
Contrat de recherches numéro 2010 42 0349
Rapport numéro 8

Computing class polynomials in genus 2
Rapport DGA

Andreas Enge and Damien Robert

26 April 2013



Inria Bordeaux Sud-Ouest,
200 avenue de la Vieille Tour
33405 Talence Cedex

andreas.enge@inria.fr
damien.robert@inria.fr

Part of this report is taken from [ET13] and [LR12]. We thank our respective co-authors Emmanuel
Thomé and Kristin Lauter for allowing us to reuse the material.

mailto:andreas.enge@inria.fr
mailto:damien.robert@inria.fr


Contents

1 Complex multiplication in genus 1 and 2 6
1.1 Public key cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Computing class polynomials in genus 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 CM theory for elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 The complex analytic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 The p-adic lifting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 The CRT method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.5 Class invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 The case of genus 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 CM theory for genus 2 14
2.1 Complex multiplication theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Quartic CM fields and abelian surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 The Shimura group, its type norm subgroup and cosets . . . . . . . . . . . . . . . 15
2.1.3 ϑ-functions, Igusa invariants and class polynomials . . . . . . . . . . . . . . . . . . 15

2.2 Explicit equations and symbolic period matrices . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Galois theory, embeddings and period matrices . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Number field computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Symbolic reduction of period matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Computing the Shimura group and its type norm subgroup . . . . . . . . . . . . . . . . . 21
2.3.1 Structure of the Shimura group C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 The type norm subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Reducing the class polynomials 23
3.1 CM theory and reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 CRT primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 The cyclic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 The dihedral case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 The other CM type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 The Weil polynomial corresponding to the isogeny class . . . . . . . . . . . . . . . . . . . 26

4 The analytic method 27
4.1 Algorithm for Igusa class polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Computing ϑ-constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Naive approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Borchardt mean of complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.3 Period matrix coefficients from ϑ-constants . . . . . . . . . . . . . . . . . . . . . . 30
4.2.4 Newton lift for fundamental ϑ-constants . . . . . . . . . . . . . . . . . . . . . . . . 31

3



4.3 Reconstruction of class polynomial coefficients and reduction modulo prime ideals . 33
4.3.1 The dihedral case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 The cyclic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Isogenies and endomorphism rings 35
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Searching for a curve in the isogeny class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Rosenhain representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.2 Real multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Computing the ℓ-primary part of the torsion . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 On (ℓ,ℓ)-isogenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Checking if the endomorphism ring is maximal . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5.1 The vertical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.2 Reducing the degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5.3 Reducing the number of endomorphisms to test . . . . . . . . . . . . . . . . . . . 41
5.5.4 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5.5 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 Going up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6.1 Going up for one endomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6.2 Going up globally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6.3 Cost of the going-up step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.7 Complexity of finding a maximal curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.8 Computing maximal curves from maximal curves . . . . . . . . . . . . . . . . . . . . . . . 47

5.8.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.9 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 The p-adic method 51
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Computing the canonical lift of an abelian surface . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.1 Characteristic 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.2 Characteristic p > 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 The CRT method 53
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Strategies for sieving CRT primes p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2.1 Cost of testing if a curve is maximal . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.2 Size of the isogeny class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.3 Estimating the probability of going up . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2.4 A dynamic selection of primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Implementation and examples 57
8.1 Implementation and parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.1.1 Computation of ϑ-constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.1.2 Breakdown of timings for small class polynomial examples . . . . . . . . . . . . 58

8.2 A large example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4



Bibliography 62

5



1 Complex multiplication in genus 1 and 2

1.1 Public key cryptography

The discrete logarithm problem is at the heart of modern public key cryptography. It requires finding
mathematical groups in which the discrete logarithm problem is hard, whereas exponentiation is
efficient to compute.

Currently, the best such groups come from algebraic geometry, namely from elliptic curves (abelian
varieties of dimension 1) and Jacobians of hyperelliptic curves of genus 2 (abelian varieties of dimen-
sion 2) over finite fields. Abelian varieties of greater dimension than 2 have been proposed, but due to
faster attacks than the generic ones [GTT+07], they are essentially ruled out from practical use.

To instantiate the discrete logarithm problem, one needs to find an elliptic curve or an abelian
variety of dimension 2 over a finite field Fq whose cardinality is divisible by a large prime factor, the
generic algorithm for discrete logarithms taking time proportional to the square root of the largest
prime factor.

There are two approaches for finding such suitable varieties. The first one takes a random variety
and uses a point counting algorithm until a suitable instance is found. Note that both in dimension 1
and 2 polynomial time algorithms are available [Sch85; Pil90]. However, while point counting in
genus 1 is nowadays very fast because of improvements described in [Atk88; Elk97], this is not quite
the case yet in genus 2 for a random curve (compare [Sut] to [GS08]), although random curves have
definitely becomes an option in genus 2 as well. We note that it has been recently proposed not to take
random genus 2 curves, but to draw them in a family with real multiplication, in which case there are
faster point counting algorithms available [GKS11].

The second approach, which is the main subject of this report, is to use the theory of complex
multiplication for constructing a variety with a prescribed number of points. The idea is to construct
the moduli space of all abelian varieties (of dimension 1, resp. 2) having for endomorphism ring a
fixed order of a CM field K (of degree 2, resp. 4). This moduli space is of dimension 0, so can be
represented as the zero locus of polynomials in the moduli coordinates. These are the so called class
polynomials. The moduli field of these abelian varieties is a number field H (which is related to K ), so
it make sense to consider reduction modulo a prime p. The theory of complex multiplication (from
Deuring [Deu58] for elliptic curves, and from Taniyama-Shimura-Weil for abelian varieties [Shi98])
then describes the action of the Frobenius endomorphism on the reduction. In particular, one can
recover the number of points.

This yields the following method: Fix an order O in a CM field K . In this report, we will assume
that O is the maximal order OK for simplicity, but this is not a strict requirement. Compute the
class polynomials for O . Find a prime p such that the associated Frobenius corresponds to a Weil
polynomial with certain properties (typically we want the varieties to be defined over Fp and have a
large prime dividing their order, but we may also require a small embedding degree for use in pairing-
based cryptography). Reduce the class polynomial modulo p and find a root; this root corresponds
to the moduli invariant of a variety with CM by O reduced modulo p. From these invariants (the
j -invariant in dimension 1 or the Igusa invariants in dimension 2) it is then easy to recover the
corresponding elliptic curve or hyperelliptic curve of genus 2 (in the latter case using the Mestre-

6



Cardona-Quer [Mes91; CQ05] algorithm).
We note that the complexity of the method based on taking random curves depends on the size of

the finite field we want to work with. By contrast, the main parameter for the complexity of the CM
method is in the size of the class polynomials, which is related to the discriminant of the field K .

1.2 Computing class polynomials in genus 1

1.2.1 CM theory for elliptic curves

Let E/C be an elliptic curve with CM by an order O of an imaginary-quadratic field K . The isomor-
phism class of E is represented by its moduli parameter j , the j -invariant.

Theorem 1.2.1 (Kronecker, Deuring) : The j -invariant j (E) of E is an algebraic number, and K( j (E))
is the ring class field HO of O . (In particular, if O is maximal, HO is the Hilbert class field).

Moreover, the dimension 0 moduli space of elliptic curves with CM by O is a torsor under the Galois
group Gal(HO /K)≃Cl(O ), where a ∈Cl(O ) acts by an isogeny of degree N (a). In particular, the minimal
polynomial of j (E) over K is given by the class polynomial

H =
∏

C

(X − j (C ))

where the product is taken over all elliptic curves C with CM by O .
The class polynomial H is monic and lies in Z[X ], so the field H0

O =Q( j (E)) is of dimension deg H
overQ, linearly independent of K, and HO =H0

OK.

Deuring also described the reduction of CM elliptic curves modulo a prime p.

Theorem 1.2.2 : If p ∤∆O is a non-ramified prime, then p is a prime of (potentially) good reduction. Let
P be a prime above p in HO . If p is inert or ramified in K, EP is supersingular. Otherwise p splits in K,
EP is ordinary, and its endomorphism ring is the minimal order containing O of index prime to p.

Moreover, let p=P∩K; since the Artin symbol
�

P
p

�

is given by the class of p ∈Cl(O ), we see that the
elliptic curve E reduces to Fpn where n is the order of the ideal p. We then have that pn is principal, and
we can write pn = (π) where ππ=N (p)n (this condition determines π up to roots of unity). Then π ∈ O
corresponds to the action of the Frobenius of Fpn on EP.

Remark 1.2.3 : If p is ramified in O , then E has supersingular reduction modulo p. ♦

Reciprocally, if E/Fq is an ordinary elliptic curve, the couple (E ,End(E)) can be lifted overQq , so
we have the following corollary:

Corollary 1.2.4 : If E/Fq is an ordinary elliptic curve, then End(E) is an order in K =Q(π) of conductor
prime to p. For every order O of K such that Z[π]⊂O , there exists a curve whose endomorphism ring is
O .

Reciprocally, for every order O of discriminant a non-zero square modulo p, let n be the order of one of
the primes above p in the class group of O . Then there exists an (ordinary) elliptic curve E ′ over Fpn with
End(E ′) = O .

For computing the class polynomials in practice, there are three families of algorithm. In the
following, we will assume that O = OK is the maximal order for simplicity. If ∆ is the discriminant of
OK , then classical bounds give that deg H = eO(

p
∆) and that the coefficients of H have size eO(

p
∆).

So the whole class polynomial is of size eO(∆).

7



1.2.2 The complex analytic method

We fix an embedding ϕ of K into C. If a is an ideal of OK , then ϕ(a) is a lattice in C, and the torus
C/ϕ(a) is an elliptic curve with CM by OK . The analytic method then computes a representative
set for the class group Cl(OK ), and for each ideal a in this set compute the j -invariant (at a certain
precision) of the lattice ϕ(a). These j -invariants are the roots of H . By using asymptotically fast
algorithms [Eng09], one can then reconstruct H in quasi-linear time.

1.2.3 The p-adic lifting method

For the p-adic lift, one starts from an ordinary curve E defined over Fq = Fpn whose endomorphism
ring is OK . One can use Theorem 1.2.2 to determine over which p and n one can search for such a
curve. (Typically n is very small, so p will be of size eO(∆).)

Then one can compute the canonical lift of E on Qq . The idea of using canonical lifts originates
from Satoh for point counting over small characteristic [Sat00]. By using the modular polynomial
of level p and a good basis for the field Fq , such a lift can be computed in quasi-linear time in the
precision [LL03; Gau04].

Once such a canonical lift is computed, one can use isogenies (via modular polynomials or Vélu’s
formulæ [Vél71]) to recover all other canonical lifts of elliptic curves with CM by OK (since the
Galois-group Cl(OK ) acts by isogenies).

Under GRH, Cl(OK ) is generated by ideals of small norm (O(log2∆)), so recovering all the conjugate
roots from the first lift can be done efficiently. Altogether this also gives a quasi-linear algorithm to
compute H [Brö08].

The advantage of the p-adic method is that there is a better control of the precision loss than for the
analytic method. In particular, it is easier to give guaranteed results.

1.2.4 The CRT method

The CRT method works by computing the class polynomial modulo many small primes, and then
reconstructing the polynomials with rational coefficients (or modulo a much larger prime number)
via the Chinese remainder theorem (respectively, the explicit CRT).

One way to compute the class polynomial H modulo p is to choose a prime p such that all elliptic
curves with CM by OK have good ordinary reduction to Fp . Such a prime p will be called a CRT
prime. By Theorem 1.2.2, p is a CRT prime if and only if p splits in K into principal ideals. Then
it is only a matter of finding all elliptic curves over Fp with CM by OK , and reconstruct the class
polynomial modulo p via its roots as for the analytic and p-adic case.

The idea of using the CRT to compute class polynomials was first presented in [BBE+08], where
they used the following algorithm:

Algorithm 1.2.5 :

INPUT: An imaginary quadratic field K , and a collection of CRT primes PK for K .

OUTPUT: The class polynomial H (x) either in Z[X ] or reduced modulo a prime q .

1) Loop through CRT primes p ∈ PK :

(a) Enumerate elliptic curves E over Fp until a curve with maximal endomorphism ring
is found;

8



(b) From a maximal curve E , use isogenies to compute all other maximal curves.

(c) Reconstruct the class polynomial H (X )modulo p from the j -invariants of the set of
maximal curves.

2) Recover H (X ) in Z[X ] or modulo q using the (explicit) CRT method once we have
computed H (X )modulo p for enough primes p. ♦

By [LO77], the smallest CRT prime is of size eO(∆). Each CRT prime p gives log(p) bits of
information, so neglecting logarithmic factors, we need about eO(

p
∆) primes. CRT primes split

completely in the Hilbert class field of K , whose Galois group is Cl(OK ), so by the Cebotarev theorem
the density of CRT primes is roughly 1/#Cl(OK )≃ 1/

p
∆. Neglecting logarithmic factors again, we

therefore expect the biggest prime p to be of size eO(∆), and this is indeed what [LO77] gives.
Now there are O(p) isomorphism classes of elliptic curves, and (under GRH) eΩ(

p
∆) curves with

OK as endomorphism ring, so one of them is found in time eO(p/
p
∆) = eO(pp). Once one maximal

curve is found, all others can be obtained using isogenies of degree logarithmic in∆, so one can recover
all maximal elliptic curves over Fp in time eO(pp) = eO(

p
∆).

We need
p
∆ CRT primes, so the total cost is eO(∆). The CRT reconstruction can be done in

quasi-linear time too, so in the end the algorithm is quasi-linear. We note the importance of using
isogenies once we have a curve with CM by OK , otherwise the complexity would have been eO(∆3/2).

To find an elliptic curve over Fp we can go through all j -invariants or take random elliptic curves
E and test if E is in the isogeny class corresponding to the Weil polynomial of π ∈ OK (where π is
given by Theorem 1.2.2). If this is the case, then we know that End(E) is an order between OK and
Z[π]. We can then test if the endomorphism ring of E is maximal, that is if E lives in the crater of the
isogeny volcano [Koh96; FM02].

We note that there is some latitude in the choice of the CRT primes. In [BBE+08] the authors
suggest looking for CRT primes such that the index [OK :Z[π]] is small, so that a good proportion of
the curves in the isogeny class have CM by OK (the idea being that testing for the isogeny class is faster
than for the endomorphism ring).

Sutherland in [Sut10] suggested to modify the CRT algorithm as follow:

Algorithm 1.2.6 :

INPUT: An imaginary quadratic field K , and a collection of CRT primes PK for K .

OUTPUT: The class polynomial H (x) either in Z[x] or reduced modulo a prime q .

1) Loop through CRT primes p ∈ PK :

(a) Enumerate elliptic curves E over Fp until a curve in the right isogeny class is found.

(b) Use vertical isogenies to find from E a curve with CM by OK (“go up in the volcano”).

(c) From a maximal curve E , use isogenies to compute all other maximal curves.

(d) Reconstruct the class polynomial H (X )modulo p from the j -invariants of the set of
maximal curves.

2) Recover H (X ) in Z[X ] or modulo q using the (explicit) CRT method once we have
computed H (X )modulo p for enough primes p. ♦

9



By contrast with the preceding method, the new algorithm tries to select CRT primes such that
the index [OK :Z[π]] is divisible by a lot of small prime factors. The idea behind Algorithm 1.2.6 is
to maximise the size of the isogeny class to speed up the search for a curve in this class. Once such a
curve is found, going-up in the volcano is pretty fast. Overall, while the new algorithm has the same
asymptotic complexity, it gives a huge speed-up in practice, and it is currently the fastest algorithm to
compute class polynomials in genus 1.

Often, for quasi-linear algorithms, they are memory-bound rather than CPU-bound. One huge
advantage of the CRT method is that by using the explicit CRT, it can compute the class polynomial
modulo a CRT prime q of cryptographic size without having to compute it over Z. At such it does
not suffer from the same memory problem as the analytic method.

Finally, we mention the article [IJ10] that allows to select which isogeny can go up in the volcano
in advance by doing some Tate pairing computations.

1.2.5 Class invariants

Since all the presented algorithms are quasi-linear in the size of the class polynomial H , one can try to
replace H by a smaller class polynomial. This can be done by replacing the j -invariant by another
class invariant to represent the moduli points of elliptic curves with CM by OK . For instance if all
such curves have a rational level n structure (they correspond to rational points on X0(n) or X1(n),
which typically happens when n has some splitting behaviour in K ), one can use modular coordinates
on X0(n) rather than on X (1).

It is straightforward to adapt the analytic and p-adic method to use these class invariants, but a bit
more subtle for the CRT algorithm [ES10a].

1.3 The case of genus 2

An abelian variety A/C of dimension 2 is said to have complex multiplication if End(A) is an order in
K , a CM field of degree 4, that is, an imaginary-quadratic extension of a real-quadratic field K0. If A
is simple (not isogenous to a product of elliptic curves) then K is a primitive CM field. In this case,
either K is Galois with cyclic Galois group, or the Galois closure L of K is a CM field of degree 8 with
Galois group the dihedral group D4. (If K is non-primitive as a CM field, then it is Galois with bicyclic
Galois group).

Two complications arise here compared to the elliptic curve case. First, when K is non-Galois,
there are two non-equivalent CM types (we refer to Chapter 2 for definitions). Indeed, if A/C has
CM by OK , then the action of End(A) and the tangent space at 0 determine a CM type. Reciprocally,
if a⊂OK is an ideal, the embedding of a into a lattice in C2 depends on the choice of the CM type.
As such, the moduli spaceMOK

of all abelian varieties with CM by OK is split into two components
MΦ1

andMΦ2
for the two inequivalent CM types Φ1 and ϕ2. Note that whileMOK

is defined over Q,
the componentsMΦi

are defined over K r
0 , the real subfield of the reflex field K r for Φi . (Note that

while the reflex field depends on the CM type Φ, this is not the case for K r
0 .) The Galois action of

Gal(K r
0 /Q) permutes these two components.

The second difficulty is that while the Neron-Severi group of an elliptic curve is isomorphic to Z,
this is no longer the case in dimension 2, where it is acted upon by OK0

, the maximal order of K0. So
the class group describing the abelian extension in which the points of the moduli spaceMΦ live is
more complicated than for the genus 1 case.

10



The extension of Deuring’s result was worked out by Taniyama-Shimura-Weil. First we recall that
Igusa gave coordinates for the moduli space of abelian varieties of dimension 2, the so-called Igusa
invariants j1, j2, j3. In the following, we will denote j = ( j1, j2, j3). We also note that if j is the Igusa
invariant of a Jacobian of a hyperelliptic curve of genus 2, then then we can reconstruct the curve
using the Mestre-Cardona-Quer [Mes91; CQ05] algorithm.

Define the Shimura class group as

C= {(a,ρ) | a a fractional OK -ideal with aa f = (ρ), ρ ∈K0 totally positive}/K∗

If a CM type Φ is fixed, then Φ extends to a CM type on the Galois closure L of K , and Φ−1 descend
into a CM type on the reflex field K r (the reflex CM type Φr ). From this CM type, one can then
define the type norm NΦr : ClK r → C.

Theorem 1.3.1 (Shimura) : The moduli spaceMΦ is a torsor (a principal homogeneous space) under C
(where C acts by isogenies). If A∈MΦ, then H=K r ( j (A)) is an abelian extension of K r corresponding to
the class group NΦr (ClK r ).

Moreover, the field H0 =K r
0 ( j (A)) is linearly disjoint from K r over K r

0 and we have H=H0K r . The
extension H/K r

0 is Galois, and H0 is the real subfield of the CM field H.
The moduli spaceMΦ splits into irreducible components under the action of Gal(H/K). These compo-

nents correspond to the orbits of the action of NΦr (ClK r ) in C, and are defined over K r
0 . The action of

σ ∈ Gal(K r
0 /Q) sends an irreducible component ofMΦ to an irreducible component ofMσΦ. If K is

cyclic Galois, there is only one CM type, so these irreducible components are defined overQ.

Proof : See [Str10, Theorem I.9.1 and Chapter III]. ■

We refer the reader interested in the theory of CM algebras and the extension by Deligne of Shimura’s
main theorem of complex multiplication over K r

0 to a theorem over Q to the online notes by
Milne [Mil06].

In practice, one represents an irreducible component ofMΦ (which is then of dimension 0) by
using a Hecke representation given by three polynomials on the three Igusa invariants.

The three methods to compute class polynomials have been extended to genus 2 for computing the
Igusa class polynomials:

1) the complex analytic method in [Spa94; Wam99; Wen03; Str10; ET13];

2) the p-adic lifting method in [GHK+06; CKL08; CL09];

3) the Chinese remainder theorem method (CRT) in [EL10; FL08; BGL11; LR12].

The aim of this report is to give an overview of these methods in genus 2. In Chapter 2 we work
out explicit equations for the reflex field, and give algorithms to compute the Shimura class group and
the image of the type norm. In that chapter, we also explain how to obtain symbolic period matrices
representing abelian variety with CM by OK .

In Chapter 3 we explain how the abelian varieties with CM by OK (and the class polynomials) reduce
to a finite field, and how to compute the corresponding Weil polynomial giving their isogeny class
(and in particular their number of points). While this could have been part of the previous chapter, we
put it in a chapter of its own because if one is given the class polynomials, one only needs to read this
chapter to understand how to use these polynomials to generate suitable abelian varieties over a finite
field.

11



Chapter 4 gives an overview of the analytic method. The main idea is to use a fast algorithm based
on the AGM to evaluate in quasi-linear time (in the precision) the theta constants associated to the
symbolic matrices obtained in Chapter 2. From the theta constants, it is easy to recover the Igusa
invariants, and then the Igusa class polynomials as in §1.2.2.

Chapter 5 describes several algorithms related to abelian varieties of dimension 2 over finite fields.
We describe how to compute isogenies and endomorphism rings. We also explain how one can use
“vertical” isogenies to go from a variety in the right isogeny class to a variety with maximal CM by
OK ; and how to use “horizontal” isogenies to go from a variety with CM by OK to all varieties with
CM by OK . We explain how these tools are used by the p-adic method in Chapter 6 and by the CRT
method in Chapter 7.

We conclude by examples of computations of class polynomials in Chapter 8.
As progress is still being made on this subject, we also mention during the report some work not

yet published.

1.3.1 Complexity

In the original articles about computing class polynomials in genus 2, the authors focus on the full
class polynomials ofMOK

defined overQ. In this report, we instead focus on the class polynomials
over K r

0 corresponding to an irreducible component ofMΦ, since it will be smaller. If one is interested
in obtaining the full class polynomials overQ, it is easy to extend the methods presented here.

We note that contrarily to the case of genus 1, the class polynomials have denominators in their
coefficients (the primes p that appear correspond to primes p ∈H over p such that the reduction of an
abelian variety with CM by OK modulo p is not absolutely simple, i.e. is isogenous to a product of
elliptic curves).

The Bruinier-Yang conjectural formulæ [BY06] (proved only for special cases [Yan10a; Yan10b])
explain which prime powers can appear in these denominators. These formulas have been recently
improved in [GJL+11; LV12; ABL+12]. We note that we use Igusa invariants from [Str10, Appendix 3]
rather than the ones originally used by Spallek in [Spa94]. They have the advantage that the power of
h10 in the denominators is 1,2, 2 rather than 6,4,4; but we have to correct the denominators from the
Bruinier-Yang formula by the constant factors 27, 25, 214)].

In practice, it is sufficient to simply do an LLL lift, as explained in §4.3.
Let ∆0 = ∆K0/Q and ∆1 = NK0/Q(∆K/K0

), so that ∆ = ∆K/Q = ∆1∆
2
0. Then the degree of the

class polynomials is eO(∆1/2
0 ∆

1/2
1 ), while the height of their coefficients is bounded by eO(∆5/2

0 ∆
3/2
1 )

(see [Str10, §II.9] and [GL12]). In practice, we observe [Str10, Appendix 3] that the height of the
coefficient seems to be bounded by eO(∆1/2

0 ∆
1/2
1 ), and we will use this observed bound in the following

analysis.
In total, the size of the class polynomials is thus eO(

p

∆0∆1). Then we have the following complexi-
ties for the three methods. The analytic method is quasi-linear in the size of the class polynomials. The
p-adic method as published is quasi-cubic, but we argue in Chapter 6 that with the use of isogenies (as
presented in Chapter 5), it should be possible to obtain an algorithm of complexity eO((∆0∆1)

5/2). We
then give a potential method to achieve eO((∆0∆1)

3/2) or perhaps even quasi-linear time (by using real
multiplication).

