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I N T RODUC T ION

These notes are a compilation of various notes I wrote over the year on algorithms for abelian varieties,
either as accompanying notes to presentations, or as guiding notes for different projects. They are also
available in a standalone form at http://www.normalesup.org/~robert/pro/publications/index.
html#notes. The current document will be available at http://www.normalesup.org/~robert/pro/
publications/notes/notes_av.pdf.

My HDR [Rob21a], defended in June 2021, provides a much more complete overview of the topics
from 2021 and before. Still, the notes might be more convenient for a quick overview of these topics.
And the notes post 2021 are obviously not included in the HDR.

For each note, I first give a very brief overview of their content, a link with a public implementation
if available, and also refer to accompanying articles (if any). If such articles are available, I would
recommend them over the accompanying notes, they will probably be much more polished. Still the
notes might be interesting as a quick survey of the content of the articles; and also sometimes I give
results in these notes that I could not incorporate in the articles (usually due to space reason).

When I wrote my HDR, I began writing a “book” on the general abstract theory of abelian varieties
[Rob21b] (unfortunately I haven’t have time to work on it since). These notes are oriented to the
practical side of abelian varieties, and can such be seen as a natural companion.
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1 COMPUT I NG CYC L I C I SOGEN I E S U S I NG R EA L MULT I P L I C AT ION ( 2 0 1 3 - 0 4 )

Thesenotes are available at http://www.normalesup.org/~robert/pro/publications/notes/2013-04-Peace-Paris-Cyclic-Isogenies.
pdf.
They outline algorithms to compute cyclic isogenies. These algorithms were then worked on with

Alina Dudeanu, Dimitar Jetchev and Marius Vuille in [DJRV22; Dud16; Vui20].
The goal was to merge the implementation with AVIsogenies [BCR10], but unfortunately this has

not been done yet.
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Computing cyclic isogenies using real multiplication
Notes of a talk given for the ANR Peace project

Damien Robert

2013–04–19; Updated 2013–04–23

1 Introduction

This notes are an expanded version of a talk [Rob13] I gave the 11 April 2013 for the PEACE meeting in Paris.
Since several people who could not attend have asked for informations about this talk I give here a public
version. A word of warning: these are preliminary notes so they are bound to have mistakes. More importantly
I lack a concrete implementation yet.

1.1 Computing isogenies with maximal isotropic kernel

In [CR11] we gave an algorithm to compute isogenies between abelian varieties. More precisely, let A/k be an
abelian variety A/k of dimension g represented by its theta null point of level n (in particular A is polarized).
Then given a basis e1, . . . , eg of a rational kernel K ⊂ A[ℓ] maximally isotropic for the ℓ-Weil pairing (with ℓ
prime to 2n), we explain how to compute B = A/K (via its theta null point of level n) and how to compute
the image of a point x �A(k) via the isogeny f : A→ B . This can be seen as a generalisation of the well known
Vélu’s formulas [Vél71] to compute isogenies between abelian varieties.

This algorithm needs a polynomial (in the size of the kernel K) number of operations in the field where the
geometric points of K live. Actually, the article [CR11] focus on the case of dimension g = 2, because in this
case every (generic) abelian variety is a Jacobian of an hyperelliptic curve, and we explain how to use Thomae’s
formulas to convert between the Mumford representation and the theta representation (see also [Wam99]).

More details on this algorithm are also given in [Cos11] (using analytic theta functions), and in [Rob10]
(using algebraic theta functions). The algorithm given in [CR11] builds on result from [FLR11; LR12b] by
applying a result from [Koi76] (in the analytic setting) and [Kem89] (in the algebraic setting).

The above algorithm was implemented in [BCR10a] to compute isogenies between abelian varieties of
dimension 2 over finite fields. Note that when one use the theory of analytic theta functions, to extend the
results to varieties over a finite field, one need to assume that they are ordinary so that a lift to characteristic
zero can be taken. The advantage of algebraic theta functions is that the resulting theory will work over any
algebraically closed field of characteristic prime to the level n. Since n = 2 or n = 4 this handle all fields of odd
characteristics. For an ordinary abelian variety over F2n , one can lift to characteristic zero, but the formulas
from the isogeny algorithm have bad reduction in this case, so we need to make a change of variable. The
resulting algorithm to compute isogenies in characteristic two is described in [BCR10b] (for the dimension 2
case).

The condition ℓ prime to 2n is purely technical, we explain in [Rob10] how to compute an isogeny when
this is not the case (in this case we need more than juste the geometric points of the kernel, we will see why in
Section 2).

Finally, an improvement of this algorithm so that only operations over the field of definition of the kernel K
are needed (provided we have the equations of K) is given in [Rob12] (in collaboration with David Lubicz).

1.2 The case of cyclic isogenies

At the end of [CR11], we concluded that it would be worthwhile to investigate the case of isogenies with cyclic
kernel; they are needed to have a full description of the isogeny graph (otherwise we don’t even have a connected
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1 Introduction

subgraph), which has many applications: [LR12a]. . . The problem here is that the pullback of a line bundle by a
cyclic kernel is not as easy to describe algebraically as when the kernel is maximally isotropic.

It is easier to explain why if we use the theory of complex multiplication [Shi98]. Let K be a (primitive) CM
field of degree 2g (a totally imaginary quadratic extension of a totally real field K0). Then the moduli space of
abelian varieties with complex multiplication by OK is a torsor under the Shimura class group

C= {(I ,ρ) | I a fractional OK -ideal with I I = (ρ), ρ �K+ totally positive}/K∗

(In particular, it is of dimension 0.)
If (A,L0) is a principally polarized abelian variety of dimension g with CM by OK , the element (I ,ρ) � C

acts on A in the following way: I give the kernel K of the corresponding isogeny on A, and ρ explain the action
on the polarization. I corresponds to a maximal isotropic kernel (for the Weil pairing onL ℓ0 ) iff I is of relative
norm ℓ. In this case the element (I ,ℓ) give an isogeny between the polarized abelian variety (A,L ℓ0 ) and (B,M0)
(whereM0 is a principal polarization), so the action of ℓ on the polarization is easy to describe. For a general
element (I ,ρ), one would need to understand what the polarization “L ρ0 ” such that we have an isogeny (A,L ρ0 )
and (B ,M0) of polarized abelian varieties would mean. Note thatL ρ0 is not isomorphic to ρ∗L0 (Think about
the case ρ= ℓ andL0 symmetric where ρ∗L0 =L ℓ

2

0 ̸=L
ℓ
0 ).

When ρ= ℓ, one could compute an isogeny (with maximal isotropic kernel forL ℓ0 ) the following way: find
a matrix F �Matr (Z) such that t F F = ℓ Id. Then the Koizumi-Kempf formula applied to F give a link between
the theta functions of level ℓn onL ℓ (whereL =L n

0 ) and the theta functions of level n onL , we will call
this “changing the level” or the “level formulas”. (Basically we just have to apply the isogeny theorem on the
isogeny F : Ar →Ar given composant by composant by the matrix F . Here Ar is given the product polarization
L ⋆ . . . ⋆L , so the isogeny theorem give relations between products of r theta functions on A.) Then once we
are in (A,L ℓ) we can just apply the isogeny theorem to get into (B ,M ) (M =M n

0 ). In [CR11] we do things
the other way around because we get a more efficient algorithm this way, we will explain why latter.

In the case of complex multiplication, one could try to adopt a similar strategy for a cyclic isogeny coming
from the action of (I ,ρ): find a matrix F �Matr (OK ) such that t F F = ρ Id and apply a Koizumi like formula
to get from (A,L ) to (A,L ρ). We have two problem here: the Koizumi formula comes from the isogeny
formula on Ar , but when F is not an integral matrix, there is no reason that F respect the underlying symplectic
decomposition, so we may not apply the isogeny theorem. The second problem, is that even if it does, to
compute the corresponding change of level, we need a way to compute the action of elements of OK on affine
lifts uniformly. For an action of γ �Z we know how to do it using differential additions, but it is not clear how
to do that for a more general γ . If γ itself correspond to an isogeny with maximal isotropic kernel, then one
solution is to use [CR11], because the isogeny algorithm given here actually work with affine coordinates (this
is clear given the way we keep track of the projective factors), so it would be doable but would need branching
isogeny computations inside the level formula of our current cyclic isogeny computation. All in all this seemed
like a cumbersome computation, and it only guides us in the case of fixed CM, whereas I was interested in
moving vertically in the isogeny graph using cyclic isogenies.

In November 2011, Dimitar Jetchev contacted me about the possibility of computing cyclic isogenies in
dimension 2, and this is basically the response I gave: that in the restricted case of known CM and horizontal
isogeny, it should theoretically be feasible but rather cumbersome.

1.3 Real multiplication to the rescue!

In July 2012, while I was visiting Microsoft Research, I discussed with Sorina Ionica who showed me wonderful
graphs of cyclic isogenies between abelian varieties having the same real multiplication (RM) in dimension 2.
These graphs were obtained in collaboration with Emmanuel Thomé, following an idea from John Boxall to
use real multiplication to compute isogenies.

While Sorina and Thomé obtained their graphs by working over C (and with lattices coming from the
Hilbert space Hg

1 via the real multiplication OK0
), this discussion made clear that the case of computing the

action of ρ on the polarization (in order to compute a cyclic isogeny) was much better than I thought.
Indeed, it is clear from the definition of the Shimura class group that ρ is a totally positive element in K0. It

is well known that every such element is a sum of squares, and it is also well known how from such a sum of
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2 Symmetric theta structures and the isogeny theorem

squares one can use Clifford’s algebra to compute a matrix F such that tF F = ρ Id. The important part here
is that F �Matr (OK0

) is composed of totally real elements. This has two important consequences, first since
complex conjugation on an ideal I ⊂K correspond to the dual isogeny, an element γ �K0 commutes with the
Rosatti involution. In particular, the action of the elements of K0 on Cg is given by symmetric matrices for the
hermitian form H associated to the principal polarization on (A,L0). In particular they are all codiagonalisable,
so it is immediate that the matrix F respect the symplectic decomposition and we can apply the isogeny theorem
to obtain Koizumi-like formulas. Secondly, computing the action of an element in K0 on affine points of the
abelian variety is much easier than for a general element in K as we will see.

Independently, Alina Dudeanu and Dimitar Jetchev have also been working on obtaining a Koizumi-like
formula in the analytic setting using real multiplication.

This notes are heavily indebted to helpful discussions with John Boxall and Sorina Ionica; and even more
importantly to my on-going collaboration with David Lubicz in the use of algebraic theta functions for
cryptographic applications. We will assume known the standard results of analytic theta functions [Igu72;
Mum83; Mum84; Mum91; BL04] and algebraic theta functions [Mum66; Mum67a; Mum67b; Mum70]. We use
the standard acronyms ppav for principally polarized abelian variety and pav for polarized abelian variety. We
will also always assume that the line bundles are symmetric.

2 Symmetric theta structures and the isogeny theorem

Let A be an abelian variety of dimension g defined over an algebraically closed field k. LetL0 be a symmetric
ample line bundle of degree one on A,L0 defines a principal polarization: A→ Â. If n is evenL =L n

0 is then
totally symmetric, and the kernel K(L ) of the polarization associated toL is A[n].

From now on, we assume that n is prime to the characteristic of k, so thatL defines a separable polarisation.
SinceL is totally symmetric, there exist a symmetric theta structure on the theta group G(L ). Fixing such a
structure fix a unique projective basis of theta functions [Mum66] that we call theta functions of level n. Note:
the theta structure induces an isomorphism between the symplectic spaces Z(n)× Ẑ(n) and K (L ) = A[n]
where Z(n) = (Z/nZ)g and Ẑ(n) is the Cartier dual of Z(n). We note K(L ) =K1(L )⊕K2(L ) where K1(L )
corresponds to Z(n) and K2(L ) to Ẑ(n). Usually the canonical basis of the theta functions of level n are indexed
by i � Z(n), but in these notes we will index them by i � K1(L ) which permit us to not track explicitly the
isomorphism between Z(n) and K1(L ).

If n > 2 then the theta functions of level n give a projective embedding of A into Pn g−1

k
, while if n = 2 we only

get an embedding of the Kummer variety A/± 1 (the n = 2 case assume that A is absolutely simple, see [BL04]).
Under a generic condition (the even theta null coordinates are non zero), this embedding of the Kummer variety
is actually projectively normal (see [Koi76]).

Theorem 2.1 :
The symmetric theta structure on G(L ) is uniquely determined by a choice of symplectic basis (e1, . . . eg , e ′1, . . . e ′g ) on
A[n] and a choice of symplectic basis ( f1, . . . fg , f ′1 , . . . f ′g ) on A[2n] such that ei = 2 fi , e ′i = 2 f ′i . (Here symplectic
mean for the commutator pairing eL and eL 2 respectively).

Moreover, changing these symplectic basis do not change the resulting symmetric theta structure if and only if

• The symplectic basis of A[n] is left invariant;

• The fi are replaced by points fi + ti with ti �A[2] such that eL (ei , ti ) = 1.

In particular, fixing a symplectic basis of A[n] and a symplectic decomposition A[2n] = A1[2n]⊕A2[2n] of
the 2n-torsion into a sum of maximal isotropic subspaces is enough (and even stronger) to fix the symmetric theta
structure.

Proof : This is implicit in [Mum66, Section 3]. A symmetric theta structure comes from an isomorphism
between the Heisenberg group and the theta group that commutes with the action of [−1]. It induces an
isomorphism between the symplectic spaces Z(n)× Ẑ(n) and K(L ) =A[n] and hence fix a symplectic basis of
the n-torsion.
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3 Computing isogenies with maximal isotropic kernel

Conversely, having fixed a symplectic basis of the n-torsion, sinceL is totally symmetric, there is always a
symmetric theta structure respecting this symplectic basis. Such a choice of a symmetric theta structure can be
seen as a choice of a symmetric element above each of the element of the basis (e1, . . . e ′g ); since there is only two
symmetric elements ±gi above each ei a symmetric theta structure above the symplectic basis can be seen as a
choice of sign for each element of the basis.

If gi � G(L 2) is a symmetric element of the theta group above a point fi such that ei = 2 fi , then (gi )
2

determines a symmetric element of the theta group above ei that uniquely depends on the choice of fi (since the
other symmetric element above fi is −gi which gives rise to (−gi )

2 = (gi )
2 above ei . Via the transfer map δ2

from [Mum66], we see how the choices of the fi above the ei are enough to determine the symmetric theta
structure on G(L ).

It is a straightforward verification to see that replacing fi by fi + ti where ti is a point of 2-torsion involve
replacing (gi )

2 by eL 2( fi , ti )(gi )
2 which concludes the proof.

(One could also replace the application δ2 by the isogeny [2] which would involve working in G(L 4), as in
[Kem89].) ■

Of course Theorem 2.1 also work for any totally symmetric line bundleL on A, defining a polarization of
type δ = (δ1, . . . ,δg ). The idea is that ifL =L n

0 (say with n = 2 or n = 4),L ℓ is of type (ℓn,ℓn) and allows
to compute isogenies with maximal isotropic kernels, but for a cyclic isogeny we need a polarisation of type
(n,ℓn) (like the type ofL ρ from Section 1.3).

Theorem 2.2 :
Let f : (A,L )→ (B ,M ) be an isogeny between pav, with L totally symmetric. Then K = Ker f is isotropic in
K(L ) for the commutator pairing eL , and K(M )≃K⊥/K.

Assume that we have a symmetric theta structure on G(L ) coming from a symplectic basis ( fi , f ′i ) on K (L 2).
Assume that K is compatible with the induced symplectic decomposition K(L ) = K1(L )⊕K2(L ) into maximal
isotropic subspaces in the sense that K =K1⊕K2 where Ki =Ki (L )

⋂

K. In this case K(M )≃K2,⊥/K1⊕K1,⊥/K2

where K2,⊥ =K⊥2
⋂

K1(L ) and K1,⊥ =K⊥1
⋂

K2(L )
Let eK be the level subgroup above K induced by this theta structure; the corresponding descent data give a line

bundleM ′ algebraically equivalent toM . For simplicity we assume here that K ⊂ 2K (L ) (or equivalently that
A[2]⊂K⊥), so thatM ′ is the unique totally symmetric line bundle equivalent toM . (The isogeny theorem is valid
in a more general setting, but we will only need this case in the following).

We can define a symmetric theta structure onM ′ as follow: from the symplectic basis of K (L 2) one derives a
“canonical” basis (g1, . . . , g ′g ) of [2]−1K⊥. Pushing this basis via the isogeny f gives a symplectic basis on K(M ′2),
which determines the symmetric theta structure onM ′. It is easy to see that by construction, it is compatible with the
theta structure onL .

We can then apply the isogeny theorem: there exist λ such that for all i �K1(M ′)

ϑM
′

i = λ
∑

j�K1(L )| f ( j )=i

ϑLj .

Proof : This is [Mum66, Section 1]. The version stated here is from [Kem89]. See also [Rob10, Chapter 3–4]
for a summary. ■

3 Computing isogenies with maximal isotropic kernel

In this section we review the algorithm of [CR11]. This is because we will see that the tools used to compute
cyclic isogenies are extremely similar, and also because we will need to be able to compute maximally isotropic
isogenies in order to compute cyclic isogenies.

Let (A,L0) be a ppav, and K a maximal isotropic kernel forL ℓ0 . Let n be even andL =L n
0 . Assume that we

have a principal polarizationM0 on B =A/K, and letM =M n
0 . For simplicity we assume here that ℓ is prime

to 2n. We note ΦL : A→ Â, x 7→ t ∗xL ⊗L
−1 the polarization associated toL .
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3 Computing isogenies with maximal isotropic kernel

To have an algorithm for the isogeny f : A→ B mean that we want to find relations between theta functions
of level n on A (forL ) and theta functions of level n on B (forM ).

First we need to have some sort of compatibility betweenL andM . More exactly, we want the following
diagram to commute:

A B

Â B̂

A

f

f̂

ϕ f ∗M ϕM

ϕ−1
L

[ℓ]

It is easy to see that since we have the following diagram:

A A

Â

[ℓ]

ϕLϕL ℓ

this is the case iffL ℓ = f ∗M .
Now we have two tools. The Koizumi formula explain the relations between the theta functions of level ℓn

forL ℓ and the theta functions of level n forL .
Concretely, assume given a symmetric theta structure on L ℓ, by Theorem 2.1 this induces a symmetric

theta structure onL . Let F �Matr (Z) be a matrix such that t F F = ℓ Id, and note also F the isogeny Ar →Ar

induced by F . (In practice r = 2 when ℓ is a sum of two squares, and r = 4 otherwise). The theta structures on
L andL ℓ induce product theta structures onL ⋆ . . .L andL ℓ ⋆ . . .L ℓ. In this setting, Theorem 2.2 gives us

Proposition 3.1 :
Let (i1, . . . , ir ) �K1(L )r . Let x = (x1, . . . , xr ) be a geometric point of Ar and let y = F x. Then (up to a constant λ)

ϑLi1
(y1) · · · · ·ϑ

L
ir
(yr ) = λ
∑

( j1,..., jr )�K1(L ℓ)
F ( j1,..., jr )=(i1,...,ir )

ϑL
ℓ

j1
(x1) · · · · ·ϑ

L ℓ
jr
(xr ).

Proof : From the theorem of the square we have that F ∗(L ⋆L ⋆ . . . ) =L ℓ ⋆L ℓ ⋆ . . . . The rest is immediate
from Theorem 2.2. ■

The isogeny formula explain the relations between the theta functions forL ℓ on A and the theta functions
forM on B .
Proposition 3.2 :
Assume that the symmetric theta structure on L ℓ is such that K ⊂ K2(L ℓ) (this is always possible). Then the
symmetric theta structure onL ℓ induces a symmetric theta structure onM by Theorem 2.2 (this may require to
replaceM by an equivalent line bundle).

Let f : A→ B be the isogeny of kernel K, and x a geometric point in A. Fix i �K1(M ), and let j �K1(L ℓ) be the
unique preimage of i by f that is in K1(L ℓ). We have (up to a constant λ)

ϑMi ( f (x)) = λϑ
L ℓ
j (x)

Proof : Immediate by Theorem 2.2. ■
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3 Computing isogenies with maximal isotropic kernel

Example 3.3 :
Let A= Cg/(Zg +ΩZg ) be a ppav over C with Ω � Hg . The polarization associated to Ω correspond to an
hermitian form H0 on Cg . More generally, a polarization comes from an hermitian form H on Cg such that
H (i x, i y) =H (x, y) and H (Λ,Λ)⊂Z where Λ=Zg +ΩZg .

An isogeny correspond to a matrix M acting on Cg , and the dual isogeny correspond to H0(M ·, ·) acting on
Â≃HomC(C

g ,C). Pulling back the dual isogeny via the principal polarization, we get that it acts on Cg by

M ∗ =
t
M . (We see that we recover the action by F onL ⋆L ⋆ . . . from Proposition 3.1).

A basis of level n theta function corresponding to H = nH0 (and the characteristic c = 0 in the sense of
[BL04]) is given by (ϑ

� 0
b

�

(·,Ω/n)b�Z(n) where

ϑ [ a
b ] (z,Ω) =
∑

n�Zg

eπi t (n+a)Ω(n+a)+2πi t (n+a)(z+b ).

Up to an action of the symplectic group Sp2g (Z)we can assume that the kernel K corresponds to 1
ℓ
ΩZg/ΩZg

so that the isogenous abelian variety is B =Cg/(Zg + Ω
ℓ
Zg ).

Comparing the basis of theta functions of level n on B

(ϑ
� 0

b

�

(·,
Ω

ℓ
/n))b�Z(n)

and the basis of theta functions of level nℓ on A

(ϑ
� 0

b

�

(·,Ω/ℓn))b�Z(ℓn)

immediately give Proposition 3.2.

Now the natural thing to compute the isogeny A→ B would be to combine Propositions 3.1 and 3.2: inverse
the formulas from Proposition 3.1 to go from theta coordinates on L to theta coordinates on L ℓ and then
apply Proposition 3.1 onL ℓ.

Inversing the level formula could be done as follow: first try to find a theta null point of level ℓn associated to
a symmetric theta structure on G(L ℓ) compatible with the one on G(L ). Since we know how the moduli
space of theta null point of a certain level look like (by [Mum67a] it is given by Riemann’s relations + the
symmetries) this can be done by a Gröbner basis algorithm. Since the fiber is finite, we are in a favorable case
for Gröbner computations. Then once we have fixed a theta null point of level ℓn in the fiber, we can lift a
geometric point x on A given by level n theta coordinates to level ℓn coordinates. This can also be done by
a Gröbner basis algorithm since the projective equations of A embedded by theta functions is described in
[Mum66] (and only need the coordinates of the theta null point).

In fact, in [FLR11] we inverse the isogeny formula from Proposition 3.2 instead. This is because it is simpler,
so it allows to speed-up the Gröbner basis computation related by using the extra information we have about the
system (in [FLR11] we only care about lifting the theta null point since we were only interested in describing
some modular correspondances). In other words, rather than looking at the isogeny f : (A,L ℓ)→ (B ,M ),
we look at the contragredient isogeny ef : B → A. (This whole part and what follows is because Ben Smith
complained during the talk that we think with “arrows reversed”, this is to try to justify why it is a good idea in
our situation!)

Still we would like to have an algorithm that does not need Gröbner basis. We note here that both Proposi-
tion 3.1 and Proposition 3.2 loose information (they go to a lower level), but only in a finite way (the associated
fibers are finites). Theorem 2.1 allow us to keep track of exactly which information is lost. This suggest the
following strategy: work on (A,L ) directly to recover the extra information needed to lift to level ℓn.

For instance, if we suppose that ℓ is prime to level 2n, then it is clear from Theorem 2.1 that the choice of a
compatible symmetric theta structure on G(L ℓ) is exactly the choice of a symplectic basis of A[ℓ] (we assume
here that µℓ ⊂ k). But since K is a maximal isotropic subgroup of the ℓ-torsion, this is the same as a choice
of a basis (e1, . . . , eg ) of K and a supplementary isotropic subgroup of K in A[ℓ]. This explain the technical
condition ℓ prime to 2n of Section 1.1; for the general case we need to find a (compatible) symplectic basis of
the full A[2ℓn] torsion.

6

13



3 Computing isogenies with maximal isotropic kernel

Now let’s think “with arrow reversed”, and let K ′ = f (A[ℓ]) be the kernel of the contragredient isogeny
ef : B→A; from K ′ we want to compute ef algorithmically.

Starting from theta functions of level n on B (fromM ), we then want to go to theta functions of level ℓn on
A (from L ℓ). But the exact same information as before is also enough to fix a symmetric theta structure on
G(L ℓ). Namely, fix a basis of the maximal isotropic group K ′ ⊂ B[ℓ] and a decomposition B[ℓ] = B1[ℓ]⊕B2[ℓ]
with B1[ℓ] = K ′. This determines a full symplectic basis of the ℓ-torsion. The decomposition of B[ℓ] fixes a
decomposition of B[ℓ2] and thus a decomposition of A[ℓ] via ef , and the image of the basis of B2[ℓ] give a basis
of K =A2[ℓ].

Concretely, let’s look at an example with g = 1, n = 2 and ℓ= 3. Then from Proposition 3.2 we readily see
that the isogeny f is given by (x0, . . . x5) 7→ (x0, x3). Moreover by definition of a theta structure of level n, we
can compute the action by translation by any point of n-torsion. In our situation, we are on level ℓn on A and
we have a decomposition A[ℓ] = A1[ℓ]⊕A2[ℓ] with A2[ℓ] = K . The isomorphism Z(ℓn)→ A1[ℓn] give us
that A1[ℓ] is generated by a point of 3-torsion T such that (x +T )i = (x)i+2 for i � Z(ℓn) (2 being of 3-torsion

in Z/6Z). Then the kernel K ′ of the contragredient isogeny ef is generated by f (T ). We have f (x+T ) = (x2, x5)
and f (x + 2T ) = (x4, x1). We see that we could recover the coordinates of x from the knownledge of f (x) and
f (T ) if we were able to take “compatible” affine lifts of f (x), f (x)+ f (T ) and f (x)+ 2 f (T ). But this is exactly
what the theory of differential addition allow us to do as we explain in [LR12b].

Of course, a similar method applies to go from (A,L ) to (A,L ℓ) by taking uniform affine lifts of points
of ℓ-torsion given by their level n theta coordinates. More details are given in [Rob10; Cos11]. So we don’t
really need to work with “arrow reversed”, but in practice it is easier to do so; from a theta null point of
level ℓn on A we readily get points of ℓ-torsion in level n on B , but it is a bit more complicated to get points of
ℓ-torsion in level n on A. Once again, this come from the difference between the simplicity of the equation in
Proposition 3.2 compared to Proposition 3.1.

Now we are almost finished describing the isogeny algorithm. By definition of the contragredient isogeny,
the following diagram commutes:

x � (A,L ℓ)

y � (B ,M )

ef (y) � (A,L ℓ)

f

ef
[ℓ]

As mentioned, in [LR12b] we explain how to compute from y a point x such that f (x) = y. There is some
ℓ-root involved, other choices of the root corresponds to different preimages (the preimage does not matter
because we multiply it by [ℓ] afterwards).

