorem (Outline)

Proof.

- Every solutions giving the same set of associated points {P_i}_{i∈Zℓ} differ by an action of type (8) or (9)
- Let $\tilde{K} = \{P_i\}_{i \in \mathbb{Z}_{\ell}}$ be the associated subgroup of rank g in B. Let $A = B/\tilde{K}$, and $\pi : A \to B$ be the dual isogeny. We construct a theta structure on A such that π is the associated isogeny.

Corollary

 $\#V_B^0(\overline{k}) \simeq \ell^g \text{ (number of isogenies)} \times \ell^{2g} \text{ (cardinal of each orbit)}$

・ロト ・ 一下・ ・ ヨト・

The structure of the system Computing the solutions Computing the dual isogeny

Proof of the theorem (Outline)

Proof.

- Every solutions giving the same set of associated points {P_i}_{i∈Zℓ} differ by an action of type (8) or (9)
- Let $\tilde{K} = \{P_i\}_{i \in \mathbb{Z}_{\ell}}$ be the associated subgroup of rank g in B. Let $A = B/\tilde{K}$, and $\pi : A \to B$ be the dual isogeny. We construct a theta structure on A such that π is the associated isogeny.

Corollary

 $\#V_B^0(\overline{k}) \simeq \ell^g$ (number of isogenies) $\times \ell^{2g}$ (cardinal of each orbit)

An example

Example

The theta null point $(1:1:12:1) \in \mathcal{M}_4(\mathbb{F}_{79})$ corresponds to the elliptic curve $E: y^2 = x^3 + 11.x + 47.$

• We have the following valid solutions (*v* is a primitive root of degree 3):

$$\begin{aligned} & (v^{490931}:1:46:v^{490931}:37:54:v^{54782}:54:37:v^{490931}:46:1) \\ & (v^{476182}:1:68:v^{476182}:67:10:v^{40033}:10:67:v^{476182}:68:1) \\ & (v^{465647}:1:3:v^{465647}:40:16:v^{29498}:16:40:v^{465647}:3:1) \\ & (v^{450898}:1:33:v^{450898}:69:24:v^{14749}:24:69:v^{450898}:33:1) \end{aligned}$$

• And the following degenerate solutions:

$$(1:1:12:1:1:1:12:1:1:1:12:1) \\ (1:0:0:1:0:0:12:0:0:1:0:0)$$

An example

Example

The theta null point $(1:1:12:1) \in \mathcal{M}_4(\mathbb{F}_{79})$ corresponds to the elliptic curve $E: y^2 = x^3 + 11.x + 47.$

• We have the following valid solutions (*v* is a primitive root of degree 3):

$$\begin{aligned} & (v^{490931}:1:46:v^{490931}:37:54:v^{54782}:54:37:v^{490931}:46:1) \\ & (v^{476182}:1:68:v^{476182}:67:10:v^{40033}:10:67:v^{476182}:68:1) \\ & (v^{465647}:1:3:v^{465647}:40:16:v^{29498}:16:40:v^{465647}:3:1) \\ & (v^{450898}:1:33:v^{450898}:69:24:v^{14749}:24:69:v^{450898}:33:1) \end{aligned}$$

• And the following degenerate solutions:

$$(1:1:12:1:1:1:12:1:1:1:12:1) \\ (1:0:0:1:0:0:12:0:0:1:0:0)$$

An example

Example

The theta null point $(1:1:12:1) \in \mathcal{M}_4(\mathbb{F}_{79})$ corresponds to the elliptic curve $E: y^2 = x^3 + 11.x + 47.$

• We have the following valid solutions (*v* is a primitive root of degree 3):

$$\begin{aligned} & (v^{490931}:1:46:v^{490931}:37:54:v^{54782}:54:37:v^{490931}:46:1) \\ & (v^{476182}:1:68:v^{476182}:67:10:v^{40033}:10:67:v^{476182}:68:1) \\ & (v^{465647}:1:3:v^{465647}:40:16:v^{29498}:16:40:v^{465647}:3:1) \\ & (v^{450898}:1:33:v^{450898}:69:24:v^{14749}:24:69:v^{450898}:33:1) \end{aligned}$$