Unfortunately, the CRT has for now a quasi-cubic complexity. This is in part due to the fact that
we do not have yet general enough isogenies in order to be always able to go up. But even if this were
the case, the size of the isogeny class is too small compared to the set of all hyperelliptic curves of

12



genus 2. Likewise, we give a potential method to obtain a quasi-quadratic complexity or perhaps even
a complexity in eO((∆0∆1)

3/2).
As in the genus 1 case, one could also look for smaller class polynomials by using other class

invariants. We refer for this to [Str] and to as of yet unpublished work by Enge and Streng generalising
[Sch02] to the genus 2 case.

We also mention the problem of checking the correctness of the computations. A problem is
that the proved bound on the height of the coefficients is a lot larger than the real height of the
class polynomials, and moreover we do not have explicit bounds. In practice the analytic and p-adic
methods stop as soon as they have enough precision to be able to recover algebraic coefficients. The
CRT method stops as soon as an extra prime give the same polynomial with the CRT reconstruction.
In a sense the correctness of the CRT method is a bit better behaved: it will be wrong if all the
differences between the coefficients of the real class polynomials compared to the computed one are
divisible by the current prime (which is unlikely to happen, see [FL08, Remark 7.2]).

Still, for cryptographic applications, one can check that the curve obtained by reducing the class
polynomials modulo a prime of cryptographic size has the expected number of points (which is
much easier to check than doing a point counting algorithm). One could even check that it has the
right endomorphism ring using the results from Chapter 5. Finally, a quick heuristic check of the
class polynomials can be done by checking if they have the correct splitting behaviour when reduced
modulo several primes according to the theory of Chapter 3.

13



2 CM theory for genus 2

2.1 Complex multiplication theory

In this section, we provide a concise introduction to the theory of complex multiplication of principally
polarised abelian surfaces or, equivalently, Jacobians of genus 2 hyperelliptic curves over the complex
numbers, to the extent needed to describe the algorithms and implementation. The presentation
follows [Str10], and proofs are given in [ST61; Shi98; Str10; Str09].

2.1.1 Quartic CM fields and abelian surfaces

A CM field K is an imaginary-quadratic extension of a totally real number field K0. We denote by κ
indiscriminately the complex conjugation on C and the automorphism generating Gal(K/K0). For
any embedding ϕ : K→C, we have κ ◦ϕ = ϕ ◦κ, which justifies the notation ϕ = κ ◦ϕ.

Quartic CM fields K of degree 4 overQ come in three Galois types. Generically, K/Q is not Galois,
the Galois closure L/K is of degree 2, and Gal(L/Q) is isomorphic to the dihedral group D4. L is itself
a CM field, and the complex conjugation of L, which we denote again by κ, restricts to the complex
conjugation of K . If K/Q is Galois, it may be either cyclic or biquadratic. We will not consider the
biquadratic case in the following, since then the abelian surfaces of which it is the endomorphism
algebra are products of elliptic curves; so from now on, all Galois quartic CM fields are tacitly
understood to be cyclic.

A CM type of a quartic CM field K is a set Φ= {ϕ1,ϕ2} of two embeddings K→C such that ϕ2 ̸= ϕ1;
that is, it contains one out of each pair of complex-conjugate embeddings. Two CM types Φ and Φ′

are equivalent if there is an automorphism σ of K such that Φ′ = Φ ◦σ ; in particular, Φ and Φ are
equivalent. If K/Q is Galois, there is only one equivalence class of CM types; otherwise, there are two
inequivalent classes Φ= {ϕ1,ϕ2} and Φ′ = {ϕ1,ϕ2}.

For a given CM type Φ= {ϕ1,ϕ2}, its reflex field is the field K r generated overQ by the type traces,
that is, K r = Q

�

{ϕ1(x) + ϕ2(x) : x ∈ K}
�

; it is itself a quartic CM field and we denote by K r
0 its

real-quadratic subfield. Equivalent CM types yield conjugate reflex fields. In the Galois case, K and
K r are isomorphic, while in the dihedral case, they are not isomorphic, but the two reflex fields
for the two inequivalent CM types are. In both cases, there is a natural way of defining a dual CM
type Φr = {ϕ r

1 ,ϕ r
2 } of K r , and the reflex field of K r is isomorphic to K . Define the (dual) type norm

NΦr : K r →K by x 7→ ϕ r
1 (x)ϕ

r
2 (x), so that

NΦr NΦr =N; (2.1)

this map extends to ideals and ideal classes.
In §2.2, we provide explicit equations for all occurring number fields and consider their embeddings

from an effective point of view.
Let a be a fractional ideal of OK . A CM type Φ = {ϕ1,ϕ2} induces an embedding K → C2,

x 7→ (ϕ1(x),ϕ2(x)), under which Φ(a) is a lattice of rank 4. Its cokernel C2/Φ(a), a complex torus of
genus 2, is an abelian surface. Let δ−1

K = {y ∈K : Tr(xy) ∈Z ∀x ∈ OK} be the codifferent ideal of K .
Assume that (aaδK )

−1 is principal and generated by some ξ ∈ K such that ϕ1(ξ ),ϕ2(ξ ) ∈ iR>0; in

14



particular, ξ ξ ∈K0 is totally negative. Then EΦ,ξ : Φ(K)2→Q, (Φ(x),Φ(y)) 7→Tr(ξ xy) is a symplectic
form overQ which takes integral values on Φ(a)2. By tensoring with R, one obtains a symplectic form
C2→R such that (x, y) 7→ EΦ,ξ (i x, y) is symmetric and positive definite, a principal polarisation on
C2/Φ(a).

The principally polarised abelian surface A(Φ,a,ξ ) =
�

C2/Φ(a), EΦ,ξ

�

has complex multiplication
by OK ; conversely, any such surface can be obtained up to isomorphism in this way. Two principally
polarised abelian surfaces A(Φ,a,ξ ) and A(Φ′,a′,ξ ′) are isomorphic if and only if Φ = Φ′ (up to
equivalence) and there is a u ∈K∗ such that a′ = ua and ξ ′ = (u u)−1ξ . In particular this implies that
u u ∈K0 is totally positive, and that we may assume a to be an integral ideal of OK .

2.1.2 The Shimura group, its type norm subgroup and cosets

The Igusa invariants to be defined in §2.1.3 determine the moduli spaceM of principally polarised
complex abelian surfaces, which has a model over Q. LetMK ,Φ be the subset of surfaces A(Φ,a,ξ )
obtained from an integral ideal of OK and the CM type Φ as described in §2.1.1. ThenMK ,Φ is stable
under Gal(Q/K r

0 ). If K is cyclic, thenMK ,Φ is even stable under Gal(Q/Q). Otherwise let Φ′ be
inequivalent with Φ. ThenMK ,Φ andMK ,Φ′ are disjoint and conjugate under Gal(K r

0 /Q) [Str10,
Lemmata 1.1 and 2.1].

Let the Shimura class group C be defined by

C=
�

(a, u) : a a fractional ideal of OK ,aa= uOK , and u ∈K0 totally positive}/∼ (2.2)

with component-wise multiplication. The equivalence relation denoted ∼ above is the one induced by
principal ideals, more precisely the equivalence modulo the subgroup given by the (vOK , vv) with
v ∈K∗ and vv ∈K0 totally positive.

By the discussion of §2.1.1, C acts regularly onMK ,Φ via

(b, u) ·A(Φ,a,ξ ) =A(Φ,b−1a, uξ ). (2.3)

Consider the dual type norm map NΦr : ClK r → C,b 7→ (NΦr (b),N(b)) , which is well-defined by (2.1).
For any A(Φ,a,ξ ), the action induced by NΦr (ClK r ) is that of the Galois group of the field of moduli
of A(Φ,a,ξ ) over K r [Str10, Theorem 9.1]; otherwise said, the field of moduli is the fixed field of
ker(NΦr ) inside the Hilbert class field of K r . The cokernel of NΦr is elementary abelian of exponent 1
or 2 [Str10, Theorem 2.2], soMK ,Φ splits into orbits under C of size | im(NΦr )|, and the number of
orbits is a power of 2. As stated above, these orbits are in fact defined over K r

0 , with the orbits ofMK ,Φ
andMK ,Φ′ being mapped to each other by Gal(K r

0 /Q).

2.1.3 ϑ-functions, Igusa invariants and class polynomials

Given an ideal a and a principal polarisation EΦ,ξ as in §2.1.1, one may choose a Z-basis (α1,α2,α3,α4)
of a such that v1 = Φ(α1), v2 = Φ(α2), w1 = Φ(α3), w2 = Φ(α4) form a symplectic basis, for which

EΦ,ξ becomes
�

0 id2
−id2 0

�

. That the change of basis is defined over Z and not only over R follows

from the principality of the polarisation; we also call this basis of a symplectic. Let V =
�

v1 v2
�

,
W =
�

w1 w2
�

∈C2×2. Rewriting the ambient vector space C2 and Φ(a) in the basis spanned by w1
and w2, we obtain Φ(a) =

�

ΩΦ,a,ξ id2
�

Z4 with the period matrix

ΩΦ,a,ξ =W −1V (2.4)

15



in the Siegel half space H2 =
�

Ω ∈C2×2 :Ω symmetric and ℑ(Ω) positive definite
	

. The symplectic
group Sp4(Z) acts onH2 by

�

A B
C D

�

Ω= (AΩ+B)(CΩ+D)−1,

where A, B , C , D ∈Z2×2. As in the case of genus 1, a fundamental domain forH2 exists under the
action of Sp4(Z). Reduction into the fundamental domain is discussed in §2.2.3.

ϑ-constants are certain modular forms of weight 1/2 for Sp4(Z). Let a =
�

a1
a2

�

, b =
�

b1
b2

�

∈
�

1
2Z
�2

be two vectors of ϑ-characteristics. Then for Ω ∈H2,

ϑ16a1+8a2+4b1+2b2
(Ω) = ϑa,b (Ω) =

∑

n∈Z2

e2πi( 1
2 (n+a)⊺Ω(n+a)+(n+a)⊺b). (2.5)

Only the even ϑ-constants ϑi for i ∈ T = {0,1,2,3,4,6,8,9,12,15} are not identically 0.
The following duplication formulæ relate the values of the squares of the ten even ϑ-constants in the

argument Ω with the values of the four fundamental ϑ-constants ϑ0, . . . ,ϑ3 (which have a = 0) in the
argument Ω/2 (omitted from the formulæ for the sake of conciseness).

4ϑ2
0 (Ω) = ϑ

2
0 +ϑ

2
1 +ϑ

2
2 +ϑ

2
3

4ϑ2
1 (Ω) = 2ϑ0ϑ1+ 2ϑ2ϑ3

4ϑ2
2 (Ω) = 2ϑ0ϑ2+ 2ϑ1ϑ3

4ϑ2
3 (Ω) = 2ϑ0ϑ3+ 2ϑ1ϑ2

4ϑ2
4 (Ω) = ϑ

2
0 −ϑ

2
1 +ϑ

2
2 −ϑ

2
3

4ϑ2
6 (Ω) = 2ϑ0ϑ2− 2ϑ1ϑ3

4ϑ2
8 (Ω) = ϑ

2
0 +ϑ

2
1 −ϑ

2
2 −ϑ

2
3

4ϑ2
9 (Ω) = 2ϑ0ϑ1− 2ϑ2ϑ3

4ϑ2
12(Ω) = ϑ

2
0 −ϑ

2
1 −ϑ

2
2 +ϑ

2
3

4ϑ2
15(Ω) = 2ϑ0ϑ3− 2ϑ1ϑ2

(2.6)

Denote by h j the following modular forms of weight j :

h4 =
∑

i∈T

ϑ8
i , h6 =
∑

15 triples (i , j ,k)∈T 3

±(ϑiϑ jϑk )
4,

h10 =
∏

i∈T

ϑ2
i , h12 =

∑

15 tuples (i , j ,k ,l ,m,n)∈T 6

(ϑiϑ jϑkϑlϑmϑn)
4;

(2.7)

for the exact definitions, see [Str10, §II.7.1]. These generate the ring of holomorphic Siegel modular
forms over C, see [Igu62, Corollary p. 195] and [Str10, Remark 7.2]. The moduli space of principally
polarised abelian surfaces is of dimension 3 and parameterised by absolute Igusa invariants, modular
functions (thus of weight 0) in Z

�

h4, h6, h12, h−1
10

�

. Different sets of invariants have been suggested in

the literature. The most cited one is Spallek’s, who uses a system in the linear span of
h5

12

h6
10

,
h3

12 h4

h4
10

,
h2

12 h6

h3
10

[Spa94, Satz 5.2]. Streng defines invariants with the minimal powers of h10 in the denominator as

j1 =
h4h6

h10
, j2 =

h2
4 h12

h2
10

, j3 =
h5

4

h2
10

. (2.8)

The principally polarised abelian surfaces A(Φ,a,ξ ) are parameterised by the triples of singular
values ( j1(Ω), j2(Ω), j3(Ω)) in the period matrices Ω=ΩΦ,a,ξ , which may be obtained from the action

16



of the Shimura class group C on a fixed base point β = (Φ,aΦ,ξΦ). The singular values lie in the
subfield of the Hilbert class field of K r given in §2.1.2. Following the discussion there, the Igusa class
polynomials Ii (X ) =

∏

(Φ,a,ξ )

�

X − ji (ΩΦ,a,ξ )
�

are defined over Q. More precisely their irreducible
factors, over K r

0 in the dihedral case orQ in the cyclic case, are given by

∏

C∈NΦr (ClK r )

�

X − ji (ΩC C ′·β)
�

,

where Φ is one CM type and C ′ ∈ C/NΦr (ClK r ).
In the following, we fix a CM type Φ (for its explicit description, see §2.2) and a base point β =

(Φ,aΦ,ξΦ) and let

H1(X ) =
∏

C∈NΦr (ClK r )

�

X − j1(ΩC ·β)
�

. (2.9)

As elements of the same class field, the singular values of j2 and j3 are rational expressions in the
singular value of j1. Computationally, it is preferable to use the Hecke representation in the trace-dual
basis to keep denominators small. We thus define polynomials bH2 and bH3 through ji H ′1( j1) =

bHi ( j1)
with

bHi (X ) =
∑

C∈NΦr (ClK r )

ji (ΩC ·β)
∏

D∈NΦr (ClK r )\{C }

�

X − j1(ΩD ·β)
�

(2.10)

for i ∈ {2,3}, where H1, bH2, bH3 ∈K r
0 [X ] in the dihedral case and ∈Q[X ] in the cyclic case.

2.2 Explicit equations and symbolic period matrices

While Algorithm 4.1.1 in fine works with complex approximations obtained via CM types, it starts
from an algebraic setting. In this section, we examine how to carry out the computations as far
as possible symbolically with algebraic numbers, which relieves us from the need to decide on the
necessary precision early on. In particular, in §2.2.1 we replace the complex embeddings forming a CM
type by algebraic embeddings into the compositum L of all involved fields, followed by a “universal”
embedding ψ of L into C. Taking preimages under ψ, the entries of the period matrices Ω ∈ C2×2

may then be interpreted as elements of the reflex field and may be handled symbolically. We then
fix a model for the CM field K in §2.2.2 and derive explicit equations for all considered fields and
embeddings.

Recall the notation of §2.1: K is a quartic CM field, K0 its real quadratic subfield and L its Galois
closure with Galois group G. We consider only the dihedral case [L : K] = 2 and G = D4 and the
cyclic case L=K and G =C4. Let Φ= (ϕ1,ϕ2) be a CM type, where ϕ1, ϕ2 : K→C are two complex
embeddings of K with ϕ2 ̸= ϕ1, and let K r be the reflex field of K with respect to Φ.

2.2.1 Galois theory, embeddings and period matrices

The dihedral case

Galois theory. We have the following diagram of fields and Galois groups:

17



Q
K0

K

K r
0

K r∗

L=KK r

〈κ|K〉

〈ρ〉

〈κ|K r 〉

〈σ〉
〈κ〉

As an abstract group, the dihedral group D4 is generated by two elements τ, ρ with the relations
τ4 = 1, ρ2 = 1 and ρτρ= τ3. It contains two elements of order 4, τ and τ3, all other non-unit elements
are of order 2. Its centre is generated by τ2 = (τ3)2.

Let Gal(L/K) = 〈ρ〉 and Gal(L/K r ) = 〈σ〉. Let κ ∈ G be complex conjugation; by [Str10,
Lemma I.2.2(2)] it lies in the centre of G and is thus the square of the elements of order 4. We
have Gal(L/K0) = 〈ρ,κ〉 and Gal(L/K r

0 ) = 〈σ ,κ〉. Since K0 ̸= K r
0 , their intersection equals Q, so

G =Gal(L/Q) = 〈ρ,σ ,κ〉. As G is not commutative, but ρ and σ commute with κ, we have ρσ ̸= σρ;
from ρ and σ being of order 2 we then deduce that τ = ρσ is of order 4, so that κ= τ2. We may then
consider τ and ρ as the dihedral generators of G.

Embeddings and CM types. There is a unique embedding ψ : L → C such that ϕ1 = ψ|K and
ϕ2 = (ψσ)|K (where multiplication denotes composition), which can be seen as follows. First of all,
there are two embeddings which, restricted to K , yield ϕ1; we denote them by ψ1 and ψ′1 =ψ1ρ. Now
there is s ∈ G, uniquely defined up to multiplication by ρ from the right, such that ϕ2 = (ψ1 s)|K .
Since ϕ2 ̸= ϕ1 and ϕ2 ̸= ϕ1, the automorphism s is neither 1, ρ, κ = τ2 nor κρ = τ2ρ. This leaves
s as one of τ = ρσ , τρ= ρσρ, τ3 = σρ or τ3ρ= σ . If s |K = σ |K = (σρ)|K , we may choose ψ=ψ1.
Otherwise, s |K = ρσ , and (ψ′1σ)|K = (ψ1ρσ)|K = (ψ1 s)|K = ϕ2, so we choose ψ=ψ′1.

Period matrices. Let (α1, . . . ,α4) be a symplectic basis for the ideal a of K with respect to EΦ,ξ as
defined in §2.1.3. Then

V =
�

ϕ1(α1) ϕ1(α2)
ϕ2(α1) ϕ2(α2)

�

=ψ
��

α1 α2
ασ1 ασ2

��

,

W =
�

ϕ1(α3) ϕ1(α4)
ϕ2(α3) ϕ2(α4)

�

=ψ
��

α3 α4
ασ3 ασ4

��

and

ΩΦ,a,ξ =W −1V =ψ(M ) with M =
1

α3α
σ
4 −α4α

σ
3

�

α4α
σ
1 −α1α

σ
4 α4α

σ
2 −α2α

σ
4

α3α
σ
1 −α1α

σ
3 α3α

σ
2 −α3α

σ
2

�

(2.11)

by (2.4). The entries of M are invariant under σ and thus elements of K r .

Remark 2.2.1 : It is crucial to choose out of the two embeddings ψ : L→C that extend ϕ1 the one
compatible with ϕ2. The other one corresponds to the second CM type Φ′ = (ϕ1,ϕ2) with reflex field
(K r )′ and Gal
�

L/(K r )′
�

= 〈κσ〉= 〈ρσρ〉. ♦

18



The cyclic case

Here we have the much simpler situation

Q

K0

K
〈κ〉= 〈σ2〉

We may choose ψ= ϕ1. Then there is a uniquely determined σ ∈Gal(K/Q) such that ϕ2 = ϕ1σ ,
and trivially M of (2.11) has entries in K r . In general, they will not lie in a subfield: Since σ is neither
the identity nor complex conjugation, it is of order 4.

2.2.2 Number field computations

In this section we show how to express the elements of the reflex field K r and the normal closure L
in consistent ways, so as to be able to compute type norms and entries of period matrices as given
by (2.4).

The dihedral case

We use here the same notation for elements of the Galois group G of L/Q as in §2.2.1.

Field equations. By choosing suitable generating elements we may assume:

K0 =Q(z) =Q[Z]/
�

Z2+AZ +B
�

with A,B > 0,A2− 4B > 0;

K =Q(y) =Q[Y ]/
�

Y 4+AY 2+B
�

.

We then select the CM type Φ= (ϕ1,ϕ2) with

ϕ1(y) = i

s

A+
p

A2− 4B

2
, ϕ2(y) = i

s

A−
p

A2− 4B

2
, (2.12)

where all the real roots are taken to be positive; the other CM type isΦ′ = (ϕ1,ϕ2)withϕ2(y) =−ϕ2(y).
Recall from §2.2.1 the notations Gal(L/K) = 〈ρ〉, Gal(L/K r ) = 〈σ〉, and let ψ : L→C be such that
ϕ1 =ψ|K and ϕ2 = (ψσ)|K . The reflex field K r is generated by the type traces of K ; letting y r = y+yσ ,
the equality

ψ(y r ) =ψ(y)+ (ψσ)(y) = ϕ1(y)+ϕ2(y) (2.13)

shows that we may consider y r as a generator of K r . This gives the equations

K r
0 =Q(z

r ) =Q[Z r ]/
�

(Z r )2+Ar Z r +B r
�

with Ar = 2A,B r =A2− 4B ;

K r =Q(y r ) =Q[Y r ]/
�

(Y r )4+Ar (Y r )2+B r
�

.

The minimal polynomials of y r over K and y over K r follow:

(y r )2− 2yy r +(2y2+A), (y)2− y r y +((y r )2+A)/2.

19



We write the Galois closure L = KK r as the compositum generated by t = y + y r . The minimal
polynomial of t is the resultant

h(T ) =ResY

�

Y 4+AY 2+B , (T −Y )2− 2Y (T −Y )+ (2Y 2+A)
�

=ResY r

�

(Y r )4+Ar (Y r )2+B r , (T − y r )2− y r (T − y r )+ ((y r )2+A)/2
�

= T 8+ 10AT 6+(33A2− 14B)T 4+(40A3− 70AB)T 2+ 16A4− 200A2B + 625B2.

Conversions and Galois actions. We are interested in the action of ρ, the generator of Gal(L/K),
on K r , and in the action of σ , the generator of Gal(L/K r ), on K . The defining equations give:

y r +(y r )ρ = 2y, y r (y r )ρ = y r (y r )ρ = 2y2+A, yρ = y,

y + yσ = y r , yyσ =
�

(y r )2+A
�

/2, (y r )σ = y r .

An element of K is converted to an element of L, as a relative extension of K r , using the identity
y = t − y r ; in the opposite direction we use y r = t − y. The entries of the matrix M of (2.11) are
obtained from elements of K and their images under σ , and need to be expressed as elements of K r .
For this we use the identity yσ = y r − y. This allows to work in the relative extension L/K r and to
easily identify elements of K r .

Dual type norms. For an ideal b of K r , we have

NΦr (b) =NL/K (bOL),

see [BGL11, §3.1]. Computing dual type norms thus reduces to conversions in relative extensions as
described above.

The cyclic case

We may use the same type of equations for K and K0 as in the dihedral case, and may fix ψ= ϕ1 as in
(2.12). Fixing an arbitrary element σ ∈Gal(K/Q) of order 4, we obtain ϕ2 = ϕ1σ . Then the dual type
norm for an ideal b of K is computed as

NΦr (b) = bb
σ

,

see [BGL11, §3.1].

2.2.3 Symbolic reduction of period matrices

Gottschling in [Got59] has determined a finite set of inequalities describing a fundamental domainF2
for Sp4(Z)\H2, which directly translate into an algorithm for reducing an element ofH2 intoF2. As
the Igusa functions introduced in §2.1.3 are modular for Sp4(Z), we may transform all period matrices
occurring in Algorithm 4.1.1 intoF2. A period matrix Ω is reduced if ℜ(Ω) has coefficients between
− 1

2 and 1
2 (which may be obtained by reducing modulo Z), if the binary quadratic form defined by

ℑ(Ω) is reduced (which may be obtained using Gauß’s algorithm) and if |det(CΩ+D)|⩾ 1 for each

of 19 matrices
�

A B
C D

�

∈ Sp4(Z) (which may be obtained by applying to Ω a matrix for which the

condition is violated). The process needs to be iterated and terminates eventually.

