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Discrete logarithm

Definition (DLP)

Let G be a commutative finite group,  ∈ G and x ∈ N. Let h = x ⋅ .The

discrete logarithm log(h) is x.

The DLP is hard (in a generic group) if the order of  is divisible by a

large prime.

⇒ Usual tools of public key cryptography (and more!)

⇒ Find suitable abelian groups.
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Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

Abelian variety = points on a projective space (locus of homogeneous

polynomials) + an algebraic group law.

Abelian varieties are projective, smooth, irreducible with an Abelian

group law.

Example: Elliptic curves, Jacobians of genus  curves...
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Isogenies

Definition

A (separable) isogeny is a finite surjective (separable) morphism between two

Abelian varieties.

Isogenies = Rational map + group morphism + finite kernel.

Isogenies⇔ Finite subgroups.

( f ∶ A→ B)↦ Ker f

(A→ A/H)↤ H

Example:Multiplication by ℓ (⇒ ℓ-torsion), Frobenius (non separable).
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Cryptographic usage of isogenies

Transfert the DLP from one Abelian variety to another.

Point counting algorithms (ℓ-addic or p-addic).

Compute the class field polynomials.

Compute the modular polynomials.

Determine End(A).
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Vélu’s formula

Theorem

Let E ∶ y2 = f (x) be an elliptic curve. Let G ⊂ E(k) be a finite subgroup. Then

E/G is given by Y 2 = (X) where

X(P) = x(P) + ∑
Q∈G∖{0E}

x(P + Q) − x(Q)

Y(P) = y(P) + ∑
Q∈G∖{0E}

y(P + Q) − y(Q)

Uses the fact that x and y are characterised in k(E) by

v0E (x) = −3 vP(x) ≥ 0 if P ≠ 0E

v0E (y) = −2 vP(y) ≥ 0 if P ≠ 0E

y2/x3(OE) = 1

No such characterisation in genus  ≥ 2.
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The modular polynomial

Definition

The modular polynomial is a polynomial ϕn(x , y) ∈ Z[x , y] such that

ϕn(x , y) = 0 iff x = j(E) and y = j(E′) with E and E′ n-isogeneous.

If E ∶ y2 = x3 + ax + b is an elliptic curve, the j-invariant is

j(E) = 1728
4a3

4a3 + 27b2

Roots of ϕn( j(E), .)⇔ elliptic curves n-isogeneous to E.

In genus 2, modular polynomials use Igusa invariants.The height

explodes: ϕ2 = 50MB.

⇒ Use the modulai space given by theta functions.

⇒ Fix the form of the isogeny and look for coordinates compatible with the

isogeny.
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The isogeny theorem

Complex abelian varieties

Abelian variety over C: A = C/ (Z +ΩZ), where Ω ∈H(C) the
Siegel upper half space.

The theta functions with characteristic give a lot of analytic (quasi

periodic) functions on C .

θ(z, Ω) = ∑
n∈Z

eπ in
′
Ωn+2π in′z

θ [
a

b
] (z, Ω) = eπ i a

′
Ωa+2π i a′(z+b)θ(z +Ωa + b, Ω) a, b ∈ Q

The quasi-periodicity is given by

θ(z +m +Ωn, Ω) = e2π i(a
′m−b′n)−π in′Ωn−2π in′zθ(z, Ω)
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Abelian varieties and isogenies

Theta functions

Computing isogenies

Theta functions of level ℓ
Theta structures

The isogeny theorem

Complex abelian varieties

Abelian variety over C: A = C/ (Z +ΩZ), where Ω ∈H(C) the
Siegel upper half space.

The theta functions with characteristic give a lot of analytic (quasi

periodic) functions on C .

θ(z, Ω) = ∑
n∈Z

eπ in
′
Ωn+2π in′z

θ [
a

b
] (z, Ω) = eπ i a

′
Ωa+2π i a′(z+b)θ(z +Ωa + b, Ω) a, b ∈ Q

The quasi-periodicity is given by

θ(z +m +Ωn, Ω) = e2π i(a
′m−b′n)−π in′Ωn−2π in′zθ(z, Ω)

Damien Robert Computing isogenies on Abelian Varieties 11/33



Abelian varieties and isogenies

Theta functions

Computing isogenies

Theta functions of level ℓ
Theta structures

The isogeny theorem

Complex abelian varieties

Abelian variety over C: A = C/ (Z +ΩZ), where Ω ∈H(C) the
Siegel upper half space.

The theta functions with characteristic give a lot of analytic (quasi

periodic) functions on C .