• And the following degenerate solutions:

$$(1:1:12:1:1:1:12:1:1:1:12:1) \\ (1:0:0:1:0:0:12:0:0:1:0:0)$$

The structure of the system Computing the solutions Computing the dual isogeny

- The structure of the system
- Computing the solutions
- Computing the dual isogeny

イロト イポト イヨト イヨト

We use the fact that $J = I \cap k[a_4, a_7, a_{10}, a_1]$ contains polynomial of low degree as follow:

- Step 1 Compute a truncated Groebner basis (for an elimination order) to obtain a zero dimensional ideal J_1 contained in J.
- Step 2 Compute the coordinates a_4, a_7, a_{10}, a_1 :

$$\operatorname{Var}(J_1)(\overline{k}) \supset \left\{ (a_4, a_7, a_{10}, a_1) : a \in V_B(\overline{k}) \right\}$$

Step 3 Compute (recursively) the other coordinates (a_8, a_{11}, a_2, a_5) .

We use the fact that $J = I \cap k[a_4, a_7, a_{10}, a_1]$ contains polynomial of low degree as follow:

Step 1 Compute a truncated Groebner basis (for an elimination order) to obtain a zero dimensional ideal J_1 contained in J.

Step 2 Compute the coordinates a_4, a_7, a_{10}, a_1 :

$$\operatorname{Var}(J_1)(\overline{k}) \supset \left\{ (a_4, a_7, a_{10}, a_1) : a \in V_B(\overline{k}) \right\}$$

Step 3 Compute (recursively) the other coordinates (a_8, a_{11}, a_2, a_5) .

We use the fact that $J = I \cap k[a_4, a_7, a_{10}, a_1]$ contains polynomial of low degree as follow:

- Step 1 Compute a truncated Groebner basis (for an elimination order) to obtain a zero dimensional ideal J_1 contained in J.
- Step 2 Compute the coordinates a_4, a_7, a_{10}, a_1 :

$$\operatorname{Var}(J_1)(\overline{k}) \supset \left\{ (a_4, a_7, a_{10}, a_1) : a \in V_B(\overline{k}) \right\}$$

Step 3 Compute (recursively) the other coordinates (a_8, a_{11}, a_2, a_5) .

We use the fact that $J = I \cap k[a_4, a_7, a_{10}, a_1]$ contains polynomial of low degree as follow:

- Step 1 Compute a truncated Groebner basis (for an elimination order) to obtain a zero dimensional ideal J_1 contained in J.
- Step 2 Compute the coordinates a_4, a_7, a_{10}, a_1 :

$$\operatorname{Var}(J_1)(\overline{k}) \supset \left\{ (a_4, a_7, a_{10}, a_1) : a \in V_B(\overline{k}) \right\}$$

Step 3 Compute (recursively) the other coordinates (a_8, a_{11}, a_2, a_5) .

The structure of the system Computing the solutions Computing the dual isogeny

Computing isogenies

- The structure of the system
- Computing the solutions
- Computing the dual isogeny

イロト イロト イヨト イヨト

The structure of the system Computing the solutions Computing the dual isogeny

The dual isogeny

Let $\pi : A \to B$ be the isogeny associated to (a_0, \dots, a_{11}) . Let $y = (y_0, y_1, y_2, y_3) \in B$. Let $x = (x_0, \dots, x_{11})$ be one of the 3 antecedents. Then $\tilde{\pi}(y) = 3x$

• Let *P*₁ = (*a*₄, *a*₇, *a*₁₀, *a*₁), *P*₁ is a point of 3-torsion in *B*. We have:

$$y = (x_0, x_3, x_6, x_9)$$

$$y + P_1 = (x_4, x_7, x_{10}, x_1)$$

$$y + 2P_1 = (x_8, x_{11}, x_2, x_5)$$

So x can be recovered from y, $y + P_1$, $y + 2P_1$ up to three projective factors $\lambda_0, \lambda_{P_1}, \lambda_{2P_1}$.