Now ef (y) = [ℓ]x. We are not quite finished because here ef (y) is given by level ℓn theta functions. So we use
the following diagram

x � (A,L ℓ) (x, 0, . . . , 0) � (Ar ,L ℓ ⋆ · · · ⋆L ℓ)

y � (B ,M ) t F (x, 0, . . . , 0) � (Ar ,L ℓ ⋆ · · · ⋆L ℓ)

ef (y) � (A,L ) F ◦ t F (x, 0, . . . , 0) � (Ar ,L ⋆ · · · ⋆L )

f

ef
[ℓ]

t F

F

7
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4 Computing isogenies with cyclic kernel

Here the computation of t F is done inL ℓ while we use Proposition 3.1 to compute the action of F in order to
go back to level n.

Now fix a basis of K ′. There is some ℓ-roots involved for lifting the theta null point of (B ,M ) to (A,L ℓ)
which correspond to different choices of a supplementary of K ′ in B[ℓ]. Now of course these choices does not
affect the end result of the computation of ef (y) � (A,L ). In other words, rather than going up on (A,L ℓ) and
then down in (A,L ) we only need to have enough informations from (A,L ℓ) in order to be able to go down to
(A,L ). We explain how to do that in [CR11], where we get the following

Proposition 3.4 :
Let (B,M0) be a ppav with a symmetric theta structure on G(M )whereM =M n

0 is of level n even. Let K ′ ⊂ B[ℓ]

be a maximal isotropic subgroup and ef : B→A= B/K ′ be the associated isogeny. Assume that ℓ is prime to 2n; then
the theta structure on G(M ) induces a unique polarizationL of level n on A and a unique compatible symmetric
theta structure on G(L ). Let F �Matr (Z) be such that t F F = ℓ Id.

Let i �K1(L ) and ( j1, . . . , jr ) �K1(M )r be the unique preimage of (i , 0, . . . , 0) by F . Let y be a geometric point
of B and let Y = t F (y, 0, . . . , 0) � B r . Then (up to a constant λ)

ϑLi (
ef (y)) · · · · ·ϑL0 (0) = λ

∑

(t1,...,tr )�K ′ r
F (t1,...,tr )=(0,...,0)

ϑMj1
(Y1+ t1) · · · · ·ϑ

M
jr
(Yr + tr ). (1)

Proof : From the hypothesis ℓ prime to 2n, Theorem 2.2 show that every compatible symmetric theta structure
on G(M ℓ) induce the same totally symmetric line bundleL on A and the induced symmetric theta structure
on G(L ) depends only on the choice of the symmetric theta structure on G(M ).

Now we just need to apply the diagram from above. In this diagram we apply Proposition 3.1 with X =
t F (x, 0, . . . , 0) where x �A is such that f (x) = y.

Now since ℓ is prime to n, an element h � K1(L ℓ) is of the form h = j + T where j � K1(L ) and
T � K1(L ℓ)[ℓ]. But by Proposition 3.2, ϑL

ℓ

h (Xi ) = ϑ
M
f ( j )(Yi + f (T )) (think about our g = 1, n = 2, ℓ = 3

example. Looking at the equation in Proposition 3.1 we get Equation 1.
Note that in Equation 1, the coordinates of the right hand term are not the projective coordinates of the

points (it would not make sense in a sum) but of suitably normalized affine lifts. More details are given in
[CR11] where we explain how to use differential additions to normalize the affine lifts.

In total, the complexity cost is given by normalizing affine lifts of the geometric points of K O(ℓg ) and the
changing level formula costing O(ℓg r/2). (For an improvement, in [Rob12] we explain with David Lubicz how
to adapt the formula to only need the equations of the kernel K). ■

Example 3.5 :
If ℓ= a2+ b 2, we can take F =

�

a b
−b a

�

, so that Equation 1 become

ϑLi ( f (y)) ·ϑ
L
0 (0) = λ
∑

t�K ϑ
M
j1
(ay + at ) ·ϑMj2 (b y + b t ). (2)

4 Computing isogenies with cyclic kernel

Let f : A→ B be an isogeny with cyclic kernel, and assume that we have principal polarizationL0 andM0 on
A and B . LetL =L n

0 andM =M n
0 .

Then there exist ϕ such that the following diagram commutes:
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4 Computing isogenies with cyclic kernel

A B

Â B̂

A

f

f̂

ϕ f ∗M ϕM

ϕ−1
L

ϕ

By construction, ϕ commutes with the Rosatti involution, so it is a (totally positive) totally real element of
End0(A). We noteL ϕ = f ∗M so that we have the following diagram

A A

Â

ϕ

ϕLϕL ϕ

Since the commutator pairing eL ϕ is non degenerate (or since Ker f̂ is the Cartier dual of K =Ker f ), we see
that Kerϕ ⊂A[ℓ] is non isotropic for the Weil pairing. However, K =Ker f is maximally isotropic for eL ϕ . So
in Section 3 we explained how to compute an isogeny from a maximal isotropic kernel K (implicitly for Weil
pairing eL ℓ ), this suggest that we will be able to compute the isogeny with kernel K maximally isotropic for
eL ϕ by replacing [ℓ] with ϕ everywhere.

Of course at one point we will need to explain how to constructL ϕ without using the isogeny f , because
we want to compute f fromL ϕ.

First, the analog of Proposition 3.2 is immediate:

Proposition 4.1 :
Assume that the symmetric theta structure on L ϕ is such that K ⊂ K2(L ϕ) (this is always possible). Then the
symmetric theta structure onL ϕ induces a symmetric theta structure onM by Theorem 2.2 (this may require to
replaceM by an equivalent line bundle).

Let f : A→ B be the isogeny of kernel K, and x a geometric point in A. Fix i �K1(M ), and let j �K1(L ϕ) be the
unique preimage of i by f that is in K1(L ϕ). We have (up to a constant λ)

ϑMi ( f (x)) = λϑ
L ϕ
j (x)

Moreover, if we introduce the ϕ-contragredient isogeny ef has the isogeny ef : B→A such that ef ◦ f = ϕ, we
have the following diagram

x � (A,L ϕ)

y � (B ,M )

ef (y) � (A,L ϕ)

f

ef
ϕ

The exact same techniques as in Section 3 allow to find from y � B a preimage x , and such compute ef (y) in
coordinates fromL ϕ . Now we just need to apply a change level formula using an equivalent of Proposition 4.

9
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4 Computing isogenies with cyclic kernel

First we need to find an equivalent of the matrix F . To simplify we now assume that the division algebra
End0(A) is a field K , and we let K0 be the associated totally real field. Furthermore, we assume that O0 =
K0

⋂

End(A) is the maximal order OK0
of K0 (A has maximum real multiplication).

Lemma 4.2 :
Let ϕ �OK0

be a totally positive element. Then there exist F �Matr (OK0
) such that t F F = ϕ Id.

Proof : It is well known that such a ϕ is a sum of m squares in OK0
. We may assume that m = 2d is a power

of 2. Now using the theory of Clifford’s algebra for the quadratic form Q(x1, . . . , xt ) =−x2
1 − x2

2 −· · ·− x2
t with

t ⩾ d sufficiently large, we obtain the matrix F with r = 2t .
[Update 2013-04-23: as remarked by Dimitar Jetchev, a paper of Siegel show that except in Q(

p
5) for some

elements of OK0
a sum of squares can only be found using non integral elements. If we have such an element

α/m, to compute its action on the ℓ-torsion, we need to compute the action of α on the ℓm-torsion, so we
would like m to be as small as possible. Intuitively, for a larger r we can get a smaller m, but a large r also
increase the complexity.] ■

Remark 4.3 :
• ϕ is a sum of two squares iff it is the norm of an element of K0(i ). This is purely a local question, so it

should be pretty easy to test in practice.

• In general, Q(
p

5) is the only real quadratic field whose every integral element is a sum of 4 integral
squares [TODO: check if this is correct] . So we way need to take d > 2.

• Also, the generic formula converting a sum of 2d squares into a matrix of length 2d involves denominator.
That’s why in the proof of the lemma we need to assume that t may be larger than d (the exact formula is
given by the size of the representations of the associated Clifford’s algebra).

• Still, the following will make clear that we only need to work locally on Z[ 1
2ℓn ] so we can look for F in

Matr (OK0
⊗Z[ 1

2ℓn ].

• All in all, I lack a clear bound on how big r could be at worse. Note that the size of r directly influence
the cost of the changing level formulas (see Proposition 3.4).

• To look for smaller r , Christophe Ritzenthaler suggested looking at matrix F such that (for instance)
t F F = diag(ϕ, 1, . . . , 1). ♦

Now assume the matrix F is fixed, we have

Proposition 4.4 :
Let (i1, . . . , ir ) �K1(L )r . Let x = (x1, . . . , xr ) be a geometric point of Ar and let y = F x. Then (up to a constant λ)

ϑLi1
(y1) · · · · ·ϑ

L
ir
(yr ) = λ
∑

( j1,..., jr )�K1(L ϕ)
F ( j1,..., jr )=(i1,...,ir )

ϑL
ϕ

j1
(x1) · · · · ·ϑ

L ϕ
jr
(xr ).

Proof : It is a bit easier to look at a proof over C. The action of F on the polarization H is given by
t
F F = ϕ Id

(because the elements of F are real), so we have F ∗L ⋆L ·· ·=L ϕ ⋆L ϕ · · · .
Note that this give the construction ofL ϕ we were looking for. Now the real elements of K0 acts on Cg by

symmetric matrixes, so they are codiagonalizable in respect to the principal polarization H0.
In particular, the isogeny induced by F on Ar respect the symplectic decomposition given on A, so we can

apply the isogeny theorem. ■

Now we just have to combine everything in the following diagram
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4 Computing isogenies with cyclic kernel

x � (A,L ϕ) (x, 0, . . . , 0) � (Ar ,L ϕ ⋆ · · · ⋆L ϕ)

y � (B ,M ) t F (x, 0, . . . , 0) � (Ar ,L ϕ ⋆ · · · ⋆L ϕ)

ef (y) � (A,L ) F ◦ t F (x, 0, . . . , 0) � (Ar ,L ⋆ · · · ⋆L )

f

ef
ϕ

t F

F

Proposition 4.5 :
Let (B,M0) be a ppav with a symmetric theta structure on G(M )whereM =M n

0 is of level n even. Let K ′ ⊂ B[ℓ]

be a maximal isotropic subgroup forMϕ and ef : B→A= B/K ′ be the associated isogeny. Assume that ℓ is prime to
2n; then the theta structure on G(M ) induces a unique polarizationL of level n on A and a unique compatible
symmetric theta structure on G(L ). Let F �Matr (OK0

) be such that t F F = ϕ Id.
Let i �K1(L ) and ( j1, . . . , jr ) �K1(M )r be the unique preimage of (i , 0, . . . , 0) by F . Let y be a geometric point

of B and let Y = t F (y, 0, . . . , 0) � B r . Then (up to a constant λ that may depend on y this time)

ϑLi (
ef (y)) · · · · ·ϑL0 (0) = λ

∑

(t1,...,tr )�K ′ r
F (t1,...,tr )=(0,...,0)

ϑMj1
(Y1+ t1) · · · · ·ϑ

M
jr
(Yr + tr ). (3)

Note that the condition of having maximal real multiplication is too strong, we only need to have a matrix F
corresponding to ϕ. In particular, we don’t really need to have maximal real multiplication, nor even that A and
B have the same real multiplication. Of course, we do need to have ϕ in End(A) and End(B), where we abuse
the same notation to note ϕ = ef ◦ f � End(A) and f ◦ ef � End(B). Perhaps the following diagram is clearer:

A B A

Â B̂ Â

Â B̂

f ef

ϕL

bϕ

ϕ f ∗M

ϕM

bϕ

ϕ f ∗L

ϕL

f̂
b

ef

4.1 Computing the isogeny in practice

Of course in Proposition 4.5 we have hidden all the difficulties in the computation of

ϑMj1
(Y1+ t1) · · · · ·ϑ

M
jr
(Yr + tr ),

where we need to have a way to compute the action of the elements of OK0
giving F in a “compatible affine

manner”.
The easy case is if we only need the isogenous theta null point. In which case y = 0 and Y = (0, . . . , 0) so that

we only need to evaluate on points of K ′ but we have already seen how to normalize the affine lifts [CR11]. But
to compute the image of a point y we need to work harder.

We give an example on how to do that with OK0
=Q(
p

d ) (d prime to ℓ) and ϕ = a2+ b 2 (the generalization

to a sum of more squares is immediate) so that we can take F =
�

a b
−b a

�

as in Example 3.5 We need to

evaluate
∑

t�K ϑ
M
j1
(ay + at ) ·ϑMj2 (b y + b t ). (4)
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We want to compute affine coordinates of ay + at and b y + b t , where the eventual projective factor depends
only on y, not on t . Let a = α+β

p
d and let’s see what we can compute.

Since we have normalized all the points of K ′, we know αt , β
p

d t and α+β
p

d already. We also know the
“affine coordinates” of αy and α(y + t ), this only use differential additions.

We also can compute
p

d y since
p

d correspond to a (d , d )-isogeny (a normal one with maximal isotropic
kernel for the Weil pairing). The important point here is that Proposition 3.4 gives us the isogeny for affine
theta coordinates (since λ is a constant). From

p
d y we get β

p
d y using differential additions. Likewise we

can compute β
p

d (y + t ). If αt =β
p

d t ′, then β
p

d y +αt is simply β
p

d (y + t ′) so we can also compute it.
Finally we can compute α+β

p
d y but only in a projective way, so we have take an arbitrary affine lift. The

important point here is that we can fix it once and for all, it does not depend on t .
In the sum of four terms αy +β

p
d y +αt +β

p
d t , we have seen how to compute each of the two by two

subsum. Now this is what we call a MultiWayAddition, and we claim that by using Riemann relations, this
is enough to compute the whole sum. Indeed, it is easy to see that a MultiWayAddition reduces to several
ThreeWayAdditions (compute x + y + z from x , y , z , x + y , x + z , y + z) and we showed how to do that in
[Rob10; LR13] (generically in level 2, for any geometric point in level n > 2.)

Remark 4.6 :
• Finding the matrix F requires that we know what the full real endomorphism order look like, which may

be expensive. Over a finite field, it should be possible by Tate’s theorem to work on the ℓ-Tate module to
find the action of F on the ℓ-torsion, which is what we need if we only want the isogenous theta null
point (we also need the action on the 2-torsion, so we’ll need to glue things).

• It would be interesting to have a purely analytic version of Proposition 4.5. Note that the analytic version
of Koizumi [Koi76] is a bit stronger as stated than the algebraic version of Kempf [Kem89] (for instance
to recover the usual Riemman’s relation, one need to apply Kempf’s version twice). ♦
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2 ON SYMME TR I C TH E TA S T RUC TUR E S ( 2 0 1 3 - 0 4 )

Thesenotes are available at http://www.normalesup.org/~robert/pro/publications/notes/2013-04-theta-sym.
pdf.

The purpose of these short notes is to highlight the role of symmetry and symmetric theta structures
in Mumford’s isogeny theorem.
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On symmetric theta structures

Damien Robert

April 26, 2013

1 Symmetric theta structures and the isogeny theorem

Let A be an abelian variety of dimension g defined over an algebraically closed field k. LetL0 be a symmetric
ample line bundle of degree one on A,L0 defines a principal polarization: A→ Â. If n is evenL =L n

0 is then
totally symmetric, and the kernel K(L ) of the polarization associated toL is A[n].

From now on, we assume that n is prime to the characteristic of k, so thatL defines a separable polarisation.
SinceL is totally symmetric, there exist a symmetric theta structure on the theta group G(L ). Fixing such a
structure fix a unique projective basis of theta functions [Mum66] that we call theta functions of level n. Note:
the theta structure induces an isomorphism between the symplectic spaces Z(n)× Ẑ(n) and K(L ) = A[n]
where Z(n) = (Z/nZ)g and Ẑ(n) is the Cartier dual of Z(n). We note K(L ) =K1(L )⊕K2(L ) where K1(L )
corresponds to Z(n) and K2(L ) to Ẑ(n). Usually the canonical basis of the theta functions of level n are indexed
by i � Z(n), but in these notes we will index them by i � K1(L ) which permit us to not track explicitly the
isomorphism between Z(n) and K1(L ).

If n > 2 then the theta functions of level n give a projective embedding of A into Pn g−1

k
, while if n = 2 we only

get an embedding of the Kummer variety A/± 1 (the n = 2 case assume that A is absolutely simple, see [BL04]).
Under a generic condition (the even theta null coordinates are non zero), this embedding of the Kummer variety
is actually projectively normal (see [Koi76]).

Theorem 1.1 :
The symmetric theta structure on G(L ) is uniquely determined by a choice of symplectic basis (e1, . . . eg , e ′1, . . . e ′g ) on
A[n] and a choice of symplectic basis ( f1, . . . fg , f ′1 , . . . f ′g ) on A[2n] such that ei = 2 fi , e ′i = 2 f ′i . (Here symplectic
mean for the commutator pairing eL and eL 2 respectively).

Moreover, changing these symplectic basis do not change the resulting symmetric theta structure if and only if

• The symplectic basis of A[n] is left invariant;

• The fi are replaced by points fi + ti with ti �A[2] such that eL (ei , ti ) = 1.

In particular, fixing a symplectic basis of A[n] and a symplectic decomposition A[2n] = A1[2n]⊕A2[2n] of
the 2n-torsion into a sum of maximal isotropic subspaces is enough (and even stronger) to fix the symmetric theta
structure.

Proof : This is implicit in [Mum66, Section 3]. A symmetric theta structure comes from an isomorphism
between the Heisenberg group and the theta group that commutes with the action of [−1]. It induces an
isomorphism between the symplectic spaces Z(n)× Ẑ(n) and K(L ) =A[n] and hence fix a symplectic basis of
the n-torsion.

Conversely, having fixed a symplectic basis of the n-torsion, sinceL is totally symmetric, there is always a
symmetric theta structure respecting this symplectic basis. Such a choice of a symmetric theta structure can be
seen as a choice of a symmetric element above each of the element of the basis (e1, . . . e ′g ); since there is only two
symmetric elements ±gi above each ei a symmetric theta structure above the symplectic basis can be seen as a
choice of sign for each element of the basis.

1
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1 Symmetric theta structures and the isogeny theorem

If gi � G(L 2) is a symmetric element of the theta group above a point fi such that ei = 2 fi , then (gi )
2

determines a symmetric element of the theta group above ei that uniquely depends on the choice of fi (since the
other symmetric element above fi is −gi which gives rise to (−gi )

2 = (gi )
2 above ei . Via the transfer map δ2

from [Mum66], we see how the choices of the fi above the ei are enough to determine the symmetric theta
structure on G(L ).

It is a straightforward verification to see that replacing fi by fi + ti where ti is a point of 2-torsion involve
replacing (gi )

2 by eL 2( fi , ti )(gi )
2 which concludes the proof.

(One could also replace the application δ2 by the isogeny [2] which would involve working in G(L 4), as in
[Kem89].) ■

Corollary 1.2 :
Let (A,L0)/Fq be a ppav over the finite field Fq . Assume that µn(Fq ) ⊂ Fq (n = 2n0 even). Then there exist a
rational symmetric theta structure onL =L n

0 iff there exist a rational symplectic basis (e1, . . . eg , e ′1, . . . , e ′ g ) such
that eT ,2(n0ei , ei ) = 1; where eT ,2 denotes the 2-Tate pairing. (In other words, ei form a symplectic basis consisting of
elements whose self n-Tate pairing is not a primitive n-th root of unity).

Proof : This is clear from Theorem 1.1 and the definition of the Tate pairing as eT ,2(n0ei , ei ) = eW ,2(n0ei ,π( fi )−
fi ) where 2 fi = ei and π is the Frobenius of Fq . ■

Remark 1.3 :
In the case that Fq does not contain the n-th root of unity, a rational theta structure of level n induces an

equivariant (for the Galois action) isomorphism between A[n] and Z(n)× Ẑ(n). In particular, this does not
impose that all geometric points of A[n] are rational.

Proposition 1.4 :
Let L be a symmetric line bundle on A, defining a polarization of type δ = (δ1, . . . ,δg ). Then there exists a
symmetric theta structure on G(L ) if and only if for every x �A[2]

⋂

K(L ), we have e∗(x) = 1.
In this case we callL totally symetrisable (because a totally symmetric line bundle satisfy the condition), and the

obvious generalisation of Theorem 1.1 to this case also holds.

Proof : [Kem89; Mum66]. ■

The idea is that (for instance in dimension 2), L ℓ0 is of type (ℓ,ℓ) and allows to compute isogenies with
maximal isotropic kernels, but for a cyclic isogeny we need a polarisation of type (1,ℓ) (like the type ofL ρ0
from Section ??).

Theorem 1.5 :
Let f : (A,L )→ (B ,M ) be an isogeny between pav. Then K = Ker f is isotropic in K(L ) for the commutator
pairing eL , and K(M )≃K⊥/K.

Assume that we have a symmetric theta structure on G(L ) coming from a symplectic basis ( fi , f ′i ) on K(L 2).
Assume that K is compatible with the induced symplectic decomposition K(L ) =K1(L )⊕K2(L ) into maximal
isotropic subspaces in the sense that K = K1⊕K2 where Ki = Ki (L )

⋂

K. In this case K(M )≃ K2,⊥/K1⊕K1,⊥/K2

where K2,⊥ =K⊥2
⋂

K1(L ) and K1,⊥ =K⊥1
⋂

K2(L )
Let eK be the level subgroup above K induced by this theta structure; the corresponding descent data give a line

bundleM ′ algebraically equivalent toM . MoreoverM ′ is totally symetrisable, and we can define a symmetric
theta structure onM ′ as follow: from the symplectic basis of K(L 2) one derives a “canonical” basis (g1, . . . , g ′g ) of

[2]−1K⊥. Pushing this basis via the isogeny f gives a symplectic basis on K(M ′2), which determines the symmetric
theta structure onM ′. It is easy to see that by construction, it is compatible with the theta structure onL .

We can then apply the isogeny theorem: there exist λ such that for all i �K1(M ′)

ϑM
′

i = λ
∑

j�K1(L )| f ( j )=i

ϑLj .

Proof : [Kem89; Mum66; Rob10]. ■

2
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1 Symmetric theta structures and the isogeny theorem

Corollary 1.6 :
• IfM is of type δ ′ with 2 | δ ′ (meaning that A[2]

⋂

K(L )⊂K⊥), thenM ′ is the unique totally symmetric
line bundle in the equivalence class ofM .

• If A[2]
⋂

K(L ) ⊂ K, then every symmetric theta structure on G(L ) induces the same symmetric theta
structure on G(M ′).

Proof : See [Kem89; Rob10]. ■

3
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3 I S OGEN I E S B E TWEEN AB E L I AN VAR I E T I E S ( 2 0 1 4 - 0 6 )

Thesenotes are available at http://www.normalesup.org/~robert/pro/publications/notes/2014-06-Rennes-Moduli.
pdf.

They were meant as a summary of the results of [FLR11; LR12; CR15; DJRV22]. These don’t include
the last improvements [KPR20; LR22; DMPR23a], and the treatment in [Rob21a] is more complete.
The corresponding implementation is AVIsogenies [BCR10].
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Isogenies between abelian varieties

DAMIEN ROBERT

Notes of a talk given for the Conference “Effective moduli spaces and applications to cryptography” — Rennes

Abstract. In this talk we give a brief panorama of the effective computation of isogenies between
principally polarized abelian varieties and of modular equations.

Given a principally polarized abelian variety A, we want to compute the following:
• Given a kernel K, compute the isogeny A→ B = A/K;
• Given a degree `, compute all isogenous abelian varieties B (where the isogeny is of degree `g);
• Given two abelian varieties A and B, test if they are isogenous (of a given degree). If so find the

kernel K of the isogeny A→ B.
Note: We will restrict to perfect fields, separable isogenies and principally polarised abelian varieties.

In particular we will deal with isotropic kernels.

Theorem 0.1. Suppose that A/k, B/k are absolutely simple over a perfect field k. Suppose that
Homk(A,B) 6= {0}, Endk(A) = Endk(A). Then Homk(A,B) = Homk(A,B).

1. Elliptic curves

1.1. Isogenies from the kernel.

Theorem 1.1 ([Vél71]). Let E : y2 = f1(x) be an elliptic curve and K ⊂ E(k) a finite subgroup. Then
E/K is given by Y 2 = f2(X) where

X(P ) = x(P ) +
∑

Q∈K\{0E}

(x(P +Q)− x(Q))

Y (P ) = y(P ) +
∑

Q∈K\{0E}

(y(P +Q)− y(Q)) .

If f1(x) = x3 + ax+ b then f2(x) = x3 + (a− 5t)x+ b− 7w where

t =
∑

Q∈K\{0E}

f ′(Q), u = 2
∑

Q∈K\{0E}

f(Q), w =
∑

Q∈K\{0E}

x(Q)f ′(Q).

Proof. Uses the fact that x and y are characterised in k(E) by
v0E

(x) = −2 vP (x) ≥ 0 if P 6= 0E
v0E

(y) = −3 vP (y) ≥ 0 if P 6= 0E
y2/x3(0E) = 1

�

Theorem 1.2 ([Koh96]). Let h(x) =
∏
Q∈K\{0E}(x − x(Q)) defining the subgroup K of the elliptic

curve E1 : y2 = f1(x); then the isogeny f : E1 → E2 is defined by

f(x, y) =
(
g(x)
h(x) , y

(
g(x)
h(x)

)′)
, with g(x)

h(x) = #K.x− σ − f ′(x)h
′(x)
h(x) − 2f(x)

(
h′(x)
h(x)

)′
,

Date: June 10, 2014.
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2 DAMIEN ROBERT

where σ is the first power sum of h (the sum of the x-coordinates of the points in the kernel). When #K
is odd, h(x) is a square, so we can replace it by its square root. The complexity of computing the isogeny
is then O(M(#K)) operations in k.

Proof. Let wE1 = dx/2y be the canonical differential. Then f∗wE2 = cwE2 , with c in k. Up to a

normalisation we can assume that c = 1, so f(x, y) =
(
g(x)
h(x) , y

(
g(x)
h(x)

)′)
. Plugging the formulas from

theorem 1.1 yields the result. �

To compute all rational isogenous elliptic curves starting from E1 with an isogeny of degree `, we
can compute all rational cyclic subgroups of E[`] and apply Vélu’s formulas. These subgroups can be
obtained as factors of the `-division polynomial

∏
Q∈E[`]\{0E}(x− x(Q)). This division polynomial has

degree (`2 − 1)/2 (if ` odd), and factorizing it will cost O(`3.63) (over a finite field).

1.2. Modular polynomials.

Definition 1.3. Modular polynomials The modular polynomial ϕ`(x1, x2) ∈ Z[x1, x2] is a bivariate
polynomial such that ϕ`(x1, x2) = 0 ⇔ x = j(E1) and y = j(E2) with E1 and E2 `-isogenous.

One can also see the modular polynomial as the polynomial describing the modular curve X0(`) inside
X(1)×X(1) ' P2 [Koh03].