θ(z, Ω) = ∑
n∈Z

eπ in
′
Ωn+2π in′z

θ [
a

b
] (z, Ω) = eπ i a

′
Ωa+2π i a′(z+b)θ(z +Ωa + b, Ω) a, b ∈ Q

The quasi-periodicity is given by

θ(z +m +Ωn, Ω) = e2π i(a
′m−b′n)−π in′Ωn−2π in′zθ(z, Ω)

Damien Robert Computing isogenies on Abelian Varieties 11/33



Abelian varieties and isogenies

Theta functions

Computing isogenies

Theta functions of level ℓ
Theta structures

The isogeny theorem

Theta functions

Every projective embedding comes from a polarization L. A
polarization L =

a factor of automorphy eL(x , y) = e
2π iEL(x ,y) (where EL is a symplectic

form on Z2
)

a maximal isotropic decomposition of the kernel of the polarisation:

K(L) ∶= {z ∈ Q
+ΩQ

∣EL(z,Z
+ΩZ

) ⊂ Z}

= K(L)1 ⊕ K(L)2

The polarization Lℓ of level ℓ is given by analytic functions f satisfying:

f (z + n) = f (z)

f (z + nΩ) = exp(−ℓ ⋅ πin′Ωn − ℓ ⋅ 2πin′z) f (z)
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The isogeny theorem

Projective embeddings given by theta functions

Theorem

A basis of Lℓ is given by

{θ [
0

b
] (z, Ω/ℓ)}

b∈ 1
ℓ
Z/Z

(1)

{θ [
a

0
] (ℓz, ℓΩ)}

a∈ 1
ℓ
Z/Z

(2)

Let Zℓ = Z/ℓZ . If i ∈ Zℓ we define θ i = θ [
0

i/ℓ
] (., Ω/ℓ). If l ≥ 3 then

z ↦ (θ i(z))i∈Zℓ

is a projective embedding A→ Pℓ −1
C .

The point (θ i(0))i∈Zℓ
is called the theta null point of the Theta structure Ω.
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The action of theTheta group

K(Lℓ) is the subgroup of ℓ-torsion

A[ℓ] = {
i

ℓ
+Ω

j

ℓ
} i , j ∈ Z

The action by translation is given by

(i , j).θk(z) ∶= θk (z −
i

ℓ
−Ω

j

ℓ
) (3)

= eLℓ
(i + k, j)θ i+k (4)

where eLℓ
(x , y) = e2π i/ℓ⋅x

′ y is the commutator pairing.
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Equations of theAbelian varieties

Theorem (Riemann Relations)

Let (q i)i∈Zℓ
be the theta null point. Then if 4∣ℓ, the homogeneous ideal of the

Abelian variety is given by the Riemann Relations:

∑
t∈Z2

Xx+tXy+t ∑
t∈Z2

qu+tqv+t = ∑
t∈Z2

Xz−u+tXz−v+t ∑
t∈Z2

qz−x+tqz−y+t (5)

for every x , y, u, v ∈ Zℓ such that ∃z, x + y + u + v = −2z.

Corollary

∑
t∈Z2

qx+tqy+t ∑
t∈Z2

qu+tqv+t = ∑
t∈Z2

qz−u+tqz−y+t ∑
t∈Z2

qz−x+tqz−v+t (6)

We noteMℓ the moduli space given by these relations together with the relations

of symmetry:

qx = q−x
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Theta functions of level ℓ
Theta structures

The isogeny theorem

Mumford: On equations definingAbelian varieties

Theorem (car k ∤ ℓ)

Let k be a field. Then every projective embedding is given by the Riemann
Relations.

More precisely, for every projective embedding ϕL ∶ Ak → PN
k of level ℓ, there

is a unique basis of PN
k such that the theta group acts as in (4).

The locus of theta null points giving an Abelian Variety is an open subset

M0
ℓ ofMℓ .

Remark

Analytic action: Sp2(Z) acts onH (and preserve the isomorphic

classes).

Algebraic action: Sp2(Zℓ) acts onMℓ .
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The isogeny theorem

Theorem

Let A = C/(Z +ΩZ) be an Abelian variety with a theta structure of level ℓ.

Suppose that ℓ = kn and let K = 1

k
ΩZ , and π ∶ A→ B = A/K the

corresponding isogeny.

There is an induced theta structure of level n on B such that

θB
i = θ

A
ϕ(i) (7)

where ϕ ∶ Zn → Zℓ is the canonical inclusion x ↦ k ⋅ x.

Proof.

θB
i (z) = θ [

0

i/n
](z,

Ω

k
/n) = θ [

0

ki/ℓ
] (z, Ω/ℓ) = θA

k⋅i(z)
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Theta functions

Computing isogenies

Theta functions of level ℓ
Theta structures

The isogeny theorem

Summary

Given a valid theta null point (a i)i∈Zℓ
, we have

The equations of the Abelian variety A.

A symplectic basis A[ℓ] ≃ Zℓ × Ẑℓ .

The action of points of ℓ-torsion.

An isogeny A→ B = A/K2 (where K2 is the subgroup Ẑk ⊂ Ẑℓ).