The structure of the system Computing the solutions Computing the dual isogeny

The dual isogeny

Let $\pi : A \to B$ be the isogeny associated to (a_0, \dots, a_{11}) . Let $y = (y_0, y_1, y_2, y_3) \in B$. Let $x = (x_0, \dots, x_{11})$ be one of the 3 antecedents. Then $\tilde{\pi}(y) = 3x$

• Let *P*₁ = (*a*₄, *a*₇, *a*₁₀, *a*₁), *P*₁ is a point of 3-torsion in *B*. We have:

$$y = (x_0, x_3, x_6, x_9)$$

$$y + P_1 = (x_4, x_7, x_{10}, x_1)$$

$$y + 2P_1 = (x_8, x_{11}, x_2, x_5)$$

So x can be recovered from y, $y + P_1$, $y + 2P_1$ up to three projective factors $\lambda_0, \lambda_{P_1}, \lambda_{2P_1}$.

The structure of the system Computing the solutions Computing the dual isogeny

The dual isogeny

Let $\pi : A \to B$ be the isogeny associated to (a_0, \dots, a_{11}) . Let $y = (y_0, y_1, y_2, y_3) \in B$. Let $x = (x_0, \dots, x_{11})$ be one of the 3 antecedents. Then $\tilde{\pi}(y) = 3x$

• Let $P_1 = (a_4, a_7, a_{10}, a_1)$, P_1 is a point of 3-torsion in *B*. We have:

$$y = (x_0, x_3, x_6, x_9)$$

$$y + P_1 = (x_4, x_7, x_{10}, x_1)$$

$$y + 2P_1 = (x_8, x_{11}, x_2, x_5)$$

So x can be recovered from y, $y + P_1$, $y + 2P_1$ up to three projective factors $\lambda_0, \lambda_{P_1}, \lambda_{2P_1}$.

The structure of the system Computing the solutions Computing the dual isogeny

The dual isogeny

Let $\pi : A \to B$ be the isogeny associated to (a_0, \dots, a_{11}) . Let $y = (y_0, y_1, y_2, y_3) \in B$. Let $x = (x_0, \dots, x_{11})$ be one of the 3 antecedents. Then $\tilde{\pi}(y) = 3x$

• Let $P_1 = (a_4, a_7, a_{10}, a_1)$, P_1 is a point of 3-torsion in *B*. We have:

 $y = (x_0, x_3, x_6, x_9)$ $y + P_1 = (x_4, x_7, x_{10}, x_1)$ $y + 2P_1 = (x_8, x_{11}, x_2, x_5)$

So x can be recovered from y, $y + P_1$, $y + 2P_1$ up to three projective factors $\lambda_0, \lambda_{P_1}, \lambda_{2P_1}$.

・ロト ・ 一下・ ・ ヨト・

The structure of the system Computing the solutions Computing the dual isogeny

The dual isogeny

• Let $P_1 = (a_4, a_7, a_{10}, a_1)$, P_1 is a point of 3-torsion in *B*. We have:

$$y = (x_0, x_3, x_6, x_9)$$

$$y + P_1 = (x_4, x_7, x_{10}, x_1)$$

$$y + 2P_1 = (x_8, x_{11}, x_2, x_5)$$

So *x* can be recovered from *y*, $y + P_1$, $y + 2P_1$ up to three projective factors $\lambda_0, \lambda_{P_1}, \lambda_{2P_1}$.

The structure of the system Computing the solutions Computing the dual isogeny

The addition formula

Theorem (Addition formula)

$$2^{g}\theta \begin{bmatrix} a'\\ e' \end{bmatrix} (x+y)\theta \begin{bmatrix} b'\\ f' \end{bmatrix} (x-y)\theta \begin{bmatrix} c'\\ g' \end{bmatrix} (0)\theta \begin{bmatrix} d'\\ h' \end{bmatrix} (0) = \sum_{\alpha,\beta\in\frac{1}{2}\mathbb{Z}^{g}/\mathbb{Z}^{g}} e^{2\pi i\beta'(a+b+c+d)}\theta \begin{bmatrix} a+\alpha\\ e+\beta \end{bmatrix} (x)\theta \begin{bmatrix} b+\alpha\\ f+\beta \end{bmatrix} (x)\theta \begin{bmatrix} c+\alpha\\ g+\beta \end{bmatrix} (y)\theta \begin{bmatrix} d+\alpha\\ h+\beta \end{bmatrix} (y)$$

Э.