Proposition 1.4. ϕ` is a symmetric polynomial of degree ` + 1. The height of the coefficients of ϕ`
grows as O(` log `).

The roots of ϕ`(j(E1), .) are exactly the elliptic curves `-isogenous to E1. There are `+ 1 = #P1(F`)
such roots if ` is prime.

Theorem 1.5 (Rational roots of modular polynomials). Let E1/Fq be an ordinary elliptic curve, ` be a
prime and j2 be a root of ϕ`(jE1 , .·) over Fqn . Then there exists a twist E′1 of E1 and an elliptic curve
E2 with j-invariant j2 such that there is an Fqn-rational `-isogeny E′1 → E2. Furthermore, if jE1 is not
equal to 0 or 1728 then we can take E′1 = E1.

Theorem 1.6. There is an algorithm that computes ϕ` in a time quasi linear in its size Õ(`3). Over a
finite field, finding the isogenous elliptic curves (of degree `) is then quasi-cubic.

Proof.
• The complex analytic method [Eng09]: if we see τ 7→ j(τ) and τ 7→ j(τ/`) as a modular

functions on H; then ϕ`(·, j) is the minimal polynomial of j(·/`) in C(j). One can then recover
the polynomial by computing the Fourrier coefficients of j and j(·/`) with high precision. For a
quasi-linear algorithm use an evaluation interpolation approach rather than linear algebra on
the Fourrier coefficients.

This approach use the fact that

ϕ`(j(τ), Y ) =
∏

g∈Γ/Γ0(`

(Y − j(`g.τ) =
∑

ci(τ)Y i (evaluation)

and then interpolate the coefficients ci(τ) (which are invariant under the action of Γ) as
polynomials in j (interpolation).
• The CRT method [BLS09]: use Vélu’s formulas to compute ϕ` mod p for small p and use the
CRT to recover the full modular polynomial.

�

1.3. Finding an isogeny between two isogenous elliptic curves. Suppose that E1 and E2 are
`-isogenous elliptic curves, we want to compute f : E1 → E2. The explicit forms of f is given by Vélu’s
formula, which give a normalized isogeny (meaning that f∗wE2 = wE1). We first need to normalize E2.
Over C, the equation of the normalized curve E2 is given by the Eisenstein series E4(`τ) and E6(`τ). We
have j′(`τ)/j(`τ) = −E6(τ)/E4(τ). By differencing the modular polynomial, we recover the differential
logarithms.
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Isogenies between abelian varieties 3

Proposition 1.7. From E : y2 = x3 + ax+ b, a normalized model of jE2 is given by the Weierstrass
equation

y2 = x3 +Ax+B

where A = − 1
48

J2

jE′ (jE′−1728) , B = − 1
864

J3

j2
E′

(jE′−1728) and J = − 18
`
b
a

ϕ′
(X)
`

(jE ,jE′ )
ϕ′

(Y )
`

(jE ,jE′ )
jE.

Remark 1.8. E2(τ) is the differential logarithm of the discriminant. Similar methods allow to recover
E2(`τ), and from it σ =

∑
P∈K\{0E} x(K).

Finding the isogeny between the normalized models (I: Stark’s method). We need to find
the rational function I(x) = g(x)/h(x) giving the isogeny f : (x, y) 7→ (I(x), yI ′(x)) between E1 and E2.
Over C the coordinates of the elliptic curve are given by the elliptic functions: x = ℘(z) and y = ℘′(z).
We have to find I such that ℘E2(z) = I ◦ ℘E1(z). Stark’s idea is to develop ℘E2 as a continuous fraction
in ℘E1 , and approximate I as pn/qn. This algorithm is quasi-quadratic (Õ(`2)).
Finding the isogeny between the normalized models (II: Elkie’s method [Elk92]). Plugging
f into the equation of E2 shows that I satisfy the differential equation

(x3 + ax+ b)I ′(x)2 = I(x)3 +AI(x) +B.

Using an asymptotically fast algorithm to solve this equation yields I(x) in time quasi-linear (Õ(`)).
(Knowing σ gains a logarithmic factor.)

Algorithm 1.9. To summarize, we have the following algorithm to find an isogeny from E1 in large
characteristic [BMS+08] in time Õ(`3 + ` log2 q):

(1) Compute ϕ` (cost Õ(`3))
(2) Specialize on jE to obtain ϕ`(X, jE) (cost Õ(`2 log q))
(3) Find a root jE′ of ϕ`(X, jE) to obtain the j-invariant of a `-isogenous curve E′ (cost Õ(` log2 q)).
(4) Compute the normalized model for E′ (cost Õ(`2 log q)).
(5) Solve the differential equation (cost Õ(` log q)).

2. Abelian varieties

2.1. Theta functions. Let A/C = Cg/(Zg + ΩZg) be a principally polarised abelian variety, with
Ω ∈ Hg. Recall the definition of the theta functions with characteristics a, b ∈ Qg:

ϑ [ ab ] (z,Ω) =
∑
n∈Zg

eπi
t(n+a)·Ω·(n+a)+2πi t(n+a)·(z+b).

If L = Ln0 is the polarisation of level n associated to the principal symmetric line bundle L0 coming
from Ω, we let

ϑLi (z) = ϑ
[ 0
i/n

]
(z,Ω/n),

for i ∈ Z(n) = (Z/nZ)g. This form a basis of the sections of L, that is of functions f on Cg that satisfy
the following automorphic conditions:

f(z +m) = f(z),

f(z + Ωm) = e−πin
tm·Ω·m−2πin tz·mf(z).

Furthermore, this is the unique basis (up to multiplication by a constant) such that translation by a
point of n-torsion is given by

ϑb(z + m1

n
+ Ωm2

n
) = e−πi

tm2·Ωn ·m2−2πi tm2·ze−2πi tb·m2ϑb+m1(z),

for m1,m2 ∈ Zg (for more details on the canonical choice of a basis of sections, see [Mum83; Mum66]).

Proposition 2.1 (Lefschetz).
• If n ≥ 3 we get an embedding of A into projective space;
• If n = 2 and L0 is indecomposable, we get an embedding of the Kummer variety A/± 1;
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4 DAMIEN ROBERT

• (A,L, A[n]) is entirely determined by the theta null point (ϑi(0))i∈Z(n) when 2 | n and n ≥ 4.
(In fact the theta null point determines a symmetric theta structure of level n on A).

We now suppose that 2 | n, so L is totally symmetric.

Theorem 2.2 (Riemann relations). Let x1, y1, u1, v1, z ∈ Cg, such that 2z = x1 + y1 + u1 + v1 and
let x2 = z − x1, y2 = z − y1, u2 = z − u1, v2 = z − v1. Then for all characters χ ∈ Ẑ(2) and all
i, j, k, l,m ∈ Z(n) such that i+ j+k+ l = 2m, if i′ = m− i, j′ = m− j, k′ = m−k and l′ = m− l, then(∑

t∈Z(2)

χ(t)ϑi+t(x1)ϑj+t(y1)
)
.
(∑
t∈Z(2)

χ(t)ϑk+t(u1)ϑl+t(v1)
)

=

(∑
t∈Z(2)

χ(t)ϑi′+t(x2)ϑj′+t(y2)
)
.
(∑
t∈Z(2)

χ(t)ϑk′+t(u2)ϑl′+t(v2)
)
.

In particular, we have the addition formulae for z1, z2 ∈ Cg (with χ, i, j, k, l like before):( ∑
t∈Z(2)

χ(t)ϑi+t(z1 + z2)ϑj+t(z1 − z2)
)
.
( ∑
t∈Z(2)

χ(t)ϑk+t(0)ϑl+t(0)
)

=

( ∑
t∈Z(2)

χ(t)ϑ−i′+t(z2)ϑj′+t(z2)
)
.
( ∑
t∈Z(2)

χ(t)ϑk′+t(z1)ϑl′+t(z1)
)
.

Theorem 2.3 (Moduli space).
• If n ≥ 4, then the homogeneous equations determining the locus of the embedding of A into
projective spaces are generated by Riemann relations.
• If n > 4 then the moduli space Ag,n of abelian varieties with a level n symmetric theta structure
form an open set inside the locus determined by Riemann relations on theta null points.

Proof. [Mum66; Mum67a; Mum67b; Kem89]. �

2.2. Isogeny from the kernel.

Theorem 2.4 (Isogeny theorem). Let f : A = Cg/(Zg ⊕ ΩZg)→ B = Cg/(Zg ⊕ 1
`ΩZg) : z 7→ z be the

canonical isogeny with kernel K = 1
`ΩZg/ΩZg. Then if we use the basis with level `n for A and the basis

with level n for B, we get that

f∗
(
ϑ
[ 0
b/n

]
(z, 1

n

(Ω
`

)
)
)

= ϑ
[ 0
b`/n`

]
(z, Ω

n`
)

ie f∗ϑBi = ϑAϕ(i) where ϕ : Z(n)→ Z(`n) is the canonical injection.

Theorem 2.5 (Koizumi). Let (γ1, . . . , γr) ∈ Qr, (δ1, . . . , δr) ∈ Qr and F ∈ Glr(Q) be such that

tF

γ1 0
. . .

0 γr

F =

δ1 0
. . .

0 δr

 .

Let (x1, . . . , xr) ∈ (Cg)r, and (y1, . . . , yr) = (x1, . . . , xr)F . Let (a1, . . . , ar) and (b1, . . . , br) be elements
of (Cg)r, and note

(a′1, . . . , a′r) = (a1, . . . , ar)
t
F−1,

(b′1, . . . , b′r) = (b1, . . . , br)F.

Let d be the index [Matg×r(Z) + Matg×r(Z) tF : Matg×r(Z)] We have:

(1) d ϑ
[ a1
b1

]
(x1, γ1Ω)× · · · × ϑ

[ ar

br

]
(xr, γrΩ)

=
∑

ϑ
[
a′1+α1
b′1+β1

]
(y1, δ1Ω)× · · · × ϑ

[
a′r+αr

b′r+βr

]
(yr, δrΩ)
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where the sum is over the elements α and β such that

α ∈ Matg×r(Z) tF−1/
(

Matg×r(Z)
⋂

Matg×r(Z) tF−1
)
,

β ∈ Matg×r(Z)F/
(

Matg×r(Z)
⋂

Matg×r(Z)F
)
.

Proof. See [Koi76; Kem89; Mum83; Mum91]. �

Corollary 2.6 (Changing level). Let ` = a2 + b2, and let F =
(
a b
−b a

)
so that tFF = ` Id. The link

between the theta coordinates of level n on A and the ones of level `n is given by

ϑLi1(x1)ϑLi2(x2) =
∑

t∈ 1
` ΩZg/ΩZg

ϑL
`

j1 (y1 + at)ϑL
`

j2 (y2 + bt).

where (x1, x2) = F (y1, y2), (i1, i2) = F (j1, j2).

Theorem 2.7 (Isogeny computation). Combining the isogeny theorem and the change of level, we can
compute the contragredient isogeny f̃ : (B,M) → (A,L) with kernel K while staying in level n. Let
z ∈ Cg, Y = (`z, 0, . . . , 0) and X = Y F−1 (so that X1, . . . , Xr are integral multiples of z), let k ∈ Z(n)
and j = (k, 0, . . . , 0)F−1.

ϑAk (`z)ϑA0 (0) . . . ϑA0 (0) =
∑

t1,...,tr∈K
(t1,...,tr)F=(0,...,0)

ϑBj1(X1 + t1) . . . ϑBjr
(Xr + tr).

Proof. See [CR13] which uses the following diagram:

x ∈ (A,L`) (x, 0, . . . , 0) ∈ (Ar,L` ? · · · ? L`)

y ∈ (B,M) tF (x, 0, . . . , 0) ∈ (Ar,L` ? · · · ? L`)

f̃(y) ∈ (A,L) F ◦ tF (x, 0, . . . , 0) ∈ (Ar,L ? · · · ? L)

f

f̃

[`]

tF

F

�

Complexity Analysis 2.8. Let r = 1 if ` is a sum of two squares, r = 2 otherwise. Let k be the field
of definition of the kernel K, and k′ the field where the geometric points of K lives.

• From equations (in a suitable form) of K, one can compute the corresponding isogeny in time
O(`gr) in k [LR];

• From a basis of K, one can compute the corresponding isogeny in time O(`g) operations in k′
and O(`gr) operations in k.

Proof. Let k′ be the extension where the geometric points of K live.
• The isogeny formula assumes that the points are in affine coordinates. In practice, given A/k we

only have projective coordinates ⇒ we use differential additions to normalize the coordinates;
• Computing the normalization factors takes O(log `) operations in k′;
• Computing the points of the kernel via differential additions take O(`g) operations in k′;
• If ` ≡ 1 (mod 4), applying the isogeny formula take O(`g) operations in k′;
• If ` ≡ 3 (mod 4), applying the isogeny formula take O(`2g) operations in k′;
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Over Fq the geometric points of the kernel live in a extension of degree at most `g − 1; the total cost is
then Õ(`2g) or Õ(`3g) operations in Fq.

The complexity is much worse over a number field because we need to work with extensions of much
higher degree.

We can compute the isogeny directly given the equations (in a suitable form) of the kernel K of the
isogeny, by working with “formal tuples” [LR]. When K is rational, this gives a complexity of Õ(`g) or
Õ(`2g) operations in Fq. When given a basis of K, computing the equations of K costs O(`g) operations
in k′. �

2.3. Cyclic isogenies. Let f : A → B be an isogeny with cyclic kernel, and assume that we have
principal polarization L0 andM0 on A and B. Let L = Ln0 andM =Mn

0 .
Then there exist ϕ such that the following diagram commutes:

A B

Âk B̂k

A

f

f̂

ϕf∗M ϕM

ϕ−1
L

ϕ

By construction, ϕ commutes with the Rosatti involution, so it is a (totally positive) totally real
element of End0(A). We note Lϕ = f∗M so that we have the following diagram

A A

Âk

ϕ

ϕL
ϕLϕ

It is easy to see that K = Ker f is isotropic under the commutator pairing of Lϕ.
Assume that we can find a matrix F ∈ Matr(End+(A)) such that ϕ Id = tFF . Then we can compute

the ϕ-contragredient isogey f̃ as follow.

Proposition 2.9. Let (B,M0) be a ppav with a symmetric theta structure on G(M) whereM =Mn
0

is of level n even. Let K ′ ⊂ B[`] be a maximal isotropic subgroup for Mϕ and f̃ : B → A = B/K ′

be the associated isogeny. Assume that ` is prime to 2n; then the theta structure on G(M) induces a
unique polarization L of level n on A and a unique compatible symmetric theta structure on G(L). Let
F ∈ Matr(OK0) be such that tFF = ϕ Id.

Let i ∈ K1(L) and (j1, . . . , jr) ∈ K1(M)r be the unique preimage of (i, 0, . . . , 0) by F . Let y be a
geometric point of B and let Y = tF (y, 0, . . . , 0) ∈ Br. Then (up to a constant λ that may depend on y
this time)

(2) ϑLi (f̃(y)) · · · · · ϑL0 (0) = λ
∑

(t1,...,tr)∈K′r
F (t1,...,tr)=(0,...,0)

ϑMj1 (Y1 + t1) · · · · · ϑMjr
(Yr + tr).

Proof. This is a work in progress with Dimitar Jetchev and Alina Dudeanu. We have the following
diagram describing the steps of the isogeny computation
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Isogenies between abelian varieties 7

x ∈ (A,Lϕ) (x, 0, . . . , 0) ∈ (Ar,Lϕ ? · · · ? Lϕ)

y ∈ (B,M) tF (x, 0, . . . , 0) ∈ (Ar,Lϕ ? · · · ? Lϕ)

f̃(y) ∈ (A,L) F ◦ tF (x, 0, . . . , 0) ∈ (Ar,L ? · · · ? L)

f

f̃

ϕ

tF

F

The full picture is summarized by:

A B A

Âk B̂k Âk

Âk B̂k

f f̃

ϕL

ϕ̂

ϕf∗M

ϕM

ϕ̂

ϕf∗L

ϕL

f̂
̂̃
f

�

Remark 2.10. In dimension 2, if ` splits completely into principal ideals as ` = `1`2 inside the real
class field, then there are two types of cyclic isogenies according to whether the kernel is inside A[ϕ1] or
A[ϕ2] where we note ϕi a generator of the ideal `i.

2.4. Moduli spaces.

Theorem 2.11 (Duplication formulae). For all χ ∈ 1
2Z

g/Zg,

ϑ [ χ0 ] (0, 2Ω
n

)2 = 1
2g

∑
t∈1

2Zg/Zg

e−2iπ2 tχ·tϑ [ 0
t ] (0, Ω

n
)2

ϑ
[ 0
i/2
]

(0, 2Ω)2 = 1
2g

∑
i1+i2=0 (mod 2)

ϑ
[ 0
i1/2

]
(0,Ω)ϑ

[ 0
i2/2

]
(0,Ω);

Example 2.12. In genus 1, via a simple change of variables, we recover the AGM:

ϑ [ 0
0 ] (0, 2Ω)2 = ϑ [ 0

0 ] (0,Ω)2 + ϑ [ 0
1 ] (0,Ω)2

2
ϑ [ 0

1 ] (0, 2Ω)2 =
√
ϑ [ 0

0 ] (0,Ω)2ϑ [ 0
1 ] (0,Ω)2

The duplication formulae allows, starting from the theta constants of level 2 of an abelian variety A1
to compute the squares of the theta constants of level 2 of a 2-isogenous abelian variety A2. Note that
not all square roots correspond to valid theta constants, but a clever use of Riemann relations along
with compatible additions from [LR13] allows to identify the “good” square roots from the “bad” ones
(work in progress with David Lubicz).

Applications:
• Over F2m , starting from an ordinary abelian variety A = A1, (a subsequence of) the modular

invariants of the abelian varieties Ai converge to the canonical lift Ã;
• Over Q2m , staring with Ã1, and applying the duplication formulae to get Ãd, then we get the

same theta null point up to a constant u equal to the product of the eigenvalues of the Frobenius
π inversible modulo 2 [Mes02].
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8 DAMIEN ROBERT

• Over C, we can recover the period matrix Ω (in a fundamental domain) from the theta null
point when g = 1 or g = 2. Plugging a Newton iteration allows to compute theta constants in
quasi-linear time from the period matrix [Dup06].

For modular correspondances, we can look at this diagram:

Ag,`n

Ag,`n/H2 ' A1
g,n(`)

Ag,n Ag,`n/H ' A0
g,n(`)

Ag,n

π

forget

Assume for simplicity that n is prime to `, and look at the projection map coming from the isogeny
theorem π : Ag,`n → Ag,n, (ai)i∈Z(`n) 7→ (ai)i∈Z(n). From a theta null point (B,M, (bi)i∈Z(n)) ∈ Ag,n,
the (non degenerate) fibers in π∗((bi)i∈Z(n)) corresponds to theta null points (of level `n) of abelian
varieties `-isogenous to B with a compatible theta structure.

Theorem 2.13. Let H be the subgroup of symmetric automorphisms of the Heisenberg group of level `n
that fix the subgroup of level n. The group H is a semidirect product H2 × H1 which acts on the fibers as
follow:

• H1 is generated by the actions
(ai)i∈Z(`n) 7→ (aψ(i))i∈Z(`n)

for an automorphism ψ : Z(`n)→ Z(`n) fixing Z(n).
• H2 is generated by the actions

(ai)i∈Z(`n) 7→ (e`n(ψ(i), i)ai)i∈Z(`n)

where ψ is a symmetric morphism Z(`n) → Ẑ(`), coming from a symmetric morphism ψ2 :
Z(`)→ Ẑ(`). (Where symmetric means that ψ2(x)(y) = ψ2(y)(x).)

The fiber is reduced of dimension 0. Furthermore the action of H on the geometric points in the fibers
has the following properties

• A geometric point (ai)i∈Z(`n) in the fiber π∗((bi)i∈Z(n)) is degenerate if and only if the action of
H on it is non free.
• Two valid theta null points in the fiber correspond to the same isogenous abelian variety (with a
different theta structure) if and only if they are in the same orbit under the action of H.

In particular, Ag,`n/H2 is isomorphic to A1
g,n(`), the moduli spaces classifying abelian varieties (B,M)

with a level n symmetric theta structure and a basis of a maximal isotropic kernel K in the `-torsion;
and In particular, Ag,`n/H2 is isomorphic to A0

g,n(`), the moduli spaces classifying abelian varieties
(B,M) with a level n symmetric theta structure and a maximal isotropic kernel K in the `-torsion.

Proof. See [FLR11], where we also give a method to construct all degenerate points in the fiber. In
dimension 2, π∗((bi)i∈Z(n))/H is of size `3 + `2 + `+ 1 (the number of `-isogenies starting from B). The
size of H1 is (`2 − 1)(`2 − `) while the size of H2 is `3, so the number of valid theta null points in the
fiber is `10 − `8 − `6 + `4. In dimension g we get a bound of O(`2g2+g). �

While combining Riemann relations with Koizumi’s like relations allows to give equations for the
moduli space A1

g,n(`) (ongoing work with David Lubicz), for isogenies computations we want equations
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of the moduli space A0
g,n(`), or more precisely in its projection inside Ag,n × Ag,n. Furthermore, for

practical applications we want these equations to be in lexicographical Grőbner basis.

Remark 2.14. The equations for A1
g,n(`) that we have allow, starting from two isogenous abelian

varieties to recover the basis of the corresponding kernel by solving a Grőbner system. (Because when
we have a point in this intermediate fiber, it is straightforward to recover a geometric point in the fiber
π∗((bi)i∈Z(n)) and from it a basis of the kernel).

Theorem 2.15. In dimension 2, let (bi)i∈{1,2,3} be modular invariants on A2 (the moduli space of
principally polarized abelian surfaces).

Then an evaluation-interpolation algorithm can compute (in time quasi-linear in the output) the
modular polynomials

ϕ1(b1, b2, b3, b′1) = 0
b′2ϕ1(b1, b2, b3, b′1) = ψ2(b1, b2, b3, b′1)
b′3ϕ1(b1, b2, b3, b′1) = ψ3(b1, b2, b3, b′1)

classifying the couple of invariants (bi), (b′i) of `-isogenous abelian surfaces.
Here the modular polynomials are actually rational functions, where the denominator lies in Q(b1, b2, b3)

and comes from the Humber surface of discriminant `2 that classify abelian surfaces `-isogenous to a
product of elliptic curves (with the product polarisation).

Proof. See [Dup06] which uses Igusa invariants and computed the modular polynomials of level 2. This
work was extended by Milio which used invariants from Streng’s phd thesis and computed the modular
polynomials of level 3.

Instead of Igusa invariants, using quotient of level 2 theta constant allows to get much smaller
polynomials with lots of symmetries. In this case we can prove that the denominator is of total degree
`3 − `. For more details we refer to an upcoming article by Milio. Milio also computed these polynomials
up to level 7.

For instance in the evaluation we have that
ϕ1(bi(τ)), Y ) =

∏
g∈Γ2,4/Γ2,4

⋂
Γ0(`)

(Y − bi(`g.τ)),

where bi(τ) = ϑi(τ)/ϑ0(τ). For the evaluation we use the fact that theta constant of levels 2 generate
the field of modular functions (of weight 0) invariant under Γ2,4. �

References

[BMS+08] A. Bostan, F. Morain, B. Salvy, and E. Schost. “Fast algorithms for computing isogenies
between elliptic curves”. In: Mathematics of Computation 77.263 (2008), pp. 1755–1778
(cit. on p. 3).

[BLS09] R. Bröker, K. Lauter, and A. Sutherland. Modular polynomials via isogeny volcanoes. 2009.
arXiv: 1001.0402 (cit. on p. 2).

[CR13] R. Cosset and D. Robert. “An algorithm for computing (`, `)-isogenies in polynomial
time on Jacobians of hyperelliptic curves of genus 2”. Accepted for publication at Math-
ematics of computation. Oct. 2013. url: http://www.normalesup.org/~robert/pro/
publications/articles/niveau.pdf. HAL: hal-00578991, eprint: 2011/143 (cit. on p. 5).

[Dup06] R. Dupont. “Moyenne arithmetico-geometrique, suites de Borchardt et applications”. In:
These de doctorat, Ecole polytechnique, Palaiseau (2006) (cit. on pp. 8, 9).

[Elk92] N. Elkies. “Explicit isogenies”. In: manuscript, Boston MA (1992) (cit. on p. 3).
[Eng09] A. Enge. “Computing modular polynomials in quasi-linear time”. In: Math. Comp 78.267

(2009), pp. 1809–1824 (cit. on p. 2).

36



10 REFERENCES

[FLR11] J.-C. Faugère, D. Lubicz, and D. Robert. “Computing modular correspondences for abelian
varieties”. In: Journal of Algebra 343.1 (Oct. 2011), pp. 248–277. doi: 10.1016/j.jalgebra.
2011.06.031. arXiv: 0910.4668 [cs.SC]. url: http://www.normalesup.org/~robert/
pro/publications/articles/modular.pdf. HAL: hal-00426338 (cit. on p. 8).

[Kem89] G. Kempf. “Linear systems on abelian varieties”. In: American Journal of Mathematics
111.1 (1989), pp. 65–94 (cit. on pp. 4, 5).

[Koh96] D. Kohel. “Endomorphism rings of elliptic curves over finite fields”. PhD thesis. University
of California, 1996 (cit. on p. 1).

[Koh03] D. Kohel. “The AGM-X0(N) Heegner point lifting algorithm and elliptic curve point
counting”. In: Advances in cryptology—ASIACRYPT 2003. Vol. 2894. Lecture Notes in
Comput. Sci. Berlin: Springer, 2003, pp. 124–136 (cit. on p. 2).

[Koi76] S. Koizumi. “Theta relations and projective normality of abelian varieties”. In: American
Journal of Mathematics (1976), pp. 865–889 (cit. on p. 5).

[LR] D. Lubicz and D. Robert. “Computing separable isogenies in quasi-optimal time” (cit. on
pp. 5, 6).

[LR13] D. Lubicz and D. Robert. “A generalisation of Miller’s algorithm and applications to
pairing computations on abelian varieties”. Mar. 2013. url: http://www.normalesup.
org/~robert/pro/publications/articles/optimal.pdf. HAL: hal-00806923, eprint:
2013/192 (cit. on p. 7).

[Mes02] J.-F. Mestre. Notes of a talk given at the Cryptography Seminar Rennes. 2002. url:
http://www.math.univ-rennes1.fr/crypto/2001-02/mestre.ps (cit. on p. 7).

[Mum66] D. Mumford. “On the equations defining abelian varieties. I”. In: Invent. Math. 1 (1966),
pp. 287–354 (cit. on pp. 3, 4).

[Mum67a] D. Mumford. “On the equations defining abelian varieties. II”. In: Invent. Math. 3 (1967),
pp. 75–135 (cit. on p. 4).

[Mum67b] D. Mumford. “On the equations defining abelian varieties. III”. In: Invent. Math. 3 (1967),
pp. 215–244 (cit. on p. 4).