Remark

The level ℓ of an Abelian variety Awith a polarization is fixed. (ℓ = 4 if A
is the Jacobian of an hyperelliptic curve).

The only way to change the level is given by the isogeny theorem.
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The action of points of ℓ-torsion.

An isogeny A→ B = A/K2 (where K2 is the subgroup Ẑk ⊂ Ẑℓ).
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Program

Definition

Let B be an Abelian variety with a theta structure of level n, and (b i)i∈Zn

the corresponding theta null point. We note VB the subvariety ofMℓn

defined by

{qϕ(i) = b i}

By the isogeny theorem, to every valid theta null point (a i)i∈Zℓn
∈ V 0

B (k)
corresponds a ℓ-isogeny π ∶ A→ B.

The algorithm is as follows:

Compute the solutions VB(k).

Identify the valid theta null points.

Compute the dual isogeny π̃ ∶ B → A.

For the examples, we will use  = 1, n = 4 and ℓ = 3.
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The kernel of the dual isogeny

Let (a0 ,⋯, a11) be a valid solution corresponding to an isogeny

π ∶ A→ B. We have

π(θA
i (x)i∈Z12

) = (θA
0 (x), θ

A
3 (x), θ

A
6 (x), θ

A
9 (x))

a0 = b0 , a3 = b1 , a6 = b2 , a9 = b3

The kernel K of π is

{(ζ kia i)i∈Z12
}k∈Z3

ζ3 = 1

The kernel K̃ of the dual isogeny is given by the projection of the dual of

K:

K̃ = {(a0 , a3 , a6 , a9), (a4 , a7 , a10 , a1), (a8 , a11 , a2 , a5)}
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The valid solutions

Lemma

Let (a i)i∈Zℓn
be a solution. Let ϕ ∶ Zℓ ×Zn → Zℓn , (i , j)↦ in + jℓ. If i ∈ Zℓ ,

we define

Pi = (aϕ(i , j)) j∈Zn

Then the points {Pi}i∈Zℓ
that are well defined form a subgroup of the points of

ℓ-torsion in B.

Theorem (n ∧ ℓ = 1)

Let (a i)i∈Zℓn
be a solution, and K̃ = {Pi}i∈Zℓ

the associated subgroup of

ℓ-torsion. Then (a i)i∈Zℓn
is a valid solution if and only if K̃ is a maximal

subgroup of rank .

Damien Robert Computing isogenies on Abelian Varieties 23/33



Abelian varieties and isogenies

Theta functions

Computing isogenies

The structure of the system

Computing the solutions

Computing the dual isogeny

The valid solutions

Lemma

Let (a i)i∈Zℓn
be a solution. Let ϕ ∶ Zℓ ×Zn → Zℓn , (i , j)↦ in + jℓ. If i ∈ Zℓ ,

we define

Pi = (aϕ(i , j)) j∈Zn

Then the points {Pi}i∈Zℓ
that are well defined form a subgroup of the points of

ℓ-torsion in B.

Theorem (n ∧ ℓ = 1)

Let (a i)i∈Zℓn
be a solution, and K̃ = {Pi}i∈Zℓ

the associated subgroup of

ℓ-torsion. Then (a i)i∈Zℓn
is a valid solution if and only if K̃ is a maximal

subgroup of rank .

Damien Robert Computing isogenies on Abelian Varieties 23/33



Abelian varieties and isogenies

Theta functions

Computing isogenies

The structure of the system

Computing the solutions

Computing the dual isogeny

The automorphisms of the theta group

Let (a i)i∈Zℓn
be a valid solution.The actions of the automorphisms of

the theta group compatible with the theta structure of B are generated by

(au)u∈Zℓn
↦ (aψ1

(u))u∈Zℓn
(8)

(au)u∈Zℓn
↦ (e(ψ2(u), u).au)u∈Zℓn

(9)

Where ψ1 is an automorphism of Zℓn fixing Zn and ψ2 is a morphism

Zℓn → Zℓ ⊂ Zℓn .

Example

If (a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 , a11) is a valid solution

corresponding to an Abelian variety A, the solutions isomorphic to A are given

by

(a0 , a5 , a10 , a3 , a8 , a1 , a6 , a11 , a4 , a9 , a2 , a7)

(a0 , ζa1 , ζ
2
2

a2 , a3 , ζa4 , ζ
2
2

a5 , a6 , ζa7 , ζ
2
2

a8 , a9 , ζa10 , ζ
2
2

a11)
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Proof of the theorem (Outline)

Proof.

Every solutions giving the same set of associated points {Pi}i∈Zℓ
differ by

an action of type (8) or (9)

Let K̃ = {Pi}i∈Zℓ
be the associated subgroup of rank  in B. Let A = B/K̃,

and π ∶ A→ B be the dual isogeny. We construct a theta structure on A

such that π is the associated isogeny.