20



In the light of (2.11), Ω= ψ(M ) with M ∈ (K r )2×2 and an explicitly given ψ : K r →C, see (2.13)
and (2.12). Letting K r = K r

0 + y r K r
0 as before, we have ψ|K r

0
: K r

0 = Q(
p

D r ) → R and ψ|y r K r
0

:
y r K r

0 → iR. So ℜ(M ) and ℑ(M ) are the images under ψ of matrices with entries in K r
0 . The condition

|det(CΩ+D)|⩾ 1 can be rewritten as
Æ

det(Cψ(M )+D)det(Cψ(M )+D)⩾ 1 and thus also depends
only on the images under ψ of elements of K r

0 .
Hence the period matrices may be transformed symbolically into the fundamental domain F2

without computing complex approximations of their entries, which precludes rounding errors: The
test whether the matrix is reduced and, if not, the decision which transformation to apply depend on
the sign of ψ(α) for some α ∈K r

0 , that is, on the sign of some explicitly known a+ b
p

D r ∈R, wherep
D r is the positive root of D r and a, b ∈Q. This sign can be determined from the signs of a and b

and the relative magnitudes of a2 and b 2D r .

2.3 Computing the Shimura group and its type norm subgroup

2.3.1 Structure of the Shimura group C

The first step of Algorithm 4.1.1 requires to enumerate the Shimura group C of (2.2), or more precisely,
its type norm subgroup NΦr (ClK r ). We need the following exact sequence, a proof of which can be
found in [BGL11]:

1−→O +K0
/NK/K0

(O ∗K )
u 7→(OK ,u)
−−−−−→ C

(a,α)7→a
−−−−→ClK

NK/K0−−→Cl+K0
−→ 1, (2.14)

where O +K0
is the subgroup of totally positive units in OK0

and Cl+K0
is the narrow class group of K0.

We have algorithms at hand for the basic arithmetic of C. For a finite abelian group, decomposed as
a direct product of cyclic groups Gi of order di with di | di+1, we call the di the elementary divisors
and a system of generators of the Gi a (cyclic) basis of the group. Such a basis can be computed
for the class group ClK (quickly under GRH) using the function bnfinit in PARI/GP. Equality
testing of (a,α) and (b,β) amounts to testing whether ab−1 is principal (either using bnfisprincipal
in PARI/GP, or by a direct comparison if each ideal is stored together with its generalised discrete
logarithm, its coefficient vector with respect to the basis of the class group), and whether α/β = 1
in O +K0

/NK/K0
(O ∗K ). Let ϵ0 and ϵ be the fundamental units of K0 and K , respectively. If N(ϵ0) =−1,

then O +K0
= 〈ϵ2

0〉=NK/K0
(〈ϵ0〉)⊆NK/K0

(O ∗K ), and the quotient group is trivial. If N(ϵ0) = +1, then

O +K0
= 〈ϵ0〉, and since ϵ2

0 =NK/K0
(ϵ0) ∈NK/K0

(O ∗K ), the quotient group is either trivial or 〈ϵ0〉/〈ϵ2
0〉, in

which case bnfisunit of PARI/GP can be used to compute the exponent of the unit.
Multiplication is straightforward and can be made more efficient by a reduction step that outputs

a smaller (not necessarily unique) representative. To reduce (a,α), one computes an LLL-reduced
ideal a′ = µa (using idealred in PARI/GP) and lets α′ = µµα One then tries to reduce the unit
contribution in the size of the algebraic number α′ by multiplying it with an appropriate power of
NK/K0

(ϵ).
The Shimura group C and its subgroup NΦr (ClKr

) can be enumerated directly; but the map NΦr :
ClKr
→ C being in general non-injective, this can require a large number of expensive principality tests

in C to avoid duplicates. More elegantly, we may consider the groups in (2.14) as given by cyclic bases
or, more generally, generators and relations, and complete the sequence from known data using tools
of linear algebra for Z-modules, in particular the Hermite (HNF) and Smith normal forms (SNF), see
[Coh93, §2.4].

21



Algorithm 2.3.1 :

INPUT: Cyclic bases for ClK and Cl+K0

OUTPUT: Cyclic basis for C

1) Compute a matrix M for NK/K0
: ClK →Cl+K0

.

2) Compute generators a1, . . . ,ar of the kernel of M .

3) Lift a1, . . . ,ar to C: Pick arbitrary totally positive αi ∈K0 such that aiai = αiOK0
.

4) Compute a basis for the lattice L0 of relations such that the subgroup of ClK generated by
a1, . . . ,ar is isomorphic to Zr/L0.

5) If O +K0
/NK/K0

(O ∗) = 1, let r ′ = r ; otherwise let r ′ = r + 1 and (ar ′ ,αr ′) = (OK ,ϵ0).

6) Expand the basis of 4) into a basis for the lattice L of relations between (a1,α1), . . . , (ar ′ ,αr ′)
such that C≃Zr ′/L.

7) Determine a cyclic basis of C. ♦

Step 1) requires to apply the generalised discrete logarithm map in Cl+K0
to the small number of

relative norms of the basis elements of ClK . Step 3) is possible since the aiai =NK/K0
(ai ) are trivial

in Cl+K0
. Steps 5) and 6) rely on the exactness of the sequence (2.14). If r ′ = r , there is nothing to do.

Otherwise, we first add the relation (OK ,ϵ0)
2 = 1. Lifts of relations from L0 are then in the image of

〈ϵ0〉/〈ϵ2
0〉, and if the unit exponent is odd in the lift, we need to add (OK ,ϵ0) into the relation. Steps 2)

and 4) require an HNF, Step 7) an SNF.

2.3.2 The type norm subgroup

Algorithm 2.3.1 also provides an algorithm for generalised discrete logarithms in C, which can be used
to determine the subgroup NΦr (ClK r ) in a similar way: For each generator of ClK r , we compute the
generalised discrete logarithm of its image in C, then the relations between the images using an HNF
and a cyclic basis using an SNF. The enumeration of the subgroup is then trivial. In the same vein, it is
possible to compute all the cosets C/NΦr (ClK r ) if the complete Igusa class polynomial is desired and
not only its irreducible factor H1, see §2.1.3.

22



3 Reducing the class polynomials

3.1 CM theory and reduction

The analogue of Theorem 1.2.2 is given by Shimura:

Theorem 3.1.1 : Let p be a non ramified prime in the Galois closure of K, and let A/H be an abelian
variety with CM by OK . Then A has (potentially) good reduction modulo p.

More precisely, let p be a prime of degree 1 above p in OK r , and let P be a prime above p in H. Then the
Artin symbol
�

P
p

�

corresponds to the action of the Frobenius of Fp on AP and is given by the action of the
type norm a of NH/K r (P) in the Shimura class group. In particular, A reduces to Fpn where n is the order
of the type norm in the Shimura class group.

Furthermore, we can write an = (π) where ππ= pn (this condition determines π up to roots of unity).
Then π ∈ OK corresponds to the action of the Frobenius of Fpn on AP, and its characteristic polynomial
gives the Weil polynomial of the corresponding isogeny class.

Proof : See [Shi98, §III.13], [Str10, Theorem 4.1] or [Mil06, Theorem 8.1]. ■

For p ∈ OK r , by abuse of notation we will often speak of reduction modulo p for the reduction of
an abelian variety A/H modulo a prime P ∈H above p. Since H/K r

0 is Galois, we will also speak of
reduction modulo p0 = p∩K r

0 . Finally, when p0 if of degree 1 above p, we have Fp0 = Fp , so we will
speak of reduction modulo p.

The type of the reduction of the CM abelian variety A according to the decomposition of p in
the Galois closure of K is decribed in [GL12]. We give an overview of the type with good reduction,
which corresponds to the case without ramification. We note p an element of OK0

above p. We recall
that a supersingular abelian variety over a finite field of characteristic p is isogenous to a product
of supersingular elliptic curves (equivalently, the p-rank of A is of dimension 0), and a superspecial
variety is isomorphic to a product of supersingular elliptic curves. Finally, A is said to be ordinary if
the p-rank is equal to the dimension of A.

Theorem 3.1.2 : Let K be cyclic. Then we have the following cases:

1) p is of degree 1 over p and splits in OK . Then A has ordinary reduction modulo p.

2) p is of degree 1 over p and is inert in OK . Then A is superspecial modulo p.

3) p is inert over p. Then it is also inert in OK , and the reduction of A modulo p is supersingular, but
not superspecial.

Let K be dihedral. We have the following cases:

1) p is of degree 1 over p and splits in OK r . Then A has ordinary reduction modulo p.

2) p is of degree 1 over p and is inert in OK r . Then A is superspecial modulo p.

3) p is inert over p and splits in OK r . Then the reduction of A modulo p has p-rank 1.

23



4) p is inert over p and is also inert in OK r . Then the reduction of A modulo p is supersingular, but not
superspecial.

Proof : [GL12, Table 3.3.1, Table 3.5.1]. ■

Remark 3.1.3 : The ramified case is as follow: if p is ramified in OK r , then A has superspecial reduction
modulo p. If p is not ramified in OK r , but p is ramified over p (this can only happen in the Dihedral
case), then the reduction of A modulo p has p-rank 1. ♦

3.2 CRT primes

A CRT prime p ⊂ OK r
0

is a prime such that all abelian surfaces over C with CM by (OK ,Φ) have
ordinary good reduction of degree 1 modulo p. By Theorems 3.1.1 and 3.1.2, p is a CRT prime for the
CM-type Φ if and only if there exists an unramified prime q in OK r of degree 1 above p = p∩Z of
principal type norm (π) with ππ=NK/Q(q); in particular, this implies that q is totally split in the
class field corresponding to the abelian surfaces with CM by (OK ,Φ).

By abuse of notation, since p has to be of degree 1 over p, we also say that p is a CRT prime for the
CM type Φ.

Theorem 3.2.1 : Let Φ be a CM type and p ∈Z a prime number. If there exists an unramified prime p in
OK r of degree 1 above p of principal type norm (π) such that ππ= p, then p is a CRT prime for the CM
type Φ.

In this case, the reduction of the class polynomials defined over OK r
0

are completely split over Fp with
roots of multiplicity 1.

If moreover p splits completely in OK r into primes with principal type norm, then p is a CRT prime for
both CM types. In this case, the full class polynomials defined overQ are completely split over Fp with roots
of multiplicity one.

Proof : Let A/C be an abelian variety of CM type (K ,Φ). There exists a model of A defined over the
field H generated by the Igusa invariants of A (see Theorem 1.3.1). By Theorem 3.1.1, the condition on
p implies that it splits completely in this field (more precisely, the type norm of p gives the action of
the Frobenius in terms of the Shimura class group; the abelian variety Ap descends to Fp if and only if
this element is trivial). If we fix one of the primes P above p, then by Theorem 3.1.2 AP has ordinary
reduction defined over Fp . All such abelian varieties with CM by Φ have ordinary reduction over
Fp , so p is a CRT prime. Now all the roots have multiplicity 1 because the abelian varieties defined
over H are the canonical lifts of their ordinary reduction. Since they are not isomorphic over H, their
reduction are not isomorphic over Fp .

For the second assertion, we have by the hypothesis that p splits completely as p = p1p2 in OK r
0

(which does not depend of the CM type). By the preceding paragraph, since all primes in OK r above p1
satisfy the condition of the first part, p is a CRT prime for the CM type Φ. This concludes the cyclic
case. Now for the dihedral case, let Φ′ be the other CM type. We will see in §3.3 that the reductions
of the abelian varieties with CM by Φ modulo primes in OK r above p2 correspond exactly to the
reductions of the abelian varieties with CM by Φ′ modulo primes in OKΦ′

above p1. So p is also a CRT
prime for Φ′. ■

24



Remark 3.2.2 : • When we speak of roots of multiplicity 1, we mean roots of the system of
dimension 0 defined by H1, bH2 and bH3. The polynomial H1 mod p may have multiple roots
(they correspond to abelian varieties with the same j1-invariant modulo p but different j2, j3).

• If p is a prime such that the reductions are supersingular, the roots can appear with multiplicity.
An example can be found in [GL12, Section 3.6.6]. ♦

3.2.1 The cyclic case

In the cyclic case, there is just one CM type Φ, so the Igusa class polynomials for this CM type are the
same as the full Igusa class polynomials for CM by OK .

A prime p is then a CRT prime if it splits completely in OK as p = p1p2p3p4 and p1 has a principal
type norm. (Since the other primes are all conjugate to this one, they all also have principal type
norms, and give the same isogeny class.)

3.2.2 The dihedral case

For the dihedral case, a prime number p is a CRT prime if it splits completely as q1q2 in K r
0 , such that

q1 splits completely in K r into primes with principal type norm (π) and ππ= p.
For the CRT algorithm described in Chapter 7, when we compute the resulting interpolating Igusa

polynomials over Fp , they are the reduction of the Igusa class polynomials modulo q1 and the CRT
step will then be computed over OK r

0
, not over Z as in the cyclic case. We also note that if q2 also splits

completely into prime ideals with principal type norm, we could use q2 in the CRT rather than q1.
We can then use the sieving algorithms of §7.2 to select the one most practical for the computation.

3.3 The other CM type

In the Dihedral case we have fixed once and for all a CM type and the corresponding reflex field K r .
One would think that to compute class polynomials for the other CM type, one would need to change
K r accordingly. In fact, since the two CM types are conjugate under the action of Gal(K r

0 /Q) we can
work directly over K r to handle both CM types. This section explains how.

Let Φ1 and Φ2 be the two distinct CM types Φ1 and Φ2. Let A1 (resp. A2) be an abelian variety with
complex multiplication by Φ1 (resp. Φ2) and p a prime that splits as q1q2 in K r

0 (this field does not
depend on the choice of the CM type).

Note that since the two CM types are conjugate, this gives that (A2)q1
, where by abuse of notation

we denote by (A2)q1
the reduction of A2 modulo a prime above q1 in the moduli field where A2 is

defined, is isogenous to (A1)q2
. Thus both CM types can be handled at once by fixing once and for all

the reflex field (corresponding to one fixed CM type Φ) and looking at both primes q1 and q2. In other
words, the reduction modulo q1 for the second CM type can be obtained by looking at the reduction
of the curves with CM by the first CM type modulo q2.

In this case, there are up to two isogeny classes (up to twists) corresponding to maximal curves
over Fp , one for each CM type. For instance, to compute the class polynomial overQ using the CRT
algorithm (i.e. corresponding to all curves with CM by OK ), we have to look for CRT primes p that
split completely in K r

0 as p = q1q2 and such that both q1 and q2 split completely, and the primes above
them have principal type norm. (The corresponding type norm of the primes above q1 and q2 will
then give the action of Frobenius on both isogeny classes).

25



3.4 The Weil polynomial corresponding to the isogeny class

Once we have computed the class polynomials, we want to compute the number of points of an
abelian variety with CM by OK reduced modulo a certain prime number p. This number is easily
derived from the Weil polynomial of the Frobenius π from Theorem 3.1.1.

Likewise, the CRT algorithm in Chapter 7 needs to find, for a given CRT prime p, all abelian
varieties over Fp with CM by (OK ,Φ), i.e. genus 2 curves H such that End(Jac(H ))≃OK . These curves
lie in one isogeny class (up to twists). So the algorithm first tries to find a curve in the corresponding
isogeny class (i.e. such that End(Jac(H ))⊗Q≃K). For that we need a characterisation of this isogeny
class. By a theorem of Tate, the isogeny class is characterised by the zeta function of a curve in it, or
equivalently by the characteristic polynomial (the Weil polynomial) of the action of the Frobenius
π ∈K .

Similarly, the p-adic method of Chapter 6 will try to find a curve with CM by OK over Fp ; once
found, this curve will be lifted overQp .

In all cases we need to recover π ∈K and compute its characteristic polynomial.
If Ap/Fp is the reduction of an abelian variety with complex multiplication byΦ, then Theorem 3.1.1

shows that the type norm of p gives the action of the Frobenius. This yields the following algorithm:

Algorithm 3.4.1 : Characterising the isogeny class.

INPUT: An unramified prime p (above the prime p ∈Z) in OK r of degree 1 of principal type norm.

OUTPUT: The characteristic polynomial of the Frobenius corresponding to the reduction Ap of an
abelian variety A with CM by (OK ,Φ).

1) Compute NΦr (p) = (α).

2) Compute the fundamental unit ξ of K0.

3) Choose an embedding K 7→C and let | · | be the corresponding absolute value.

4) Compute n = log(p/|α|2)/ log(|ξ |2) ∈Z.

5) Compute π= αξ n .

6) Return the characteristic polynomial of π. ♦

Remark 3.4.2 : The ideal generated by α has relative norm p (by definition of the type norm), but
we need to find a generator π with complex absolute value equal to

p
p. We adjust α by multiplying

by some power of the fundamental unit ξ in K0.
Note that π is only well-defined up to a root of unity. These roots of unity correspond to twists of

the abelian varieties. Note that apart from the Galois fieldQ(ζ5) containing the 5-th root of unity, for
the other CM fields the only roots of unity are ±1, corresponding to quadratic twists. ♦

Let χπ be the Weil polynomial. We recall that χπ is of the form X 4 − tX 3 + sX 2 − t qX + q2.
If Jac(C ) has χπ as the reciprocal of the numerator of its zeta function, then #C (Fq ) = 1+ q − t
and #J (Fq ) = χπ(1) = 1− t + s − t q + q2. Conversely, if m = #C (Fq ) and n = #J (Fq ) (for instance
n = (m2+m2)/2− q where m2 = #C (Fq2)), then t = 1+ q −m and s = n− 1+ t + t q − q2.

26



4 The analytic method

4.1 Algorithm for Igusa class polynomials

We briefly summarise the algorithm for computing class polynomials.

Algorithm 4.1.1 :

INPUT: CM field K and CM type Φ= {ϕ1,ϕ2} of K

OUTPUT: Irreducible class polynomials H1, bH2, bH3 ∈ K r
0 [X ] in the dihedral case and ∈Q[X ] in the

Galois case

1) Compute NΦr (ClK r ) = {(b1, u1), . . . , (bh , uh )} ⊆ C.

2) Compute a base point β= (Φ,aΦ,ξΦ) such that
�

(aΦaΦδK )
−1 = (ξΦ),

ϕ1(ξΦ),ϕ2(ξΦ) ∈ iR>0.

3) Enumerate {C ·β= (Φ,b−1
i aΦ, uiξΦ), C = (bi , ui ) ∈NΦr (ClK r )} and compute the associ-

ated period matrices Ωi =ΩC ·β for i = 1, . . . , h.

4) For i = 1, . . . , h, compute the fundamental ϑ-constants ϑ0(Ωi/2), . . . ,ϑ3(Ωi/2); then
deduce the squares of the ten even ϑ-constants ϑ2

k
(Ωi ) by (2.6), the values hk (Ωi ) by (2.7)

and finally the triples Ji =
�

j1(Ωi ), j2(Ωi ), j3(Ωi )
�

by (2.8).

5) Let H1 =
∏h

i=1(X − Ji ,1), bHk =
∑h

i=1 Ji ,k
∏

l ̸=i (X − Jl ,1) ∈C[X ] for k ∈ {2,3}.

6) Recognise the coefficients of H1, bH2, bH3 as elements of K r
0 orQ, respectively. ♦

The different steps of the algorithm and our implementation are detailed in the following chapters.
The symbolic computations related to number fields in Steps 1) and 2) and to the period matrices Ωi
in Step 3) were described in §2.2. Step 1) was treated in §2.3.2, Step 4) is treated in §4.2 and Step 6) in
§4.3.

4.2 Computing ϑ-constants

As explained in Step 4) of Algorithm 4.1.1, it suffices to compute the fundamental ϑ-constants

ϑ0, . . . ,ϑ3 in the argument Ω/2 to obtain the class invariants for the period matrix Ω=
�

ω0 ω1
ω2 ω0

�

∈

F2.
In §4.2.1 we describe an algorithm to compute the ϑ-constants directly from their q -expansions,

using a lower number of multiplications than approaches described previously in the literature.
As the coefficients of the Igusa class polynomials grow rather quickly, a high floating point precision

is needed for evaluating the ϑ-constants. In §§4.2.2–4.2.4 we describe an algorithm with a quasi-linear
(up to logarithmic factors) complexity in the desired precision, using Newton iterations on a function

27



involving the Borchardt mean. The algorithm is described essentially in Dupont’s PhD thesis [Dup06];
for the corresponding algorithm in dimension 1, using the arithmetic-geometric mean instead of the
Borchardt mean, see [Dup11]. We provide a streamlined presentation in dimension 2, together with
improved algorithms and justifications.

4.2.1 Naive approach

For the fundamental ϑ-constants, (2.5) specialises as

ϑ4b1+2b2
(Ω/2) =
∑

m,n∈Z
(−1)2(mb1+nb2)q m2

0 q2mn
1 qn2

2 (4.1)

with qk = exp(iπωk/2).
Positive definiteness and reducedness of the binary quadratic form attached to ℑ(Ω) show that the

sum converges when taken over, for instance, a square [−R, R]2 with R→∞; [Dup06, p. 210 following
the proof of Lemma 10.1, with typos] establishes that for R⩾

p
1.02N + 5.43, the truncated sum is

accurate to N bits. Better bounds may be reached using summation areas related to the eigenvalues
of ℑ(Ω), but using a square allows to organise and reuse computations so as to reduce the number of
complex multiplications.

Proposition 4.2.1 : The truncated sum over (m, n) ∈ [−R, R]2 for the fundamental ϑ-constants (4.1)
may be computed with 2R2+O(R)multiplications and one inversion using storage for R+O(1) elements.

Letting R = ⌈
p

1.02N + 5.43⌉ and using complex numbers of precision O(N ), we obtain a time
complexity of

O(N M(N )) or eO(N 2),

where eO(N ) =O
�

N (logN )O(1)
�

, and M(N ) ∈ eO(N ) is the time complexity of multiplying two numbers
of N bits.

Proof : Using symmetries with respect to the signs of m and n, we may write

∑

−R⩽m,n⩽R

(−1)2(mb1+nb2)q m2

0 q2mn
1 qn2

2 = 1+ 2
R
∑

m=1
(−1)2mb1 q m2

0 + 2
R
∑

n=1
(−1)2nb2 qn2

2

+ 2
R
∑

m=1
(−1)2mb1 q m2

0

R
∑

n=1
(−1)2nb2 qn2

2

�

q2mn
1 + q−2mn

1

�

.

We first compute and store the qn2

2 with 2R+O(1) multiplications via q2n−1
2 = q2(n−1)−1

2 · q2
2

and qn2

2 = q (n−1)2

2 · q2n−1
2 . After computing the inverse q−1

1 , a similar scheme yields the q m2

0 and
q2m

1 +q−2m
1 without storing them. At the same time, we may compute for any given m the sum over n

inside the double sum: The term q2mn
1 + q−2mn

1 is the n-th element vn of the Lucas sequence v0 = 2,
v1 = q2m

1 + q−2m
1 , vn = v1 · vn−1− vn−2, each element of which is computed with one multiplication.

Together with the multiplication by qn2

2 , each term of the innermost sum is thus obtained with two
multiplications.

For the time complexity, recall that complex inversions can be computed in time O(M(N )), and
exponentials in time O(M(N ) logN ), see [Bre76]. ■

This algorithm gains an asymptotic factor of 2/3 over [Dup06, Algorithme 15].

28



4.2.2 Borchardt mean of complex numbers

The key tool in the asymptotically fast evaluation of ϑ-constants is the Borchardt mean, which
generalises Lagrange’s and Gauß’s arithmetic-geometric mean of two numbers to four. The Borchardt
mean of four positive real numbers has been introduced in [Bor76; Bor78]. The complex case is
treated in [Dup06], where proofs of most (but not all) propositions below may be found. It is made
complicated by the presence of several square roots in the formulæ, each of which is defined only up
to sign.

Definition 4.2.2 : Let

H =
§

z ∈C : arg(z) ∈
�

−
π

2
,
π

2

�ª

∪{0}

= {z ∈C :ℜ(z)> 0, or ℜ(z) = 0 and ℑ(z)⩾ 0}

be the complex half-plane defining the standard branch of the complex square root function. For a
number inH , its square root inH lies in fact in the complex quarter-plane

Q =
§

z ∈C : arg(z) ∈
�

−
π

4
,
π

4

�ª

∪{0}.