[Mum83] D. Mumford. Tata lectures on theta I. Vol. 28. Progress in Mathematics. With the assistance
of C. Musili, M. Nori, E. Previato and M. Stillman. Boston, MA: Birkhäuser Boston Inc.,
1983, pp. xiii+235. isbn: 3-7643-3109-7 (cit. on pp. 3, 5).

[Mum91] D. Mumford. Tata lectures on theta III. Vol. 97. Progress in Mathematics. With the
collaboration of Madhav Nori and Peter Norman. Boston, MA: Birkhäuser Boston Inc.,
1991, pp. viii+202. isbn: 0-8176-3440-1 (cit. on p. 5).

[Vél71] J. Vélu. “Isogénies entre courbes elliptiques”. In: Compte Rendu Académie Sciences Paris
Série A-B 273 (1971), A238–A241 (cit. on p. 1).

INRIA Bordeaux–Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence Cedex FRANCE
E-mail address: damien.robert@inria.fr
URL: http://www.normalesup.org/~robert/

37





4 AR I THME T I C ON ABE L I AN AND KUMMER VAR I E T I E S ( 2 0 1 4 - 1 2 )

Thesenotes are available at http://www.normalesup.org/~robert/pro/publications/notes/2015-05-Bordeaux-Arithmetic.
pdf.
They give an introduction to the results of [LR16].
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Arithmetic on Abelian and Kummer varieties

Notes of a talk given for the Lfant Algorithmic Number Theory Seminar — Bordeaux.
Based on earlier talks given in Grenoble and Caen.

Abstract. In this talk we give an outline of the results obtained in [LR14]. The first part is a review
of the arithmetic on elliptic curves and Jacobians of hyperelliptic curves. The second part is more
sophisticated and review the algebraic theory of theta functions, and the multiplication map. The much
more elementary third part use the geometric results from the second one to improve the arithmetic
on Abelian and Kummer varieties. Warning: These notes are in a very rough state, and probably
contain a lot of errors, refer to the article for more details! Also the cost of the arithmetic mentioned
for the different models do not always count the same thing, sometime we forget multiplication by
small constants and sometime look at the addition with a normalized projective point, so be careful
before comparing them!
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1. Arithmetic on Elliptic Curves

Elliptic curve in short Weierstrass form over a field k E : y2 = x3 + ax + b (always such a
model when char k > 3).

• Distinct points P and Q:
P +Q = −R = (xR,−yR)

λ = yQ − yP
xQ − xP

xR = λ2 − xP − xQ

yR = yP + λ(xR − xP )

Date: 2014-12-17.
1
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2 ARITHMETIC ON ABELIAN AND KUMMER VARIETIES

(If xP = xQ then P = −Q and P +Q = 0E).
• If P = Q, then λ comes from the tangent at P :

λ = 3x2
P + b

2yP
xR = λ2 − 2xP

yR = yP + λ(xR − xP )

One can avoid divisions by working with projective coordinates (X : Y : Z):

E : Y 2Z = X3 + aXZ2 + bZ3.

Cost for an addition: 11M+7S in Extended Jacobian coordinates (not counting multiplication by small
constants).

The scalar multiplication P 7→ n.P is computed via the standard double and add algorithm, on average
logn doubling and 1/2 logn additions. Standard tricks to speed-up include NAF form, windowing…The
multiscalar multiplication (P,Q) 7→ n.P +m.Q can also be computed via doubling and the addition of
P , Q or P + Q according to the bits of n and m, on average logN doubling and 3/4 logN additions
where N = max(n,m). GLV idea: if there exists an efficiently computable endomorphism α such that
α(P ) = u.P where u ≈

√
n, then replace the scalar multiplication n.P by the multiscalar multiplication

n1P + n2α(P ). One can expect n1 and n2 to be half the size of n ⇒ from logn doubling and 1/2 logn
additions to 1/2 log n doubling and 3/8 log n additions.

Edwards curves: E : x2 + y2 = 1 + dx2y2, d 6= 0,−1, char k > 2. Addition of P = (x1, y1) and
Q = (x2, y2):

P +Q =
(

x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − x1x2

1 − dx1x2y1y2

)
Neutral element: (0, 1); −(x, y) = (x, y); T = (1, 0) has order 4, 2T = (0, 1). (Conversely every elliptic
curve with a point of 4-torsion has an Edwards curve model). When d = 0 we get a circle (a curve of
genus 0) and we find back the addition law on the circle coming from the sine and cosine laws. If d is not
a square in K, then there are no exceptional points: the denominators are always nonzero (for rational
points in K) so we have a complete addition law (very useful to prevent some Side Channel Attacks).
Cost for an addition: 10M+1S (Projective coordinates), 9M+1S (Inverted coordinates).

Twisted Edwards curves: E : ax2 + y2 = 1 + dx2y2. Addition of P = (x1, y1) and Q = (x2, y2):

P +Q =
(

x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − ax1x2

1 − dx1x2y1y2

)
Neutral element: (0, 1); −(x, y) = (x, y); T = (0,−1) has order 2 (conversely if all points of 2-torsion of
an elliptic curve E are rational then E is 2-isogenous to a twisted Edwards curve). Extensively studied
by Bernstein and Lange, still complete addition if a is a square and d not a square. Cost for an addition:
10M+1S (Projective coordinates), 9M (Extended coordinates), 8M (Extended coordinates with a = −1).

Montgomery curves: E : By2 = x3 +Ax2 + x (birationally equivalent to twisted Edwards curves).
The map E → A1, (x, y) 7→ (x) maps E to the Kummer line KE = E/±1. We represent a point ±P ∈ KE

by the projective coordinates (X : Z) where x = X/Z. Differential addition: Given ±P1 = (X1 : Z1),
±P2 = (X2 : Z2) and ±(P1 − P2) = (X3 : Z3); then one can compute ±(P1 + P2) = (X4 : Z4) by

X4 = Z3 ((X1 − Z1)(X2 + Z2) + (X1 + Z1)(X2 − Z2))2

Z4 = X3 ((X1 − Z1)(X2 + Z2) − (X1 + Z1)(X2 − Z2))2

Cost: 2M+2S for a doubling and 4M+2S for a differential addition.
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Montgomery’s scalar multiplication: The scalar multiplication ±P 7→ ±n.P can be computed
through differential additions if we can construct a differential chain. If ±[n]P = (Xn − Zn), then

Xm+n = Zm−n ((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2

Zm+n = Xm−n ((Xm − Zm)(Xn + Zn) − (Xm + Zm)(Xn − Zn))2

Montgomery’s ladder use the chain nP , (n+ 1)P : from nP, (n+ 1)P the next iteration computes 2nP ,
(2n+ 1)P or (2n+ 1)P , (2n+ 2)P via one doubling and one differential addition.

2. Jacobian of hyperelliptic curves

H : y2 = f(x), deg f = 2g + 1: hyperelliptic curve of genus g with a rational point at infinity. Every
divisor D can be represented by a reduced divisor

D̃ =
r∑
i=1

(Pi) − r(∞)

where r 6 g and Pi 6= −Pj for i 6= j. The divisor D is represented by its Mumford coordinates (u, v)
where if Pi = (xi, yi):

u(x) =
∏

(x− xi)
v(xi) = yi

deg v < deg u 6 g

u(x) | v(x)2 − f(x);
The last condition encodes that y− v(x) has multiplicity mi = vPi(D) at Pi. From (u, v), D is recovered
by D = div(u(x)) ∧ div(v(x) − y).

Algorithm 2.1 (Cantor’s algorithm). Input: D1 = (u1, v1), D2 = (u2, v2);
Output: D = (u, v) such that D ∼ D1 +D2;

(1) Semireduce: Compute the extended gcd of u1, u2, v1 + v2

d = s1u1 + s2u2 + s3(v1 + v2)

u = u1u2

d2

v = s1u1v2 + s2u2v1 + s3(v1v2 + f)
d

modulo u

(2) Reduce:

u = f − v2

u
(Use the function f − v

2 to reduce the current divisor)

v = −v modulo u
until deg u 6 g.

Cost in genus 2: 32M + 7S for a doubling and 36M + 5S for an addition in weighted coordinates
[Lan05]; 21M + 12S for a doubling and 29M + 7S for an addition in Jacobian coordinates [HC14].

3. Complex abelian varieties

A = (V/Λ,H) where V is a C-ev of dimension g, Λ is a lattice of rank 2g and E = =H is symplectic,
E(ix, iy) = E(x, y) and E(Λ,Λ) ⊂ Z. If Λ = Zg + ΩZg where Ω ∈ Hg (ie Ω symmetric, =Ω > 0), Ω
determines a principal polarisation H0 = (=Ω)−1.

Definition 3.1 (Theta functions with characteristics a, b ∈ Qg).

ϑ [ ab ] (z,Ω) =
∑
n∈Zg

eπi
t(n+a)·Ω·(n+a)+2πi t(n+a)·(z+b).
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Montgomery Level 2 Twisted Edwards (Inverted) Jacobians coordinates
Doubling 5M + 4S + 1m0 3M + 6S + 3m0

3M + 4S + 1m0 3M + 5S
Mixed Addition 8M + 1S + 2m0 7M + 6S + 1m0

Mumford (Jacobian coordinates) Level 2 Level 4

Doubling 21M + 12S + 2m0 7M + 12S + 9m0 49M + 36S + 27m0Mixed Addition 29M + 7S

Table 1. Multiplication cost in dimension 1 and 2 (one step).

To get coordinates, we need a projective embedding, which corresponds to an (ample) line bundle L.
The sections of L correspond to functions f such that

f(z + λ) = aL(z, λ)f(z)

where aL is the automorphic factor associated to L, satisfying the cocycle condition

aL(z, λ1 + λ2) = aL(z, λ1)aL(z + λ1, λ2).

Theorem 3.2 (Appell-Humbert).

aL(z, λ) = χ(λ)eπH(z,λ)+ π
2H(λ,λ)

where χ(λ) = ±1 (when L is symmetric).

If L = Ln0 ie if the polarisation H is nH0, the sections are called theta functions of level n. If n = n1n2

a basis is given by ϑ
[
a/n1
b/n2

]
(n1z,

n1
n2

Ω). A choice of basis is uniquely determined (up to a constant) by a
representation of the action by translation by points of n-torsions.

Proposition 3.3 (Lefschetz).
• If n > 3 we get an embedding of A into projective space;
• If n = 2 and L0 is indecomposable, we get an embedding of the Kummer variety A/± 1;

Example 3.4. Let E1 and E2 be two elliptic curves, L1 and L2 be the corresponding canonical
polarisation coming from 0Ei

and Let L0 = L1 ? L2 be the product polarisation on E1 × E2. Then the
embedding given by the sections of L = L2

0 give a projective embedding of E1/± 1 ×E2/± 1 which is a
quotient of the Kummer variety ((E1 ×E2)/± 1). (Note: some terminology call the Kummer variety the
quotient of A by all the automorphisms; here we only quotient by ±1. Generically this give the same
definitions but not always as the example of product varieties show).

4. Heisenberg group

(A,L)/k polarised abelian variety over an algebraically closed field k. Assume for simplicity that L is
ample, and L=Ln0 where L0 is principal and n is prime to the characteristic of k.

We note ΦL : A → Âk, x 7→ τ∗
xL ⊗ L−1 the corresponding polarisation. The kernel K(L) of ΦL is

then A[n].
Theta group:

• G(L) := {(x, ϕ) | x ∈ K(L), ϕ : L ∼→ τ∗
xL}.

• Group law: (y, ψ).(x, ϕ) = (x+ y, τ∗
xψ ◦ ϕ):

L ϕ−−→ τ∗
xL τ∗

xψ−−−→ τ∗
y τ

∗
xL.

• The theta group fits into the exact sequence

0 k∗ G(L) K(L) 0 .
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• The commutator pairing eL(x, y) = x̃ỹx̃−1ỹ ∈ k∗ is non degenerate (Weil pairing), so G(L) is
an Heisenberg group. If ψ : K(L)2 → k∗ is the 2-cocycle corresponding to the central extension
G(L), then eL(x, y) = ψ(x,y)

ψ(y,x) .
• Action of G(L) on Γ(L):

(x, ϕ).f = τ∗
−x(ϕ(f)).

Standard Heisenberg group: K(n) := (Z/nZ)g ⊕ (Ẑ/nZ)g. The Heisenberg group G(n) is the
central extension

0 k∗ G(n) K(n) 0

given by the 2-cocycle ψ(x, y) = x2(y1). Concretely (α, x1, x2).(β, y1, y2) = (αβx2(y1), x1 + y1, x2 + y2).
The symplectic isomorphism (K(n), en) ' (K(L), eL) extends (not uniquely in general) to an isomorphism
ΘL : G(n) ∼→ G(L) (Theta structure of level n).

Theorem 4.1 (Mackey). G(n) has a unique irreducible representation V (n) of weight 1 (ie k∗ acts by
the natural character). If V is a representation of weight 1, then V = V (n)r where r = dimk V

K̃ and K
is a maximal isotropic subgroup of K(n). Moreover the action of K̃ on V (n) is the standard adjoint
representation, so V (n) has dimension ng.

Proof. See [Mum66; Mum91]. �

Descent: If K ⊂ K(L) is isotropic, f : A → B = A/K then
level subgroup K̃ ⊂ G(L) (ie a section of K) ⇔ descent data of L ⇔ M ample bundle on B such that
f∗M = L.

Theorem 4.2. The action of G(L) on Γ(L) is irreducible.

Proof. If K̃ is maximal, by descent theory L descends to a principal line bundle M on A/K. Γ(L)K̃ =
Γ(M) is then of dimension 1. �

In particular Γ(L) x G(L) is isomorphic to V (n) x G(n) (where G(n) acts by the standard action)
via ΘL.

Explicitly if we note Z(n) = (Z/nZ)g, V (n) = Hom(Z(n), k), (α, x1, x2).f = y 7→ αx2(y)f(x1 + y).
So there exists a unique basis (ϑi)i∈K1(L) of Γ(L) such that the action of G(L) is given by

(α, x1, x2).ϑi = αx2(i)ϑi−x1 .

(Abuse of notation: we see G(L) = k∗ ×K1(L) ×K2(L) as a set, where K(L) = K1(L) ⊕K2(L) is the
decomposition into maximal isotropic subgroups coming from ΘL, and x2(i) is the action coming from
the 2-cocycle.)

Concretely, ϑ0 is a non trivial section in Γ(L)K̃2(L) and if i ∈ K1(L), ϑi = s(i).ϑ0 where s is the
canonical section coming from the theta structure and K̃2 = s(K2) is the level subgroup above K2.

5. Riemann relations

5.1. The Isogeny theorem.

Theorem 5.1 (Isogeny Theorem). Let f : (A,L) → (B,M) be an isogeny between polarised abelian
varieties, M corresponds to a section K̃ ⊂ G(L) of the kernel K = Ker f . G(M) = K̃⊥/K̃ and the
decomposition K(L) = K1(L) ⊕K2(L) induces via f a decomposition K(M) = K1(M) ⊕K2(M) (if we
assume that K = K1

⋂
K ⊕K2

⋂
K). Likewise the theta structure on G(L) induces a compatible theta

structure on G(M). We then have for i ∈ K1(L)
⋂
K⊥ (up to a constant)

ϑM
f(i) =

∑
j−i∈K

⋂
K1(L)

ϑL
j =

∑
j∈K1(L),f(j)=i

ϑL
j = Trace of ϑL

i under the action of K̃.
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6 ARITHMETIC ON ABELIAN AND KUMMER VARIETIES

5.2. Riemann relations. Let ξ : A×A → A×A, (x, y) 7→ (x+ y, x− y) be the isogeny coming from
the group law, with kernel diagA[2]. We now assume that L is totally symmetric, ie L = Ln0 with L0
symmetric and 2 | n. We have ξ∗(L ? L) = L2 ? L2 where L ?M := p∗

1L ⊗ p∗
2M.

Proposition 5.2. For the natural product theta structure, the isogeny theorem applied to ξ yields

ϑL
i+j(x+ y)ϑL

i−j(x− y) =
∑

t∈K1(L)[2]

ϑL2

i+tϑ
L2

j+t.

This formula is easily inversible if we do a Fourier transform: for χ ∈ Ẑ(2) and i ∈ Z(2n), let
UL
χ,i =

∑
t∈Z(2) χ(t)ϑL2

i+t. Then we obtain the duplication formulae

ϑL
i+j(x+ y)ϑL

i−j(x− y) = 1
2g

∑
χ∈Ẑ(2)

UL2

χ,i(x)UL2

χ,j(y)

UL2

χ,i(x)UL2

χ,j(y) =
∑
t∈Z(2)

χ(t)ϑL
i+j+t(x+ y)ϑL

i−j+t(x− y)

Remark 5.3. In term of analytic theta functions, we have ϑL
i (z) = ϑ

[ 0
i/l

]
(z, Ω

` ), ϑL2

i (z) = ϑ
[ 0
i/2l

]
(z, Ω

2` ),
UL2

χ,i(z) = ϑ
[
χ/2
i/l

]
(2z, 2Ω

` ).

Theorem 5.4 (Riemann relations). Let x1, x2, x3, x4, z ∈ Cg, such that 2z = x1 + x2 + x3 + x4 and
let y1 = z − x1, y2 = z − x2, y3 = z − x3, y4 = z − y4. Then for all characters χ ∈ Ẑ(2) and all
i1, i2, i3, i4,m ∈ Z(n) such that i1 + i2 + i3 + i4 = 2m, if j1 = m − i1, j2 = m − j2, j3 = m − i3,
j4 = m− i4 then

(1)
( ∑
t∈Z(2)

χ(t)ϑi1+t(x1)ϑi2+t(x2)
)
.
( ∑
t∈Z(2)

χ(t)ϑi3+t(x3)ϑi4+t(x4)
)

=

( ∑
t∈Z(2)

χ(t)ϑj1+t(y1)ϑj2+t(y2)
)
.
( ∑
t∈Z(2)

χ(t)ϑj3+t(y3)ϑj4+t(y4)
)
.

In particular, we have the addition formulae for z1, z2 ∈ Cg (with χ, i1, i2, i3, i4 like before):

(2)
( ∑
t∈Z(2)

χ(t)ϑi1+t(z1 + z2)ϑi2+t(z1 − z2)
)
.
( ∑
t∈Z(2)

χ(t)ϑi3+t(0)ϑi4+t(0)
)

=

( ∑
t∈Z(2)

χ(t)ϑj1+t(z2)ϑj2+t(z2)
)
.
( ∑
t∈Z(2)

χ(t)ϑj3+t(z1)ϑj4+t(z1)
)
.

Proof. Using the duplication formulae the left term of eq. (1) is equal to Uχ,m1(z1)Uχ,m2(z2)Uχ,m3(z3)Uχ,m4(z4)
while the right term is equal to Uχ,m1(z1)Uχ,m4(z4)Uχ,m3(z3)Uχ,m2(z2) where z1 = x1+x2

2 , z2 = x1−x2
2 ,

z3 = x3+x4
2 , z4 = x3−x4

2 and m1 = i1+i2
2 , m2 = i1−i2

2 , m3 = i3+i4
2 , m4 = i3−i4

2 .
The differential addition comes by plugging

z1 + z2, z1 − z2, 0, 0 | −z2, z2, z1, z1

another useful application is the three way affine addition with
z1 + z2 + z3, z1, z2, z3 | 0, z2 + z3, z1 + z3, z1 + z2.

�

Question: For χ, i1 and i2, we need to find i3, i4 such that∑
χ(t)ϑL

i3+t(0)ϑL
i4+t(0) = UL2

χ,
i3+i4

2
(0)UL2

χ,
i3−i4

2
(0)

is not null. Then by eq. (2) we can recover all
∑
t∈Z(2) χ(t)ϑL

i1+t(z1 + z2)ϑL
i2+t(z1 − z2) and by doing

appropriate sums of characters we recover all products ϑL
i1

(z1 + z2)ϑL
i2

(z1 − z2). This is needed for
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projective addition or affine differential additions. Remark: we can translate m3 = i3+i4
2 and m4 = i3−i4

2
by t1, t2 in 2Z(2n).

Example 5.5. Using n = 2 and analytic theta functions for visibility, the duplication formulae above
are given by

ϑ
[

0
i
2

]
(z1 + z2,Ω/2)ϑ

[
0
j
2

]
(z1 − z2,Ω/2) =

∑
t∈ 1

2Zg/Zg

ϑ
[ t

2
i+j

n

]
(2z1,Ω)ϑ

[ t
2

i−j
n

]
(2z2,Ω)

ϑ
[
χ/2
i/2

]
(2z1,Ω)ϑ

[
χ/2
j/2

]
(2z2,Ω) =

1
2g

∑
t∈ 1

2Zg/Zg

e−2iπ tχ·tϑ
[

2χ
i+j

4 +t

]
(z1 + z2,Ω/2)ϑ

[
0

i−j
4 +t

]
(z1 − z2,Ω/2).

To compute the addition law, given χ, i1, i2 we need to find i3, i4 such that

ϑ
[ χ

2
i3+i4

2

]
(0,Ω)ϑ

[ χ
2

i3−i4
2

]
(0,Ω) 6= 0.

5.3. Multiplication map. Let m : A → A × A, x 7→ (x, x) which induces the multiplication map
m∗ : Γ(A,L) ⊗ Γ(A,L) → Γ(A,L2).

The following diagram show that m∗ = S∗ξ∗.

(X,L2)

(X ×X,L2 ? L2) (X ×X,L ? L).
ξ

S
m

By the duplication formulae, m∗ is then given by ϑL
i ⊗ϑL

j 7→
∑
χ∈Ẑ(2) U

L2

χ,uU
L2

χ,v(0) for any u, v ∈ Z(2n)
such that i = u+v, j = u−v, or via a change of variable

∑
t χ(t)ϑL

u+v+t(x)⊗ϑL
u−v+t(x) 7→ UL2

χ,i(x)UL2

χ,j(0).
So the rank of the multiplication map is closely linked to the non annulation of the theta null points.

Remark 5.6 (Even and odd theta null points). If n = 2, Uχ,i(−x) = χ(2i)Uχ,i(x) for i ∈ Z(4),
equivalently ϑ

[
a/2
b/2

]
(−2z,Ω) = (−1)ta·bϑ(2z,Ω). There is 2g−1(2g + 1) even theta null points vs

2g−1(2g − 1) odd theta null points. Ex: g = 1, 3 vs 1; g = 2, 10 vs 6; g = 3, 36 vs 28.

Theorem 5.7 (Mumford-Koizumi-Kempf). L0 is principal symmetric.
• Γ(A,Ln0 ) ⊗ Γ(A,Lm0 ) → Γ(A,Ln+m

0 ) is surjective when n > 2 and m > 3.
• Γ(A,L2n

0 )+ ⊗ Γ(A,L2
0) → Γ(A,L2(n+1)

0 )+ is surjective when n > 2. Here Γ(A,L2n
0 )+ denotes the

even sections of Γ(A,L2n
0 ). Equivalently, since L2n

0 is totally symmetric, it descends to an ample
line bundle M+ on the Kummer variety KA = A/± 1, and Γ(A,L2n

0 )+ = Γ(KA,M+).
• The rank of Γ(A,L2

0) ⊗ Γ(A,L2
0) → Γ(A,L4

0)+ is equal to the number of non null even theta null
points.

5.4. Normal projectivity. A line bundle L on a variety X is projectively normal if Γ(X,Ln) ⊗
Γ(X,L) → Γ(X,Ln+1) is surjective for all n or equivalently if S(Γ(X,L)) �

⊕
n>0 Γ(X,Ln). (And so if

X is normal, its projective homogeneous ring in the embedding given by L is normal). Remark: L is
very ample iff the map above is surjective for n � 0.

Corollary 5.8.
• If n > 3, (A,L) is projectively normal, and we have a projective embedding of A;
• If n = 2, the projective embedding of KA is projectively normal iff the even theta null points are

not null. We now assume that this is the case whenever n = 2.

Example 5.9. The product of the even theta null points is null whenever A is not absolutely simple or
when it is the Jacobian of an hyperelliptic curve of genus g > 3.
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8 ARITHMETIC ON ABELIAN AND KUMMER VARIETIES

5.5. Addition, Differential addition. Given ϑi(x), ϑi(y) we can recover (n even)
• ϑi(x+ y)ϑj(x− y) when n > 2 (⇒ projective addition, affine differential addition)
• κij := ϑi(x+ y)ϑj(x− y) + ϑj(x+ y)ϑi(x− y) if n = 2, the “symmetric sum” (⇒ differential

projective or affine addition).

Algorithm 5.10. Differential addition with g = 1, n = 2.
Input: zP = (x0, x1), zQ = (y0, y1) and zP−Q = (z0, z1) with z0z1 6= 0; z0 = (a, b) and A =

2(a2 + b2), B = 2(a2 − b2).
Output: zP+Q = (t0, t1).

(1) t′0 = (x2
0 + x2

1)(y2
0 + y2

2)/A
(2) t′1 = (x2

0 − x2
1)(y2

0 − y2
1)/B

(3) t0 = (t′0 + t′1)/z0
(4) t1 = (t′0 − t′1)/z1

Return (t0, t1)

Cost: 3M+6S+3m0 for a step of the scalar ladder, compared to 5M+4S+1m0 for the Montgomery
model. In genus 2 the cost of one step is 7M+12S+9m0.

6. Arithmetic on Kummer varieties

We assume here that n = 2 and that the even theta null points are non zero.
The polynomial Piα := X2 − 2 κiα

καα
X + κii

καα
has for roots { ϑi(x+y)

ϑα(x+y) ,
ϑi(x−y)
ϑα(x−y) }. Once a root is chosen,

some two by two linear equations involving the κij and the roots allows to recover the theta coordinates
of x+ y. This gives equations for the degree two scheme {x+ y, x− y}.

Lemma 6.1 (Compatible additions). Given x, y, z, t ∈ A(k) such that x+ y = z + t but x− y 6= ±z − t
then one can compute x+ y (= z + t) on the Kummer (from the points on the Kummer).

Proof. This is just the intersection of the two schemes of degree two defining {x± y} and {z ± t}; in
practice this is just a gcd of two degree two polynomials. �

Proposition 6.2 (Multiway additions). Let ±P0 ∈ KA(k) be a point not of 2-torsion. Then from
±P1, . . . ,±Pn ∈ KA(k) and ±(P0 + P1), . . . ,±(P0 + Pn) ∈ KA(k), one can compute ±(P1 + · · · + Pn)
and ±(P0 + P1 + · · · + Pn).

Remark 6.3. A reformulation of the proposition is that the data of P0 + Pi ∈ KA(k) “fixes” the sign
of Pi relatively to the one of P0, and so we can compute the additions since we have “compatible” signs.

Proof. This reduces to the case n = 2, which uses (in the generic case) (P1)+(P2) = (P1 −P0)+(P2 +P0)
and (P0 + P1) + P2 = P1 + (P0 + P2). And a verification shows that in the non generic case a direct
computation is possible. �

6.1. Multi Scalar multiplication. To speed up the scalar multiplication P 7→ nP , the GLV trick
[GLV01] is to use an endomorphism α and reduces the scalar multiplication to a multi scalar multiplication
m1P1 + m2P2 (for instance if αP = tP , fix P1 = P , P2 = α(P ), and n = m1 + tm2). The doubling
and add method works again, with the addition being either P1, P2 or P1 + P2 according to the bits of
(m1,m2).