・ロト ・ 一下・ ・ ヨト・ ・ ヨト

• Using the addition formulas, we have $\lambda_{2P_1} = \lambda_{P_1}^2$.

• Since $y + 3P_1 = y$, we obtain a formula

$$\lambda_{P_1}^3 = \alpha$$

hence we can find the three antecedents.

- In fact when computing $3 \cdot x$, the projective factors become λ_0^3 , $\lambda_{P_1}^3$, $\lambda_{2P_1}^3$ so we don't need to extract roots.
- *Vélu's like formulas:* If we know the kernel \tilde{K} of the isogeny, we can use the same methods to compute the valid theta null points in $\mathcal{M}_{\ell n}(k)$, by determining the g(g+1)/2 indeterminates λ_{ij} .

- Using the addition formulas, we have $\lambda_{2P_1} = \lambda_{P_1}^2$.
- Since $y + 3P_1 = y$, we obtain a formula

$$\lambda_{P_1}^3=\alpha$$

hence we can find the three antecedents.

- In fact when computing $3 \cdot x$, the projective factors become λ_0^3 , $\lambda_{P_1}^3$, $\lambda_{2P_1}^3$ so we don't need to extract roots.
- *Vélu's like formulas:* If we know the kernel \tilde{K} of the isogeny, we can use the same methods to compute the valid theta null points in $\mathcal{M}_{\ell n}(k)$, by determining the g(g+1)/2 indeterminates λ_{ij} .

- Using the addition formulas, we have $\lambda_{2P_1} = \lambda_{P_1}^2$.
- Since $y + 3P_1 = y$, we obtain a formula

$$\lambda_{P_1}^3=\alpha$$

hence we can find the three antecedents.

- In fact when computing $3 \cdot x$, the projective factors become λ_0^3 , $\lambda_{P_1}^3$, $\lambda_{2P_1}^3$ so we don't need to extract roots.
- *Vélu's like formulas:* If we know the kernel \tilde{K} of the isogeny, we can use the same methods to compute the valid theta null points in $\mathcal{M}_{\ell n}(k)$, by determining the g(g+1)/2 indeterminates λ_{ij} .

- Using the addition formulas, we have $\lambda_{2P_1} = \lambda_{P_1}^2$.
- Since $y + 3P_1 = y$, we obtain a formula

$$\lambda_{P_1}^3=\alpha$$

hence we can find the three antecedents.

- In fact when computing $3 \cdot x$, the projective factors become λ_0^3 , $\lambda_{P_1}^3$, $\lambda_{2P_1}^3$ so we don't need to extract roots.
- *Vélu's like formulas:* If we know the kernel \tilde{K} of the isogeny, we can use the same methods to compute the valid theta null points in $\mathcal{M}_{\ell n}(k)$, by determining the g(g+1)/2 indeterminates λ_{ij} .

- We have an algorithm to compute isogenies! In practice, only for small degrees and low genus.
- The blocking point of the algorithm is the lifting of the theta null point (even with the improved Groebner basis algorithm).
- We have seen that we have a nice action on the solutions, and we are only interested in equivalence classes. Can we use this action to speed up the lifting part?
- Can we use Theta functions to compute pairings?

- We have an algorithm to compute isogenies! In practice, only for small degrees and low genus.
- The blocking point of the algorithm is the lifting of the theta null point (even with the improved Groebner basis algorithm).
- We have seen that we have a nice action on the solutions, and we are only interested in equivalence classes. Can we use this action to speed up the lifting part?
- Can we use Theta functions to compute pairings?

- We have an algorithm to compute isogenies! In practice, only for small degrees and low genus.
- The blocking point of the algorithm is the lifting of the theta null point (even with the improved Groebner basis algorithm).
- We have seen that we have a nice action on the solutions, and we are only interested in equivalence classes. Can we use this action to speed up the lifting part?
- Can we use Theta functions to compute pairings?

- We have an algorithm to compute isogenies! In practice, only for small degrees and low genus.
- The blocking point of the algorithm is the lifting of the theta null point (even with the improved Groebner basis algorithm).
- We have seen that we have a nice action on the solutions, and we are only interested in equivalence classes. Can we use this action to speed up the lifting part?
- Can we use Theta functions to compute pairings?