Definition and Properties 4.2.3 : Given a complex quadruple b = (b0, . . . , b3) ∈ C4, a Borchardt
iterate is a quadruple b ′ = (b ′0, . . . , b ′4) such that there are four choices of square roots (

Æ

b j ) j=0,...,3

yielding

b ′0 =
1
4 (b0+ b1+ b2+ b3) b ′1 =

1
2 (
Æ

b0

Æ

b1+
Æ

b2

Æ

b3)

b ′2 =
1
2 (
Æ

b0

Æ

b2+
Æ

b1

Æ

b3) b ′3 =
1
2 (
Æ

b0

Æ

b3+
Æ

b1

Æ

b2)

There are up to eight different Borchardt iterates of a given quadruple. If b ∈ H 4, the standard
Borchardt iterate is obtained by choosing square roots inQ, so that b ′ ∈H 4 again. More generally,
if all entries of b lie in the same half-plane, that is, b ∈ (zH )4 for some z ∈ C, choosing all square
roots in the same quarter-plane

p
zQ (with either choice of sign for

p
z) yields the standard Borchardt

iterate in the same half-plane.
A Borchardt sequence is a sequence

�

b (n)
�

n⩾0
such that b (n+1) is a Borchardt iterate of b (n) for all

n ⩾ 0. If all entries of b (0) lie in the same half-plane, its standard Borchardt sequence is defined by taking
only standard Borchardt iterates.

The following result is proved in [Dup06, Chapter 7].

Proposition 4.2.4 : Any Borchardt sequence converges to a limit (z, z, z, z).
When the elements of b are contained in the same half-plane, the Borchardt mean B2(b ) of b is the limit

of the standard Borchardt sequence starting with b (0) = b . The function B2 is obviously homogeneous.
A standard Borchardt sequence converges quadratically:





b (n)−B2(b ) = 2−O(2n)




 .

This implies that the Borchardt mean is computed to a of precision N bits with O(logN )multiplications
in time

O(M(N ) logN ).

29



Comparison of the formulæ in Definition 4.2.3 and (2.6) shows that for any period matrix Ω ∈H2,
the sequence
�

(ϑ2
j (2

nΩ)) j=0,...,3

�

n⩾0
is a Borchardt sequence. This fact alone does not solve the sign

issue, however. One would hope for the ϑ-sequence to be the standard Borchardt sequence, which
would allow it to be computed with the standard choice of complex square roots. This assumption
does not hold in general; however, it is true for the fundamental ϑ-constants and Ω ∈F2.

Proposition 4.2.5 : ForΩ ∈F2, n ⩾ 0 and j = 0, . . . , 3 we haveϑ j (2
nΩ) ∈Q. Hence
�

(ϑ2
j (2

nΩ)) j=0,...,3

�

n⩾0
is the standard Borchardt sequence associated to (ϑ2

j (Ω)) j=0,...,3. It converges to 1.

The result follows from [Dup06, Propositions 6.1 and 9.1].

4.2.3 Period matrix coefficients from ϑ-constants

For the time being, we consider the inverse of the function we are interested in and describe an
algorithm that upon input of the values of the four fundamental ϑ-quotients in a period matrix returns
the coefficients of the period matrix. Newton iterations can then be used to invert this function.

By the modularity of the squares of the ϑ-constants, applying a matrix γ ∈ Sp4(Z) to their argument
Ω permutes the functions and multiplies them by a common projective factor, which depends on γ
and Ω. In this way, information on Ω can be gathered; informally, three matrices suffice to obtain
the three different coefficients of Ω. We consider three particular matrices, as suggested in [Dup06,
§9.2.3], which lead to well-behaved Borchardt means, see Conjecture 4.2.7.

Proposition 4.2.6 : Let J=
�

0 −id2
id2 0

�

and M j =
�

id2 m j
0 id2

�

with m0 =
�

1 0
0 0

�

, m1 =
�

0 1
1 0

�

,

m2 =
�

0 0
0 1

�

. Let Ω ∈H2. Then

�

ϑ2
j ((JM0)

2Ω)
�

j=0,1,2,3
=−iω0

�

ϑ2
j (Ω)
�

j=4,0,6,2
,

�

ϑ2
j ((JM1)

2Ω)
�

j=0,1,2,3
= (ω2

1 −ω0ω2)
�

ϑ2
j (Ω)
�

j=0,8,4,12
,

�

ϑ2
j ((JM2)

2Ω)
�

j=0,1,2,3
=−iω2

�

ϑ2
j (Ω)
�

j=8,9,0,1
.

A more general statement with the action on the ϑ-constants (not squared) is given in [Cos11,
Propriété 3.1.24], following [Igu72, Chapter 5, Theorem 2]. The explicit form restricted to squares of
ϑ-constants, as given here, is found in [Dup06, §6.3.1].

The idea of the algorithm is now to apply the Borchardt mean function B2 to both sides of the above
equations. Conjecturally, the left hand side becomes 1, so that each Borchardt mean of a right hand
side yields a coefficient of Ω. So we rely on the following conjecture, for which we have overwhelming
numerical evidence, but no complete proof. Notice that it is a priori not even clear if the Borchardt
means are well-defined, that is, if the squares of the various four ϑ-values always lie in the same
half-plane.

Conjecture 4.2.7 : Let

U =
n

Ω ∈H2 : B2

�

(ϑ2
j (Ω)) j=0,...,3

�

is defined and equal to 1
o

.

For k ∈ {0,1,2} we have (JMk )
2F2 ⊆U .

30



Under Conjecture 4.2.7, we can now formulate an algorithm to obtain Ω from four values of
ϑ-constants. To make the following Newton iterations more efficient, we dehomogenise all modular
functions by dividing by appropriate powers of ϑ0, which allows to work with only three inputs.

Algorithm 4.2.8 :

INPUT: Floating point approximations of
�

ϑ j (Ω/2)/ϑ0(Ω/2)
�

j=1,2,3
for some Ω ∈ F2, and as

auxiliary data the sign ofω1.

OUTPUT: Floating point approximations of the coefficientsω0,ω1,ω2 of Ω ∈F2

1) Use the duplication formulæ (2.6) to compute (ϑ2
j (Ω)/ϑ

2
0 (Ω/2)) j=0,1,2,3,4,6,8,9,12,15.

2) Compute B2((ϑ
2
j (Ω)/ϑ

2
0 (Ω/2)) j=0,1,2,3) =

1
ϑ2

0 (Ω/2)
.

3) Deduce (ϑ2
j (Ω)) j=0,1,2,3,4,6,8,9,12,15.

4) Compute

u0 = B2((ϑ
2
j (Ω)) j=4,0,6,2), u2 = B2((ϑ

2
j (Ω)) j=8,9,0,1), u1 = B2((ϑ

2
j (Ω)) j=0,8,4,12).

5) Returnω′0 =
i

u0
,ω′2 =

i
u2

andω′1 =±
q

1
u1
+ω′0ω

′
2 with the appropriate sign. ♦

The correctness of Algorithm 4.2.8 under Conjecture 4.2.7 follows from the discussions above.
Step 1) uses the homogeneity of (2.6), Step 2) the homogeneity of the Borchardt mean and Proposi-
tion 4.2.5. The validity of Step 5) follows from Proposition 4.2.6 under Conjecture 4.2.7, using again
the homogeneity of the Borchardt mean.

Notice that Ω is only well-defined up to the subgroup of Sp4(Z) for which the ϑ-constants are
modular. Assuming Ω ∈ F2, the fundamental domain for all of Sp4(Z), it is necessarily unique;
Conjecture 4.2.7 implies that this particular representative for Ω is indeed returned by the algorithm.

4.2.4 Newton lift for fundamental ϑ-constants

Denote by
F :C3→C3,
�

ϑ j (Ω/2)/ϑ0(Ω/2)
�

j=1,2,3
7→Ω,

the function computed by Algorithm 4.2.8, and by

f :F2→C
3, Ω 7→
�

ϑ j (Ω/2)/ϑ0(Ω/2)
�

j=1,2,3
,

its inverse onF2 (where Ω is interpreted as the three-element vector (ω0,ω1,ω2) and not as a four-
element matrix).

We use Newton iterations on F to compute f . The standard Newton approach requires to compute
the Jacobian matrix JF of F , that is, its partial derivatives with respect to its different coordinates.
Heuristically, Algorithm 4.2.8 may be modified accordingly to also output JF , see [Dup06, Algo-
rithme 16], generalising the dimension 1 approach of [BB87, §2.4] and [Dup11]. The description and
justification of this algorithm are rather technical. Instead, we opt for using finite differences, which
moreover turn out to yield a more efficient algorithm (see §8.1.1).

31



Algorithm 4.2.9 :

INPUT: Floating point approximations y (n) of Ω ∈F2, to precision 2N bits, and x (n) of f (Ω), to
precision N bits.

OUTPUT: Floating point approximation x (n+1) of f (Ω), to precision 2N bits.

1) Let ϵ= 2−N max j

n�

�

�x (n)j

�

�

�

o

.

2) Let (e j ) j=1,2,3 be the standard basis of C3. By Algorithm 4.2.8, compute F (x (n)) and
∆F
∆x j
= 1

ϵ

�

F (x (n)+ ϵe j )− F (x (n))
�

.

3) Let J = (Ji j )i , j=1,2,3 with Ji j =
∆Fi
∆x j

.

4) Let
x (n+1) = x (n)−
�

F (x (n))− y (n)
�

J−1

(where all vectors are seen as row vectors). ♦

All computations in the algorithm are carried out at a precision of 2N bits. But even without taking
rounding errors into account, the approximation of the Jacobian matrix by finite differences as well as
the Newton method itself introduce some inaccuracy in the result, so that the accuracy improves to
less than 2N bits. The following proposition addresses this issue.

Theorem 4.2.10 : Assume the validity of Conjecture 4.2.7. Let Ω ∈ F2 be such that ϑ0(Ω/2) ̸= 0,
x = f (Ω) and x (0) an initial floating point approximation to x. Not taking rounding errors into account,
there exist two real numbers ϵ0 > 0 and δ > 0, depending on x, such that for ∥x (0)− x∥< ϵ0, the sequence
x (n) defined by successive applications of Algorithm 4.2.9 converges to x, with accuracy increasing in each
step from N to 2N −δ .

To reach a given accuracy N , the total complexity is dominated by the complexity of the last lifting step,
that is:

O(M(N ) logN ).

Proof : By assumption, F is defined and analytic in a neighbourhood of x. In particular, its second
partial derivatives are bounded in a close enough neighbourhood of x, so that the Jacobian matrix
of F in x (n) is approximated to accuracy 2N −δ0 bits by the matrix J computed in Steps 2) and 3),
where δ0 depends on x and on the bound on the second partial derivatives. The remaining assertion,
with some δ ⩾ δ0, is the standard result for Newton’s method (see [GG99, Chapter 9 and §15.4]
and [BZ10, §4.2]).

The complexity is derived from the superlinearity of multiplication, which makes the last of the
O(logN ) Newton steps dominate the whole computation; the logarithmic factor stems from the
complexity of computing the Borchardt mean given in Proposition 4.2.4. ■

Notice that for the application of computing class polynomials for primitive quartic CM fields, the
assumption of Theorem 4.2.10 is satisfied: As

�

Ω id2
�

Z4 is of rank 4, we have ω1 ̸= 0, and therefore
none of the ϑ j (Ω/2) vanish (see [Kli90, Chapter 9, Proposition 2]).

In practice, we use a fixed initial precision for x (0), computed according to Proposition 4.2.1, which
determines ϵ and implicitly δ. The lack of information about δ can be worked around as follows: If
x (n−2) and x (n−1) agree to k bits, and x (n−1) and x (n) agree to k ′ bits, we set δ = 2k − k ′. This value
of δ accounts at the same time for bits lost due to rounding errors induced by the floating point
computations.

32



Remark 4.2.11 : It is possible to modify Algorithm 4.2.8 and consequently Algorithm 4.2.9 so as not
to rely on Conjecture 4.2.7. The conjecture states that the choices of square roots inside the Borchardt
mean computations correspond to doubling the argument of the ϑ-constants. So by computing very
low precision approximations of the ϑ-constants in 2nΩ as described in §4.2.1, one can make sure to
choose the correct sign. These computations do not deteriorate the asymptotic complexity; moreover,
as Algorithm 4.2.9 requires the Borchardt means of the same arguments over and over again (albeit
with increasing precision), the sign choices may be fixed once and for all in a precomputation step.

In practice, however, we did not come upon any counterexample to Conjecture 4.2.7 with tens of
thousands of arguments. ♦

4.3 Reconstruction of class polynomial coefficients and reduction
modulo prime ideals

4.3.1 The dihedral case

The class polynomials H1, bH2, bH3 of (2.9) and (2.10) for a fixed CM type Φ are defined over K r
0 , but

Steps 1) to 5) of Algorithm 4.1.1 compute floating point approximations, precisely of the images of
the polynomials under an embedding ψ : K r

0 →C. To realise Step 6) of Algorithm 4.1.1, we need to
invert ψ: Given ψ(α) to sufficient precision, we wish to reconstruct α symbolically as an element of
K r

0 =Q(z
r ) =Q[Z r ]/
�

(Z r )2+Ar Z r +B r �, cf. §2.2.2. We may limit the discussion to the CM type
Φ and the embedding ψ given by (2.13) and (2.12); the second CM type Φ′ leads to class polynomials
that are conjugate under Gal(K r

0 /Q).
Let D r be the discriminant of K r

0 ; as the discriminant of the minimal polynomial of z r is 16B , we
have K r

0 =Q(
p

B), and D r

B is a rational square. Let w ∈K r
0 with w2 =D r satisfy ψ(w) =

p
D r > 0.

Write α= a+b w
c with coprime a, b , c ∈Z. Knowing an approximation β to ψ(α) ∈R at our working

precision of n bits, we wish to recover a, b , c , for which there is hope if 2n > |ab c |.
Let e be the exponent of β in the sense that 2e−1 ⩽ |β| < 2e , and let e+ = max(e , 0) and e− =

max(−e , 0), so that e = e+ − e−, and at most one of e+, e− is non-zero. We expect |a| ≈
p

D r |b |
(whereas c is usually smaller), so that 2e− |a| ≈ 2e−

p
D r |b | ≈ 2e− |cβ| ≈ 2e+ |c |. On the other hand, the

floating point approximation β satisfies
�

�

�β− a+b
p

D r

c

�

�

� ≈ 2e−n (up to a small factor accounting for

digits lost to rounding errors), whence 2n+e− |cβ− (a+ b
p

D r | ≈ 2e+ c is comparative in size to the
previous quantities. Consider the integral matrix









0 0 2n+e+
�

2e−
p

D r
£

0
�

2n+e+
p

D r
£

0 2e+
�

β2n+e+
£









.

Using LLL, we find a short vector
�

−b
�

2e−
p

D r
£

, c2e+ , r
�

in the lattice spanned by the rows of the
matrix; the scaling of the last column was chosen, following the arguments above, such that all entries in

the vector have comparable sizes. This determines b and c , and we let a =
c
j

β2n+e+
m

−b
j

2n+e+
p

D r
m

2n+e+
∈Z.

To get back to our standard representation of K r
0 , we need to relate w and z r . By (2.13) and (2.12),

ψ(z r ) =ψ(y r )2 =−A− 2
p

B < 0,

33



so that

w =

È

D r

B
·
−z r −A

2
. (4.2)

To obtain abelian varieties over finite fields, we need to reduce the class polynomials modulo certain
prime ideals p1 of K r

0 . Let p be a rational prime that splits as p1p2 in K r
0 . Assume that p1 splits in K r ,

so that p1 = q1q1, and that the type norm of q1 is a principal ideal of K . Then the class polynomial
splits totally modulo p1, and its reduction may be computed as follows: If p1 = pOK r

0
+(a+ b w)OK r

0

with a, b ∈Z, replace each occurrence of w by − a
b and reduce modulo p.

4.3.2 The cyclic case

Here the class polynomials are defined over Q, its coefficients may be obtained by a 2-dimensional
lattice reduction, and reduction modulo primes is trivial.

34



5 Isogenies and endomorphism rings

5.1 Introduction

If p is a CRT prime, the p-adic method to compute class polynomials needs to find one ordinary
CM curve over Fp with CM by OK . It then lifts it over Qp to a certain precision and computes the
conjugate under the action of the type norm by explicit isogenies computations. Likewise, the CRT
method needs to find one ordinary CM curve over Fp for several CRT primes p, and then computes
the conjugates under the action of the whole Shimura class group (the reason one cannot compute an
irreducible component modulo p is that it is hard to glue the right ones together across several CRT
primes).

We see that they both need the same tools: First, find a curve in the right isogeny class. Then,
once a curve is found, test if the endomorphism ring is maximal. Once a maximal curve is found,
use “horizontal” isogenies (overQp or Fp ) to find the others. As in the genus 1 case, one can also use
“vertical isogenies” to try to go from a curve in the right isogeny class into a maximal curve. This gives
the following algorithm:

Algorithm 5.1.1 :

INPUT: A CRT prime p

OUTPUT: The Igusa invariants of an abelian variety over Fp with CM by OK .

1) Enumerate hyperelliptic curves C of genus 2 over Fp until a curve in the right Fp -isogeny
class (up to a quadratic twist) is found.

2) Try to go up to a maximal curve from C ; if this step fails, go back to Step 1. ♦

We will sometimes call the isogenies we compute in the going-up algorithm vertical steps, and the
isogenies we compute in Algorithm 5.8.5 horizontal steps; this is in analogy with the corresponding
terminology in the elliptic curve case.

We note that for both methods, rather than only look at primes of good ordinary reduction of
degree 1, we could look at primes of good ordinary reduction of small degree d and work over Fq

where q = pd .

5.2 Searching for a curve in the isogeny class

First, once a CRT prime p is fixed, the associated isogeny class is obtained via Algorithm 3.4.1 where
we determine π.

To find a curve in the isogeny class, one can either loop over the three Igusa invariants and reconstruct
the curve from Mestre’s algorithm, or take random curves. While Mestre’s algorithm is quite slow, we
can efficiently sample random curves by taking random monic sextic polynomials with coefficients in
Fp . Since there are roughly p3 isomorphism classes of curves and there are p6 sextics, the probability
that two randomly chosen sextics define isomorphic curves is 1/p3, so the probability of collision is
quite low. This gives the following algorithm:

35



Algorithm 5.2.1 : Finding a curve in the isogeny class corresponding to ±π.
If the characteristic polynomial of π is X 4+ t0X 3+ t1X 2+ t2X + p2 then a curve H is in the isogeny

class if and only if #H (Fp ) =M1 := p + 1+ t0 and #Jac(H ) =N1 := 1+ t0+ t1+ t2+ p2. Likewise we
define M2 to be the cardinality of a curve in the isogeny class corresponding to the twist −π and N2
the cardinality of its Jacobian.

1) Take a random hyperelliptic curve H : y2 = a6x6+ a5x5+ a4x4+ a3x3+ a2x2+ a1x + a0.

2) Test whether Ni P = 0 (i = 1,2) for several random elements P ∈ Jac(H ). (We adapt dynamically
the number of random elements P we take for this step depending on the size of p.)

3) If Step 2 succeeds for all P , then test if #H =Mi and #J =Ni (for i = 1 or for i = 2) and return
H in case of success. Go back to step 1 otherwise. ♦

Remark 5.2.2 : For the CRT method, note that because the height of the first Igusa class polynomials
is smaller than the height of the second and third class polynomials (with the invariants we are using),
it can be computed with fewer CRT primes. Once the first polynomial is known, for subsequent CRT
primes it may be better to revert to the method of searching for curves using the Igusa invariants: since
the deg H1 possible values of the first invariant are known, we only need to loop through p2× deg H1
Igusa triples. This is to be compared with the number of curves we expect to loop through before
finding a curve in the right isogeny class. ♦

Depending on the CRT field K , there may be more efficient ways to sample random curves than by
taking random monic sextic polynomials.

5.2.1 Rosenhain representation

If the 2-torsion of the Jacobian of any maximal curve in the isogeny class is rational, we can search for
curves in Rosenhain form:

Lemma 5.2.3 : The following assertions are equivalent:

1) Every maximal curve can be put in Rosenhain normal form

y2 = x(x − 1)(x −λ)(x −µ)(x − ν)

where λ,µ, ν ∈ Fp .

2) The 2-torsion of a Jacobian of a maximal curve is rational over Fp .

3) π−1
2 ∈ OK .

Proof : It is well-known that a hyperelliptic curve of genus 2 can be put into Rosenhain form if and
only if the 2-torsion of its Jacobian is rational. So the first assertion implies the second. Now we also
have that the 2-torsion on a Jacobian is rational if and only if the Frobenius π acts trivially on it, if and
only if Ker(π− 1) contains the 2-torsion, if and only if π−1

2 is an endomorphism. So if one maximal
Jacobian A as a rational 2-torsion, then π−1

2 ∈ End(A) = OK , so the second assertion implies the third.
Finally, if π−1

2 ∈ OK , then every maximal Jacobian has π−1
2 as an endomorphism, so can be put into

Rosenhain normal form. ■

36



It is much easier and faster to loop through curves written in Rosenhain form directly. This approach
is also better in the sense that it only loops through curves with rational 2-torsion, thus avoiding
generating and computing on curves which could not be maximal curves in our isogeny class. Also, a
factor of 6 is saved because the ordering of the roots λ,µ, ν does not matter, and there are 6 ways to
permute those 3 roots.

Remark 5.2.4 : One trade-off we consider in applying the Rosenhain method is the following: while
we take random curves over a space one sixth as large as the space of all hyperelliptic curves of genus 2,
we can only find curves in the isogeny class that can be put in Rosenhain form. We could estimate
the size of this intersection by checking whether the element π−1

2 is in the suborder R⊂OK for the
various R⊃ Z[π,π] and computing the number of curves with endomorphism ring R, but this is
expensive. In practice, we only apply this method when the condition holds for R= Z[π,π] (and
hence for all curves in the isogeny class), which is the case for instance when 2 does not divide the
index [OK :Z[π,π]]. ♦

5.2.2 Real multiplication

For a given quartic CM field K , write the real quadratic subfield K0 =Q(
p

d ). For a given CRT prime
p, any curve over Fp with CM by K must also have real multiplication by K0. Such curves correspond
to CM points associated to K on the Hilbert moduli space associated to K0. They are determined by
pairs of Gundlach invariants on the Hilbert moduli space instead of triples of Igusa invariants. Thus
the algorithm to search for these curves can be improved by looping through Gundlach invariants
instead of Igusa invariants. This approach is more efficient because there are only p2 pairs to search
through instead of p3 triples. Formulas for Gundlach invariants and a method for generating genus 2
curves from Gundlach invariants were given in [LY11]. Those formulas can be used directly in the
search step for each CRT prime.

Here the same trade-off has to be considered as in the Rosenhain method: if R
⋂

K0 ̸⊃ OK0
for various

orders R such that Z[π,π]⊂ R⊂ OK , we miss all the curves whose Jacobian have endomorphism
ring R.

5.3 Computing the ℓ-primary part of the torsion

Let A be an abelian surface over Fq . To compute isogenies as in §5.4, we need to compute a basis of
the points of the kernel. Likewise, to compute endomorphism rings via the method of §5.5, we need
to compute the action of certain endomorphism on the ℓe -torsion. For both algorithm, we need to
compute the ℓ-primary part of an abelian variety defined over an extension Fqd of a certain degree d
over Fq .

We will use the following algorithm to compute points uniformly in the ℓ-primary group A(Fq )[ℓ
∞]:

Algorithm 5.3.1 :

INPUT: An abelian surface A/Fq and a prime ℓ.

OUTPUT: Uniform random points in the group A(Fq )[ℓ
∞].

1) Precomputation:

(a) Compute χπd as the resultant in X of χπ(Y ) and Y d −X , and write #A(Fqd ) =
χπd (1) = ℓeγ with γ prime to ℓ.

37



2) Repeat as needed:

(a) Take a random point P (uniformly) in A(Fqd ).

(b) Return γP . ♦

Since the cardinal of A(Fqd ) is roughly of q2d , computing a random points take O(d log(q)) opera-
tions in Fqd .

From uniform random points in A(Fqd )[ℓ∞] one can look at the smallest k such that ℓk · P is an
ℓe -torsion point (with the notations of the algorithm); the problem here is that this method does not
generate uniform random points of ℓe -torsion.

In a paper accompanying the source code of [BCR12] we explain how to do so by first computing
an HNF basis of A(Fqd )[ℓ∞], using Weil pairing to speed up the computation of thus a basis. From
such a basis it is then trivial to recover a basis of the ℓe -torsion. First we give an example to illustrate it
here.

Suppose that G is an ℓ-primary group generated by a point P of order ℓ2 and a point Q of order
ℓ. Assume that the first random point chosen is P = R1, which gives an ℓ-torsion point T1 = ℓP .
The second random point R2 chosen will be of the form αP +βQ. In most cases, α ̸= 0, so the
corresponding new ℓ-torsion point is T2 = αℓP , a multiple of T1. However we can correct R2 by
the corresponding multiple: Compute R′2 = R2−αR1 =βQ. Thus R′2 gives the rest of the ℓ-torsion
unless β= 0.