On the Kummer variety a Montgomery laddermP, (m+1)P 7→ 2mP, (2m+1)P or (2m+1)P, (2m+2)P
computes the scalar multiplication. The two dimensional scalar multiplication uses a square ±(mP +nQ),
±((m+ 1)P +nQ), ±(mP + (n+ 1)Q), ±((m+ 1)P + (n+ 1)Q) and depending whether the current bits
of (m1,m2) is (0, 0), (1, 0), (0, 1) or (1, 1), adds ±(mP + nQ), ±((m+ 1)P + nQ), ±(mP + (n+ 1)Q) or
±((m+ 1)P + (n+ 1)Q) to the four points. But this is not interesting, we expect to halve the length of
the chain by two, but each steps is twice as costly. A better approach from [Ber06] uses a triangle.

But via the compatible additions, we just need to keep two points!

Example 6.4. Given m1P1+(m2+1)P2, (m1+1)P1+m2P2, we can compute (2m1+1)P1+(2m2+1)P2 =
(m1P1 + (m2 + 1)P2) + (P1) = ((m1 + 1)P1 +m2P2) + (P2).
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7. Changing level

For an elliptic curve y2 = f(x), the map (x, y) 7→ x maps the elliptic curve to the Kummer line.
Going back to the elliptic curve involve a square root. For abelian variety, a similar map to the Kummer
is (A,L2) level 4 → (KA,L+) level 2 via the duplication formula. We want to go back from level 2 to
level 4, using only one square root. We would also like to be able to describe a point on A using just the
point on KA and an extra coordinate to encode the sign, like is possible on elliptic curve (going back to
the full level 4 adds a lot of coordinates). This will be described in section 8

The theta constants of level 4 on A gives the points of 4 torsion, so we have the coordinates UL2

χ,i(T )
for T a point of four torsion. The duplication formulae gives Uχ,i(x)Uχ,i(0) =

∑
χ(t)ϑ2i+t(x)ϑt(x),

but Uχ,i(0) = 0 for odd coordinates, so we don’t recover all level 4 coordinates given the level 2 ones.
But 0 6= Uχ,0(0) = Uχ,i(Ti) for an (explicit) point of four torsion T . So we can use Uχ,i(x)Uχ,i(Ti) =∑
χ(t)ϑ2i+t(x+ Ti)ϑt(x− Ti).
We thus need to compute x + Ti via a square roots, then we can recover all the other ones via

x+ Tj = (x+ Ti) + (Ti − Tj).

7.1. Compressing coordinates. Another way to descend level is via the isogeny theorem:
π(ϑi(x))i∈Z(`n) → (ϑi(x))i∈Z(n)

is the isogeny of kernel K2(L)[`].

Proof. The isogeny sends Cg/(Zg + ΩZg) → Cg/(Zg + Ω
` Z

g). Looking at the level `n and n theta
functions we indeed have for b ∈ Z(n) ϑ

[ 0
`b/`n

]
(z, Ω

`n ) = ϑ
[ 0
b/n

]
(z, Ω/`

n ). �

Let e1, . . . , eg be a basis of K1(L). Then from π̃(x+
∑
λiei), where λi ∈ {0, . . . , `− 1} we can recover

x (here π̃ is the affine lift of π).

Example 7.1. g = 1, ` = 3, n = 2. π̃(x0, . . . , x5) = (x0, x3). x + e1 = (x1, . . . , x5, x0) so π̃(x + e1) =
(x1, x4) and π̃(x+ 2e1) = (x2, x5).

But π̃(x+
∑
λiei) = π̃(x) +

∑
λiπ̃(ei) so we can recover everything using multiway affine additions

(which are just a composition of differential and three way affine additions).

Corollary 7.2.
• 0 is uniquely determined by π̃(0), π̃(ei) and π̃(ei + ej) ((1 + g + g(g + 1)/2)ng coordinates).
• x is uniquely determined by π̃(x), π̃(x+ ei) ((1 + g)ng coordinates).

8. Arithmetic on abelian varieties

Level (2, 4): this gives an embedding of A (if A is absolutely simple), and the compression of
coordinates from above show that we can use the coordinates π̃(x), π̃(x+ T ) = π̃(x) + π̃(T ) where T is
of 4-torsion.

More generally, for T ∈ A(k) such that 2T 6= 0, we represent x ∈ A(k) by x ∈ KA(x), x+ T ∈ KA.
Addition: (x, x+ T ) + (y, y + T ) = (x+ y = (x+ T ) + (y − T ), x+ y + T ) (this is a three way addition
and a compatible addition on the Kummer so this is quite costly). Doubling is just a doubling and a
differential addition on the Kummer so this is a lot less costly.

The standard scalar multiplication costs too much because of the additions. One can instead do a
Montgomery scalar multiplication with (nx, (n + 1)x, (n + 1)x + T ) which uses a doubling and two
differential additions on the Kummer at each step.

Even better, just do a Montgomery scalar multiplication (nx, (n+ 1)x) on the Kummer and at the
last step compute (n+ 1)x+ T = nx+ (x+ T ). This also works for multi-exponentiation.

Finally this representation is very compact, x+ T is simply represented by a root of the polynomial
Piα. So we have a representation that only needs one extra coordinate compared to the Kummer one,
and has a scalar multiplication (almost) as efficient, but we can still compute additions.

Remark 8.1. Changing representation: (x, x + T1) 7→ (x, x + T2) via x + T2 = (x + T1) + (T2 − T1).
This needs a choice of T1 + T2 in {±T1 ± T2}, but this choice is necessary since [−1] is an automorphism.
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A

KA

A

[−1]

9. Formulae

Let (ai)i∈Z(2) be the level two theta null point representing a Kummer variety KA of dimension 2.
Let x = (xi)i∈Z(2) and y = (yi)i∈Z(2), we let X = x+ y and Y = x− y. We will give formulae for the
coordinates 2κij = XiYj +XjYi.

Let i ∈ Z(2), χ ∈ Ẑ(2) and let

zχi =
( ∑
t∈Z(2)

χ(t)xi+txt
)( ∑

t∈Z(2)

χ(t)yi+tyt
)
/
( ∑
t∈Z(2)

χ(t)ai+tat
)
.

∑
t χ(t)ai+tat is simply the classical theta null point ϑ

[
χ/2
i/2

]
(0,Ω)2. Then theorem 5.4 gives

4X00Y00 = z00
00 + z01

00 + z10
00 + z11

00 ;
4X01Y01 = z00

00 − z01
00 + z10

00 + z11
00 ;

4X10Y10 = z00
00 + z01

00 − z10
00 − z11

00 ;
4X11Y11 = z00

00 − z01
00 − z10

00 + z11
00 ;

2(X10Y00 +X00Y10) = z00
10 + z01

10 ;
2(X11Y01 +X01Y11) = z00

10 − z01
10 ;

2(X01Y00 +X00Y01) = z00
01 + z10

01 ;
2(X11Y10 +X10Y11) = z00

01 − z10
01 ;

2(X11Y00 +X00Y11) = z00
11 + z11

11 ;
2(X01Y10 +X10Y01) = z00

11 − z11
11 ;

We describe the degree two scheme {X,Y } by the polynomial Pα(Z) = Z2 −2κα0
κ00

Z+ καα

κ00
whose roots

are {Xα

X0
, Yα

Y0
} (where α is such that XαY0 −X0Yα 6= 0). To compute κ00 and καα we need 4M+8S+3M0,

and to compute κα0 we need 2M + 4S+ 2M0; so in total to compute Pα, we need 6M + 12S+ 5M0 + 2I.
Once we have a root Z, if we let Z ′ = 2κα0

κ00
− Z be the conjugate root (corresponding to Yα

Y0
), we can

recover the coordinates Xi, Yi by solving the equation(
1 1
Z Z ′

) (
Yi/Y0
Xi/X0

)
=

(
2κ0i/κ00
2καi/κ00

)
;

We find Xi = 2(Zκ0i−καi)
κ00(Z−Z′) = Zκ0i−καi

Zκ00−κα0
for i 6= 0, α (here we have X0 = 1, Xα = Z). But usually we

will express Z = (X0 : Xα) ∈ P1 as a point in the projective line, and we find that

Xi = Xακ0i −X0καi
Xακ00 −X0κα0

.

Recovering the projective coordinates of X then costs 8M (given the κij). To sum up, given Z = (X0 : Xα)
recovering X costs in total (10M + 20S + 9M0) + 8M = 18M + 20S + 9M0.
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For a compatible addition, where x+ y = z + t, we can find Z as the common root between Pα and
the similar polynomial P′

α(Z) = Z2 − 2κ
′
α0
κ′

00
Z + κ′

αα

κ′
00

coming from the symmetric coordinates zitj + tizj .
Computing the coefficients needed for P′

α costs 6M + 12S + 5M0. The common root is

Z =
κ′

αα

κ′
00

− καα

κ00

−2κα0
κ00 + 2κ

′
α0
κ′

00

= κ′
αακ00 − καακ

′
00

2(κ′
α0κ00 − κα0κ′

00) .

Computing Z projectively costs 4M . In the end, a compatible addition costs (18M + 20S + 9M0) +
(6M + 12S + 5M0) + 4M = 28M + 32S + 14M0.
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5 PO LAR I S AT I ON S , I S OG EN I E S , AND PA I R I NG S ON AB E L I AN VAR I E T I E S ( 2 0 2 2 -

0 9 )

These completely unfinished notes are available at http://www.normalesup.org/~robert/pro/publications/
notes/2022-09-polarisations.pdf.
They were meant to accompany my talk “Isogenies between abelian varieties – an algorithmic

survey” at the Leuven isogeny days 3, whose slides are available at http://www.normalesup.org/
~robert/pro/publications/slides/2022-09-Leuven-Isogenies.pdf, but I never got around to
writing them.
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Polarisations, isogenies, and pairings in abelian varieties

DAMIEN ROBERT

Abstract. This note is an introduction to the notion of polarisation on an abelian variety
and isogenies between polarised abelian varieties.

1. Introduction

These notes are written for my talk “Isogenies between abelian varieties: an overview”
for the Leiden isogeny days. These are a work in progress. The aim is to give an overview of
polarisations, isogenies and their strong link with the Weil pairing. I intend to update them
regularly.

For my HDR thesis [Rob21a], I wrote an (unfinished) set of notes [Rob21b] on the
mathematics of abelian varieties. The aim of [Rob21b] is to cover more technical topics
on abelian varieties by giving the relevant pointers to the literature [Mum70; Mil91; BL04;
MGE12; MFK94; Mum83; Mum84; Mum91; BLR12; FC90]…Indeed, it would be way too
ambitious (for me!) to write full proofs of each of these topics, so [Rob21b] summarizes
the main results and gives references for the proofs. For now it covers abelian varieties, the
basic theory of abelian schemes, degenerations and the theory of Néron’s models (the lifting
/ canonical lift part of the theory is not yet written), and pairings (Weil, Weil-Cartier, Tate,
Tate-Cartier, Tate-Lichtenbaum). Further planned topics include the study of various moduli
(of abelian varieties, of curves, via theta functions, CM theory). Unfortunately it is a bit
stalled.

The planned topics of these notes are more elementary: polarisations, isogenies, and their
strong links with the Weil pairing. I also intend to do a comparison with the case of elliptic
curves (similarity / differences when going in higher dimension), and describe how these
objects behave when working over ℂ (they have a nice description in terms of linear algebra
/ quadratic forms).

Throughout these notes we only deal with separable isogenies. In particular, when looking
at 𝑁-isogenies, we implicitly restrict to the case where 𝑁 is prime to the characteristic 𝑝 of
the base field (or 𝑝 = 0).

2. Outline

Here are planned topics.
(1) Complex abelian varieties: 𝐴 = 𝑉/Λ, lattices, polarisations, isogenies: explain the

different aspect of polarisations: as a Hermitian form on 𝑉, a symplectic form on Λ,
a morphism 𝐴 → ̂𝐴, an algebraic class of divisors (the Apell-Humbert theorem).

Jacobians, analytic description of the Theta divisor.
(2) Abelian varieties: Isogenies, divisibility.The dual abelian variety. Dual isogenies. Dual

abelian variety: 𝐴 = Pic0(𝐴). Dual isogeny as pullback. Alternative interpretation

Date: September 26, 2022.
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𝐴 = Ext1(𝐴, 𝔾𝑚) (via Mumford’s theta groups), application to define the Weil-
Cartier pairing of an isogeny. TheWeil pairing on 𝐴[𝑚] × 𝐴[𝑚]. Compatibility of
pairings with isogenies. Weil pairing on the Tate modules 𝑇ℓ𝐴. Biduality, Poincaré
bundle, biduality and dual isogenies behave as expected with respect to the Weil
pairing.

(3) Polarisations. Algebraic interpretations of the different facets of polarisations in the
complex analytic case (Weil pairing, divisors). Characterisation of when 𝜙 ∶ 𝐴 →

̂𝐴 is a polarisation. The Néron-Severi group. Field of definition of a polarisation
vs field of definition of an associated divisor, the case of 𝑘 = 𝔽𝑞. Polarisations
and pairings, Theta group, descent. Contragredient isogeny. Product polarisations,
polarisations on product. The contragredient matrix is the transpose of the matrix
of contragredient isogenies. The Jacobian of a curve and its theta divisor. The special
case of elliptic curves.

(4) 𝑁-isogenies. Link with maximal isotropic kernels. Contragredient isogeny ̃𝑓. Charac-
terisation of a 𝑁-isogeny via the contragredient isogeny and via pairings.

(5) Maximal isotropic kernels. Elementary theory of symplectic finite abelian groups
[Zhm71; PSV10]. Symplectic CRT. Maximal isotropic kernel: rank 𝑔, standard
kernels.
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These unfinished notes are available at http://www.normalesup.org/~robert/pro/publications/
notes/2022-09-kani.pdf

The goal was to extend (part of) Kani’s work in [Kan97] from elliptic curves to abelian varieties,
beyond what is used nowadays in isogeny based cryptography. Like the preceding notes, I never got
around to finishing them.
Still, the description of the maximal isotropic kernels in higher dimension might be useful.
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Reducible gluing of abelian varieties

DAMIEN ROBERT

Abstract. This note extend Kani’s work on reducible gluing of elliptic curves to abelian
varieties.

1. Introduction

Kani’s lemma [Kan97, § 2] has been a hot topic in isogeny based cryptography [CD22;
MM22; Rob22a; Rob22b]. It is easy to extend it to abelian varieties, see [Rob22a, Lemma 3.4].
But Kani’s work on reducible gluing of elliptic curves in [Kan97] goes further than just
this lemma. The purpose of these notes is to cover the extension of Kani’s work to higher
dimensional abelian varieties. This is mostly a straightforward adaptation of Kani’s proofs
from elliptic curves to abelian varieties, with a few subtleties stemming from the fact that
maximal isotropic kernels in abelian varieties are not always nicely described.

Kani’s work in [Kan97, § 2] cover three related topics: how to combine an 𝑁1-isogeny
𝑓1 ∶ 𝐸0 → 𝐸1, and a𝑁2-isogeny 𝑓2 ∶ 𝐸0 → 𝐸2 into an𝑁1+𝑁2-isogeny𝐹 ∶ 𝐸0×𝐸′

0 → 𝐸1×𝐸2,
why they are all of this form, and describe the kernel of 𝐹. The applications mentioned above
only really need the case where 𝑁1 is prime to 𝑁2 which simplify things. Nevertheless, the
general case is interesting and Kani deals with it in details for elliptic curves. In Section 3 we
show how his results extend to dimension 𝑔 abelian varieties. But first we need to describe
maximal isotropic subgroups in more details, this is done in Section 2.

Throughout these notes we only deal with separable isogenies. In particular, when looking
at 𝑁-isogenies, we implicitly restrict to the case where 𝑁 is prime to the characteristic 𝑝 of
the base field (or 𝑝 = 0).

2. Maximal isotropic kernels

Let (𝐴, 𝜆𝐴) be a ppav.

Definition 2.1. A subgroup 𝐾 ⊂ 𝐴[𝑁] is called isotropic (with respect to the Weil pairing
𝑒𝐴,𝑁 on 𝐴) if 𝐾 ⊂ 𝐾⟂, ie if 𝑒𝐴,𝑁(𝑃, 𝑄) = 1 for all 𝑃, 𝑄 ∈ 𝐾.

In the theory of bilinear form, such a subgroup 𝐾 is usually called totally isotropic. An
isotropic subgroup 𝐻 ⊂ 𝐺 for a quadratic form 𝑞 on 𝐺 usually means that there is an
isotropic element 𝑥 ≠ 0 ∈ 𝐻, ie such that 𝑞(𝑥) = 0. However, since 𝑒𝐴,𝑁 is alternating,
every non trivial subgroup of 𝐴[𝑁] is isotropic in this sense.

Lemma 2.2. Let 𝐾 ⊂ 𝐴[𝑁] be a subgroup. The following are equivalent:
(1) 𝐾 is isotropic, and maximal among isotropic kernels (ie 𝐾 is maximal isotropic);
(2) 𝐾 = 𝐾⟂.
(3) 𝐾 is isotropic of cardinal 𝑁𝑔.
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Proof. 1 ⇒ 2 ⇒ 3 ⇒ 1, using that #𝐾⟂#𝐾 = 𝑁2𝑔 since 𝑒𝐴,𝑁 is symplectic, which shows that
in particular an isotropic group has cardinal #𝐾 ≤ 𝑁𝑔. �

Lemma 2.3. Let 𝐾 be a maximal isotropic subgroup and ℓ ∣ #𝐾. Then 𝐾[ℓ] is of dimension at
least 𝑔 (over ℤ/ℓℤ), so contains a maximal isotropic subgroup 𝐾′ for 𝐴[ℓ].

Proof. By the symplectic CRT theorem, we may assume 𝑁 = ℓ𝑒. If 𝐾[ℓ] was of dimension
𝑟 < 𝑔, we would have #𝐾 ≤ (ℓ𝑒)𝑟 < (ℓ𝑒)𝑔, and 𝐾 would not be maximal. So 𝐾[ℓ] is of
rank 𝑟 ≥ 𝑔, hence we can always extract an isotropic subgroup of rank 𝑔 by the structure
theorem of symplectic vector spaces. (Be careful that 𝐾 itself will not be isotropic for 𝐴[ℓ] if
𝑟 > 𝑔). �

Corollary 2.4. Every 𝑁-isogeny can be decomposed as product of ℓ𝑖-isogenies with 𝑁 = ∏ ℓ𝑖.

If 𝐾 is a finite abelian group, we define its rank 𝑟 has the minimal integer 𝑟 such that there
exists a surjectionℤ𝑟 → 𝐾.This is also the number of elementary divisors 𝑑1 ∣ 𝑑2 ∣ … 𝑑𝑟 with
𝑑1 ≠ 1, giving the structure 𝐾 ≃ ∏ ℤ/𝑑𝑖ℤ. This is also the maximum of the dimensions of
the 𝐾[𝑝] as a ℤ/𝑝ℤ vector space over all 𝑝 (dividing #𝐾). We call a “basis” of 𝐾 a system of
generators (𝑔1, … , 𝑔𝑟) of cardinal 𝑟.

Lemma 2.5. A maximal isotropic kernel 𝐾 ⊂ 𝐴[𝑁] of rank 𝑔 always has an isotropic
complement 𝐾′, meaning that 𝐴[𝑁] = 𝐾 ⊕ 𝐾′ is a symplectic decomposition. In particular, if
(𝑒1, … , 𝑒𝑔) is a basis of 𝐾, it extends into a symplectic basis (𝑒1, … , 𝑒𝑔, 𝑓1, … 𝑓𝑔) of 𝐴[𝑁], and
if 𝑚 ∣ 𝑁, 𝐾[𝑚] is maximal isotropic in 𝐴[𝑚].

Proof. By the symplectic CRT theorem, we may reduce to the case 𝑁 = ℓ𝑔. Since 𝐾 is of
rank 𝑔 and is of cardinal ℓ𝑔, it is homogeneous. It has a symplectic complement by [PSV10,
Theorem 10.14]. �

Example 2.6. In 𝐴[ℓ] (with ℓ prime) an isotropic subgroup 𝐾 is maximal iff it is of rank 𝑔
(by the structure theorem of symplectic vector spaces).

Lemma 2.7. If 𝐾 ⊂ 𝐴[ℓ𝑒] is homogeneous (all its invariants are equal), it is either of rank 𝑔
or of rank 2𝑔, In the latter case, 𝑒 = 2𝑓 and 𝐾 = 𝐴[ℓ𝑓].

If 𝐾 ⊂ 𝐴[𝑁] is homogeneous or more generally if each ℓ-Sylow of 𝐾 is homogeneous (this
condition is equivalent to, if 𝑑1 ∣ ⋯ ∣ 𝑑2𝑔 are the invariants of 𝐻 where 𝑑𝑖 is allowed to be 1,
then each prime divisor ℓ of 𝑁 divides at most one quotient 𝑑𝑖+1/𝑑𝑖), then 𝑁 = 𝑁2

1𝑁2 with
gcd(𝑁1, 𝑁2) = 1, 𝐾[𝑁2

1] = 𝐾[𝑁1] = 𝐴[𝑁1] and 𝐾[𝑁2] maximal isotropic of rank 𝑔 in
𝐴[𝑁2].

Proof. By [PSV10, Theorem 10.14], 𝐾 is standard (see below). Let (𝑒1, … , 𝑒𝑔, 𝑓1, … , 𝑓𝑔) a
symplectic basis of 𝐴[𝑁] adapted to a standard decomposition 𝐾 = 𝐾1 ⊕ 𝐾2. Then since
𝐾 is homogeneous, either 𝐾 has for basis (say) (𝑒1, … , 𝑒𝑘, 𝑓𝑘+1, … 𝑓𝑔) so it has rank 𝑔, or for
basis (ℓ𝑓𝑒1, … , ℓ𝑓𝑒𝑔, ℓ𝑓𝑓1, … ℓ𝑓𝑓𝑔) with 𝑒 = 2𝑓.

The general case comes from the symplectic CRT. �

It is often convenient to treat the case of maximal isotropic subgroups of the form 𝐴[𝑛]
and those of rank 𝑔 together. The following notion encompass these two cases:

Lemma 2.8. Let 𝐴[𝑁] = 𝐴1[𝑁] ⊕ 𝐴2[𝑁] be a symplectic decomposition. Let 𝐾1 ⊂ 𝐴1[𝑁]
be any subgroup. Let 𝐾2 = 𝐾⟂

1 ∩ 𝐴2[𝑁]. Then 𝐾 = 𝐾1 ⊕ 𝐾2 is maximal isotropic. Conversely,
if 𝐾 = 𝐾1 ⊕ 𝐾2 is maximal isotropic with 𝐾𝑖 ⊂ 𝐴𝑖[𝑁], then 𝐾2 = 𝐾?

1 ∩ 𝐴2[𝑁].
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Proof. 𝐾2 is orthogonal to𝐾1 by definition, and orthogonal to itself because it lives in𝐴2[𝑁].
Hence 𝐾 is isotropic. We have 𝐾?

1 = 𝐴1[𝑁] ⊕ 𝐾2, so since 𝐾?
1

? = 𝐾1, 𝐾?
2 = 𝐾1 ⊕ 𝐴2[𝑁].

So 𝐾? = 𝐾?
1 ∩ 𝐾?

2 = 𝐾, hence 𝐾 is maximal isotropic. The converse follows by the same
calculation. �

Definition 2.9. A isotropic subgroup 𝐾 is called standard if there is a symplectic decompo-
sition 𝐴[𝑁] = 𝐴1[𝑁] ⊕ 𝐴2[𝑁] such that 𝐾 = 𝐾1 ⊕ 𝐾2 where 𝐾𝑖 = 𝐾 ∩ 𝐴𝑖[𝑁].

In particular, if 𝐾 = 𝐾1 ⊕ 𝐾2 is a standard isotropic subgroup, 𝐾2 ⊂ 𝐾⟂
1 ∩ 𝐴2[𝑁], and

by Lemma 2.8, 𝐾 is maximal iff we have equality.

Example 2.10. • a maximal isotropic kernel of rank 𝑔 is standard by Lemma 2.5.
• a homogeneous maximal isotropic kernel is standard by Lemma 2.7.
• For an elliptic curve, a maximal isotropic subgroup 𝐾 ⊂ 𝐸[𝑁] is always of the form

𝐾 = ⟨𝑃, 𝑄⟩ where 𝑃 = 𝑚𝑒1, 𝑄 = 𝑛𝑓1 with (𝑒1, 𝑓1) a symplectic basis of 𝐸[𝑁],
𝑚 ∣ 𝑛 and 𝑁 = 𝑚𝑛. In particular, 𝐾 is standard.

If 𝑚 = 1, 𝐾 = ⟨𝑃⟩ is cyclic. If 𝑚 = 𝑛, 𝐾 = 𝐸[𝑛] ⊂ 𝐸[𝑛2]. Since an isogeny
𝑓 ∶ 𝐸 → 𝐸′ of degree 𝑁 is always an 𝑁-isogeny, 𝐾 = Ker 𝑓 is maximal isotropic, and
𝑓 decomposes as 𝑓 = 𝑔 ∘ [𝑚], where 𝑔 has cyclic kernel, where 𝑚 is as above for 𝐾.

• Let (𝑒1, 𝑒2, 𝑓1, 𝑓2) be a symplectic basis of 𝐴[ℓ2], 𝐴 an abelian surface. Then 𝐾 =
⟨𝑒1, 𝑒2⟩ is maximal isotropic of rank 𝑔 = 2.

𝐾 = ⟨𝑒1, ℓ𝑒2, ℓ𝑓2⟩ is standard of rank 3. Notice that 𝐾[ℓ] is not isotropic in 𝐴[ℓ].
• In higher dimension, not every maximal isotropic kernel is standard [PSV10, Theo-

rem 10.13].

The nice thing about standard maximal isotropic subgroups is that we can reduce to
hyperbolic planes.

Lemma 2.11. Let 𝐴[𝑁] = ⊕𝑔
𝑖=1𝐻𝑖 be a symplectic decomposition of 𝐴[𝑁] into hyperbolic

planes (ie a subgroup of rank 2 such that the symplectic forms stay non degenerate), 𝐾𝑖 ⊂ 𝐻𝑖
an isotropic subgroup of 𝐻𝑖 and 𝐾 = ⊕𝑔

𝑖=1𝐾𝑖. Then 𝐾 is standard isotropic, and is maximal iff
each 𝐾𝑖 is maximal in 𝐻𝑖.

Conversely, if 𝐾 is maximal standard isotropic, then there exists a symplectic decomposition
𝐴[𝑁] = ⊕𝑔

𝑖=1𝐻𝑖 such that 𝐾 = ⊕𝑔
𝑖=1𝐾 ∩ 𝐻𝑖.