Corollary

#V 0
B (k) ≃ ℓ (number of isogenies) × ℓ2 (cardinal of each orbit)
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Example

The theta null point (1 ∶ 1 ∶ 12 ∶ 1) ∈M4(F79) corresponds to the elliptic curve
E ∶ y2 = x3 + 11.x + 47.

We have the following valid solutions (υ is a primitive root of degree 3):

(υ490931 ∶ 1 ∶ 46 ∶ υ490931 ∶ 37 ∶ 54 ∶ υ54782 ∶ 54 ∶ 37 ∶ υ490931 ∶ 46 ∶ 1)

(υ476182 ∶ 1 ∶ 68 ∶ υ476182 ∶ 67 ∶ 10 ∶ υ40033 ∶ 10 ∶ 67 ∶ υ476182 ∶ 68 ∶ 1)

(υ465647 ∶ 1 ∶ 3 ∶ υ465647 ∶ 40 ∶ 16 ∶ υ29498 ∶ 16 ∶ 40 ∶ υ465647 ∶ 3 ∶ 1)

(υ450898 ∶ 1 ∶ 33 ∶ υ450898 ∶ 69 ∶ 24 ∶ υ14749 ∶ 24 ∶ 69 ∶ υ450898 ∶ 33 ∶ 1)

And the following degenerate solutions:

(1 ∶ 1 ∶ 12 ∶ 1 ∶ 1 ∶ 1 ∶ 12 ∶ 1 ∶ 1 ∶ 1 ∶ 12 ∶ 1)

(1 ∶ 0 ∶ 0 ∶ 1 ∶ 0 ∶ 0 ∶ 12 ∶ 0 ∶ 0 ∶ 1 ∶ 0 ∶ 0)
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A specialized Groebner algorithm

We use the fact that J = I⋂ k[a4 , a7 , a10 , a1] contains polynomial of low

degree as follow:

Step 1 Compute a truncated Groebner basis (for an elimination order) to

obtain a zero dimensional ideal J1 contained in J.

Step 2 Compute the coordinates a4 , a7 , a10 , a1:

Var(J1)(k) ⊃ {(a4 , a7 , a10 , a1) ∶ a ∈ VB(k)}

Step 3 Compute (recursively) the other coordinates (a8 , a11 , a2 , a5).
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The dual isogeny

y ∈ B

z ∈ A

π̃

x ∈ A

π

[ℓ]

Let π ∶ A → B be the isogeny associated to

(a0 ,⋯, a11). Let y = (y0 , y1 , y2 , y3) ∈ B. Let

x = (x0 ,⋯, x11) be one of the 3 antecedents.

Then

π̃(y) = 3x

Let P1 = (a4 , a7 , a10 , a1), P1 is a point of 3-torsion in B. We have:

y = (x0 , x3 , x6 , x9)

y + P1 = (x4 , x7 , x10 , x1)

y + 2P1 = (x8 , x11 , x2 , x5)

So x can be recovered from y, y + P1, y + 2P1 up to three projective

factors λ0 , λP1 , λ2P1 .
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The addition formula

Theorem (Addition formula)

2
θ [

a′

e′
] (x + y)θ [

b′

f ′
] (x − y)θ [

c′

′
] (0)θ [

d′

h′
] (0) =

∑
α ,β∈12Z/Z

e2π iβ
′(a+b+c+d)θ [

a + α
e + β

] (x)θ [
b + α
f + β

] (x)θ [
c + α
 + β

] (y)θ [
d + α
h + β

] (y)

where A =
1

2

⎛
⎜
⎜
⎜
⎝

1 1 1 1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟
⎟
⎟
⎠

a, b, c, d , e , f , , h ∈ 12Z/Z

(a′ , b′ , c′ , d′) = A(a, b, c, d), (e′ , f ′ , ′ , h′) = A(e , f , , h)
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Computing the projective factors

Using the addition formulas, we have λ2P1 = λ
2
P1
.

Since y + 3P1 = y, we obtain a formula

λ3P1 = α

hence we can find the three antecedents.

In fact when computing 3 ⋅ x, the projective factors become λ30, λ
3
P1
, λ32P1

so we don’t need to extract roots.

Vélu’s like formulas: If we know the kernel K̃ of the isogeny, we can use

the same methods to compute the valid theta null points inMℓn(k), by
determining the ( + 1)/2 indeterminates λ i j .
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Perspective

We have an algorithm to compute isogenies! In practice, only for small

degrees and low genus.

The blocking point of the algorithm is the lifting of the theta null point

(even with the improved Groebner basis algorithm).

We have seen that we have a nice action on the solutions, and we are only

interested in equivalence classes. Can we use this action to speed up the

lifting part?

Can we useTheta functions to compute pairings?
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