We give an overview of the algorithm

Algorithm 5.3.2 :

INPUT: A list G of generators of A(Fqd )[ℓ∞].

OUTPUT: An HNF basis of A(Fq )[ℓ
∞].

1) Let P1, . . . , Pk be the current partial HNF basis, and let ni be the smallest number such
that Qi = ℓ

ni Pi is a point of ℓ-torsion. Repeat the following loop until we find the full
HNF basis:

(a) Take a new element P ∈G.

(b) Let n be the smallest power such that Q = ℓn P is a point of ℓ-torsion.

(c) If Q is in the subgroup generated by the Qi , write Q =
∑

αi Qi .

(d) Switch P j and P if n j is the minimal of n and all the ni corresponding to points Qi
appearing in the support of the preceding decomposition.

(e) Replace P by P −
∑

αiℓ
ni−n Pi and start the loop again.

(f ) If we are here then either P = 0 in which case we do not get an independent generator,
or Q is not in the subgroup generated by the Qi so we add P to the list. ♦

Remark 5.3.3 : In our setting we can use the Weil pairing to check if Q is in the group generated by
the Qi and compute the αi in this case. This is done by constructing at each step of the preceding
algorithm a matrix M such that M sends the Qi to a “symplectic (partial) basis”. For instance, we
known that we have the full basis of the ℓe -torsion if all ni are greater or equal to e − 1 and the matrix
of the Weil pairing on the Qi is non-degenerate.

38



The worse case is when we have an isotropic group (at worst of size O(ℓ2)), in which case we can
use a baby step giant step approach to get an O(ℓ) complexity to find the “generalised logarithms”.
Since we have uniform points, we only need O(1) random points to find a basis. The total cost is then
O(d log p + ℓ2) operations if Fqd . ♦

5.4 On (ℓ,ℓ)-isogenies

New techniques have been developed in [LR10; CR11; Rob10; Cos11] for computing rational (ℓ,ℓ)-
isogenies between abelian surfaces over finite fields.

We recall the following proposition from [CR11]:

Proposition 5.4.1 : The complexity of computing an (ℓ,ℓ)-isogeny between two abelian surfaces is O(ℓr )
operations in the field k where the points of the kernel of the isogeny live. We have r = 2 when ℓ ≡ 1
mod 4 and r = 4 when ℓ≡ 3 mod 4.

If A is an abelian variety over a finite field Fq , the following proposition gives a way to compute the
degree of the extension over which the points of a maximal isotropic kernel live.

Proposition 5.4.2 : Let χπ be the quartic polynomial satisfied by the Frobenius element for a smooth
irreducible genus 2 curve C over Fq with simple, ordinary Jacobian J (C ). For a prime ℓ with ℓ ∤ q, if there

exists an Fq -rational (ℓ,ℓ)-isogeny, then χπ factors as χπ = P P (mod ℓ) (where P is the conjugate of P
under the action π→ q/π).

The order of X in Z[X ]/(ℓ, P ) gives the degree of the extension in which the points of the corresponding
kernel live. In particular, if no such decomposition exists, then there is no (ℓ,ℓ)-isogeny.

Proof : Let K ⊂ A[ℓ] be a maximally isotropic rational kernel. Then since π stabilises K , if P is
the characteristic polynomial of π restricted to K , then P divides χπ. The cofactor is given by the
characteristic polynomial of the action of the Verschiebung q/π on K , so it corresponds to P . ■

5.5 Checking if the endomorphism ring is maximal

We recall the algorithm described in [EL10], and describe some improvements from [FL08; LR12].
The ideas for computing the endomorphism ring will also be used in the going up phase.

5.5.1 The vertical method

Let A/Fp be an ordinary abelian variety of dimension 2 with CM by K . Let O = End(A). We know
that Z[π]⊂Z[π,π]⊂O ⊂OK . We want to check if O = OK . First, the Chinese Remainder Theorem
gives us the following proposition:

Proposition 5.5.1 : Let O = EndA and let γ ∈ OK be such that ℓeγ ∈ Z[π,π]. There exists a unique
integer polynomial Pγ of degree less than 4 such that ℓe pγ = Pγ (π), and γ is in O if and only if Pγ (π) = 0
on A[ℓe].

Proof : First note that [Z[π,π] :Z[π]] = p (see [FL08, p. 38]), so that ℓe pγ ∈Z[π], which means
we can write ℓe pγ = Pγ (π) for a unique Pγ ∈Z[x] of degree less than 4. Second, since we are dealing
with ordinary abelian surfaces over Fp , we have p ̸| [OK :Z[π,π]] by [FL08, Proposition 3.7], so that

39



γ ∈ O ⇔ pγ ∈ O . Lastly, by the universal property of isogenies, we have that Pγ (π) = 0 on A[ℓe]
if and only if pγ ∈ O (see [EL10]). Summing up, we only need to check that Pγ (π) = 0 on A[ℓe] to
check that γ ∈ O . ■

Remark 5.5.2 : Since most of the curves in the isogeny class are not maximal, it is more efficient to
check the condition Pγ (π) = 0 on A[ℓ], A[ℓ2], . . . , rather than directly on A[ℓe]. ♦

5.5.2 Reducing the degree

The obvious method of using Proposition 5.5.1 to test whether an element of OK lies in O involves
computing a basis of the ℓe -torsion group using §5.3.

The cost of such a computation depends on the degree of the extension where the ℓe -torsion points
are defined. We have:

Lemma 5.5.3 : Let d be the degree such that the ℓ-torsion points of A are defined overFpd . Then d ⩽ ℓ4−1.
Furthermore, the ℓe -torsion is all defined over an extension of degree de with de = dℓe−1.

Proof : Let χπ be the characteristic polynomial of π. Then d is the (multiplicative) order of X in the
ring Fℓ[X ]/χπ(X ), so d ⩽ ℓ4− 1. The second assertion follows from [FL08, Section 6]. ■

Remark 5.5.4 : For maximal abelian surfaces, [FL08, Proposition 6.2] gives a better bound for d : In
that case we have d < ℓ3, and if ℓ is completely split in OK we have d | ℓ− 1. ♦

The complexity of finding the basis is closely related to the degree of the extension de . Let d0 be the
minimal integer such that (πd0 − 1) ∈ ℓOK . The proof of Lemma 5.5.3 show that d is the minimal
integer such that (πd − 1) ∈ ℓZ[π,π].

In particular, d0 | d , and, as remarked in [FL08], since we only need to check if O = OK , we can
first check that (πd0 − 1)/ℓ lies in O . In other words, we can check that the ℓ-torsion points of A are
defined over Fpd0 rather than over Fpd . If this is the case, the ℓe -torsion points are then defined over

an extension of degree d0ℓ
e−1 of Fp , which allows us to work with smaller extensions.

One improvement to reduce the degree is to use twists. Let d ′0 be the minimal integer such that

((−π)d
′
0−1) ∈ ℓOK . Then there are three possibilities: We have either d ′0 = d0, or d ′0 = 2d0, or d0 = 2d ′0.

In the third case it is to our advantage to replace A by its twist, because the Frobenius of the twist is
represented by −π, and we can therefore compute the points of ℓe -torsion by working over extensions
of half the degree.

Example 5.5.5 : Let H be the curve y2 = 80x6+51x5+49x4+3x3+34x2+40x+12 of genus 2 over
F139, and let J be the Jacobian of H . By computing the characteristic polynomial of Frobenius for J
we find that

(End J )⊗Q∼=Q
�

i
Æ

13+ 2
p

29
�

,

and we would like to check whether End J is maximal. In this example, we compute that [OK :
Z[π,π]] = 35, so we need to compute the points in J [35], which live over an extension of degree 81.
If we had checked the endomorphism ring of the Jacobian of the twist of H , we would have needed to
work over an extension of degree 162.

40



5.5.3 Reducing the number of endomorphisms to test

One last improvement done in [LR12] is to use the fact that EndA is an order; if we know that γ ∈ O ,
then we know that the whole ring Z[π,π,γ ] is contained in O . For example, suppose {1,α1,α2,α3} is
a basis for OK and α3 = α1α2 mod Z[π,π]∗. To check that O = OK we only have to check that α1 and
α2 are in O . In fact, since the algorithm works locally at primes ℓ, we only need the relation between
α3 and α1α2 to hold locally at ℓ.

We use this idea as follows: Suppose that we have checked that {γ1, . . . ,γk} are endomorphisms lying
in O , and we want to check if γ ∈ O . Let N1 be the order of γ in the Z-module OK/Z[π,π,γ1, . . . ,γk],
and N2 be the order of γ in OK/Z[π,π]. If we write N2 =

∏

ℓei
i , we only have to check that

(N2/ℓ
ei
i )γ ∈ O for ℓi |N1. In fact, if the valuation of N1 at ℓi is fi , then we would only need to check

that (N1/ℓ
fi
i )γ ∈ O , which means testing if N1γ = 0 on the ℓ fi

i -torsion, where N1γ is a polynomial in
π, π, and the γi (i = 1, . . . , k). We write this polynomial as N1/(pN2) times a polynomial in π, so that
we still need to compute the ℓei

i -torsion.

Example 5.5.6 : Let H be the curve y2 = 10x6+ 57x5+ 18x4+ 11x3+ 38x2+ 12x + 31 of genus 2
over F59 and let J the Jacobian of H . We have

(End J )⊗Q=Q
�

i
Æ

29+ 2
p

29
�

and we would like to check whether End J = OK . The ring OK is generated as a Z-module by 1,α,β,γ ,
where α has order 2 in OK/Z[π,π], β has order 4, and γ has order 40. The algorithm from [FL08]
would require computing the elements of J [23] and J [5]. But (OK )2 =Z2[π,π,α], so we only need to
compute in J [2] and J [5].

5.5.4 The algorithm

In final, we have the following algorithm:

Algorithm 5.5.7 : Checking that EndA is maximal.

INPUT: An ordinary abelian surface A/Fp with CM by K .

OUTPUT: True or false, depending on whether or not EndA= OK .

1) Choose a basis {1,α1,α2,α3} of OK and a basis {1,β1,β2,β3} of Z[π] such thatβ1 = c1α1,
β2 = c2α2, β3 = c3α3 and c1, c2, c3 ∈Z with c1 | c2 | c3.

2) (Checking where the ℓ-torsion lives.) For each ℓ | [OK :Z[π,π]] do:

(a) Let d be the smallest integer such that πd − 1 ∈ ℓOK , and d ′ be the smallest integer
such that (−π)d ′ − 1 ∈ ℓOK . If d ′ < d , switch to the quadratic twist.

(b) Compute a basis of A[ℓ](Fpd ) using the algorithm from [BCR12].

(c) If this basis is of cardinality (strictly) less than 4, return false.

(d) (Checking the generators of OK .) For i = 1,2,3 do:

i. Let N1 be the order of αi in OK/Z[π,π,α j | j < i] and N2 the order of αi in
OK/Z[π,π].

ii. If ℓ |N1, let e be the ℓ-valuation of N2 and write pN2αi as a polynomial P (π).

41



iii. Compute a basis of A(F
pdℓe−1 )[ℓe].

iv. If P (π) ̸= 0 on this basis, return false.

3) Return true. ♦

Remark 5.5.8 : Comments on the algorithm:

• With the way we choose the basis of OK , we have e1 ⩽ e2 ⩽ e3 (for each ℓ dividing the index), so
that when we abort early, we may not have the full A[ℓe3]-torsion to compute. Likewise, rather
than going through increasing ℓ, we could go through increasing degrees.

• Since we will apply this algorithm to a lot of different abelian varieties, we can precompute
everything that is only related to OK and Z[π,π]. Then for each abelian variety A/Fp we
want to test, we only have to compute for all ℓ | [OK : Z[π,π]] the subgroups A[ℓ](Fpdℓ )
and then subgroups A(F

pdℓℓ
ei−1 )[ℓei ] for i = 1,2,3, testing polynomials of the Frobenius on

them. Moreover, if ℓ is such that ℓ2 ̸ | [OK : Z[π,π]] then (OK )ℓ/Zℓ[π,π] is cyclic, so that if
πdℓ − 1 /∈ ℓZ[π,π], we only need to check that the ℓ-torsion is defined over Fpdℓ (see [FL08]).
♦

5.5.5 Complexity

We will measure complexity in terms of operations in the base field Fp , and we will neglect factors of
log(p). Since the index [OK :Z[π,π]] is bounded by a polynomial in p by [FL08, Proposition 6.2],
evaluating the polynomials P (π) (of degrees at most 3) is done in logarithmic time. The most expensive
part of the algorithm is then the computation of A[ℓe], for the various ℓ dividing the index [OK :
Z[π,π]] where e is at most the ℓ-valuation of the index. According to Lemma 5.5.3 and Remark 5.5.4,
the ℓe -torsion points live in an extension of degree at most d = ℓe+3. Since #A(Fpd ) = p2d (1+ϵ),

computing a random point in A(Fpd )[ℓe] takes eO(d 2) operations in Fp . Correcting this random point

requires some pairing computations, and costs at most O(ℓ2), in case the first points give an isotropic
group, using the naïve algorithm of simply computing all possible multiples. Since we need O(1) such
random points, the global cost is given by the following proposition (we will only need a very rough
bound for the complexity analysis in Chapter 6 and 7):

Proposition 5.5.9 : Let [OK :Z[π,π]] =
∏

ℓei
i be the decomposition of the index into powers of primes.

Then checking if an abelian surface in the isogeny class is maximal can be done in time
∑

eO(ℓ2ei+6
i ).

5.6 Going up

“Going up” is the process of finding genus-2 curves with maximal endomorphism ring by moving
from any curve in the isogeny class to a maximal one via isogenies. This is not always possible and
we will explain some of the obstructions. One difficulty was already illustrated in [BGL11, Example
8.2], where it was shown that there can be cycles in the isogeny graph involving only non-maximal
curves. Clearly, when trying to “go up”, the algorithm should avoid making cycles in the graph, and
we propose one method to avoid that. Further difficulties arise from the fact that the graph of rational

42



(ℓ,ℓ) isogenies can be disconnected, and can even have isolated nodes. This is an important caveat,
as this means that our method for going up will not always succeed, so we only have a probabilistic
algorithm; furthermore, we cannot currently estimate the probability of failure.

As noted in [FL08], for the type of fields we can deal with via the CRT method, the cost of going
through p3 Jacobians is dominant compared to checking if the endomorphism ring is maximal. This
still holds true if we just need to find a curve in the right isogeny class. Typically, we select p so that
the probability of finding a curve in the right isogeny class is of magnitude p3/2. This explain why we
can afford to spend a lot of effort on going up from a curve in the right isogeny class.

If A is an ordinary abelian surface with CM by K , then for each ℓ dividing the index [OK :Z[π,π]],
we try to find an (ℓ,ℓ)-isogeny path starting from A and going to A′ such that (OK )ℓ = (EndA′)ℓ. If this
is possible, we let A=A′ in the next step (going to the next ℓ). A rather inefficient method for finding A′

would be to use the algorithm for computing endomorphism rings which was detailed in the preceding
section (modified to handle the case of non-maximal orders), compute the endomorphism ring of
EndA and the (ℓ,ℓ)-isogenous surfaces A′, and keep A′ if its endomorphism ring is bigger than that of
A. In this section we will describe a more efficient algorithm, which combines the endomorphism
ring checks of the preceding section with a going-up phase. Since we are working locally in ℓ, we may
as well suppose that we are working over Zℓ.

5.6.1 Going up for one endomorphism

In this section, we suppose that we have an element α′ ∈ OK such that α := γℓeα′ lies in Z[π] for some
γ ∈ OK prime to ℓ. Starting from an abelian surface A in the isogeny class, we want to find an abelian
surface A′ such that α/ℓe ∈ EndA′ (or equivalently that α′ ∈ EndA′ locally at ℓ).

We saw in §5.5 that α/ℓe is in the endomorphism ring of A if and only if α(A[ℓe]) = 0, and we
know how to compute this subgroup. More generally, we let N = #α(A[ℓe]). We think of N as a way
to measure the “obstruction” to α/ℓe being an element of EndA. The algorithm is as follows: For each
(ℓ,ℓ)-isogenous surface A′, we let N ′ = #α(A′[ℓe]) and we replace A by A′ if N ′ <N . We iterate this
process until N = 1, in which case we have succeeded, or until we are stuck, in which case we try to
find a new random abelian surface in the right isogeny class.

Rather than directly computing the obstruction N = #α(A[ℓe]), we can compute the partial
obstructions N (ϵ) := #α(A[ℓϵ]) for ϵ ⩽ e . Starting from ϵ = 1, we take isogenies until we find an
abelian surface A with N (ϵ) = 1, which means that α/ℓϵ ∈ EndA. We will now try to take isogenies to
reduce the obstruction of higher degree N (ϵ+ 1). Let k = α(A[ℓϵ+1])⊆A[ℓ]. The following lemma
helps us select the isogeny we are looking for:

Lemma 5.6.1 : With notation and assumptions as above, let A′ be an abelian surface isogenous to A such
that #α(A′[ℓϵ+1]) < #α(A[ℓϵ+1]). Then the kernel of the isogeny A→ A′ intersects non-trivially with
k = α(A[ℓϵ+1]).

Proof : Let f : A→ A′ be a rational isogeny between A and A′. Then since α is a polynomial in the
Frobenius, we have α ◦ f = f ◦α. In particular, f maps α(A[ℓϵ+1]) to α(A′[ℓϵ+1]). If #α(A′[ℓϵ+1])<
#α(A[ℓϵ+1]) then there exists x ∈Ker f ∩α(A[ℓϵ+1]). ■

This gives the following algorithm:

Algorithm 5.6.2 : Going up for one endomorphism α/ℓϵ.

INPUT: An ordinary abelian surface A/Fp with CM by K , a prime power ℓe , and an α ∈ ℓeOK .

43



OUTPUT: An abelian surface A′/Fp isogenous to A such that α/ℓϵ ∈ EndA′, or fail.

1) Set ϵ= 1.

2) Compute N (ϵ) = #α(A[ℓϵ]).

3) If N (ϵ) = 1, do:

(a) If ϵ= e then return A.

(b) Otherwise, set ϵ := ϵ+ 1, and go back to Step 2.

4) At this point, N (ϵ)> 1. LetL be the list of all rational maximal isotropic subgroups of
A[ℓ] which intersect non-trivially with α(A[ℓϵ]). For k ∈L do:

(a) Compute A′ =A/k.

(b) Let N ′(ϵ) = #α(A′[ℓϵ]).

(c) If N ′(ϵ)<N (ϵ), set A=A′ and go back to Step 2.

5) Return fail. ♦

Remark 5.6.3 : As in §5.5 we let d0 be the minimal integer such that (πd0 − 1) ∈ ℓOK and d the
minimal integer such that (πd − 1) ∈ ℓZ[π]. Then the ℓϵ-torsion points of A are defined over an
extension of degree dℓϵ−1. If moreover (πd0−1)/ℓ ∈ EndA they are actually defined over an extension
of degree d0ℓ

ϵ−1.
Therefore when we try to go up globally for all endomorphisms α, the first step is to try to go up

for the endomorphism (πd0 − 1)/ℓ. During the algorithm, the obstruction N is given by the size of
the kernel of πd0 − 1, whose rank is 4 minus the rank of the ℓ-torsion points defined over Fpd0 . So we
compute the size of a basis of A[ℓ](Fpd0 ) and take isogenies, where this size increases until we find the
full rank. ♦

5.6.2 Going up globally

Let {1,α1/ℓ
e1 ,α2/ℓ

e2 ,α3/ℓ
e3} be a generating set for the maximal order (OK )ℓ over the subring

Zℓ[π,π], where αi ∈ Zℓ[π,π]. Starting from an abelian surface A in the isogeny class, we want
to find an abelian surface which is maximal at ℓ.

We could apply Algorithm 5.6.2 for each αi/ℓ
ei , but the algorithm does not guarantee that the

endomorphisms already defined on A stay defined during the process, so we would observe loops
on non-maximal abelian surfaces with this method. Moreover we want to reuse the computations of
A[ℓϵ], which are the expensive part of the process.

If Ni = #αi (A[ℓ
di ]) for i = 1,2,3 is the obstruction corresponding to αi , we define N to be the

global obstruction N =
∑

Ni . We can then adapt the same method: For each (ℓ,ℓ)-isogenous A′, if
N ′i = #αi (A

′[ℓdi ]), then we replace A by A′ if
∑

N ′i <
∑

Ni . We iterate this process until all the Ni = 1,
in which case we go to the next ℓ, or until we are stuck, in which case we try to find a new random
abelian surface in the right isogeny class.

As before, if e = max(e1, e2, e3) we first compute A[ℓϵ] and the partial obstructions Ni (ϵ) =
#A[ℓmin(ϵ,ei )] (for i = 1,2,3). We do the same for the (ℓ,ℓ)-isogenous abelian surfaces, and switch to
the new one if
∑

Ni (ϵ) decreases (strictly). This allows working with smaller torsion in the beginning
steps.

44



The level ϵ of the individual obstruction we are working on depends on the endomorphism
considered, so if we get stuck on level ϵ, we may have to look at level ϵ+1 even if not all endomorphisms
αi/ℓ

ϵ are defined yet. For instance, in the case where we are only dealing with two generators, there
are examples where N1(ϵ) = 1, N2(ϵ) ̸= 1 and N ′1(ϵ) = 1, N ′2(ϵ) = N2(ϵ) for all (ℓ,ℓ)-isogenous
abelian surfaces A′, so we are stuck on level ϵ. However we can still find an isogenous A′ such that
N ′1(ϵ+ 1)<N1(ϵ+ 1).

Finally, as in Remark 5.6.3, we first try to go up in a way that increases the size of A(Fpd0 )[ℓ]. If we

are unlucky and get stuck, we switch to the computation of the full ℓ-torsion over Fp . This method
allows working over the smallest extension to compute A[ℓe] as soon as possible.

A summary of the algorithm with the notation from above is given below:

Algorithm 5.6.4 : Going up.

INPUT: An ordinary abelian surface A/Fp with CM by K , and a prime ℓ.

OUTPUT: An abelian surface A′/Fp with EndA= OK (locally at ℓ), or fail.

1) (Special case for the endomorphism (πd0 − 1)/ℓ.) Compute a basis B of A(Fpd0 )[ℓ]. If
#B < 4, compute a basis B ′ of A′(Fpd0 )[ℓ] for each (ℓ,ℓ)-isogenous abelian surface A′. If
#B ′ > #B , restart the algorithm with A′ =A. If #B = 4 or we get stuck, go to the next step.

2) Set ϵ= 1.

3) Compute1 Ni (ϵ) = #αi (A[ℓ
min(ϵ,ei )]) for i = 1,2,3.

4) If {Ni : i = 1,2,3}= {1}, do:

(a) If ϵ=max(ei : i = 1,2,3) then return A.

(b) Otherwise, set ϵ := ϵ+ 1 and go back to Step 3.

5) LetL be the list of all rational maximal isotropic kernels of A[ℓ] which intersect non-
trivially with one of the αi (A[ℓ

min(ϵ,ei )]). For k ∈L do:

(a) Compute A′ =A/k.

(b) Let N ′i (ϵ) = #αi (A
′[ℓmin(ϵ,ei )]).

(c) If
∑

N ′i (ϵ)<
∑

Ni (ϵ), restart the algorithm with A=A′ (but do not reinitialise ϵ in
Step 2).

6) If we get stuck and ϵ <max(ei : i = 1,2,3), set ϵ := ϵ+ 1 and go back to Step 3.

7) Return fail. ♦

5.6.3 Cost of the going-up step

As in the genus 1 case, the going-up step is a very important part in speeding up the CRT algorithm in
practical computations. However, since it is doomed to fail in some cases (see Remark 5.6.6), we need
to check that it will not dominate the complexity of the rest of the algorithm, so that in theory there
will be no drawback to using it. Thus we need to estimate the cost of the going-up step.

1The degree of the extension where the full ℓϵ-torsion is defined depends on whether Step 1 succeeded.