Proof. By the symplectic CRT, we reduce to the case 𝑁 = ℓ𝑒. Each 𝐾𝑖 ⊂ 𝐻𝑖 is standard
in 𝐻𝑖 by Example 2.10. Let (𝑒𝑖, 𝑓𝑖) be a symplectic basis of 𝐻𝑖, these glue together to form
a symplectic basis of 𝐴[𝑁], hence a symplectic decomposition of 𝐴[𝑁]. This shows that
𝐾 = ⊕𝑔

𝑖=1𝐾𝑖 is standard. Furthermore, 𝐾⟂ ∩ 𝐻𝑖 = 𝐾
⟂𝐻𝑖
𝑖 , so 𝐾 is maximal in 𝐴[𝑁] iff each

𝐾𝑖 is maximal in 𝐻𝑖.
Conversely, let𝐾 = 𝐾1×𝐾2 be a decomposition of amaximal standard isotropic𝐾 induced

by a symplectic decomposition of 𝐴[𝑁]. Take (𝑒1, … , 𝑒𝑔) a basis of 𝐴1[𝑁] compatible with
𝐾, ie such that 𝐾 = ⊕𝑖=1𝑔𝐾 ∩ ⟨𝑒𝑖⟩. This is possible because 𝐴1[𝑁] is homogeneous. Then
the dual basis (𝑓1, … , 𝑓𝑔) of 𝐴2[𝑁] with respect to (𝑒1, … , 𝑒𝑔) is adapted to 𝐾2 because
𝐾2 = 𝐾⟂

1 ∩ 𝐴2[𝑁]. Letting 𝐻𝑖 = (𝑒𝑖, 𝑓𝑖), we get that 𝐾 = ⊕𝑔
𝑖=1𝐾 ∩ 𝐻𝑖. �

3. Gluing abelian varieties

We generalize Kani’s study of gluing of elliptic curves [Kan97, § 2] to the case of abelian
varieties. As mentioned in the introduction, this is mostly a straightforward generalisation
of his proofs.
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3.1. Gluing. Let 𝐴, 𝐵 be two abelian varieties of dimension 𝑔. A gluing 𝐹 ∶ 𝐴 × 𝐵 → 𝐶 is
an isogeny from the product 𝐴 × 𝐵 to a dimension 2𝑔 abelian variety 𝐶. An uninteresting
case is when 𝐹 can be written as a diagonal isogeny 𝐹 = (𝑓1, 𝑓2) ∶ 𝐴 × 𝐵 → 𝐴′ × 𝐵′ where
𝑓1 ∶ 𝐴 → 𝐴′ and 𝑓2 ∶ 𝐵 → 𝐵′ are two isogenies. More generally, if Ker𝐹 = 𝐻𝐴 × 𝐻𝐵 then 𝐹
is the composition of a diagonal isogeny followed by an automorphism. We call such a 𝐹 a
product gluing (because its kernel is a diagonal product).

We will look at the case when 𝐴, 𝐵 are principally polarised, and 𝐹 is an 𝑁-isogeny. Note
that in the case of a product isogeny 𝐹 = (𝑓1, 𝑓2), if 𝑓1 is an 𝑁1-isogeny and 𝑓2 a 𝑁2-isogeny,
then 𝐹 is a (𝑁1, 𝑁2)-isogeny.

We will call 𝐹 aminimal gluing if it does not factorize through such a product gluing. An
equivalent condition is that Ker𝐹 ∩ 𝐴 × 0 = {0} and Ker𝐹 ∩ 0 × 𝐵 = {0}. Let 𝑔1 = dim𝐴,
𝑔2 = dim𝐵, and 𝐹 be a 𝑁-minimal gluing. Then the projections 𝑝𝐴 and 𝑝𝐵 are injective on
Ker𝐹. Since Ker𝐹 is maximal isotropic in (𝐴 × 𝐵)[𝑁], it is of cardinal 𝑁𝑔1+𝑔2, so we get
that 𝑔1 + 𝑔2 ≤ 2𝑔1 and 𝑔1 + 𝑔2 ≤ 2𝑔2, so 𝑔1 = 𝑔2. Henceforth, we let 𝑔 = 𝑔1 = 𝑔2.
Lemma 3.1. Let 𝜓 ∶ 𝐴[𝑁] → 𝐵[𝑁] be an anti-isometry with respect to the Weil pairing.
Then 𝐾 = {(𝑃, 𝜓(𝑃) ∣ 𝑃 ∈ 𝐴[𝑁]} is the kernel of a minimal 𝑁-gluing 𝐹 ∶ 𝐴 → 𝐵 × 𝐶.
Conversely, the kernel Ker𝐹 of a minimal 𝑁-gluing is of this form. Furthermore, to check that
𝐹 is minimal it suffices to check that Ker𝐹 ∩ 0 × 𝐵 = 0 or Ker𝐹 ∩ 𝐴 × 0 = 0.
Proof. Let 𝐹 be a minimal gluing and 𝐾 = Ker𝐹. Since 𝐾 ∩ 0 × 𝐵 = {0}, the projection
𝑝𝐴 ∶ 𝐴 × 𝐵 → 𝐴 is injective on 𝐾. Since 𝐾 ⊂ (𝐴 × 𝐵)[𝑁] is maximal isotropic in the 𝑁-
torsion, it is of cardinal𝑁2𝑔, so the image of𝐾 is surjective in𝐴[𝑁]. Hence 𝑝−1

𝐴 ∶ 𝐴[𝑁] → 𝐾
is well defined, and composing with 𝑝𝐵 we see that there is a well defined function 𝜓 such
that 𝐾 = {(𝑃, 𝜓(𝑃)) ∣ 𝑃 ∈ 𝐴[𝑁]}.

Since𝐾 ismaximal isotropic, we get 𝑒𝐴×𝐵,𝑁((𝑃1, 𝜓(𝑃1)), (𝑃2, 𝜓(𝑃2))) = 𝑒𝐴,𝑁(𝑃1, 𝑃2)𝑒𝐵,𝑁(𝜓(𝑃1), 𝜓(𝑃2)) =
1, so 𝜓 ∶ 𝐴[𝑁] → 𝐵[𝑁] is an anti-isometry.

Conversely, the same computation shows that if 𝜓 is an anti-isometry, 𝐾 = {(𝑃, 𝜓(𝑃) ∣
𝑃 ∈ 𝐴[𝑁]} is isotropic in (𝐴×𝐵)[𝑁], hence is maximal isotropic since it is of cardinal 𝑁2𝑔.
Furthermore, since 𝜓 is an anti-isometry, it is injective (hence bijective), so 𝐾 ∩ 𝐴 × 0 = 0.
This proves the last statement. �

Remark 3.2. Since (1, −1) and (−1, 1) are automorphisms of 𝐴 × 𝐵, the kernel 𝐾′ =
{(𝑃, −𝜓(𝑃) ∣ 𝑃 ∈ 𝐴[𝑁]} also define a minimal 𝑁-gluing which is isomorphic to the one
associated to 𝐾.
3.2. Reducible gluing. Now it can happen that in a minimal gluing 𝐹 ∶ 𝐴 × 𝐵 → 𝐶, 𝐶 splits
into a product even when 𝐹 is not a product isogeny. We say that 𝐹 is reducible.

When 𝑔 = 1, in that case 𝐶 splits as a product of elliptic curves, so 𝐹 = (𝑎 𝑐
𝑏 𝑑) is

automatically a matrix of 𝑛-isogenies (𝑛 depending on the component), because elliptic
curves have their Neron-Severi group of rank 1 (ie is trivial). In dimension 𝑔 > 1, 𝐶 may
not split into a product of two dimension 𝑔 abelian varieties. And even if it does, the matrix

𝐹 = (𝑎 𝑐
𝑏 𝑑) may not be given by individual 𝑛-isogenies if 𝐴 or 𝐵 has non trivial Neron-

Severi group.
Definition 3.3. A (minimal) gluing 𝐹 ∶ 𝐴×𝐵 → 𝐶 is said to be reducible if𝐶 ≃ 𝐴′ ×𝐵′ with

𝐴′, 𝐵′ of dimension 𝑔, and 𝐹 = (𝑎 𝑐
𝑏 𝑑) is given by a 𝑛𝑎-isogeny 𝑎 ∶ 𝐴 → 𝐴′, a 𝑛𝑏-isogeny

𝐴 → 𝐵′, a 𝑛𝑐-isogeny 𝑐 ∶ 𝐵 → 𝐴′ and a 𝑛𝑑-isogeny 𝑑 ∶ 𝐵 → 𝐵′. It is said to be non trivial
reducible if 𝐹 is not a product gluing.
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Here by abuse of notation, we allow the case 𝑛 = 0, where the notion of “0-isogeny”
means that the morphism is 0 (so is not an actual isogeny).

Lemma 3.4. Let 𝐹 be a reducible 𝑁-gluing. Then 𝐹 = (𝑎 𝑐
𝑏 𝑑), with 𝑛𝑎 = 𝑛𝑑, 𝑛𝑏 = 𝑛𝑐,

𝑛𝑎 + 𝑛𝑏 = 𝑁, ̃𝑐𝑎 = − ̃𝑑𝑏.
In particular, 𝐹 is not diagonal iff 𝑛𝑏 = 𝑛𝑐 ≠ 0.

Proof. The contragredient isogeny is given by ̃𝐹 = ( ̃𝑎 ̃𝑏
̃𝑐 ̃𝑑), and the equation ̃𝐹𝐹 = 𝑁 gives

𝑛𝑎 + 𝑛𝑏 = 𝑁, 𝑛𝑐 + 𝑛𝑑 = 𝑁, ̃𝑎𝑐 + ̃𝑏𝑑 = 0, ̃𝑐𝑎 + ̃𝑑𝑏 = 0. By duality the last equation is
already implied by the third one. The third equation also implies 𝑛𝑎𝑛𝑐 = 𝑛𝑏𝑛𝑑, so 𝑛𝑎 = 𝑛𝑑,
𝑛𝑏 = 𝑛𝑐. �

3.3. Isogeny diamonds. Lemma 3.4 shows that the following notion is natural:

Definition 3.5. A (𝑛1, 𝑛2)-isogeny diamond is a decomposition of a 𝑛1𝑛2-isogeny 𝑓 ∶
𝐴 → 𝐵 between principally polarised abelian varieties into two different decompositions
𝑓 = 𝑓 ′

1 ∘ 𝑓1 = 𝑓 ′
2 ∘ 𝑓2 where 𝑓1 is a 𝑛1-isogeny and 𝑓2 is a 𝑛2-isogeny. (Then 𝑓 ′

1 will be a 𝑛2-
isogeny and 𝑓 ′

2 a 𝑛1-isogeny.)This decomposition is said to beminimal ifKer 𝑓1∩Ker 𝑓2 = {0}
(this is equivalent to the fact that 𝑓1 and 𝑓2 do not factorize through a common isogeny), and
it is said to be orthogonal if 𝑛1 is prime to 𝑛2 (in which case it is automatically minimal).

𝐴 𝐴1

𝐴2 𝐵

𝑓1

𝑓2 𝑓 ′
1

𝑓 ′
2

In [Kan97, § 2], Kani reserves the name isogeny diamond to what we call here a minimal
isogeny diamond. We changed the term here slightly, because an isogeny diamond always
induces a reducible gluing 𝐹 ∶ 𝐴 × 𝐵 → 𝐴1 × 𝐵2, even if it is not minimal.

Remark 3.6.
If we have an isogeny diamond starting from 𝐴 as above, taking duals where needed we
also have an isogeny diamond starting from 𝐴1, 𝐴2 and 𝐵. If the isogeny diamond starting
from 𝐴 is minimal, we will see in the proof of Corollary 3.9 that the one from 𝐵 is too, ie
Ker 𝑓 ′

1 ∩ Ker 𝑓 ′
2 = 0. However, the one from 𝐴1 (or 𝐴2) may not be minimal.

As a counterexample, take a symplectic decomposition 𝐴[ℓ] = 𝐾1 ⊕ 𝐾2, 𝑓1 ∶ 𝐴 → 𝐴1
the quotient by 𝐾1 and 𝑓2 ∶ 𝐴 → 𝐴2 the quotient by 𝐾2; 𝑓 ′

1 the quotient of 𝐴1 by 𝑓1(𝐾2)
and 𝑓 ′

2 the quotient of 𝐴2 by 𝑓2(𝐾1). Then 𝑓 ′
1 ∶ 𝐴1 → 𝐴 is exactly the dual isogeny 𝑓1, so

Ker 𝑓 ′
1 ∩ Ker 𝑓1 = Ker 𝑓 ′

1 ≠ 0.
An isogeny diamond is completely determined by (𝑓1, 𝑓2, 𝑓 ). So it determines 𝐻1 = Ker 𝑓1,
𝐻2 = Ker 𝑓2 and 𝐻 = Ker 𝑓. In particular, 𝐻 is maximal isotropic in 𝐴[𝑛1𝑛2], 𝐻1 ⊂
𝐻 maximal isotropic in 𝐴[𝑛1], and 𝐻2 ⊂ 𝐻 maximal isotropic in 𝐴[𝑛2]. Note that if
𝐻1 ∩ 𝐻2 = 0 (ie the diamond is minimal), then 𝐻 = 𝐻1 ⊕ 𝐻2 since both members have
the same cardinality.
When we have a commutative square as above, this square is a pushout iff Ker 𝑓 = Ker 𝑓1 +
Ker 𝑓2 where 𝑓 = 𝑓 ′

2 ∘ 𝑓2 = 𝑓 ′
1 ∘ 𝑓1. So a minimal isogeny diamond is a pushout square.

Conversely, if 𝑓 is the pushout of a 𝑛1-isogeny 𝑓1 by a 𝑛2-isogeny 𝑓2, and gcd(𝑛1, 𝑛2) = 1,
then 𝑓 is a (orthogonal) isogeny diamond. But in general, the pushout 𝑓 ′

1 of 𝑓1 need not be an
𝑛1-isogeny, in which case the pushout is not a diamond.
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Lemma 3.7 (Kani). Let 𝑓 = 𝑓 ′
1 ∘ 𝑓1 = 𝑓 ′

2 ∘ 𝑓2 be a (𝑛1, 𝑛2)-isogeny diamond as above. Then

𝐹 = ( 𝑓1 𝑓 ′
1

−𝑓2 𝑓 ′
2
) is a 𝑛-isogeny 𝐴 × 𝐵 → 𝐴1 × 𝐴2 where 𝑛 = 𝑛1 + 𝑛2. Furthermore, if 𝑓 is

minimal, Ker𝐹 = {( ̃𝑓1, 𝑓 ′
1𝑥), 𝑥 ∈ 𝐴1[𝑛]}, and if 𝑓 is an orthogonal isogeny diamond, then

Ker𝐹 = {(𝑛1𝑥, 𝑓 𝑥), 𝑥 ∈ 𝐴[𝑛]}.

Proof. For the product polarisations, the dual isogeny ̃𝐹 is given by ̃𝐹 = ( 𝑓1 𝑓2
−𝑓 ′

1 𝑓 ′
2
) and we

directly check that ̃𝐹𝐹 = (𝑛1 +𝑛2) Id. Furthermore,Ker𝐹 is the image of ̃𝐹 on𝐴×𝐵[𝑑], and
if 𝑛1 is prime to 𝑛2 this is also the image of ̃𝐹 on 𝐴[𝑛] × {0}, so Ker 𝑓 = {( ̃𝑓1𝑥, −𝑓 ′

1𝑥), 𝑥 ∈
𝐴[𝑛]} = {(𝑛1𝑥, −𝑓 𝑥), 𝑥 ∈ 𝐴[𝑛]}. �

Remark 3.8. • One may of course permute 𝑓1 and 𝑓2, to get the same matrix 𝐹 up
to permutation of the coordinates. In terms of kernels, this amount to permut-
ing 𝐻1 and 𝐻2 and replacing 𝑓 by −𝑓. It is not hard to prove that Ker𝐹 is com-
pletely determined by (𝐻1, 𝐻2, 𝑓 ), and that there is a bijection between the Ker𝐹
for the isogeny diamonds, and the triplet (𝐻1, 𝐻2, 𝑓 ) modulo the above equivalence:
(𝐻1, 𝐻2, 𝑓 ) ≡ (𝐻2, 𝐻1, −𝑓 ). The exact same proof as in [Kan97, Theorem 2.3]
(more precisely the first three paragraphs p. 9) hold.

• Since we have automorphisms (−1, −1), (−1, 1) and (1, −1) on 𝐴 × 𝐵, we can also

use the matrix 𝐹′ = (𝑓1 −𝑓 ′
1

𝑓2 𝑓 ′
2

), whose kernel, in the case of an orthogonal isogeny

diamond, is Ker𝐹′ = {(𝑛1𝑥, −𝑓 𝑥), 𝑥 ∈ 𝐴[𝑛]}. In general, Ker𝐹′ ≠ Ker𝐹: there
are two different reducible isogenies 𝐴 × 𝐵 → 𝐴1 × 𝐴2.

• Note that 𝐹 is not a product gluing, so in particular is a non trivial reducible glu-
ing. Indeed if Ker𝐹 was a digonal product 𝐺1 × 𝐺2, we would have 𝐺1 ⊂ Ker 𝑓1,
𝐺2 ⊂ Ker 𝑓 ′

2. So #𝐺1 ≤ 𝑛𝑔
1, #𝐺2 ≤ 𝑛𝑔

2, but Ker𝐹 = #𝐺1#𝐺2 = 𝑛2𝑔, which is a
contradiction.

Corollary 3.9. There is a bijection between triple (𝐻1, 𝐻2, 𝑓 ) of isogeny diamonds modulo
the equivalence defined above, and non diagonal maximal reducible kernels 𝐾 of 𝐴[𝑛].

This bijection induces an equivalence between minimal isogeny diamonds and minimal
reducible gluing.

Proof. Thefirst statement result from the combination of Lemmas 3.4 and 3.7 andRemark 3.8.
For the second statement, we need to prove that 𝐹 is minimal iff Ker 𝑓1 ∩ Ker 𝑓2 = 0.

Note that Ker𝐹 ∩ 𝐴 × 0 = Ker 𝑓1 ∩ Ker 𝑓2, so one application is clear. For the converse,
since Ker𝐹 ∩ 0 × 𝐵 = Ker 𝑓 ′

1 ∩ Ker 𝑓 ′
2 we need to prove that if the diamond is minimal,

Ker 𝑓 ′
1 ∩Ker 𝑓 ′

2 = 0, ie the diamond starting from 𝐵 is also minimal. But this is a consequence
of Lemma 3.1. �
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7 TH E AR I THME T I C O F TH E TA GROUP S AND B I E X T ENS I ONS OF AB E L I AN VA -

R I E T I E S

Thesenotes are available at http://www.normalesup.org/~robert/pro/publications/notes/2023-08-thetagroup.
pdf

These notes started after a visit to the COSIC team in March 2023 where they told me about the
results of their paper [CHM+23], which was not yet pubicly available.

Since I found their idea of self pairings to recover informations about a secret isogeny very interesting,
and I knew that the theta groups encoded pairings, I tried to explore if we could push these ideas
further. It is not hard to prove that, if 𝑁 is odd and 𝑚 prime to 𝑁, an 𝑁-isogeny 𝑓 ∶ 𝐸1 → 𝐸2 lift
uniquely to the theta group 𝐺(𝑚(0𝐸𝑖

)). In the appendix of these notes, I describe several failed attempt
to try to exploit this to reconstruct some informations on the action of 𝑓 on the 𝑚-torsion.
In May 28, following an email by Katherine Stange describing an algorithmic approach to pairings

from her PhD where she uses biextension, I also started looking at the arithmetic of these biextensions.
That part of these notes grew to a full fledged article [DRcubical]; we refer to the introduction of this
article for more context.
The part on biextensions (and cubical arithmetic) of these notes is thus subsumed by [DRcubical].

However, I did not incorporate Theorem 1.1 (aka the canonical lifting of isogenies to theta group) in
that article because it was way too long already; so these notes may still have some interest.
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The arithmetic of theta groups and biextensions of abelian varieties

DAMIEN ROBERT

Abstract. We investigate the use of biextensions and the theta groups to understand
isogenies. Namely we show that every isogeny of odd degree between elliptic curves lift
canonically to theta groups and we give an algorithm to compute this lfit. We discuss some
consequences of this for the DLP.

1. Introduction

In this article, we study various consequences of the following result, with follows from
the algebraic theory of the theta group as constructed by Mumford [Mum66; Mum67a;
Mum67b].

Theorem 1.1. Let 𝑓 ∶ (𝐴, ℒ) → (𝐵, ℳ) be an 𝑁-isogeny between ppavs, with 𝑁 odd. Assume
that ℒ and ℳ are symmetric. Let 𝑚 be an odd integer prime to 𝑁. Then 𝑓 ∶ 𝐴[𝑚] → 𝐵[𝑚]
lifts canonically to a map of theta groups ̃𝑓 ∶ 𝐺(ℒ𝑚) → 𝐺(ℳ𝑚), sending symmetric elements
to symmetric elements.

Proof. Since 𝑓 is an 𝑁-isogeny, we have an isomorphism 𝑓 ∗ℳ ≃ ℒ𝑁. The descent of ℒ𝑁

to ℳ is encoded by a symmetric lift 𝐾 of 𝐾 = Ker 𝑓 in the theta group 𝐺(ℒ𝑁). Since ℳ is
symmetric, 𝐾 is composed of symmetric elements. Since 𝑁 is odd, if 𝑃 ∈ 𝐾 is of order 𝑁′ ∣ 𝑁,
there is a unique symmetric element 𝑔𝑃 ∈ 𝐺(ℒ𝑁) of the same order 𝑁′. Hence 𝐾 is uniquely
determined. We have a canonical isomorphism 𝐹 ∶ 𝑍(𝐾)/𝐾 ≃ 𝐺(ℳ), which commutes
with 𝛿−1 since 𝐾 is symmetric, so sends symmetric element to symmetric elements

There is also a map 𝜀𝑚 ∶ 𝐺(ℒ𝑁) → 𝐺(ℒ𝑚𝑁), which commutes with 𝛿−1, so 𝜀𝑚(𝐾) ⊂
𝐺(ℒ𝑚𝑁) is also a symmetric lift of 𝐾 in 𝐺(ℒ𝑚𝑁). It encodes the descent of ℒ𝑁𝑚 into ℳ𝑚.
We obtain a canonical isomorphism 𝐹𝑚 ∶ 𝑍(𝜀𝑚(𝐾))/𝜀𝑚(𝐾) ≃ 𝐺(ℳ𝑚), commuting with
𝛿−1.

Finally, there is also a map 𝜀𝑁 ∶ 𝐺(ℒ𝑚) → 𝐺(ℒ𝑚𝑁). It lends inside 𝑍(𝜀𝑚(𝐾)) because
the orthogonal 𝐾⟂ of 𝐾 with respect to the Weil pairing 𝑒𝑊,ℒ on 𝐴[𝑚𝑁] contains 𝐴[𝑚].

Our map is ̃𝑓 = 𝐹𝑚 ∘ 𝜀𝑁 ∶ 𝐺(ℒ𝑚) → 𝐺(ℳ𝑚). If 𝛼 ∈ 𝑘
∗
, ̃𝑓 (𝛼) = 𝛼𝑁, so its kernel is

{𝛼 ∈ 𝑘
∗

∣ 𝛼𝑁 = 1.}. �

We will give an explicit version of Theorem 1.1 for elliptic curves in Section 2 and we give
some applications in Appendix A.1.

2. The theta group of a divisor on an elliptic curve

Let 𝐸/𝑘 be an elliptic curve and 𝐷 a divisor. Its algebraic equivalence class is determined
by its degree deg𝐷 ∈ ℤ. We have a morphism Φ𝐷 ∶ 𝐸 → �̂�, 𝑃 ∈ 𝐸 ↦ 𝑡𝑃,∗𝐷 − 𝐷. This
map is an isogeny iff deg𝐷 ≠ 0, in which case 𝐾(𝐷) ≔ KerΦ𝐷 = 𝐸[deg𝐷] (provided

Date: August 11, 2023.
1
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the degree is prime to the characteristic). If deg𝐷 = 0, then KerΦ𝐷 = 𝐸. The divisor 𝐷 is
ample iff deg𝐷 > 0.

2.1. The theta group.

Definition 2.1. Assume that 𝐷 is ample. The theta group 𝐺(𝐷) is given by tuples (𝑃, 𝑓𝐷,𝑃)
with 𝑃 ∈ KerΦ𝐷 = 𝐸[deg𝐷], and 𝑓𝐷,𝑃 any function with divisor 𝑡𝑃,∗𝐷 − 𝐷. The com-
position law is given by (𝑃, 𝑓𝐷,𝑃).(𝑄, 𝑓𝐷,𝑄) = (𝑃 + 𝑄, 𝑓𝐷,𝑃(𝑥)𝑓𝐷,𝑄(𝑥 − 𝑃)). In particular,
(𝑃, 𝑓𝐷,𝑃)−1 = (−𝑃, 𝑓 −1

𝐷,𝑃(𝑥 + 𝑃)).
The theta group acts on Γ(𝐷) via (𝑃, 𝑓𝐷,𝑃)⋅𝑠 = 𝑓𝐷,𝑃(𝑥)𝑠(𝑥−𝑃).The action is irreducible

(Mumford).

We remark that for any divisor 𝐷, we can build up a function of the type 𝑓𝐷,𝑃 by combining
functions 𝜇𝑃,𝑄 with divisor (𝑃)+(𝑄)−(𝑃+𝑄)−(0𝐸), as is done for pairing computations.

Let 𝑔𝑃 = (𝑃, 𝑓𝐷,𝑃) and 𝑔𝑄 = (𝑄, 𝑓𝐷,𝑄) in𝐺(𝐷).Then 𝑔𝑃.𝑔𝑄 = (𝑃+𝑄, 𝑓𝐷,𝑃(𝑥)𝑓𝐷,𝑄(𝑥−
𝑃))while 𝑔𝑄.𝑔𝑃 = (𝑃+𝑄, 𝑓𝐷,𝑄(𝑥)𝑓𝐷,𝑃(𝑥−𝑄)). So 𝑔𝑄.𝑔𝑃 = 𝛼𝑔𝑃.𝑔𝑄 with𝛼 = 𝑓𝐷,𝑄(𝑥)/𝑓𝐷,𝑄(𝑥−
𝑃) ⋅ 𝑓𝐷,𝑃(𝑥 − 𝑄)/𝑓𝐷,𝑃(𝑥) = 𝑒𝑊,𝐷(𝑃, 𝑄). The commutator pairing [𝑔𝑃, 𝑔𝑄] is the Weil pair-
ing 𝑒𝑊,𝐷(𝑃, 𝑄).

We also check that if 𝑔𝑃 = (𝑃, 𝑓𝐷,𝑃), then 𝑔𝑚
𝑃 = (𝑚𝑃, 𝑓𝐷,𝑃(𝑥)𝑓𝐷,𝑃(𝑥 − 𝑃) … 𝑓𝐷,𝑃(𝑥 −

(𝑚 − 1)𝑃)). Thus 𝑔𝑃 is of order 𝑛 iff 𝑓𝐷,𝑃(𝑥)𝑓𝐷,𝑃(𝑥 − 𝑃) … 𝑓𝐷,𝑃(𝑥 − (𝑛 − 1)𝑃) = 1.

2.2. 2-cocycle. Pick any section 𝑠 ∶ 𝐾(𝐷) → 𝐺(𝐷). Say take for 𝑓𝐷,𝑃 be a function appro-
priately normalised at 0𝐸. Another solution is to take a symmetric lift (see Section 2.4). Then
we can work with 𝐺(𝐷) by representing an element 𝑔 ∈ 𝐺(𝐷) by a tuple (𝑃, 𝛾), where
𝛾 represents the function 𝛾𝑠(𝑃). The group law is then given by (𝑃, 𝛾𝑃).(𝑄, 𝛾𝑄) = (𝑃 +
𝑄, 𝛾𝑃𝛾𝑄𝑆(𝑃, 𝑄)) where 𝑆 is the 2-cocycle associated to 𝑠: 𝑠(𝑃)𝑠(𝑄) = 𝑆(𝑃, 𝑄)𝑠(𝑃 + 𝑄).
In practice, this all boils down to elementary computation with Miller functions of the form
𝜇𝑃,𝑄.

Notice that this 2-cocycle is normalized 𝑆(𝑇, 0) = 𝑆(0, 𝑇) = 1, and that since the
commutator pairing is the Weil pairing, we have

(1) 𝑆(𝑇1, 𝑇2) = 𝑒𝑊,ℓ(𝑇1, 𝑇2)𝑆(𝑇2, 𝑇1).
Hence the 2-cocycles describing the theta group may be seen as a generalisation of the Weil
pairing.

Example 2.2. Take 𝐷 = 𝑑(0𝐸), 𝑠(𝑃) = (𝑃, 𝑓𝑑,𝑃) where 𝑓𝑑,𝑃 is the usual Miller function
normalised at (0𝐸), we compute 𝑆(𝑃, 𝑄) = 𝑓𝑑,𝑄(−𝑃). So the corresponding 2-cocycle is
the usual non reduced Tate pairing (up to a sign)!

2.3. Isomorphisms of theta groups. The isomorphism class of the theta group depends
only on the line bundle ℒ(𝐷) associated to 𝐷. If 𝐷′ = 𝐷 + div(𝑔), an explicit isomorphism
is given by

(2) (𝑃, 𝑓𝐷,𝑃) ↦ (𝑃, 𝑓𝐷,𝑃(𝑥)𝑔(𝑥 − 𝑃)/𝑔(𝑥)).
This isomorphism commutes with the action on sections via Γ(𝐷) ≃ Γ(𝐷′), 𝑠 ↦ 𝑠/𝑔.

If 𝐷 = 𝑡𝑐,∗𝐷, we also have an isomorphism of 𝐺(𝐷) with 𝐺(𝐷′) via

(3) (𝑃, 𝑓𝐷,𝑃) ↦ (𝑃, 𝑡𝑐,∗𝑓𝐷,𝑃(𝑥) = 𝑓𝐷,𝑃(𝑥 − 𝑐)),
with is compatible with the action via Γ(𝐷) ≃ Γ(𝐷′), 𝑠(𝑥) ↦ 𝑡𝑐,∗(𝑠)(𝑥) = 𝑠(𝑥 − 𝑐).

Any divisor 𝐷 of degree 𝑑 is linearly equivalent to a divisor of the form 𝐷′ = (𝑃) + (𝑑 −
1)(0𝐸), and if 𝑃 = 𝑑𝑃0, then 𝑡𝑃0,∗𝐷′ is linearly equivalent to 𝑑(0𝐸). Hence by Equations (2)
and (3), 𝐺(𝐷) is isomorphic (over the field where 𝑃0 is defined) to 𝐺(𝑑(0𝐸)).
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If 𝑄 ∈ 𝐾(𝐷), 𝑡𝑄,∗𝐷 is linearly equivalent to 𝐷 by definition. Write 𝑡𝑄,∗𝐷 = 𝐷 +
div(𝑓𝐷,𝑄), 𝑔𝑄 = (𝑄, 𝑓𝐷,𝑄), combining Equations (2) and (3), we obtain an automorphism
of 𝐺(𝐷) given by
(4)
𝑔𝑃 = (𝑃, 𝑓𝐷,𝑃) ↦ (𝑃, 𝑓𝐷,𝑃(𝑥−𝑄)𝑓𝐷,𝑄(𝑥)/𝑓𝐷,𝑄(𝑥−𝑃)) = 𝑔𝑄𝑔𝑃𝑔−1

𝑄 = (𝑃, 𝑒𝑊,𝐷(𝑃, 𝑄)𝑓𝐷,𝑃).

2.4. Symmetric divisors. If ℒ(𝐷) is symmetric, then [−1]∗𝐷 is linearly equivalent to 𝐷.
Write 𝐷 = −𝐷 + div(𝑔). We have an isomorphism 𝐺(𝐷) ≃ 𝐺(−𝐷),
(5) (𝑃, 𝑓𝐷,𝑃) ↦ (−𝑃, [−1]∗𝑓𝐷,𝑃(𝑥) = 𝑓𝐷,𝑃(−𝑥)).

Combining with the isomorphism form Equation (2), we obtain an involution

(6) 𝛿−1 ∶ 𝐺(𝐷) → 𝐺(𝐷), (𝑃, 𝑓𝐷,𝑃) ↦ (−𝑃, 𝑓𝐷,𝑃(−𝑥)𝑔(𝑥 − 𝑃)/𝑔(𝑥)).
Note that this does not depends on the choice of 𝑔.

If 𝐷 is symmetric, we can take 𝑔 = 1, so 𝛿−1(𝑃, 𝑓𝐷,𝑃) = (−𝑃, 𝑓𝐷,𝑃(−𝑥)). An el-
ement 𝑔𝑃 = (𝑃, 𝑓𝐷,𝑃) is said to be symmetric if 𝛿−1(𝑔𝑃) = 𝑔−1

𝑃 . This is the case iff
𝑓 −1
𝐷,𝑃(𝑥 + 𝑃) = 𝑓𝐷,𝑃(−𝑥)𝑔(𝑥 − 𝑃)/𝑔(𝑥), ie 𝑓𝐷,𝑃(𝑥)𝑓𝐷,𝑃(𝑃 − 𝑥) = 𝑔(−𝑥)/𝑔(−𝑃 − 𝑥).
If 𝑃 = 𝑃0, this equation becomes 𝑓𝐷,𝑃(𝑃0)2 = 𝑔(−𝑃0)/𝑔(−3𝑃0). If 𝑔 = 1, these simplify
to 𝑓𝐷,𝑃(𝑥)𝑓𝐷,𝑃(𝑃 − 𝑥) = 1 and 𝑓𝐷,𝑃(𝑃0)2 = 1.

Thus for any 𝑃 ∈ 𝐾(𝐷), there are two symmetric elements ±𝑔𝑃 ∈ 𝐺(𝐷) above 𝑃.
If 𝑔𝑃 and 𝑔𝑄 are symmetric above 𝑃 and 𝑄 respectively, and 𝑔𝑃 commutes with 𝑔𝑄 (ie
𝑒𝑊,𝐷(𝑃, 𝑄) = 1), then 𝑔𝑃𝑔𝑄 is symmetric. In particular, if 𝑔𝑃 is symmetric above 𝑃, 𝑔𝑛

𝑃 is
symmetric above 𝑛𝑃.

If𝑃 is of order𝑛, then since the two symmetric elements above 0𝐸 are (0𝐸, 1) and (0𝐸, −1),
we see that 𝑔𝑛

𝑃 = ±1. So if 𝑃 is of odd order 𝑛, one of the two symmetric lift is of order 𝑛 and
the other is of order 2𝑛. We will call the symmetric lift of order 𝑛 the canonical symmetric
lift 𝑔𝑃 of 𝑃. But if 𝑃 is of even order 𝑛 = 2𝑛0, then both symmetric lifts are of order either
2𝑛 or 𝑛. Let 𝑇 = 𝑛0𝑃, it is a point of 2-torsion. Then for both symmetric lifts ±𝑔𝑃, we have
𝑔𝑛

𝑃 = 𝑒𝐷,∗(𝑇). So the symmetric lifts are of order 𝑛 iff 𝑒𝐷,∗(𝑇) = 1.
If 𝐷 is symmetric, Mumford shows in [Mum66, Proposition 2 p.307] that 𝑒𝐷,∗(𝑇) =

(−1)mult𝐷(𝑇)−mult𝐷(0). A divisor is said to be totally symmetric if 𝑒𝐷,∗(𝑇) = 1 for all 𝑇 ∈
𝐸[2], this is the case iff 𝐷 is linearly equivalent to 2𝐷0 with 𝐷0 a symmetric divisor.

The symmetric divisors of degree 𝑑 are given by (𝑑 − 1)(0𝐸) + 𝑇 for each 𝑇 ∈ 𝐸[2].
If 𝑑 is even, only 𝑑(0𝐸) is totally symmetric among these four symmetric divisors in the
corresponding algebraic equivalence class.

If 𝑑 ≔ deg𝐷 is odd, we thus have a canonical (set) section 𝑠 ∶ 𝐾(𝐷) → 𝐺(𝐷), which
maps 𝑃 to the canonical symmetric element 𝑔𝑃 above it, hence a canonical 2-cocycle 𝑆 ∶
𝐾(𝐷) × 𝐾(𝐷) → 𝔾𝑚, 𝑆(𝑃, 𝑄) = 𝑠(𝑃).𝑠(𝑄).𝑠(𝑃 + 𝑄)−1. An elementary, if somewhat
tedious (see below), computation shows that 𝑆(𝑃, 𝑄) = 𝑒𝑊,𝐷(𝑃, 𝑄)1/2 ∈ 𝜇𝑑.

When 𝑑 is odd, we will define ℎ𝐷,𝑃 to be the canonical function such that 𝑔𝑃 = (𝑃, ℎ𝐷,𝑃)
is the unique symmetric element of order 𝑑.

2.5. Heisenberg group. Let 𝐷 be a divisor of degree 𝑑, and 𝐸[𝑑] = 𝐸1[𝑑] ⊕ 𝐸2[𝑑] a
symplectic decomposition for the Weil pairing. Let 𝐸𝑖[𝑑] be any lift of 𝐸𝑖[𝑑] into the theta
group 𝐺(𝐷), 𝑠 ∶ 𝐸𝑖[𝑑] → 𝐸𝑖[𝑑] the corresponding isomorphism..

Since 𝐸1[𝑑] and 𝐸2[𝑑] are orthogonal, we can extend 𝑠 into a set section for any 𝑃 =
𝑃1 + 𝑃2 ∈ 𝐸[𝑑] by 𝑠(𝑃) = 𝑠(𝑃1)𝑠(𝑃2) = 𝑠(𝑃2)𝑠(𝑃1).

The corresponding cocycle is then given by 𝑆(𝑃, 𝑄) = 𝑒𝑊,𝐷(𝑃1, 𝑄2)𝑒𝑊,𝐷(𝑃2, 𝑄1). We
represent an element of 𝐺(𝐷) by a tuple (𝛼, 𝑃) which encodes the element 𝛼𝑠(𝑃).
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The group law is then given for all 𝑛 ∈ ℤ by (𝛼, 𝑃)𝑛 = (𝛼𝑛𝑆(𝑃, 𝑃)𝑛(𝑛−1)/2, 𝑛𝑃), in
particular −(𝛼, 𝑃) = (𝑆(𝑃, 𝑃)/𝛼, −𝑃).

If the level subgroups 𝐸𝑖 are symmetric (if 𝑑 is even these exists only if 𝐷 is totally
symmetric), then they commute with 𝛿−1 hence we have 𝛿−1(𝛼, −𝑃) = (𝛼, −𝑃). It follows
that the symmetric elements above 𝑃 are given by (±𝑆(𝑃, 𝑃)1/2, 𝑃), and if 𝑑 is odd the
unique symmetric lift of order 𝑑 is given by (𝑆(𝑃, 𝑃)1/2, 𝑃).

So the cocycle𝑆0 associated to the symmetric section 𝑠0 is given by𝑆0(𝑃, 𝑄) = 𝑒𝑊,𝐷(𝑃, 𝑄)1/2.
Anticipating Section 2.8 and reusingMumford’s notations, themap 𝜀𝑁 ∶ 𝐺(𝐷) → 𝐺(𝑁𝐷)

is described by (𝛼, 𝑃) ↦ (𝛼𝑁, 𝑃) provided that the subgroups 𝐸𝑖[𝑁𝑑] are compatible with
𝐸𝑖[𝑑]. The isogeny descent map ̃𝑓 ∶ 𝐺(𝐷1) → 𝐺(𝐷2) is given by (𝛼, 𝑃) ↦ (𝛼, 𝑓 (𝑃))
provided that the level subgroups of 𝐷2 are compatible via ̃𝑓 with the ones on 𝐷1. So the
map 𝜂𝑛 = [̃𝑛] ∘ 𝜖𝑛 is given by (𝛼, 𝑃) ↦ (𝛼𝑛, 𝑛𝑃). And the map 𝛿𝑛 ∶ (𝛼, 𝑃) ↦ (𝛼𝑛2, 𝑛𝑃).

Finally, if 𝑃 ∈ 𝐾(𝐷) and 𝑃 = 2𝑃0, 𝑃0 determines a unique symmetric lift of 𝑃. (Assume
𝑒∗(𝑃) = 1). Indeed, we let 𝑔𝑃0

∈ 𝐺(2𝐷) one of the two symmetric lifts, we use 𝜀2 to get
an element in 𝐺(4𝐷) and we descend via [2] to get back an element of 𝐺(𝐷) which does
not depend on the sign. Since 𝑃0 ∈ 2𝐾(4𝐷), the descent does not depend on the choice of
𝐸[2].

2.6. The case of a divisor of degree 0. It is also instructive to look at the theta group 𝐺(𝐷)
of a divisor 𝐷 of degree 0.

Such a divisor is always linearly equivalent to 𝐷𝑄 = (𝑄) − (0) so we will restrict to
this case. We have 𝐾(𝐷𝑄) = 𝐸 and Φ𝐷𝑄

= 0. The Weil pairing 𝑒𝐷𝑄
is trivial so 𝐺(𝐷𝑄) is

commutative. An element 𝑔𝑃,𝑄 = (𝑃, 𝑓𝑃,𝐷𝑄
) ∈ 𝐺(𝐷𝑄)has divisor (𝑃+𝑄)+(0)−(𝑃)−(𝑄)

so corresponds to a multiple of the usual Miller function 𝜇𝑃,𝑄. In particular, we also have
𝑔𝑃,𝑄 ∈ 𝐺(𝐷𝑃).

There are thus two interpretations of the addition law 𝑔𝑃1,𝑄𝑔𝑃2,𝑄. The first one is given
by working in 𝐺(𝐷𝑄). But we can also interpret 𝑔𝑃1,𝑄 as being above 𝑄 in 𝐺(𝐷𝑃1

), 𝑔𝑃2,𝑄
as being above 𝑄 in 𝐺(𝐷𝑃2

), so the product of the two functions 𝑓1𝑓2 is above 𝑄 in 𝐺(𝐷𝑃1
+

𝐷𝑃2
). But 𝐷𝑃1

+ 𝐷𝑃2
is linearly equivalent to 𝐷𝑃1+𝑃2

, so using our isomorphisms of theta
group we get an element of 𝐺(𝐷𝑃1+𝑃2

) above 𝑄 which we reinterpret as an element of 𝐺(𝑄)
above 𝑃1 + 𝑃2. Both interpretation give the same addition law.

We check: 𝜇𝑃1,𝑄 ⋆ 𝜇𝑃2,𝑄 = 𝜇𝑃1,𝑃2
(−𝑄)𝜇𝑃1+𝑃2,𝑄.

We could thus define a partial group law 𝐺 above (𝐸 × 𝐸) which is defined above
(𝑃1, 𝑄), (𝑃2, 𝑄) and above (𝑃, 𝑄1), (𝑃, 𝑄2). This group law encodes the arithmetic op-
erations done when computing pairings.

For instance, if 𝑔𝑃 = (𝑃, 𝜇𝑃,𝑄), then 𝑔𝑛
𝑃 is given by est donné par 1/𝑓𝑛,𝑃(−𝑄)𝜇𝑛𝑃,𝑄. So

if 𝑃 is of order 𝑛, we get that the equivalence class of 𝑔𝑛
𝑃 ∈ 𝔾𝑚 is represented by the Tate

pairing 𝑒𝑇,𝑛(𝑄, 𝑃).
Note the linkwith the torsor interpretation of the Tate pairing (see [Rob23b]). Let 𝐾 = ⟨𝑃⟩.

The divisor 𝐷𝑄 descends on 𝐸2 = 𝐸/𝐾 iff we can find a lift of 𝐾 in 𝐺(𝐷𝑄), iff there exists
𝑔𝑃 such that 𝑔𝑛

𝑃 = 1, iff for an arbitrary 𝑔𝑃, 𝑔𝑛
𝑃 ∈ 𝔾𝑚 is a 𝑛-th power.

But descents 𝐷𝑄′ of 𝐷𝑄 via 𝑓 ∶ 𝐸 → 𝐸2 corresponds exactly to preimages of 𝑄 via
̃𝑓 ∶ 𝐸2 → 𝐸, so the above conditions mean that ̃𝑓 −1(𝑄) has a rational preimage.

2.7. Theta group and isogenies. Let 𝐾 be a finite subgroup, and 𝑓 ∶ 𝐸 → 𝐸2 = 𝐸/𝐾 the
corresponding isogeny. A natural question is whether 𝐷 is linearly equivalent to 𝐷′ ≔ 𝑓 ∗𝐷2,
for some divisor 𝐷2 on 𝐸2, in which case we say that 𝐷 descends to 𝐷2.
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If that is the case, since 𝑓 ∗𝐷2 is invariant by translation by 𝑇 ∈ 𝐾, then for all 𝑇 ∈ 𝐾,
𝑡𝑇,∗𝐷 should be linearly equivalent to 𝐷, so a first condition is that 𝐾 ⊂ 𝐾(𝐷).

Let 𝐷′ = 𝑓 ∗𝐷2 and 𝛼𝑓 any rational function with divisor 𝐷′ − 𝐷. Since 𝐷′ is invariant by
translation by 𝐾, we have that for all 𝑇 ∈ 𝐾, 𝛼𝑓(𝑥)/𝛼𝑓(𝑥 − 𝑇) = 𝑓𝐷,𝑇.

Conversely, for each 𝑇 ∈ 𝐾, pick a 𝑔𝑇 = (𝑇, 𝑓𝐷,𝑇) so that 𝑡𝑇,∗𝐷 = 𝐷 + div 𝑓𝐷,𝑇.
Then these 𝑔𝑇 glue together to form a function 𝛼𝑓 such that 𝛼𝑓(𝑥)/𝛼𝑓(𝑥 − 𝑇) = 𝑓𝐷,𝑇 if

and only if they form a group 𝐾 (the cocycle condition for 𝛼𝑓 to exists translate into the group
law of the theta group). We say that 𝐾 is a lift of 𝐾 to 𝐺(𝐷); such a lift exists (possibly over
an extension) iff 𝐾 is isotropic for the Weil pairing 𝑒𝑊,𝐷.

In this case, 𝐷′ = 𝐷 + div(𝛼𝑓) is a divisor invariant by translation by 𝑇 ∈ 𝐾, hence is of
the form 𝐷′ = 𝑓 ∗𝐷2.

Note that 𝛼𝑓 is not unique, if 𝑔 is any function on 𝐸2, then 𝛼′
𝑓 = 𝛼𝑓 ⋅ 𝑔 ∘ 𝑓 satisfy the cocycle

condition, and via 𝛼′
𝑓, 𝐷 descends to 𝐷2 + div(𝑔). In other words, 𝐾 determines 𝐷2 only up

to its linear equivalence class.
Note also that 𝐷 may have different (non linearly equivalent) descent to 𝐸2, indeed if 𝐾

is a lift, the other ones are given by the conjugation action Equation (4) of 𝑃 ∈ 𝐾(𝐷)/𝐾⟂,
which gives a descent of 𝐷 to 𝑡𝑃,∗𝐷2 (which is algebraically equivalent to 𝐷2 however).

If 𝑔 ∈ Γ(𝐷′), 𝑔 descends to 𝐸2, ie is of the form 𝑔2 ∘ 𝑓, iff 𝑔 is invariant by translation
by 𝑇 ∈ 𝐾. By Equation (2), we have an isomorphism 𝐺(𝐷) ≃ 𝐺(𝐷′), (𝑃, 𝑓𝐷,𝑃) ↦ 𝛼𝑓(𝑥 −
𝑃)/𝛼𝑓(𝑥)𝑓𝐷,𝑃. In particular, by definition of 𝛼𝑓, it sends 𝑔𝑇 ∈ 𝐾 to (𝑇, 1), and the action
of (𝑇, 1) on Γ(𝐷′) is the action by translation. Hence a section 𝑠 ∈ Γ(𝐷) corresponds to a
section 𝑠′ ∈ Γ(𝐷′) which descends to 𝐸2 iff 𝑠 is invariant by 𝐾.

Proposition 2.3. We have an isomorphism 𝑍(𝐾)/𝐾 ≃ 𝐺(𝐷2) which sends 𝑓𝐷,𝑃 for 𝑃 ∈ 𝐾⟂

into the element 𝑓𝐷2,𝑓 (𝑃) such that 𝑓𝐷2,𝑓 (𝑃) ∘ 𝑓 = 𝑓𝐷,𝑃𝛼𝑓(𝑥 − 𝑃)/𝛼𝑓(𝑥).
We thus obtain a partial morphism ̃𝑓 ∶ 𝐺(𝐷) → 𝐺(𝐷2).

Proof. The element 𝑔𝑃 ∈ 𝐺(𝐷) descends to 𝐺(𝐷2) iff it commutes with 𝐾, and by construc-
tion of 𝐷2, the descent of elements in 𝐾 is trivial. The resulting map is an isomorphism by
[Mum66]. The explicit formula follows by the isomorphisms above. �

Proposition 2.4 (Mumford). Thedivisor𝐷 descends to a symmetric divisor𝐷2 (more precisely
to a divisor linearly equivalent to a symmetric divisor) iff𝐾 is symmetric. In this case, the (partial)
morphism ̃𝑓 commutes with 𝛿−1.

We remark that if 𝐾 is rational and 𝑑 = #𝐾 is odd, there is a unique symmetric lift 𝐾 above
𝐾 by Section 2.4, hence 𝐾 is rational. However if 𝑑 is even, there may be an obstruction to the
existence of a symmetric 𝐾 (which can always be solved by changing the algebraic equivalence
class of 𝐷), and if 𝐾 is cyclic and the obstruction vanishes, there are two possibilities for
symmetric 𝐾; if the first one descends to 𝐷2, the second one descends to 𝑡𝑓 (𝑇),∗𝐷2, where
𝑇 ∈ 𝐸[2]/𝐾[2].

We now detail the most important case where 𝐷 = 𝑁(0𝐸). For this divisor, if 𝑃 ∈ 𝐸[𝑁],
we abbreviate 𝑓𝑁,𝑃 for 𝑓𝐷,𝑃. Let 𝐾 ⊂ 𝐸[𝑑] be a maximal isotropic cyclic subgroup, with
𝑁 = 𝑚𝑑. Assume that 𝑑 is odd. Take 𝐷2 = 𝑚(0𝐸2

) on 𝐸2, then 𝑓 ∗𝐷2 = ∑𝑇∈𝐾 𝑚(𝑇) is
linearly equivalent to 𝑁(0𝐸). (Note that if 𝑑 is even, 𝑓 ∗𝐷2 is linearly equivalent to 𝑁(0𝐸) iff
𝑚 is even.) Since 𝐷2 is symmetric, it corresponds, by the general theory above, to the unique
symmetric lift 𝐾 above 𝐾.

There exists a (unique up to a constant) function 𝛼𝑓 ,𝑚 with divisor ∑𝑇∈𝐾 𝑚(𝑇)−𝑁(0𝐸);
this is the function which gives the linear equivalence between 𝐷 = 𝑁(0𝐸) and 𝐷′ = 𝑓 ∗𝐷2.
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We check that if 𝑇 ∈ 𝐾, 𝛼𝑓 ,𝑚(𝑥)/𝛼𝑓 ,𝑚(𝑥 − 𝑇) has for divisor 𝑁(𝑇) − 𝑁(0𝐸), and in
fact by the theory above we know it has to satisfy 𝛼𝑓 ,𝑚(𝑥)/𝛼𝑓 ,𝑚(𝑥 − 𝑇) = 𝑓𝑁,𝑇 for all
(𝑇, 𝑓𝑁,𝑇) ∈ 𝐾.

Note that since div 𝛼𝑓 ,𝑚 is symmetric, we have [−1]∗𝛼𝑓 ,𝑚 = ±𝛼𝑓 ,𝑚. But the (𝑇, 𝑓𝑁,𝑇) ∈
𝐾 above is symmetric, this force 𝛼𝑓 ,𝑚(−𝑥) = 𝛼𝑓 ,𝑚(𝑥). And indeed, an explicit version of
𝛼𝑓 ,𝑚 is given by 𝛼𝑓 ,𝑚 = 𝛼𝑚

𝑓 = ∏𝑇∈𝐾′(𝑥 − 𝑥(𝑇))𝑚 for any 𝐾′ where 𝐾 = 𝐾′ ⋃ −𝐾′ ⋃{0𝐸}.
This explicit form is clearly invariant by [−1].

If (𝑃, 𝑓𝑁,𝑃) ∈ 𝐺(𝑁(0𝐸)), then 𝐹𝑁,𝑃 ≔
𝛼𝑓 ,𝑚(𝑥−𝑃)

𝛼𝑓 ,𝑚(𝑥) 𝑓𝑁,𝑃 has for divisor ∑𝑇∈Ker 𝑓(𝑚(𝑃 +
𝑇) − 𝑚(𝑇)). This divisor is invariant by translation by Ker 𝑓 hence descends to 𝐸2. However
𝐹𝑁,𝑃 needs not be invariant by translation.

Indeed, if ℰ = div 𝑓ℰ is a principal divisor invariant by translation by 𝐾, it does not
mean that 𝑓ℰ itself is invariant, we only have that 𝑓ℰ(𝑥 + 𝑇) = 𝛾𝑇𝑓ℰ for some constant 𝛾𝑇.
Unraveling the definitions, this 𝛾𝑇 is given by a Weil-Cartier pairing:

Lemma 2.5. Let ℰ = ∑𝑖 𝑎𝑖 ∑𝑇∈𝐾(𝑃𝑖 + 𝑇) = div 𝑓ℰ a principal divisor and 𝑃0 ≔ ∑ 𝑎𝑖𝑃𝑖.
Then 𝑓ℰ is invariant by translation iff 𝑃0 ∈ 𝐾.

Proof. If 𝑇 ∈ 𝐾, 𝑓ℰ(𝑥 + 𝑇)/𝑓ℰ(𝑥) = 𝑒𝑓(𝑇, 𝑓 (𝑃0)) = 𝑒deg 𝑓(𝑇, 𝑃0). So 𝑓ℰ is invariant by 𝐾 ⇔
𝑃0 ∈ 𝐸[ℓ] is orthogonal to 𝐾 ⇔ 𝑃0 ∈ 𝐾 ⇔ 𝑓 (𝑃0) = 0.