45



The going-up phase is a mix of endomorphism testing and isogeny computations. We already
analysed the cost of the endomorphism testing in the preceding section. For the isogeny computation,
the points in the kernel of rational (ℓ,ℓ)-isogenies live in an extension of degree at most ℓ2 − 1.
Transposing the analysis of §5.5.5 to this case shows that the computation of all of the points in
these kernels takes at most eO(ℓ4) operations in Fp . There are at most O(ℓ3) such kernels, and each

isogeny computation takes at most eO(ℓ4) operations in the extension. The final cost is at most eO(ℓ9)
operations in Fp for computing all isogenies. For each of the O(ℓ3) isogenous abelian surfaces we

do (part of) the endomorphism ring computation, which takes eO(ℓ2e+6) operations, according to
§5.5.5. Since the global obstruction computed is of size O(ℓe ), we do at most O(e) steps. The global
complexity is then given as follows:

Proposition 5.6.5 : Let [OK : Z[π,π]] =
∏

ℓei
i be the decomposition of the index into prime factors.

Then the going-up phase either fails or is done in at most eO(
∑

ℓ2ei+9
i ) operations in the base field.

Remark 5.6.6 : It is important to note that the going-up phase does not always succeed. First, as
noted in the introduction of this section, the (ℓ,ℓ)-isogeny graph is not always connected, so if we
start with a curve not in the same component as a maximal curve, there is no way to find the maximal
curves using only (ℓ,ℓ)-isogenies. Second, even if the curve is in the same component as a maximal
curve, finding a maximal curve may involve going through isogenous curves that increase the global
obstruction, so the going-up algorithm would not find it.

In practical computations we observed the following behavior: In the very large majority of the
cases where we were not able to go up, there actually did not exist any rational (ℓ,ℓ)-isogenies for any
curve in the isogeny class. If χπ is the characteristic polynomial, this can be detected by the fact that
χπ does not factor modulo ℓ as χπ = P P (mod ℓ) (where P is the conjugate of P under the action
π→ p/π, which sends the Frobenius to the Verschiebung). In this situation, there is no way to go up
even locally at ℓ. This gives a criterion for estimating whether one can go up for this ℓ. ♦

5.7 Complexity of finding a maximal curve

Let p be a CRT prime. In this section, we discuss the expected complexity of finding a curve with CM
by OK using the tools from above. To fix the ideas, both in the CRT and p-adic method, p will be of
size eO(∆0∆1). Furthermore, both methods allow to select the prime p such that the isogeny class
corresponding to π is relatively large (see §7.2) and that the going-up step and endomorphisms rings
computations are negligible (see §7.3).

In particular, to have a quasi-linear algorithm to compute the class polynomials with these methods,
we need to at least have a quasi-linear algorithm in the size of p to find such a maximal curve (and we
need even more for the CRT method because we need to repeat this step eO(

p

∆0∆1) times.
We will see that the problem of genus 2 is that unfortunately the size of the isogeny class is too

small compared to the size of all genus 2 curves to achieve quasi-linearity. More precisely, we expect to
have Ω(p3/2) curves in the isogeny class for O(p3) isomorphism class of curves of genus 2. So just to
find a curve in the right isogeny class takes time O(p3/2).

If X is the number of going-up steps we then need to try on average, the cost to find a maximal
curve is then expected to be eO(X (p3/2)). At best, X =O(1), while at worst X =O(p) (number of
random tries in the isogeny class until we find a maximal one directly).

46



5.8 Computing maximal curves from maximal curves

Once a maximal curve in the isogeny class has been found via the random search and going-up steps,
we use isogenies to find the other maximal curves (either over Fp for the CRT method, or overQp for
the p-adic method).

As noted in Chapter 2, the set of maximal curves in the isogeny class corresponding to a fixed
CM-type Φ is a principal homogeneous space under the action of the Shimura class group C associated
to the primitive quartic CM field K , which acts by isogenies.

However, using the Magma package AVIsogenies [BCR12] we can only compute isogenies with
a maximal isotropic kernel. The lemma below show that in terms of the Shimura class group, this
means that we can only compute the action corresponding to (equivalences classes) of elements of the
form (I ,ℓ), where I is an ideal in K and ℓ is a prime number.

Lemma 5.8.1 : Let (I ,ρ) be an element of the Shimura class group C and let ℓ be a prime. Then the action
of (I ,ρ) on a maximal abelian surface A corresponds to an isogeny with maximal isotropic kernel in A[ℓ]
if and only if ρ= ℓ (so if and only if I has relative norm ℓ).

Proof : This follows from the construction of the action of C on the set of maximal abelian surfaces.
The action is given by the isogeny f : C2/Λ→C2/IΛ and moreover the action of I corresponds to
the dual isogeny bf (here we identify the abelian surface A with its dual bA via the principal polarisation
induced from the CM data). Since ℓ is prime, the isogeny corresponding to I is an (ℓ,ℓ) isogeny if and
only if I I = (ρ) = (ℓ). ■

We can prove that using these isogenies is enough to compute the action of the image of the type
norm.

Proposition 5.8.2 : There is a polynomial P such that for every primitive quartic CM field K, the image
of the type norm in the Shimura class group associated to K is generated by elements of the form (I ,ℓ),
where ℓ ranges over the prime numbers less than P (log∆) and where∆ is the discriminant of K.

Proof : Under GRH, we know that the class group of the reflex field is generated by prime ideals of
degree 1 and of norm polynomial in 12 log∆′ [Bac90, Theorem 1] where∆′ is the discriminant of the
reflex field. But if I is such an ideal of OK r of norm prime to p, then the element (TN(I ),N (I )) will
give a horizontal isogeny whose kernel is maximally isotropic for the ℓ-torsion.

Now it suffices to remark that∆′ is at worst in O(∆2) to conclude. ■

Unfortunately, while this is sufficient for the p-adic method, for the CRT method we can’t compute
irreducible component, so we need to compute the whole action of the Shimura class group. Therefore
to ensure that we can find all other maximal curves using isogenies with maximal isotropic kernel, we
make the following heuristic assumption.

Assumption : There is a polynomial P such that for every primitive quartic CM field K , the Shimura
class group associated to K is generated by elements of the form (I ,ℓ), where ℓ ranges over the prime
numbers less than P (log∆) and where∆ is the discriminant of K . ♦

Proof ( Justification) : We have tested this assumption on numerous examples, using the same bound as
in Proposition 5.8.2. ■

47



Remark 5.8.3 : With the CRT method, in the horizontal step, by Proposition 5.8.2 we can compute
the action of TN(Cl(OK r )) by isogenies of size logarithmic in ∆. By Lemma 6.5 of [BGL11], the
cofactor is bounded by 26w(D)+1, where w(D) is the number of prime divisors of D. This gives a
bound on the number of horizontal isogeny steps we need to take. As remarked in [BGL11, p. 516],
we have w(n)< 2 log log n outside a density-0 subset of very smooth integers, so the corresponding
factor can be absorbed into the eO-notation of the complexity analysis made in Chapter 7. ♦

It can be hard to associate an isogeny to a given element of the Shimura class group. However, is the
degree of the isogeny is prime to the index [OK :Z[π,π]], then this isogeny has to be horizontal, or
in other words come from the action of the Shimura class group.

Lemma 5.8.4 : Let A be an ordinary abelian surface with (EndA)⊗Q = K, and let f : A→ B be an
isogeny of degree prime to [OK :Z[π,π]]. Then EndA= EndB.

Proof : Let d be the smallest integer that factorises through f , so d = f ef for some isogeny ef : B→A.
By assumption d is prime to the index. If α ∈ EndA, then f ◦ α ◦ ef = dα is an endomorphism
of B . Since [OK : EndB] is prime to d , we have that α ∈ EndB . The same argument shows that
EndB ⊆ EndA, so EndA= EndB . ■

Note that we can precompute generators of the Shimura class group since this data does not depend
on the current prime p. We want to find generators of relative norm a prime ℓ ∈Z with ℓ as small as
possible, since the size of ℓ will directly influence the time spent to find the other maximal curves.

Now for a CRT prime p, there may exist among the generators we have chosen some that divide
the index [OK :Z[π,π]]. We can either find other generators (whose norm will be bigger), or still try
to use the precomputed generators. In this case, if such a generator has norm ℓ, then not all new (ℓ,ℓ)-
isogenous abelian surfaces will be maximal, so we have to use Algorithm 5.5.7 to test which of them is
maximal. In that case, after the isogeny is applied, the ℓe -torsion (in the notation of §5.6) must again
be computed, along with the action of the generators of (OK )ℓ over Z[π,π]ℓ. The trade-off depends
then on the degree of the extension field required to compute the ℓe -torsion for small ℓ dividing the
index versus the degree of the field of definition for the points in the kernel of the ℓ-isogeny for ℓ not
dividing the index.

Finally, we can also use the group structure of the Shimura class group as follows: Suppose that we
have computed maximal curves corresponding to the action of α1, . . . ,αt ∈ C, and we want to find
new maximal curves by computing (ℓ,ℓ)-isogeny graphs starting from these curves. Then if C(ℓ) is
the set of elements of the form (I ,ℓ) in C, then the number of maximal curves that we can find in this
way is the cardinality of the subgroup generated by the αi and C(ℓ). In particular, as soon as we reach
this number, we can stop the computation since it will not yield any new maximal curves. This is
particularly useful when ℓ divides the index, because then we avoid some endomorphism tests. In the
isogeny graph computation done by AVIsogenies, each node is computed twice since there are two
edges between adjacent nodes (corresponding to the isogeny and the dual). Here, since we know the
number of nodes, we can abort the computation early.

We thus obtain the following algorithm:

Algorithm 5.8.5 : Finding all maximal curves from one maximal curve.

INPUT: An ordinary abelian surface A/k with CM by (OK ,Φ).

OUTPUT: All abelian surfaces over k with CM by (OK ,Φ).

48



1) Precomputation: Compute a set of generators of the Shimura class group with relative
norm ℓ as small as possible. (The set is not chosen to be minimal; on the contrary, we
want some redundancy.) For each of the generators, compute the extension degree of the
field of definition of the geometric points of the kernel corresponding to this generator.

2) For each generator of (relative) norm ℓ dividing the index, replace the previous degree by
the degree of the extension where the ℓe -torsion lives. (Usually e is the ℓ-valuation of the
index, but the tricks from §5.5 can sometimes reduce it.)

3) Sort the generators by the corresponding degrees to get a list (g1, . . . , gn).

4) For each generator gi on the list, let ℓi be its norm and do:

(a) Compute the surfaces (ℓi ,ℓi )-isogenous to the one already found. If ℓi divides the
index, then do an endomorphism ring computation from §5.5 and keep only the
maximal curves.

(b) Repeat until the number of maximal abelian surfaces equals |〈C(ℓ1), . . . ,C(ℓi )〉|. ♦

5.8.1 Complexity

For the horizontal step, the isogeny computation involves primes of size logarithmic in ∆, so the
cost of this step is quasi-linear in the number eO(∆1/2

0 ∆
1/2
1 ) of maximal curves times the cost of an

operation in the field we work with.
For the CRT method, this is under the Assumption above, but see Remark 5.8.3.

5.9 Perspectives

The cost of the endomorphism ring computation depends on the size of the prime powers dividing
the index [OK :Z[π,π]]. Gaëtan Bisson developed in [Bis11] a subexponential algorithm to compute
the endomorphism ring of an abelian surface, extending previous work in genus 1 by him and Andrew
Sutherland [BS09]. We briefly recall how this method work: If O1 is a suborder of O2 one can find
relations in the class group of O2 that are not relations in the class group of O1. One can also find such
relations when replacing the class groups by Shimura class groups, see [BS13]. Then if one starts with
an abelian variety A with order either O1 or O2, and one follows horizontal isogenies given by these
relations, either one goes back to A, in which case the endomorphism ring has to be O2, or one does
not loop back to A, in which case the endomorphism ring has to be O1.

Since we still need to take ℓ-isogenies for ℓ | [OK :Z[π,π]] in the going-up step, this approach is
mainly interesting when the index is divisible by a power of a prime. Even if this is not the case, for
the going-up step we have to work with extensions of degree at most ℓ2 (the degree of the extensions
where the geometric points of rational isogenies live), while computing the action of endomorphisms
on the full ℓ-torsion can requires to go to a degree up to ℓ4.

Gaetan Bisson, Kristin Lauter and Damien Robert have developed a yet unpublished method that
combines the going-up algorithm with the endomorphism ring algorithm. Roughly speaking, with
the notations from above, in the absence of a loop, we know that we have CM by O1. Suppose that
the index of O2 in O1 is a prime ℓ, and that we want to find an abelian variety with CM by O2. If B is
the end point of the isogeny path, we check for two ℓ-isogenies, one starting from A and one starting
from B , that go to the same end point C . Then, under some assumptions, C has indeed CM by O2.

49



Once we have a maximal curve, we have seen in §5.6 that if a prime ℓ divides the index [OK :
Z[π,π]], it can be hard to know whether we have an horizontal isogeny or a vertical one. In [Ion12],
Sorina Ionica gave a method based on the Tate pairing (in the same spirit as [IJ10]) of the points of the
kernel of the isogeny to determine in advance in which case we are.

We have seen in §5.6 that the going-up method may fail, because we are limited to isogenies with
maximal isotropic kernel. Recent progress about using real multiplication to compute isogenies with
cyclic kernels [Rob13] give hope about always being able to go up. In this context, there is work by
Sorina Ionica to extend her algorithm in [Ion12] in order to be able to determine if a cyclic isogeny
will go up according to the value of the Tate pairing of its generator (and not just determine if an
isogeny will stay maximal once we are on a maximal curve).

But we have seen in §5.7 that even finding a curve in the right isogeny class is too expensive.
One explanation for this is that we try to compute the class polynomials (describing a scheme of
dimension 0) directly from the moduli space of dimension 3 of all abelian surfaces. By contrast, in the
elliptic curve case, the algorithm searches a space of dimension 1 for elements of a space of dimension 0.
It would be interesting to find convenient subspaces of the moduli space of smaller dimension, and
to work over them. One example would be to use Humbert surfaces, which are of dimension 2, or
Gundlach invariants, as proposed in [LY11]. Heuristically, among the p3/2 curves in the isogeny class,
we would expect Ω(p) to have maximal real multiplication OK0

. Since the Hilbert moduli space for
OK0

is of dimension 2, we would expect to find a curve in the right isogeny class by working inside the
Humbert surface in time quasi-linear in the size of p.

Of course, this would require an algorithm to obtain the equations of the Humbert surface. Poten-
tially, all three methods could be adapted to obtain such equations (see [Gru10]).

50



6 The p-adic method

6.1 Overview

We briefly recall how the p-adic method works.

Algorithm 6.1.1 :

INPUT: A primitive quartic CM field K with a CM-type Φ, and a CRT prime p for K .

OUTPUT: Igusa class polynomials Hi (X ), i = 1,2,3, in K r
0 [X ].

1) Find a curve with CM by OK over Fp .

2) Lift the invariants of this curve toQp up to a certain precision.

3) Use horizontal isogenies coming from the action of the type norm overQp to recover the
other maximal curves overQp .

4) Use LLL to recover the Igusa class polynomials in K r
0 [X ] from the invariants. ♦

We note that since p is a CRT prime, p splits completely in K r
0 , and if p is a prime above p, then

the completion of K r
0 at p is isomorphic to Qp . Hence it makes sense to recover coefficients of K r

0
insideQp .

We have already seen in Chapter 5 most of the steps of these algorithm. We also refer to Chapter 7
which uses very similar tools.

The only new step is the lifting, which we describe now.

6.2 Computing the canonical lift of an abelian surface

By definition, the canonical lift preserves the endomorphism ring, and by functoriality the isogenies.
To compute the canonical lift of A, a standard method is to find a cycle of isogenies from A, and to
carry out multivariate Newton iterations to lift this cycle. This typically yields a method to compute
a canonical lift in a quasi-linear time in the precision.

For instance, one can use the path given by the Frobenius (or the Verschiebung). With elliptic
curves, lifting the corresponding isogeny path amounts to lifting solutions for the modular polynomial
of degree p.

6.2.1 Characteristic 2

When p = 2, one can use the arithmetic-geometric mean (AGM, in genus 1) or Borchardt mean (in
genus 2) to lift an abelian surface defined over an extension F2d . The interpretation of the Borchardt
mean as coming from the duplication formulæ on ϑ-constants (see §4.2) show that the it yields a cycle
of 2-isogenies, so it fits in the preceding framework.

51



This idea was suggested by Mestre in [Mes02]. Rather than working directly with ϑ-constants, in
[GHK+06] the authors use the Richelot correspondence, which is the geometric realisation of the
Borchardt mean on hyperelliptic curves.

It is remarkable that the Borchardt mean, which appears in the analytic method, can also be used
p-adically.

6.2.2 Characteristic p > 2

In [CKL08], the authors develop a degree 3 correspondence on ϑ-constants in order to lift an abelian
surface over F3d . This method has been extended to all characteristics in [CL09] (although the authors
do not mention the applications to class field computation). We note that the initialising step of this
last algorithm uses an expensive Gröbner basis algorithm. This initialising step has been (implicitly)
improved in [FLR11; LR10].

Of course, one could also use the action of the Shimura class group to compute cycles and lift these
cycles (by lifting the kernel of the isogenies). This would have the advantage of already doing part of
the job of the horizontal isogenies inQp .

6.3 Complexity

In [GHK+06], the authors start with an abelian curve with CM byOK over the fieldF2d with d “small”.

They use Richelot isogenies to lift in time quasi-linear in the precision P (which is eO(∆1/2
0 ∆

1/2
1 )).

However, since at the time they did not have access to isogenies in dimension 2, to recover the class
polynomials from the lifted invariant they use an LLL algorithm to compute its minimal polynomial.
They find a complexity in eO(D5P ) where D = eO(∆1/2

0 ∆
1/2
1 ) is the degree of the class polynomials. In

total this gives a quasi-cubic algorithm in the size of the class polynomials.
Nowadays, we can use isogenies to compute the conjugates directly, see §5.8). We need D isogenies

of logarithmic degree working at precision P , for a quasi-linear cost.
However, what is hidden in [GHK+06] is the cost of finding a CM curve over Fp . By the analysis

done in §5.7, this is actually the dominant step and is not quasi-linear (except if the ideas of §5.9 prove
fruitful)!

52



7 The CRT method

7.1 Overview

We recall how the CRT method work:

Algorithm 7.1.1 :

INPUT: A primitive quartic CM field K with a CM-type Φ, and a collection of CRT primes PK for
K .

OUTPUT: Igusa class polynomials Hi (x), i = 1,2,3, either in K r
0 [x] or reduced modulo a prime q.

1) Loop through CRT primes p ∈ PK :

(a) Enumerate hyperelliptic curves C of genus 2 over Fp until a curve in the right
Fp -isogeny class (up to a quadratic twist) is found.

(b) Try to go up to a maximal curve from C ; if this step fails, go back to Step 1(a).

(c) From a maximal curve C , compute all other maximal curves.

(d) Reconstruct the class polynomials Hi (x)modulo p from the Igusa invariants of the
set of maximal curves.

2) Recover Hi (x), i = 1,2,3 in K r [x] or modulo q using the (explicit) CRT method once we
have computed Hi (x)modulo p for enough primes p. ♦

The CRT algorithm terminates when the lifted class polynomials (with denominators recovered via
LLL) are constant from one CRT prime to the next. The probability that the class polynomials are
correct when this happens was estimated in [FL08, Remark 7.2].

Finding irreducible factors Computing irreducible factors of the class polynomials directly allows
to recover them faster since they have smaller coefficients, so that we need less precision.

We know that the orbits under the action of the type norm give the irreducible factors of the class
polynomials (or more precisely the irreducible components of the CM locus) [Str10, Chapter 3]. It is
easy to compute these orbits modulo each CRT prime p using the tools from Chapter 5. However we
need to be able to glue the correct orbits together when doing the CRT. For this, one possible way is
to use the “trace trick” from [ES10b]. In this method, the trace of the class polynomials is computed
(for instance via the analytic method), and we use it to glue correctly the irreducible component across
several CRT primes. This “trick” only work because the trace is in practice much smaller than the
other coefficients.

7.2 Strategies for sieving CRT primes p

Since we have some latitude in the CRT primes p, we can sieve the primes to use. For instance, we
will reject a prime p if the size of the isogeny class is too small, or if computing the endomorphism

53



ring or going up is too costly for this prime. We use a dynamic approach: we reevaluate each discarded
CRT prime against the new ones found. In this section, we explain how we estimate the difficulty of
the computation associated to one CRT prime.

7.2.1 Cost of testing if a curve is maximal

Before using a prime for the CRT computation, we first need to check whether testing if a curve is
maximal is too expensive. For this, we compute which subgroups A[ℓe] are needed to compute to
test if A is maximal as in §5.5, and in which extensions the points of these subgroups are defined. As
already remarked, for ℓ dividing the index [OK :Z[π,π]], e is usually the valuation of ℓ in the index,
but some of the tricks from §5.5 can reduce it.

If the extension in which we need to do the computation is too large, we exclude the prime p. We
will explain later how we estimate whether the computation of the endomorphism ring is too costly
compared to the current parameters.

7.2.2 Size of the isogeny class

For each CRT prime p, the first phase of the algorithm relies on finding a genus 2 curve over Fp in
the right isogeny class. The larger the isogeny class, the larger the probability of finding a curve in the
right isogeny class quickly. There are p3 isomorphism classes of genus 2 curves over Fp , and since the
area of Figure 10.1 in [LPP02] is 32/3, there are approximately (32/3)p3/2 isogeny classes. We could

then expect that on average, each isogeny class has roughly 3 p3/2

32 curves.
However it happens that, for a fixed primitive CM field K , for some primes p the isogeny class

corresponding to the Frobenius element π can be unfortunately small. In those cases, the algorithm
has a lower chance of finding a curve in the isogeny class quickly, so it is most likely more efficient for
the algorithm to skip that CRT prime and proceed to another prime where the chance of finding a
curve in the right isogeny class is bigger.

To determine whether a potential CRT prime should be skipped or not, we need to estimate the
size of the isogeny class. If the estimated size is not at least a certain fraction of p3/2 then we skip the
prime. The size of the isogeny class is given as

∑

O #C(O), the sum of the sizes of the Shimura class
groups associated to all the orders containing Z[π,π]which are stable under complex conjugation. Of
course we do not compute the Shimura class groups in order to make this estimate (even computing
only the class group can be too expensive for suborders of large discriminant), but we need to estimate
their sizes.

Lemma 6.3 in [LPP02] can be used to calculate the size of the isogeny class exactly. However it
requires computing the lattice of suborders of the maximal order OK which contain Z[π,π] and this
is already too expensive. In practice, it is enough to estimate the size of the isogeny class using only
the factorisation of the index [OK :Z[π,π]] and a calculation involving only the order Z[π,π].

We compute using the proof of Lemma 6.3 in [LPP02]

#C(Z[π,π]) =
c#Cl(Z[π,π])Reg(Z[π,π])

2#Cl(Z[π+π])Reg(Z[π+π])

where c is the size of the co-kernel of the norm map from the class group of Z[π,π] to the narrow
class group of Z[π+π]. In the following we will use c = 1 in order to have a lower bound for
#C(Z[π,π]). Moreover Equation (6.1) of [LPP02] gives us

#Cl(Z[π,π])Reg(Z[π,π]) = #Cl(OK )Reg(OK )[ bO
∗
K : bZ[π,π]∗].

54



If I is the index [OK : Z[π,π]], we can compute [ bO∗K : bZ[π,π]∗] as [(OK/I )∗ : (Z[π,π]/I )∗]. It is
easy to compute #(Z[π,π]/I )∗; since it is a torsion group and I is prime to p = [Z[π,π] :Z[π]] it is
equal to
∏

ℓ #(Z[π]/I )∗
ℓ
. Now if ℓe is a prime power dividing I , and χπ =

∏

P ei
i the factorisation of

χπ mod ℓ then

#(Z[π]/I )∗ℓ =
∏

i

(ℓdeg Pi eei − ℓdeg Pi (eei−1)).

Likewise, we can compute #(OK/I )∗
ℓ

by looking at the decomposition of ℓ in OK .
Now we use the following estimate: for each divisor d of the index I , the contribution of orders
O such that [O : Z[π,π]] = d to the estimate of the number of curves in the isogeny class is
#C(Z[π,π])/d . So we estimate the number of curves as

∑

d |[OK :Z[π,π]]

#C(Z[π,π])/d

(for d not divisible by an ℓ where we can’t go up). We refer to [LR12] to how this estimate compares
to some real examples.

7.2.3 Estimating the probability of going up

In practice, we are not interested in the size of the isogeny class, but in the number of curves in the
isogeny class from which we can go up. From numerous experiments, we have observed that most of
the cases where we can’t go up for a particular ℓ arise because no rational (ℓ,ℓ)-isogenies exist at all.
But we can easily detect this case by using Proposition 5.4.1.

We can thus estimate the number C of curves from which we can go up as
∑

d |[OK :Z[π,π]]

#C(Z[π,π])/d

but where we restrict the divisors d to be such that [OK : Z[π,π]]/d is not divisible by a prime ℓ
where we cannot go up.

Now if C0 is the estimated number of curves in the isogeny class, we estimate that we need C0/C
going up tries before succeeding. Now we keep the prime p if C0 is not too small, and if the cost of
doing all these endomorphism ring computations is at most the time needed to find a curve in the
isogeny class where we can go up. (As we will see in the complexity analysis, the endomorphism ring
computation is not the dominant phase, so in practice this condition is almost always satisfied).

7.2.4 A dynamic selection of primes

When we select a prime p, we hope that the size C0 of the isogeny class (or more precisely the number
of curves C where we can go up) is approximatively the average size Θ(p3/2) of an isogeny class.
However, for small primes p, even if the isogeny class is small, it could be worth it to go through all
p3 curves corresponding to p rather than through q3/2 curves for a larger prime q .

So we use a dynamic approach: for each new CRT prime p, we compute C/p3, the expected
probability of finding a curve where we can go up. We also look at the corresponding probabilities for
the previously discarded CRT primes, and we use the prime giving the maximum probability provided
it is more than 1/16 p−3/2.

55



7.3 Complexity

In this section, we give a mostly heuristic analysis of how Algorithm 5.6.4 (the going-up algorithm)
and Algorithm 5.8.5 (the algorithm to find all maximal curves from one maximal curve) affect the
asymptotic complexity of Algorithm 7.1.1.

Recall that the degree of the class polynomials is eO(∆1/2
0 ∆

1/2
1 ), while we use the observed bound of

eO(∆1/2
0 ∆

1/2
1 ) for the coefficient height.

According to [BGL11, §6.4], the smallest CRT prime is of size eO(∆0∆1). We need eO(∆1/2
0 ∆

1/2
1 )

CRT primes, and an analysis using [LO77], as in [BBE+08, §5, Lemma 3], shows that the largest
prime is also eO(∆0∆1). We remark that the sieving phase does not affect the size of the largest prime
(apart from the constant in the big O) as long as we sieve a positive density of CRT primes.

In contrast, the complexity of the endomorphism ring computation and the going-up phase involves
the largest prime power dividing the index [OK :Z[π,π]]. According to Proposition 6.1 of [FL08]
we have that [OK :Z[π,π]]⩽ 16 p2/

p
∆. For the size of the CRT prime we are considering, we see

that [OK :Z[π,π]] = eO(∆0∆
3/2
1 ). We fix ϵ= 1/2. Assuming that the index is uniformly distributed,

[Dic30] showed that there is a positive density of CRT primes where the largest prime power dividing
the index is O(∆ϵ/100

0 ∆ϵ/100
1 ). By the complexity analysis of §§5.5.5 and 5.6.3, we see then that there

is a positive density of primes where these algorithms take time at most O(∆ϵ0∆
ϵ
1). This justifies the

assumption made in §5.7.
We then let p = eO(∆0∆1) be a CRT prime. There are O(pp) maximal curves, so we expect

the isogeny class to be of size Θ(p3/2), see [BGL11, Heuristic 6.6]. Up to isomorphism over the
algebraic closure, there are p3 genus-2 curves over Fp . The original CRT algorithm of [EL10; FL08]
looped through all p3 geometric isomorphism classes of curves and tested whether the corresponding
endomorphism ring is maximal. This takes time eO(∆3

0∆
3
1)+O(∆3/2+ϵ

0 ∆3/2+ϵ
1 ) per CRT prime. Since

eO(∆1/2
0 ∆

1/2
1 ) CRT primes are needed, we find a total cost of eO(∆7/2

0 ∆
7/2
1 ) given our choice of ϵ.

Of course, once a maximal curve is found, we can use horizontal isogenies to find the others as
explained in Chapter 5. This approach was suggested in [BGL11] and fully developed in [LR12]. It
yields a cost of eO(∆5/2

0 ∆
5/2
1 )+O(∆3/2+ϵ

0 ∆3/2+ϵ
1 ) per CRT prime. The total cost is then eO(∆3

0∆
3
1).

Lastl by summing up the going-up steps, if X is the number of going-up steps we need to try on
average, the cost per CRT prime is eO(X (∆3/2

0 ∆
3/2
1 +∆ϵ0∆

ϵ
1)). At best, X =O(1), and we have a total

cost of eO(∆2
0∆

2
1) from CRT primes. So at best we have a quasi-quadratic complexity, while the CRT

itself is quasi-linear, and thus negligible. We see that we are still far from quasi-linearity as achieved by
the analytic method. At worst, X =O(p) (number of random tries in the isogeny class until we find a
maximal one directly), and we recover the quasi-cubic complexity of the previous method.

We see that the step described in §5.7 dominates the complexity of the CRT method. So to improve
its complexity, one would need to implement some of the methods suggested in §5.9. Even with the
quasi-linear method to find a curve with CM by OK in Fp suggested at the end of this section, since we

need to use eO(∆1/2
0 ∆

1/2
1 ) CRT primes, we would still get a cost of eO(∆3/2

0 ∆
3/2
1 ), which would still not

be quasi-linear.

56



8 Implementation and examples

Currently, the analytic method in genus 2 is the fastest one available, so we concentrate on this
approach in the following.

8.1 Implementation and parallelisation

The implementation by A. Enge and E. Thomé of the quasi-linear complex-analytic algorithms will
soon be available at

http://cmh.gforge.inria.fr/.

The software implements the different steps of Algorithm 4.1.1 as follows:

• Steps 1) to 3) of Algorithm 4.1.1 are performed by a script in PARI/GP[Bel12], which does all
computations symbolically, and the running time of which is essentially negligible.

• The computation of ϑ-constants in Step 4) of Algorithm 4.1.1 is done by a C program, based on
the library GNU MPC[EGT+12], itself using the GNU MPFR[HLP+12] and GNU MP[Gra13]
libraries. Newton lifting is used for this step from a base precision of 2000 bits, and it is
parallelised through MPI.

• Reconstruction of the class polynomials from the numerical values of the Igusa invariants is
done inside the same C program, relying on the library MPFRCX[Eng12] for basic operations
on polynomials using the FFT and asymptotically fast algorithms on trees of polynomials. In
a preparatory step, the leaves of the tree for H1 are filled with the linear factors of the class
polynomial, those for bHk , k = 2,3, are filled with the values of jk . Let the subscripts l and r
denote the left and the right descendant, respectively, of a given node. Then an inner node
n(1) in the tree for H1 is computed as n(1) = n(1)

l
· n(1)r , while an inner node n(k) in the tree

for bHk , k = 2,3, is obtained as n(k)
l
· n(1)r + n(1)

l
· n(k)r , where n(1) denotes the node at the same

position in the tree for H1; for details, see [GG99, Algorithms 10.3 and 10.9]. By first combining
pairs of complex-conjugate leaves in a preprocessing step, all computations are in fact carried
out with real floating point polynomials, see [EM03]. So if at a given level the tree for H1
contains m nodes, all nodes at this level of the three trees can be obtained with 5m independent
multiplications, which are parallelised using MPI.

• Recognition of the polynomial coefficients as elements in K r
0 is also embedded in the C program,

using FPLLL[CPS13] for the LLL step.

• Validation of the obtained class polynomials is performed by computing a Weil number π
above a prime p ≈ 2128, constructing a curve over Fp having as endomorphism ring the ring
of integers of K using Mestre’s algorithm [Mes91], and verifying that the cardinality of the
Jacobian matches NK/Q(1±π). This step is done in PARI/GP and also has a negligible cost.

In the following we report on the performance of these different steps, illustrated by both small and
large examples.

57

http://cmh.gforge.inria.fr/


8.1.1 Computation of ϑ-constants

We report timing results for the computation of fundamental ϑ-constants for two arbitrary period
matrices. Table 8.1 shows that already our implementation of the relatively simple naive algorithm
presented in §4.2.1 may be several orders of magnitude faster1 than MAGMA-2.19.4, the performance
improvement ratio depending on the period matrix. Newton lifting is preferable above some cut-off
value for the precision, here 16000 and 4000 bits, respectively. The naive algorithm is rather sensitive
to the period matrix; generally speaking, it converges the faster the larger the imaginary parts in Ω
are, which correspond to smaller q0, q1, q2. A noticeable difference between our naive algorithm
from §4.2.1 and the implementation in MAGMA is that the favorable cases are not the same. This is
most likely due do different choices of summation regions, as briefly discussed in §4.2.1. We note that
the timings of Newton lifting depend much less on the concrete period matrix entries than those for
the naive method.

Ω=
�−1+5i

2
i
6

i
6

−1+7i
2

�

Ω=
�

2+10i
7

1+2i
6

1+2i
6

4
10 + 8i

�

bits MAGMA CMH-naive CMH-Newton MAGMA CMH-naive CMH-Newton
≈ 211 0.46 0 0.02 0.03 0 0.02
≈ 212 3.4 0.01 0.04 0.17 0.04 0.03
≈ 213 26 0.07 0.08 1.1 0.20 0.09
≈ 214 210 0.31 0.24 8.2 1.0 0.26
≈ 215 1700 1.3 0.69 60 5.2 0.75
≈ 216 6.4 2.0 430 27 2.2
≈ 217 32 5.7 3100 130 6.0
≈ 218 160 16 720 16
≈ 219 770 39 3100 40
≈ 220 3200 98 96
≈ 221 240 230
≈ 222 560 530
≈ 223 1400 1300
≈ 224 3200 3000
≈ 225 7600 7100
≈ 226 16000 16000

Table 8.1: Calculation of ϑ0(τ) (Intel i5-2500, 3.3GHz; MAGMA-2.19.4; CMH-1.0).

Notice that the running times for Newton lifts are consistent with the theoretical complexity of
O(M(N ) logN ). The code in CMH implements the approach using finite differences for estimating
the Jacobian matrix as described in §4.2.4, as well as an algorithm which computes the exact Jacobian
matrix along with the Borchardt mean as given in [Dup06, Algorithme 16]. Both converge equally
well, but the latter approach is computationally more expensive by roughly 45 %, accounted for by a
larger number of multiplications.

8.1.2 Breakdown of timings for small class polynomial examples

Table 8.2 illustrates our class polynomial computations on relatively small examples.
Our code distinguishes orbits of the roots of the Igusa class polynomials under complex conjugation.

For instance, there are four real roots and 58 pairs of complex-conjugate roots in the second example, so

1Such a quadratic, yet efficient implementation was used by T. Houtmann to compute class polynomials of degree up
to 500 (personal communication, no reference exists).

58



K =Q[X ]/(X 4+ 144X 2+ 3500)
C=NΦr (ClK r ) =Z/2Z×Z/30Z
preparation 0.2
base, 2000 bits 0.6
lift, 3984 bits 0.8
lift, 7944 bits 2.1
reconstruction attempt 0.1
lift, 15846 bits 6.2

H1, bH2, bH3 ∈C[X ] 0.1
H1, bH2, bH3 ∈K r

0 [X ] 3×0.3
check 0.8
Total (incl. I/O) 12.4

K =Q[X ]/(X 4+ 134X 2+ 712)
C=NΦr (ClK r ) =Z/2Z×Z/60Z

preparation 0.3
base, 2000 bits 1.1
lift, 3988 bits 1.6
lift, 7958 bits 4.4
reconstruction attempt 0.1
lift, 15886 bits 13.1
reconstruction attempt 0.2
lift, 31744 bits 38.7
H1, bH2, bH3 ∈C[X ] 0.6
H1, bH2, bH3 ∈K r

0 [X ] 1.8 + 2×1.4
check 0.7
Total (incl. I/O) 69.2

Table 8.2: Timings in seconds for two examples (on one Intel i5-2500, 3.3GHz

that altogether we need to carry out 62 lifts of ϑ-constants. Instead of targeting a given precision based
on arguments as developed in [Str09], we simply carry out successive lifting steps until the polynomial
reconstruction succeeds. This explains the time needed for failed reconstruction attempts in Table 8.2,
which could be avoided if we had a sharper bound on the required precisions. It regularly occurs, even
though this is not illustrated by the examples here, that the reconstruction of the class polynomial
H1 ∈K r

0 [X ] succeeds one lifting step before that of bH2, bH3 ∈K r
0 [X ]. This can be explained by the

relative size of the invariants considered by Streng, see [Str10, Appendix 3].
The timings indicated as “preparation” and “check” in Table 8.2 correspond to the number theoretic

calculations performed in PARI/GP. The preparation time covers the enumeration of NΦr (ClK r )⊆ C,
and the creation of the relevant set of reduced period matrices. Checking means finding a Weil number
over a 128-bit prime and generating a genus 2 curve the Jacobian of which has complex multiplication
by the maximal order of K .

8.2 A large example

Our currently largest example is K =Q[X ]/(X 4+ 1357X 2+ 2122), containing K0 =Q(
p

1832961) of
class number 8. Its Shimura class group is C=NΦr (ClK r )≃Z/2Z×Z/2Z×Z/4402Z of size 17608.
On one core of an Intel Core i7-2620M clocked at 2.7 GHz, the structure of the class group is obtained
with our PARI/GP script in only 100 ms, while the computation of the period matrices and their
symbolic reduction into the fundamental domainF2 takes 230 s.

The associated ϑ-constants consist of 8804 pairs of complex-conjugate values. For the first eleven
Newton iterations up to a precision of about 4000000 bits, we used 640 cores Intel Xeon X5675 at
3.07 GHz; for the last iteration, we switched to a machine with only 160 cores Intel Xeon E7-8837 at
2.67 GHz, but with 640 GB of main memory. Table 8.3 gives the timings (in seconds) for the Newton
lifts of one particular period matrix. The small value of δ, estimated as explained at the end of §4.2.4,
and which quickly stabilises at a more or less constant value as predicted by Theorem 4.2.10, shows
that the effective precision indeed almost doubles in each step.

The lifting step accounts for a total of about 510 CPU days, but thanks to its easy parallelisation on

59



precision δ time
2 000 — 0.04
3 990 10 0.1
7 958 22 0.2

15 882 34 0.7
31 724 40 1.8
63 408 40 5.2

126 772 44 14
253 504 40 42
506 966 42 99

1 013 890 42 220
2 027 738 52 510
4 055 434 22 1100
8 110 826 42 3000

Table 8.3: Time for lifting steps for example with #C= 17608.

160 to 640 cores, it was finished in less than 3 days wall-clock time.
The computation of the floating point polynomials H1, bH2 and bH3 was carried out at a precision

of 7536929 bits (the lowest lifting precision reached for one of the period matrices). The first step
consists of 5 · 8804/2 = 22010 multiplications of monic polynomials of degree 2, which can be
arbitrarily parallelised; we used again the machine with 160 cores and 640 GB of memory. From
degree 1024 on, we switched to a machine with 40 Intel Xeon E7-4870 cores at 2.4 GHz and 1 TB of
memory. In degree 4096, this allowed to use one Karatsuba step, replacing the 10 multiplications by
30 multiplications of half the degree carried out in parallel. In degree 8192, this was not possible due
to the amount of memory used in the underlying FFT multiplications. In the last step, we needed to
multiply a degree 16384 polynomial with a degree 1224 degree polynomial. Using 3-way Toom–Cook,
we could replace the 5 multiplications by 25 multiplications of size 3 times smaller. The wall-clock
time of this polynomial reconstruction step was about 1 day.

Recognising one coefficient of the floating point polynomials as an element of K r
0 took about

2000 s per coefficient on one Intel Xeon X5675 core at 3.07 GHz. The total CPU time for the 52825
coefficients was thus about 1200 CPU days; with up to 960 cores working in parallel, this took less
than 2 wall-clock days.

The uncompressed storage size of the three resulting polynomials in base 10 is about 56 GB. The
common denominator of the coefficients of H1 has 3465 distinct prime factors, the largest one being
242363767. It occurs to powers 2 in H1 and 4 in bH2 and bH3, consistent with the fact that the power of
h10 in the denominator of j2 and j3 is 2 instead of 1 for j1.

60



input degree # multiplications wall-clock time (s)
2 22 010 560
4 11 005 440
8 5 500 470

16 2 750 530
32 1 375 510
64 690 630

128 345 830
256 170 1 700
512 85 2 200

1 024 45 7 800
2 048 20 8 600
4 096 10 9 000
8 192 5 37 000

16 384 5 14 000

Table 8.4: Polynomial reconstruction timings for example with #C= 17608.

61



Bibliography

[ABL+12] J. Anderson, J. S. Balakrishnan, K. Lauter, J. Park, and B. Viray. “Comparing arithmetic
intersection formulas for denominators of Igusa class polynomials.” 2012 (cit. on p. 12).

[Atk88] A. Atkin. “The number of points on an elliptic curve modulo a prime.” In: manuscript,
Chicago IL (1988) (cit. on p. 6).

[Bac90] E. Bach. “Explicit bounds for primality testing and related problems.” In: Math. Comp.
55.191 (1990), pp. 355–380. ISSN: 0025-5718. DOI: 10.2307/2008811 (cit. on p. 47).

[Bel12] K. Belabas et al. PARI/GP. 2.5.3. http://pari.math.u-bordeaux.fr/. Bordeaux,
Oct. 2012 (cit. on p. 57).

[BBE+08] J. Belding, R. Bröker, A. Enge, and K. Lauter. “Computing Hilbert Class Polynomials.”
In: Algorithmic Number Theory, 8th International Symposium, ANTS-VIII, Banff, Canada,
May 17-22, 2008, Proceedings. Ed. by A. J. van der Poorten and A. Stein. Vol. 5011.
Lecture Notes in Comput. Sci. Springer–Verlag, 2008, pp. 282–295 (cit. on pp. 8, 9, 56).

[BS09] G. Bisson and A. V. Sutherland. “Computing the endomorphism ring of an ordinary
elliptic curve over a finite field.” In: Journal of Number Theory (2009) (cit. on p. 49).

[Bis11] G. Bisson. “Endomorphism Rings in Cryptography.” PhD thesis. Technische Univer-
siteit Eindhoven and Institut National Polytechnique de Lorraine, July 2011. ISBN:
978-90-386-2519-5. Url: http://repository.tue.nl/714676 (cit. on p. 49).

[BCR12] G. Bisson, R. Cosset, and D. Robert. AVIsogenies, a library for computing isogenies
between abelian varieties. http://avisogenies.gforge.inria.fr. 2012 (cit. on
pp. 38, 41, 47).

[BS13] G. Bisson and M. Streng. “On polarised class groups of orders in quartic CM-fields.”
Preprint. 2013 (cit. on p. 49).

[Bor76] C.-W. Borchardt. “Das arithmetisch-geometrische Mittel aus vier Elementen.” In:
Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin (Nov.
1876), pp. 611–621 (cit. on p. 29).

[Bor78] C.-W. Borchardt. “Theorie des arithmetisch-geometrischen Mittels aus vier Elementen.”
In: Mathematische Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin
(1878), pp. 33–96 (cit. on p. 29).

[BB87] J. M. Borwein and P. B. Borwein. Pi and the AGM. John Wiley and Sons, 1987 (cit. on
p. 31).

[Bre76] R. P. Brent. “Fast Multiple-Precision Evaluation of Elementary Functions.” In: Journal
of the ACM 23.2 (1976), pp. 242–251 (cit. on p. 28).

[BZ10] R. Brent and P. Zimmermann. Modern Computer Arithmetic. Vol. 18. Cambridge
Monographs on Applied and Computational Mathematics. Cambridge University
Press, 2010, 221 pages (cit. on p. 32).

62

http://dx.doi.org/10.2307/2008811
http://pari.math.u-bordeaux.fr/
http://repository.tue.nl/714676
http://avisogenies.gforge.inria.fr


[Brö08] R. Bröker. “A p-adic algorithm to compute the Hilbert class polynomial.” In: Mathe-
matics of Computation 77.264 (2008), pp. 2417–2435 (cit. on p. 8).

[BGL11] R. Bröker, D. Gruenewald, and K. Lauter. “Explicit CM theory for level 2-structures
on abelian surfaces.” In: Algebra Number Theory 5.4 (2011), pp. 495–528. DOI: 10.
2140/ant.2011.5.495 (cit. on pp. 11, 20, 21, 42, 48, 56).

[BY06] J. H. Bruinier and T. Yang. “CM-values of Hilbert modular functions.” In: Invent. Math.
163.2 (2006), pp. 229–288. ISSN: 0020-9910. DOI: 10.1007/s00222-005-0459-7
(cit. on p. 12).

[CPS13] D. Cadé, X. Pujol, and D. Stehlé. FPLLL. 4.0.2. http://perso.ens-lyon.fr/damien.
stehle/fplll/. Jan. 2013 (cit. on p. 57).

[CQ05] G. Cardona and J. Quer. “Field of moduli and field of definition for curves of genus
2.” In: ed. by T. Shaska. Vol. 13. Lecture Notes Series on Computing. Papers
from the conference held at the University of Idaho, Moscow, ID, May 26–28, 2005.
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005, pp. 71–83. ISBN:
981-256-459-4. DOI: 10.1142/9789812701640_0006 (cit. on pp. 7, 11).

[CKL08] R. Carls, D. Kohel, and D. Lubicz. “Higher-dimensional 3-adic CM construction.” In:
J. Algebra 319.3 (2008), pp. 971–1006. ISSN: 0021-8693. DOI: 10.1016/j.jalgebra.
2007.11.016 (cit. on pp. 11, 52).

[CL09] R. Carls and D. Lubicz. “A p-adic quasi-quadratic time point counting algorithm.” In:
Int. Math. Res. Not. IMRN 4 (2009), pp. 698–735. ISSN: 1073-7928. DOI: 10.1093/
imrn/rnn143 (cit. on pp. 11, 52).

[CHR08] J. Chaumine, J. Hirschfeld, and R. Rolland, eds. Algebraic geometry and its applications.
Vol. 5. Series on Number Theory and its Applications. Dedicated to Gilles Lachaud on
his 60th birthday. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008,
pp. xvi+513. ISBN: 978-981-279-342-3; 981-279-342-9.

[Coh93] H. Cohen. A course in algorithmic algebraic number theory. Vol. 138. Grad. Texts in
Math. Springer–Verlag, 1993 (cit. on p. 21).

[CLP+11] A.-C. Cojocaru, K. Lauter, R. Pries, and R. Scheidler, eds. WIN—women in numbers.
Vol. 60. Fields Institute Communications. Research directions in number theory,
Including the proceedings of the Banff International Research Station (BIRS) Workshop
held in Banff, AB, November 2–7, 2008. Providence, RI: American Mathematical
Society, 2011, pp. xii+288. ISBN: 978-0-8218-5226-2.

[Cos11] R. Cosset. “Applications des fonctions thêta à la cryptographie sur courbes hyperel-
liptiques.” http://tel.archives-ouvertes.fr/tel-00642951. Thèse. Université
Henri Poincaré - Nancy I, 2011 (cit. on pp. 30, 39).

[CR11] R. Cosset and D. Robert. Computing (ℓ,ℓ)-isogenies in polynomial time on Jacobians
of genus 2 curves. Cryptology ePrint Archive, Report 2011/143. 2011. Url: http:
//eprint.iacr.org/2011/143 (cit. on p. 39).

[Deu58] M. Deuring. Die Klassenkörper der komplexen Multiplikation. Vol. 2. Teubner Stuttgart,
1958 (cit. on p. 6).

[Dic30] K. Dickman. “On the frequency of numbers containing prime factors of a certain
relative magnitude.” In: Ark. Mat. Astr. Fys. 22A.10 (1930), pp. 1–14 (cit. on p. 56).

63

http://dx.doi.org/10.2140/ant.2011.5.495
http://dx.doi.org/10.2140/ant.2011.5.495
http://dx.doi.org/10.1007/s00222-005-0459-7
http://perso.ens-lyon.fr/damien.stehle/fplll/
http://perso.ens-lyon.fr/damien.stehle/fplll/
http://dx.doi.org/10.1142/9789812701640_0006
http://dx.doi.org/10.1016/j.jalgebra.2007.11.016
http://dx.doi.org/10.1016/j.jalgebra.2007.11.016
http://dx.doi.org/10.1093/imrn/rnn143
http://dx.doi.org/10.1093/imrn/rnn143
http://tel.archives-ouvertes.fr/tel-00642951
http://eprint.iacr.org/2011/143
http://eprint.iacr.org/2011/143


[Dup06] R. Dupont. “Moyenne arithmético-géométrique, suites de Borchardt et applications.”
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.
pdf. Thèse. École Polytechnique, 2006 (cit. on pp. 28–31, 58).

[Dup11] R. Dupont. “Fast evaluation of modular functions using Newton iterations and the
AGM.” In: Mathematics of Computation 80.275 (2011), pp. 1823–1847 (cit. on pp. 28,
31).

[EL10] K. Eisenträger and K. Lauter. “A CRT algorithm for constructing genus 2 curves over
finite fields.” In: ed. by F. Rodier and S. Vladut. Vol. 21. Séminaires et Congrès
[Seminars and Congresses]. preprint version at arXiv:math/0405305 [math.NT]. Paris:
Société Mathématique de France, 2010, pp. 161–176. ISBN: 978-2-85629-279-2 (cit. on
pp. 11, 39, 40, 56).

[Elk97] N. Elkies. “Elliptic and modular curves over finite fields and related computational
issues.” In: Computational perspectives on number theory: proceedings of a conference in
honor of AOL Atkin, September 1995, University of Illinois at Chicago. Vol. 7. Amer
Mathematical Society. 1997, p. 21 (cit. on p. 6).

[Eng09] A. Enge. “The complexity of class polynomial computation via floating point ap-
proximations.” In: Mathematics of Computation 78.266 (2009), pp. 1089–1107 (cit. on
p. 8).

[ES10a] A. Enge and A. Sutherland. “Class invariants by the CRT method, ANTS IX: Proceed-
ings of the Algorithmic Number Theory 9th International Symposium.” In: Lecture
Notes in Computer Science 6197 (July 2010), pp. 142–156 (cit. on p. 10).

[Eng12] A. Enge. MPFRCX — A library for univariate polynomials over arbitrary precision real or
complex numbers. 0.4.1. http://mpfrcx.multiprecision.org/. INRIA. July 2012
(cit. on p. 57).

[EGT+12] A. Enge, M. Gastineau, P. Théveny, and P. Zimmermann. GNU MPC — A library for
multiprecision complex arithmetic with exact rounding. 1.0.1. http://mpc.multiprecision.
org/. INRIA. Sept. 2012 (cit. on p. 57).

[EM03] A. Enge and F. Morain. “Fast Decomposition of Polynomials with Known Galois
Group.” In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes — AAECC-
15. Ed. by M. Fossorier, T. Høholdt, and A. Poli. Vol. 2643. Lecture Notes in Computer
Science. Berlin: Springer-Verlag, 2003, 254–264 (cit. on p. 57).

[ES10b] A. Enge and A. V. Sutherland. “Class invariants by the CRT method.” In: Proceedings
of the 9th Biennial International Symposium (ANTS-IX) held in Nancy, July 19–23, 2010.
Ed. by G. Hanrot, F. Morain, and E. Thomé. Vol. 6197. Lecture Notes in Computer
Science. Berlin: Springer, 2010, pp. 142–156. ISBN: 978-3-642-14517-9; 3-642-14517-5.
DOI: 10.1007/978-3-642-14518-6_14 (cit. on p. 53).

[ET13] A. Enge and E. Thomé. “Computing class polynomials for abelian surfaces.” In
preparation. 2013 (cit. on pp. 2, 11).

[FLR11] J.-C. Faugère, D. Lubicz, and D. Robert. “Computing modular correspondences
for abelian varieties.” In: Journal of Algebra 343.1 (Oct. 2011), pp. 248–277. DOI:
10.1016/j.jalgebra.2011.06.031. arXiv: 0910.4668 [cs.SC]. Url: http:
//www.normalesup.org/~robert/pro/publications/articles/modular.pdf.
HAL: hal-00426338 (cit. on p. 52).

64

http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://www.lix.polytechnique.fr/Labo/Regis.Dupont/these_soutenance.pdf
http://arxiv.org/abs/math.NT/0405305
http://mpfrcx.multiprecision.org/
http://mpc.multiprecision.org/
http://mpc.multiprecision.org/
http://dx.doi.org/10.1007/978-3-642-14518-6_14
http://dx.doi.org/10.1016/j.jalgebra.2011.06.031
http://arxiv.org/abs/0910.4668
http://www.normalesup.org/~robert/pro/publications/articles/modular.pdf
http://www.normalesup.org/~robert/pro/publications/articles/modular.pdf
http://hal.archives-ouvertes.fr/hal-00426338/


[FM02] M. Fouquet and F. Morain. “Isogeny volcanoes and the SEA algorithm.” In: Algorithmic
number theory (Sydney, 2002). Vol. 2369. Lecture Notes in Comput. Sci. Berlin: Springer,
2002, pp. 276–291. DOI: 10.1007/3-540-45455-1_23 (cit. on p. 9).

[FL08] D. Freeman and K. Lauter. “Computing endomorphism rings of Jacobians of genus 2
curves over finite fields.” In: Proceedings of the 1st Symposium (SAGA) held in Papeete,
May 7–11, 2007. Ed. by J. Chaumine, J. Hirschfeld, and R. Rolland. Vol. 5. Series
on Number Theory and its Applications. Dedicated to Gilles Lachaud on his 60th
birthday. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008, pp. 29–66.
ISBN: 978-981-279-342-3; 981-279-342-9. DOI: 10.1142/9789812793430_0002 (cit. on
pp. 11, 13, 39–43, 53, 56).

[Frö77] A. Fröhlich, ed. Algebraic number fields: L-functions and Galois properties. London:
Academic Press [Harcourt Brace Jovanovich Publishers], 1977, pp. xii+704.

[GG99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge, England:
Cambridge University Press, 1999 (cit. on pp. 32, 57).

[Gau04] P. Gaudry. “Algorithmes de comptage de points d’une courbe définie sur un corps fini.”
Preprint. 2004. Url: http://www.loria.fr/~gaudry/publis/pano.pdf (cit. on
p. 8).

[GHK+06] P. Gaudry, T. Houtmann, D. Kohel, C. Ritzenthaler, and A. Weng. “The 2-adic CM
method for genus 2 curves with application to cryptography.” In: Proceedings of the 12th
International Conference on the Theory and Application of Cryptology and Information
Security held in Shanghai, December 3–7, 2006. Ed. by X. Lai and K. Chen. Vol. 4284.
Lecture Notes in Computer Science. Berlin: Springer, 2006, pp. 114–129. ISBN:
978-3-540-49475-1; 3-540-49475-8. DOI: 10.1007/11935230_8 (cit. on pp. 11, 52).

[GS08] P. Gaudry and E. Schost. Hyperelliptic curve point counting record: 254 bit Jacobian.
June 2008. Url: http://webloria.loria.fr/~gaudry/record127/ (cit. on p. 6).

[GTT+07] P. Gaudry, E. Thomé, N. Thériault, and C. Diem. “A double large prime variation
for small genus hyperelliptic index calculus.” In: Mathematics of Computation 76.257
(2007), pp. 475–492 (cit. on p. 6).

[GKS11] P. Gaudry, D. R. Kohel, and B. A. Smith. “Counting Points on Genus 2 Curves with
Real Multiplication.” In: ASIACRYPT. Ed. by D. H. Lee and X. Wang. Vol. 7073.
Lecture Notes in Computer Science. Springer, 2011, pp. 504–519. ISBN: 978-3-642-
25384-3 (cit. on p. 6).

[GL12] E. Z. Goren and K. E. Lauter. “Genus 2 curves with complex multiplication.” In: Int.
Math. Res. Not. IMRN 5 (2012), pp. 1068–1142. ISSN: 1073-7928. DOI: 10.1093/imrn/
rnr052 (cit. on pp. 12, 23–25).

[Got59] E. Gottschling. “Explizite Bestimmung der Randflächen des Fundamentalbereiches der
Modulgruppe zweiten Grades.” In: Math. Ann. 138 (1959), pp. 103–124 (cit. on p. 20).

[Gra13] T. Granlund et al. GMP — The GNU Multiple Precision Arithmetic Library. 5.1.1.
http://gmplib.org/. Feb. 2013 (cit. on p. 57).

[Gru10] D. Gruenewald. “Computing Humbert surfaces and applications.” In: Arithmetic,
Geometry, Cryptography and Codint Theory 2009 (2010), pp. 59–69 (cit. on p. 50).

65

http://dx.doi.org/10.1007/3-540-45455-1_23
http://dx.doi.org/10.1142/9789812793430_0002
http://www.loria.fr/~gaudry/publis/pano.pdf
http://dx.doi.org/10.1007/11935230_8
http://webloria.loria.fr/~gaudry/record127/
http://dx.doi.org/10.1093/imrn/rnr052
http://dx.doi.org/10.1093/imrn/rnr052
http://gmplib.org/


[GJL+11] H. Grundman, J. Johnson-Leung, K. Lauter, A. Salerno, B. Viray, and E. Wittenborn.
“Igusa class polynomials, embeddings of quartic CM fields, and arithmetic intersection
theory.” In: ed. by A.-C. Cojocaru, K. Lauter, R. Pries, and R. Scheidler. Vol. 60.
Fields Institute Communications. Research directions in number theory, Including
the proceedings of the Banff International Research Station (BIRS) Workshop held in
Banff, AB, November 2–7, 2008. Providence, RI: American Mathematical Society, 2011,
pp. 35–60. ISBN: 978-0-8218-5226-2 (cit. on p. 12).

[HLP+12] G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann et al. GNU MPFR — A library
for multiple-precision floating-point computations with exact rounding. 3.1.1. http:
//www.mpfr.org/. July 2012 (cit. on p. 57).

[HMT10] G. Hanrot, F. Morain, and E. Thomé, eds. Algorithmic number theory. Vol. 6197.
Lecture Notes in Computer Science. Berlin: Springer, 2010, front matter+397. ISBN:
978-3-642-14517-9; 3-642-14517-5. DOI: 10.1007/978-3-642-14518-6.

[Igu62] J.-I. Igusa. “On Siegel Modular Forms of Genus Two.” In: American Journal of
Mathematics 84 (1962), pp. 175–200 (cit. on p. 16).

[Igu72] J.-I. Igusa. Theta functions. Vol. 194. Die Grundlehren der mathematischen Wis-
senschaften. Springer, 1972 (cit. on p. 30).

[IJ10] S. Ionica and A. Joux. “Pairing the volcano.” In: Algorithmic Number Theory (2010),
pp. 201–218 (cit. on pp. 10, 50).

[Ion12] S. Ionica. “Pairing-based algorithms for jacobians of genus 2 curves with maximal
endomorphism ring.” In: IACR Cryptology ePrint Archive 2012 (2012), p. 167 (cit. on
p. 50).

[Kli90] H. Klingen. Introductory lectures on Siegel modular forms. Vol. 20. Cambridge studies
in advanced mathematics. Cambridge University Press, 1990 (cit. on p. 32).

[Koh96] D. Kohel. “Endomorphism rings of elliptic curves over finite fields.” PhD thesis.
University of California, 1996 (cit. on p. 9).

[LO77] J. C. Lagarias and A. M. Odlyzko. “Effective versions of the Chebotarev density
theorem.” In: Proceedings of a Symposium held at the University of Durham, Durham,
Sept. 2–12, 1975. Ed. by A. Fröhlich. London: Academic Press [Harcourt Brace
Jovanovich Publishers], 1977, pp. 409–464 (cit. on pp. 9, 56).

[LC06] X. Lai and K. Chen, eds. Advances in cryptology—ASIACRYPT 2006. Vol. 4284. Lecture
Notes in Computer Science. Berlin: Springer, 2006, pp. xiv+468. ISBN: 978-3-540-
49475-1; 3-540-49475-8. DOI: 10.1007/11935230.

[LR12] K. Lauter and D. Robert. “Improved CRT Algorithm for class polynomials in genus 2.”
In: ANTS (2012). Accepted for publication at the Tenth Algorithmic Number Theory
Symposium ANTS-X. University of California, San Diego, July 9 – 13, 2012 http:
//math.ucsd.edu/~kedlaya/ants10/. Longer version available on eprint. Slides
http://www.normalesup.org/~robert/publications/slides/2012-07-ANTS-
SanDiego.pdf, eprint: 2012/443, HAL: hal-00734450 (cit. on pp. 2, 11, 39, 41, 55, 56).

[LV12] K. Lauter and B. Viray. “An arithmetic intersection formula for denominators of Igusa
class polynomials.” Preprint ArXiV 1210.7841. 2012 (cit. on p. 12).

66

http://www.mpfr.org/
http://www.mpfr.org/
http://dx.doi.org/10.1007/978-3-642-14518-6
http://dx.doi.org/10.1007/11935230
http://math.ucsd.edu/~kedlaya/ants10/
http://math.ucsd.edu/~kedlaya/ants10/
http://www.normalesup.org/~robert/publications/slides/2012-07-ANTS-SanDiego.pdf
http://www.normalesup.org/~robert/publications/slides/2012-07-ANTS-SanDiego.pdf
http://eprint.iacr.org/2012/443
http://hal.archives-ouvertes.fr/hal-00734450/


[LY11] K. Lauter and T. Yang. “Computing genus 2 curves from invariants on the Hilbert
moduli space.” In: J. Number Theory 131.5 (2011), pp. 936–958. ISSN: 0022-314X. DOI:
10.1016/j.jnt.2010.05.012 (cit. on pp. 37, 50).

[LPP02] H. W. Lenstra Jr., J. Pila, and C. Pomerance. “A hyperelliptic smoothness test. II.”
In: Proc. London Math. Soc. (3) 84.1 (2002), pp. 105–146. ISSN: 0024-6115. DOI:
10.1112/plms/84.1.105 (cit. on p. 54).

[LL03] R. Lercier and D. Lubicz. “Counting Points on Elliptic Curves over Finite Fields
of Small Characteristic in Quasi Quadratic Time.” In: Advances in Cryptology—
EUROCRYPT ’2003. Ed. by E. Biham. Lecture Notes in Computer Science. Springer-
Verlag, May 2003 (cit. on p. 8).

[LR10] D. Lubicz and D. Robert. Computing isogenies between abelian varieties. to appear in
Compositio Mathematica. 2010 (cit. on pp. 39, 52).

[Mes91] J.-F. Mestre. “Construction de courbes de genre 2 à partir de leurs modules.” In:
Effective methods in algebraic geometry. Ed. by T. Mora and C. Traverso. Vol. 94. Progr.
Math. Birkhäuser, 1991, 313–334 (cit. on pp. 7, 11, 57).

[Mes02] J.-F. Mestre. Notes of a talk given at the Cryptography Seminar Rennes. 2002. Url:
http://www.math.univ-rennes1.fr/crypto/2001-02/mestre.ps (cit. on p. 52).

[Mil06] J. S. Milne. Complex multiplication. Online notes available at http://www.jmilne.
org/math/CourseNotes/cm.html. 2006 (cit. on pp. 11, 23).

[MT91] T. Mora and C. Traverso, eds. Effective methods in algebraic geometry. Vol. 94. Progress
in Mathematics. Papers from the symposium (MEGA-90) held in Castiglioncello,
April 17–21, 1990. Boston, MA: Birkhäuser Boston Inc., 1991, pp. xiv+500. ISBN:
0-8176-3546-7. DOI: 10.1007/978-1-4612-0441-1.

[Pil90] J. Pila. “Frobenius maps of abelian varieties and finding roots of unity in finite fields.”
In: Mathematics of Computation 55.192 (1990), pp. 745–763 (cit. on p. 6).

[PS08] A. J. van der Poorten and A. Stein, eds. Algorithmic number theory. Vol. 5011. Lecture
Notes in Computer Science. Berlin: Springer, 2008, pp. x+455. ISBN: 978-3-540-79455-
4; 3-540-79455-7. DOI: 10.1007/978-3-540-79456-1.

[Rob10] D. Robert. “Fonctions thêta et applications à la cryptographie.” PhD thesis. Université
Henri Poincaré — Nancy 1, July 2010. Url: http://hal.inria.fr/tel-00528942/
(cit. on p. 39).

[Rob13] D. Robert. “Computing cyclic isogenies using real multiplication.” ANR Peace
Meeting, Paris. Notes available on http://www.normalesup.org/~robert/pro/
publications/notes/2013-04-cyclic-isogenies.pdf. Slides. Apr. 2013 (cit. on
p. 50).

[RV10] F. Rodier and S. Vladut, eds. Arithmetics, geometry, and coding theory (AGCT 2005).
Vol. 21. Séminaires et Congrès [Seminars and Congresses]. Papers from the conference
held in Marseilles, September 26–30, 2005. Paris: Société Mathématique de France, 2010,
pp. xxii+225. ISBN: 978-2-85629-279-2.

[Sat00] T. Satoh. “The canonical lift of an ordinary elliptic curve over a finite field and its point
counting.” In: J. Ramanujan Math. Soc. 15.4 (2000), pp. 247–270 (cit. on p. 8).

67

http://dx.doi.org/10.1016/j.jnt.2010.05.012
http://dx.doi.org/10.1112/plms/84.1.105
http://www.math.univ-rennes1.fr/crypto/2001-02/mestre.ps
http://www.jmilne.org/math/CourseNotes/cm.html
http://www.jmilne.org/math/CourseNotes/cm.html
http://dx.doi.org/10.1007/978-1-4612-0441-1
http://dx.doi.org/10.1007/978-3-540-79456-1
http://hal.inria.fr/tel-00528942/
http://www.normalesup.org/~robert/pro/publications/notes/2013-04-cyclic-isogenies.pdf
http://www.normalesup.org/~robert/pro/publications/notes/2013-04-cyclic-isogenies.pdf


[Sch02] R. Schertz. “Weber’s class invariants revisited.” In: Journal de théorie des nombres de
Bordeaux 14.1 (2002), pp. 325–343 (cit. on p. 13).

[Sch85] R. Schoof. “Elliptic curves over finite fields and the computation of square roots mod
p.” In: Mathematics of computation 44.170 (1985), pp. 483–494 (cit. on p. 6).

[Sha05] T. Shaska, ed. Computational aspects of algebraic curves. Vol. 13. Lecture Notes Series
on Computing. Papers from the conference held at the University of Idaho, Moscow,
ID, May 26–28, 2005. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005,
pp. xii+272. ISBN: 981-256-459-4.

[Shi98] G. Shimura. Abelian varieties with complex multiplication and modular functions.
Vol. 46. Princeton Mathematical Series. Princeton, NJ: Princeton University Press,
1998, pp. xvi+218. ISBN: 0-691-01656-9 (cit. on pp. 6, 14, 23).

[ST61] G. Shimura and Y. Taniyama. Complex Multiplication of Abelian Varieties and its
Applications to Number Theory. The Mathematical Society of Japan, 1961 (cit. on p. 14).

[Spa94] A.-M. Spallek. “Kurven vom Geschlecht 2 und ihre Anwendung in Public-Key-
Kryptosystemen.” PhD thesis. Universität Gesamthochschule Essen, 1994 (cit. on
pp. 11, 12, 16).

[Str] M. Streng. “An explicit version of Shimura’s reciprocity law for Siegel modular func-
tions.” Preprint (cit. on p. 13).

[Str09] M. Streng. “Computing Igusa class polynomials.” To appear in Mathematics of Compu-
tation. 2009. Url: http://arxiv.org/abs/0903.4766 (cit. on pp. 14, 59).

[Str10] M. Streng. “Complex multiplication of abelian surfaces.” Proefschrift. Universiteit
Leiden, 2010 (cit. on pp. 11, 12, 14–16, 18, 23, 53, 59).

[Sut] A. Sutherland. Genus 1 point counting in quadratic space and essentially quartic time.
Url: www-math.mit.edu/~drew/CRMPointCounting0410.pdf (cit. on p. 6).

[Sut10] A. Sutherland. “Computing Hilbert class polynomials with the Chinese remainder
theorem.” In: Mathematics of Computation 80.273 (2010), pp. 501–538 (cit. on p. 9).

[Vél71] J. Vélu. “Isogénies entre courbes elliptiques.” In: Compte Rendu Académie Sciences Paris
Série A-B 273 (1971), A238–A241 (cit. on p. 8).

[Wam99] P. van Wamelen. “Examples of genus two CM curves defined over the rationals.” In:
Math. Comp. 68.225 (1999), pp. 307–320. ISSN: 0025-5718. DOI: 10.1090/S0025-
5718-99-01020-0 (cit. on p. 11).

[Wen03] A. Weng. “Constructing hyperelliptic curves of genus 2 suitable for cryptography.” In:
Math. Comp. 72.241 (2003), 435–458 (electronic). ISSN: 0025-5718. DOI: 10.1090/
S0025-5718-02-01422-9 (cit. on p. 11).

[Yan10a] T. Yang. “An arithmetic intersection formula on Hilbert modular surfaces.” In: Amer.
J. Math. 132.5 (2010), pp. 1275–1309. ISSN: 0002-9327. DOI: 10.1353/ajm.2010.0002
(cit. on p. 12).

[Yan10b] T. Yang. Arithmetic Intersection on a Hilbert Modular Surface and the Faltings Height.
2010 (cit. on p. 12).

68

http://arxiv.org/abs/0903.4766
www-math.mit.edu/~drew/CRMPointCounting0410.pdf
http://dx.doi.org/10.1090/S0025-5718-99-01020-0
http://dx.doi.org/10.1090/S0025-5718-99-01020-0
http://dx.doi.org/10.1090/S0025-5718-02-01422-9
http://dx.doi.org/10.1090/S0025-5718-02-01422-9
http://dx.doi.org/10.1353/ajm.2010.0002

	1 Complex multiplication in genus 1 and 2
	1.1 Public key cryptography
	1.2 Computing class polynomials in genus 1
	1.2.1 CM theory for elliptic curves
	1.2.2 The complex analytic method
	1.2.3 The p-adic lifting method
	1.2.4 The CRT method
	1.2.5 Class invariants

	1.3 The case of genus 2
	1.3.1 Complexity


	2 CM theory for genus 2
	2.1 Complex multiplication theory
	2.1.1 Quartic CM fields and abelian surfaces
	2.1.2 The Shimura group, its type norm subgroup and cosets
	2.1.3 Theta-functions, Igusa invariants and class polynomials

	2.2 Explicit equations and symbolic period matrices
	2.2.1 Galois theory, embeddings and period matrices
	2.2.2 Number field computations
	2.2.3 Symbolic reduction of period matrices

	2.3 Computing the Shimura group and its type norm subgroup
	2.3.1 Structure of the Shimura group C
	2.3.2 The type norm subgroup


	3 Reducing the class polynomials
	3.1 CM theory and reduction
	3.2 CRT primes
	3.2.1 The cyclic case
	3.2.2 The dihedral case

	3.3 The other CM type
	3.4 The Weil polynomial corresponding to the isogeny class

	4 The analytic method
	4.1 Algorithm for Igusa class polynomials
	4.2 Computing -constants
	4.2.1 Naive approach
	4.2.2 Borchardt mean of complex numbers
	4.2.3 Period matrix coefficients from -constants
	4.2.4 Newton lift for fundamental theta-constants

	4.3 Reconstruction of class polynomial coefficients and reduction modulo prime ideals
	4.3.1 The dihedral case
	4.3.2 The cyclic case


	5 Isogenies and endomorphism rings
	5.1 Introduction
	5.2 Searching for a curve in the isogeny class
	5.2.1 Rosenhain representation
	5.2.2 Real multiplication

	5.3 Computing the l-primary part of the torsion
	5.4 On (l,l)-isogenies
	5.5 Checking if the endomorphism ring is maximal
	5.5.1 The vertical method
	5.5.2 Reducing the degree
	5.5.3 Reducing the number of endomorphisms to test
	5.5.4 The algorithm
	5.5.5 Complexity

	5.6 Going up
	5.6.1 Going up for one endomorphism
	5.6.2 Going up globally
	5.6.3 Cost of the going-up step

	5.7 Complexity of finding a maximal curve
	5.8 Computing maximal curves from maximal curves
	5.8.1 Complexity

	5.9 Perspectives

	6 The p-adic method
	6.1 Overview
	6.2 Computing the canonical lift of an abelian surface
	6.2.1 Characteristic 2
	6.2.2 Characteristic p>2

	6.3 Complexity

	7 The CRT method
	7.1 Overview
	7.2 Strategies for sieving CRT primes p
	7.2.1 Cost of testing if a curve is maximal
	7.2.2 Size of the isogeny class
	7.2.3 Estimating the probability of going up
	7.2.4 A dynamic selection of primes

	7.3 Complexity

	8 Implementation and examples
	8.1 Implementation and parallelisation
	8.1.1 Computation of -constants
	8.1.2 Breakdown of timings for small class polynomial examples

	8.2 A large example

	Bibliography