Another equivalent proof is to remark that 𝑓ℰ is invariant by translation iff ℰ descends to
a divisor on 𝐸2 which is linearly equivalent to (0), which is the case iff 𝑃0 ∈ 𝐾. �

Example 2.6. Take𝑄1, 𝑄2 ∈ 𝐸(𝑘),ℰ = ∑𝑇∈𝐾 ((𝑄1 + 𝑇) + (−𝑄1 + 𝑇) − (𝑄2 + 𝑇) − (−𝑄2 + 𝑇)),
𝑓ℰ = ∏𝑇∈𝐾

𝑥−𝑥(𝑄1+𝑇)
𝑥−𝑥(𝑄2+𝑇) (convention: 𝑥 − 0𝐸 ≔ 1). Then 𝑓ℰ is invariant by translation and

descends to 𝑋−𝑓 (𝑄1)
𝑋−𝑓 (𝑄2) on 𝐸/𝐾, 𝑋 a Weierstrass coordinate. When 𝑄2 = 0𝐸, we recover a

formula from [CH17; Ren18]; the denominator is then equal to 𝛼2
𝑓 .

Going back to our 𝐹𝑁,𝑃 above, by Lemma 2.5, it descends to a function on 𝐸2 iff 𝑚𝑃 ∈
Ker 𝑓, ie iff 𝑃 ∈ Ker 𝑓 ⟂, as expected. So 𝐹𝑁,𝑃 = ℎ ∘ 𝑓, and we define ̃𝑓 (𝑃, 𝑓𝑁,𝑃) = (𝑓 (𝑃), ℎ).
This map is defined for elements 𝑔 ∈ 𝐺(𝑁(0𝐸)) above 𝑃 ∈ Ker 𝑓 ⟂. Furthermore if 𝑇 ∈
Ker 𝑓, then our 𝐹𝑁,𝑇 above has trivial divisor, hence is constant. In fact, if (𝑇, 𝑓𝑁,𝑇) ∈ K̃er 𝑓,
then 𝐹𝑁,𝑇 = 1.

So we get a morphism 𝑍(K̃er 𝑓)/K̃er 𝑓 → 𝐺(𝐸2[𝑚]). We check via the formula that it
sends a symmetric element into a symmetric element, and that ̃𝑓 (0𝐸1

, 𝛾) = (0𝐸2
, 𝛾).

2.8. The canonical lift of an isogeny to the theta groups. If 𝐷 is an ample divisor on 𝐸,
there is also a map 𝜀𝑁 ∶ 𝐺(𝐷) → 𝐺(𝑁𝐷) defined by 𝜀𝑁(𝑃, 𝑓𝐷,𝑃) = (𝑃, 𝑓 𝑁

𝐷,𝑃). Likewise, it
commutes with 𝛿−1, so sends symmetric elements to symmetric elements.

Let 𝑓 ∶ 𝐸 → 𝐸2 be a cyclic 𝑁-isogeny, with 𝑁 odd. The unique symmetric lift 𝐾 of
𝐾 = Ker 𝑓 in 𝐺(𝑁(0𝐸)) induces a descent of 𝑁(0𝐸) into (0𝐸2

). For any 𝑚, we have that
𝜀𝑚(𝐾) is the unique symmetric lift of 𝐾 in 𝐺(𝑁𝑚(0𝐸)), which induces a descent of 𝑁𝑚(0𝐸)
to 𝑚(0𝐸2

). We have a map ̃𝑓 ∶ 𝑍(𝜀𝑚(𝐾)) → 𝐺(𝑚(0𝐸2
)). In 𝐸[𝑚𝑁], given a symplectic

decomposition 𝐸[𝑚𝑁] = 𝐾1 ⊕ 𝐾2 with 𝐾 = 𝐾1[𝑁], then 𝐾⟂ = 𝐾1 ⊕ 𝐾2[𝑚].
We also have amap 𝜀𝑁 ∶ 𝐺(𝑚(0𝐸)) → 𝐺(𝑚𝑁(0𝐸)).The image of 𝜀𝑁 lends into 𝑍(K̃er 𝑓),

so composing with ̃𝑓 we obtain our canonical morphism from Theorem 1.1

̃𝑓 ∶ 𝐺(𝐸1[𝑚]) → 𝐺(𝐸2[𝑚])
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which sends symmetric elements to symmetric elements. If 𝑚 is odd, it sends the canonical
symmetric lift above 𝑃 to the canonical symmetric lift above 𝑓 (𝑃).

Since 𝜀𝑁(0𝐸1
, 𝛾) = (0𝐸1

, 𝛾𝑁), we have that ̃𝑓 (0𝐸1
, 𝛾) = (0𝐸2

, 𝛾𝑁). So if 𝑚 is prime
to 𝑁, since Ker 𝑓 ∩ 𝐸1[𝑁] = 0, then ̃𝑓 is almost an isomorphism, the kernel is given by
{(0, 𝛾) ∣ 𝛾𝑁 = 1}.

The map ̃𝑓 is thus a lift of the map 𝑓 ∶ 𝐸1[𝑚] → 𝐸2[𝑚] to the theta groups; sometime I
may call it 𝑓 too by abuse of notations when the context is clear.

Example 2.7 (Mumford). 𝛿𝑛 ≔ [̃𝑛] ∶ 𝐺(𝐸[𝑚]) → 𝐺(𝐸[𝑚]) is given by 𝑔𝑃 ↦ 𝑔(𝑛2+𝑛)/2
𝑃 (𝛿−1𝑔𝑃)(𝑛2−𝑛)/2.

In this context, Theorem 1.1 becomes:

Theorem 2.8. Let 𝑓 ∶ 𝐸 = 𝐸1 → 𝐸2 be a cyclic 𝑁-isogeny with 𝑁 odd and kernel 𝐾. Let 𝑚
be an odd integer prime to 𝑁. Let 𝛼𝑓 be any function with divisor ∑𝑇∈𝐾(𝑇) − 𝑁(0𝐸). Let
𝑃 ∈ 𝐸[𝑚] and 𝑔𝑃 = (𝑃, ℎ𝑚,𝑃) the canonical symmetric lift of 𝑃 to 𝐺(𝑚(0𝐸)). Let 𝑄 = 𝑓 (𝑃)
and 𝑔𝑄 = (𝑄, ℎ𝑚,𝑄) the canonical symmetric lift of 𝑄 to 𝐺(𝑚(0𝐸2

). Then

(7) ℎ𝑚,𝑄(𝑓 (𝑥)) =
𝛼𝑚

𝑓 (𝑥 − 𝑃)
𝛼𝑚

𝑓 (𝑥) ℎ𝑁
𝑚,𝑃(𝑥)

Proof. TheTheorem follows fromunravelling the formula fromSection 2.7.We can also check

it directly by checking that both functions 𝑔1 = 𝑓 ∗ℎ𝑚,𝑄 and 𝑔2 =
𝛼𝑚

𝑓 (𝑥−𝑃)
𝛼𝑚

𝑓 (𝑥) ℎ𝑁
𝑚,𝑃(𝑥) have the

same divisor ∑𝑇∈𝐾 𝑚(𝑄 + 𝑇) − 𝑚(𝑇), satisfy the symmetry condition 𝑔𝑖(𝑃 − 𝑥)𝑔𝑖(𝑥) = 1
and the order condition 𝑔𝑖(𝑥)𝑔𝑖(𝑥 − 𝑃) ⋯ 𝑔𝑖(𝑥 − (𝑚 − 1)𝑃) = 1. The first condition shows
that 𝑔2 = 𝑐𝑔1, the second one that 𝑐 = ±1, and the third one that 𝑐𝑚 = 1 which forces
𝑐 = 1 since 𝑚 is odd. �

Note that ̃𝑓 ((0𝐸, 𝛼)) = (0𝐸2
, 𝛼𝑁), so since the Weil pairing is the commutator pairing,

we recover that 𝑒𝑊,𝑚(𝑓 (𝑃), 𝑓 (𝑄)) = 𝑒𝑊,𝑚(𝑃, 𝑄)𝑁.

3. Bi-extensions

(1) For abelian schemes, a birigidified line bundle has a natural structure of biextension (I
always consider biextensions by 𝔾𝑚), so we have isomorphisms

BiExt(𝐴, 𝐵; 𝔾𝑚) = Corresp(𝐴, 𝐵) = Hom(𝐴, �̂�) = Hom(�̂�, 𝐴)

[Gro72, p. 7.VII.2.9.6]
In particular the identity map 𝐴 → 𝐴 gives the Poincaré bundle seen either as a bundle

or a biextension of 𝐴 × 𝐴
(2) To a biextension, Grothendieck associate a ’Weil pairing’ in [Gro72, p. 7.VIII], and
Stange associate a ’Tate pairing’ in her thesis, [Sta08, Chapter 17].
(3) Grothendieck shows that his Weil pairing is the standard Weil pairing (up to a sign),
and Stange proves that the Tate pairing associated to the Poincaré bi-extension is the standard
Tate pairing (in the case of an elliptic curve, but the general case is the same).

I guess that the Tate pairing associated to the biextension of 𝐴×�̂� associated to an isogeny
𝑓 ∶ 𝐴 → 𝐵 is the usual Tate-Cartier pairing?
(4) For the Poincaré biextension, if I unravel the definitions, we can describe it in terms
of theta group as follow: if (𝑃, 𝑄) ∈ 𝐴 × 𝐴, then 𝑄 corresponds to a divisor 𝐷𝑄 in 𝐴,
algebraically equivalent to 0.
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The theta group 𝐺(𝐷𝑄) associated to 𝐷𝑄 then gives an extension 1 → 𝔾𝑚 → 𝐺(𝐷𝑄) →
𝐴 → 1, hence an element 𝑔𝑃,𝑄 ∈ 𝐺(𝐷𝑄) above 𝑃 corresponds to an element in the Poincaré
biextension above (𝑃, 𝑄). 𝑔𝑃,𝑄 corresponds to an isomorphism 𝑡∗

𝑃𝐷𝑄 ≃ 𝐷𝑄.
The biextension group laws can then be given by: - 𝑔𝑃,𝑄 ∗1 𝑔𝑃′,𝑄 = 𝑔𝑃,𝑄𝑔𝑃′,𝑄 (multipli-

cation in the theta group) - 𝑔𝑃,𝑄 ∗2 𝑔𝑃,𝑄′ = 𝑔𝑃,𝑄𝑔𝑃,𝑄′ (via the tensor product 𝐺(𝐷𝑄) ⊗
𝐺(𝐷𝑄′) → 𝐺(𝐷𝑄+𝑄′))

And I guess the biextension on 𝐴 × �̂� associated to 𝑓 ∶ 𝐴 → 𝐵 should be given by
associating an element 𝑔𝑃,𝑄 above 𝑃 in 𝐴, 𝑄 in �̂� which gives an isomorphism 𝑡∗

𝑃𝑓 ∗𝐷𝑄 ≃
𝐷𝑄.
(5) If I have an ample line bundle 𝐿, I can consider the polarisation 𝜑𝐿 ∶ 𝐴 → 𝐴 hence a
biextension of 𝐴 × 𝐴.

I think we can describe it this way: if (𝑃, 𝑄) in 𝐴×𝐴, then to 𝑄 we can associte 𝑡∗
𝑄𝐿⊗𝐿−1

which is a divisor algebraically equivalent to 0.Thenwe take an element 𝑔𝑃,𝑄𝑖𝑛𝐺(𝑡∗
𝑄𝐿⊗𝐿−1).

Rearranging things, this element 𝑔𝑃,𝑄 corresponds to an isomorphism 𝑡∗
𝑃+𝑄𝐿 ⊗ 𝐿 ≃ 𝑡∗

𝑃𝐿 ⊗
𝑡∗
𝑄𝐿, ie an explicit isomorphism from the theorem of the square!
(6) I like to think of an explicit isomorphism from the theorem of the square as the
following information: fix trivialisations of 𝐿 on some point 𝑥, as well as 𝑥 + 𝑃 and 𝑥 + 𝑄.
Then 𝑔𝑃,𝑄 determines (and is determined) by a trivialisation of 𝐿 on 𝑥 + 𝑃 + 𝑄.

This gives a way to represent 𝑔𝑃,𝑄; and compute in practice the group laws associated
to the biextension; hence compute pairings. For an elliptic curve, if we fix 𝐿 = (0𝐸), 𝑔𝑃,𝑄
corresponds to a function with divisor (𝑃 + 𝑄) + (0) − (𝑃) − (𝑄) hence we are essentially
reformulating Miller’s algorithm.
(7) The reason I am mentionning trivialisations is that we have a weak form of algebraic
Riemann relations:

Theorem 3.1. Assume that 𝐿 is symmetric. Let 𝑃, 𝑄, 𝑅, 𝑆 ∈ 𝐴 such that 𝑃 +𝑄+𝑅+𝑆 = 2𝑇
and let 𝑃′ = 𝑇 − 𝑃, 𝑄′ = 𝑇 − 𝑄, 𝑅′ = 𝑇 − 𝑅, 𝑆′ = 𝑇 − 𝑆. Then we have a canonical
isomorphism 𝑡∗

𝑃𝐿 ⊗ 𝑡∗
𝑄𝐿 ⊗ 𝑡∗

𝑅𝐿 ⊗ 𝑡∗
𝑆𝐿 ≃ 𝑡′

𝑃
∗𝐿 ⊗ 𝑡′

𝑄
∗𝐿 ⊗ 𝑡′

𝑅
∗𝐿 ⊗ 𝑡′

𝑆
∗𝐿

In particular if we have chosen a trivialisation for 7 out of the 8 points in Riemann relation,
it fixes the last one canonically.

Proof. We have 𝑅′ = 𝑇 − 𝑅, 𝑆′ = 𝑇 − 𝑆 so 𝑅′ + 𝑆′ = 𝑃 + 𝑄. Fix any isomorphism
𝛼 ∶ 𝑡𝑃 ∗ 𝐿 ⊗ 𝑡𝑄 ∗ 𝐿 = 𝑡′

𝑅 ∗ 𝐿 ⊗ 𝑡′
𝑆 ∗ 𝐿.

Fix an isomorphism 𝜓 ∶ 𝐿 → 𝐿−1. We remark that [−1]∗Ψ gives an isomorphism
𝐿−1 → 𝐿 and we could normalize Ψ (up to a sign) by requiring that the composition 𝐿 → 𝐿
is the identity (eg equal to 1 on 𝐿 ∣ 0), but we won’t require this.

Via 𝜓 we get an isomorphism 𝑡∗
−𝑃𝐿 ⊗ 𝑡∗

−𝑄𝐿 ≃ 𝑡∗
−𝑅′𝐿 ⊗ 𝑡∗

−𝑆′𝐿 which we translate by 𝑇 to
get an isomorphism 𝛽 ∶ 𝑡∗

𝑃′𝐿 ⊗ 𝑡∗
𝑄′𝐿 ≃ 𝑡∗

𝑅𝐿 ⊗ 𝑡∗
𝑆𝐿.

Hence 𝛼⊗𝛽−1 gives an isomorphism 𝑡∗
𝑃𝐿⊗𝑡∗

𝑄𝐿⊗𝑡∗
𝑅𝐿⊗𝑡∗

𝑆𝐿 ≃ 𝑡∗
𝑃′𝐿⊗𝑡∗

𝑄′𝐿⊗𝑡∗
𝑅′𝐿⊗𝑡∗

𝑆′𝐿.
But remark that if we fix another isomorphism 𝛼′ = 𝜆𝛼, then 𝛽′ = 𝜆𝛽, hence 𝛼 ⊗ 𝛽−1 =

𝛼′ ⊗′ 𝛽−1. The isomorphism we have computed is canonical!
(This could probably be proved by the theorem of the cube also.) �

We can see this argument as a special case of Riemann relations for theta functions
(analytic Riemann or the algebraic ones proved by Mumford), which describe the canonical
isomorphism defined above explicitly in terms of basis of sections given by theta functions.

Now we can specialize: the following points are in Riemann relations:
•
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• (𝑃 + 𝑄)(𝑃 − 𝑄)00; 𝑄 − 𝑄𝑃𝑃
• (𝑃 + 𝑄 + 𝑅)𝑃𝑄𝑅; 0(𝑄 + 𝑅)(𝑃 + 𝑄)(𝑃 + 𝑄)

In particular from a trivialisation of 𝐿 at 0 and 𝑃 we can recover a canonical polarisation
of 𝐿 at 𝑛.𝑃. And from a trivialisation of 𝐿 at 0, 𝑃, 𝑄 and 𝑃 + 𝑄 we can recover a canonical
polarisation at 𝑛.𝑃 + 𝑚.𝑄

And the second case gives a way to compute in the biextension: let 𝑔𝑃1,𝑄 be an isomor-
phism 𝑡∗

𝑃1+𝑄𝐿 ⊗ 𝑡∗
0𝐿 ≃ 𝑡∗

𝑃1
𝐿 ⊗ 𝑡∗

𝑄𝐿 and let 𝑔𝑃2,𝑄 be an isomorphism 𝑡∗
𝑃2+𝑄𝐿 ⊗ 𝑡∗

0𝐿 ≃
𝑡∗
𝑃1

𝐿 ⊗ 𝑡∗
𝑄𝐿

So fix any trivialisation of 𝐿 at 0, 𝑃1, 𝑃2, 𝑄, 𝑃1 + 𝑃2. Use 𝑔𝑃𝑖,𝑄 to get the corresponding
trivialisation at 𝑃𝑖 + 𝑄. The above case of Riemann relations fixes a canonical trivialisation
of 𝐿 at 𝑃1 + 𝑃2 + 𝑄, from which we deduce an explicit isomorphism 𝑡∗

𝑃1+𝑃2+𝑄𝐿 ⊗ 𝑡∗
0𝐿 ≃

𝑡∗
𝑃1+𝑃2

𝐿 ⊗ 𝑡∗
𝑄𝐿. Thus we obtain an element 𝑔𝑃1+𝑃2,𝑄, and we can check that it does not

depend on our starting choices of trivialisation.
(8) Unraveling the formula, this gives us the following interpretation of the Tate pairing
with respect to 𝐿:

• if 𝑃 is a point of 𝑛-torsion, we fix a trivialisation of 𝐿 at 0, 𝑃, 𝑄, 𝑃 + 𝑄 (or 𝑅, 𝑅 +
𝑃, 𝑅 + 𝑄, 𝑅 + 𝑃 + 𝑄)

• from these trivialisation, we determine a canonical trivialisation of 𝐿 at 𝑛𝑃 which
we compare with the one at 0, and of 𝐿 at 𝑛𝑃 + 𝑄 which we compare with the one
at 𝑄.

• The quotient gives us the Tate pairing 𝑒𝑇,𝐿(𝑃, 𝑄)

(9) If we apply this approach to 𝐿 of level 𝑛 with a symmetric theta structure, fixing a
trivialisation of 𝐿 at 𝑃 amount to choosing affine coordinates for 𝜃𝑖(𝑃) above the projective
coordinates.

We then use the theta Riemann relations to keep track of our trivialisations, ie to work
with ’affine theta coordinates’. So we compute 𝑛𝑃 + 𝑄 and 𝑛𝑃 in affine coordinates and we
compare with the affine coordinates of 𝑄 and 0; they differ by some projective factors whose
quotient is the Tate pairing.

We recover the algorithms we had with David Lubicz for computing the Tate pairing in
theta coordinates.
(10) I think we can also recover elliptic nets this way: this time we start with a principal
line bundle 𝐿 = (0𝐸)

Let’s start with rank 1 nets: we fix a trivialisation of 𝐿 at 0𝐸 and 𝑃. This determines by the
above a trivialisation of L at every n.P.

Now on 𝐿 we have the section ′𝑍′ (if we think of projective Weierstrass coordinates; or
the Weierstrass 𝜎 function if we think analytically, aka the theta function which has a zero
exactly at the points of the lattice), which is 0 on 0𝐸.

The trivialisations of 𝐿 at each 𝑛.𝑃 defines a value 𝑍(𝑛.𝑃) at every point, with 𝑍(𝑛.𝑃) = 0
iff 𝑛.𝑃 = 0𝐸.

A slight annoyance is that 𝑍(0) = 0 so we cannot use the value of 𝑍 at 0 to specify the
trivialisation of 𝐿 on 0, but we can specify the trivialisation of 𝐿 on 𝑃 by requiring 𝑍(𝑃) = 1;
and the value 𝑍(2𝑃) can be seen as implicitly fixing a trivialisation of 𝐿 on 0 (equivalently of
𝐿 on 2𝑃).

Likewise, we can define rank 2 (or more) nets; but to compute the Tate pairing we need to
shift the offset by one so that we get a non zero value.
(11) The above strategy works for any ppav: but this is a different approach than the
standard construction of elliptic nets. What I am saying is that for any model (𝐴, 𝐿) where
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we have an explicit version of the theorem of the square for a line bundle 𝐿0, so that we
can compute the canonical Riemann isomorphisms for 𝐿0; then if we fix a basis of sections
𝑔1, … , 𝑔𝑚 of 𝐿0 we can define generalised elliptic nets as the value of 𝑔𝑖 on trivialisations of
𝐿0 ∣ 𝑛𝑃 + 𝑚𝑄, which are entirely defined from a trivialisation of 𝐿0 on 0, 𝑃, 𝑄, 𝑃 + 𝑄.

Here I am allowed to represents point on 𝐴 by sections of 𝐿 to compute the isomorphism
given by the theorem of the square on 𝐿0; this is like using the 𝑥, 𝑦 Weierstrass coordinates
(ie sections of 𝐿3

0) to compute the Miller functions.
The theta function approach from 9) is the case 𝐿 = 𝐿0 of level 𝑛, using the theta Riemann

relations.
Standard elliptic nets works differently: the key is a recurrence relation that allows to

compute the value of the net on any point given some value on some points; this allows
to take 𝐿0 principal without needing any other intermediate line bundle L for the actual
computations.

This recurrence approach extends to higher dimension by using the theta Riemann
relations, this is done in the thesis of Christophe Tran [Tra14]. at least for Jacobians of
hyperelliptic curves.
(12) In summary, there is a canonical way (”algebraic Riemann relations”) from fixing
a trivialisation of a line bundle on 𝐿 on some points 𝑃𝑖 (and some sums) to compute a
canonical trivialisation of 𝐿 on any Σ𝑛𝑖�̃�𝑖 (where �̃� means that I am implicitely working on
the biextension, not on the abelian variety).

If we evaluate a basis of theta functions on these trivialiation we recover the theta pairing
algorithm; and if we use instead the section ′𝑍′ of the divisor (0𝐸) on an elliptic curve we
recover an elliptic net.

So I guess this is an alternate way of seeing the Tate pairing as being the Tate pairing
associated to some biextension: it simply means that we keep track of trivialisations.

I guess this gives an alternative way of computing elliptic nets: we work with ”affine
Weierstrass coordinates” (𝑋, 𝑌, 𝑍) and we compute differential additions from the algebraic
Riemann relations; the value of 𝑍 is the value of the net.

(Or more precisely we get the value of the original elliptic net to the cube because 𝑋, 𝑌, 𝑍
are sections of 𝐿3, 𝐿 = (0𝐸). Say 𝑍0 is the section of 𝐿, then 𝑋0, 𝑍2

0 are the sections of 𝐿2

and 𝑋 = 𝑋0𝑍0, 𝑌, 𝑍 = 𝑍3
0 are the sections of 𝐿3.)

4. Biextensions and theta groups

Let 𝑃 be a point of 𝑛-torsion, and fix a trivialisation of 𝐿 at 0 and 𝑃, then we get a
trivialisation of 𝐿𝑛 at 0 and 𝑃 But 𝑡∗

𝑃𝐿𝑛 ≃ 𝐿𝑛, and these trivialisation defines an explicit
isomorphism between the two, ie an element 𝑔𝑃 ∈ 𝐺(𝐿𝑛). (And changing our trivialisation
of 𝐿 by 𝜁 does not change 𝑔𝑃). In particular, since 𝑔𝑃 is global, we can use 𝑔𝑃 to associate a
trivialisation of 𝐿𝑛 at 𝑥 + 𝑃 from a trivialisation of 𝐿𝑛 at 𝑥.

Thus we can use the arithmetic of biextensions to work at level (say) 𝑚 on 𝐿 to recover the
action of the theta group at level 𝑛𝑚 on 𝐿𝑛. In particular, we can check that 𝑔𝑃 is symmetric
iff our trivialisations satisfy the same symmetry relation we use to normalizing our theta
functions.

We can thus reformulate [Rob21, §2.9] as follow: an explicit version of the theorem of
the square at level 𝑚 allows to work with the biextension laws (via the algebraic Riemann
relations) and via this to recover the action of the theta group at level 𝑛𝑚. This can be used
to compute the Weil and Tate pairings, isogenies (given generators of the kernel) and theta
(say given a basis of the 𝑛𝑚-torsion).
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At the time I wrote my hdr, I was not aware that the computations I was doing with
trivialisation and algebraic Riemann relations were related to biextensions. This concept was
brought to my attention by Prof. Stange who pointed out to me following [Rob23b] [Sta08,
Chapter 17] giving the interpreation of the Tate pairing from biextensions.

Question: can every Riemann relation be expressed in term of the biextensions laws?
Another relation between theta group and trivialisations is as follow: fix an isogeny:

𝑓 ∶ 𝐴 → 𝐵 = 𝐴/𝐾. A lift 𝐾 of 𝐾 to 𝐺(𝐿) gives a descent 𝑀 of 𝐿 and an isomorphism
𝑓 ∗𝑀 → 𝐿. We can fix this isomorphism by specifying a trivialisation of 𝑀 and 𝐿 at 0. From
this, we can use this isomorphism to relate a trivialisation of 𝐿 on 𝑥 to a trivialisation of 𝑀
on 𝑓 (𝑥) and conversely.

This gives an alternative proof that the biextension law is related to pairing: fixing triv-
ialisations of 𝐿 on 𝑃 of 𝑛-torsion induce a trivialisation of 𝐿𝑛2 on 𝑃′ (such that 𝑛𝑃′ = 𝑃).
But 𝑃′ is in the theta group of 𝐿𝑛2 and we can use the fact that the Weil pairing is the com-
mutator pairing on the theta group, and then use the compatibility of pairings with scalar
multiplication.

This also gives an alternative proof of Riemann relations: the isogeny 𝐹 ∶ (𝑃, 𝑄) ↦
(𝑃 + 𝑄, 𝑃 − 𝑄) is an isogeny (𝐴 × 𝐴, 𝐿2 ⋆ 𝐿2) → (𝐴 × 𝐴, 𝐿 ⋆ 𝐿). The kernel is 𝐴[2]
(embedded canonically), which lift canonically to the theta group: above every 𝑇 ∈ 𝐴[2]
there are two symmetric elements ±𝑔𝑇 which both give the same element 𝑔𝑇 ⊗ 𝑔𝑇 on
𝐺(𝐿2 ⋆ 𝐿2).

In particular, fixing a trivialisation of 𝐿2 ⋆𝐿2 on (𝑥′, 𝑦′, 𝑧′, 𝑡′) gives a trivialisation of 𝐿⋆𝐿
on (𝑥′+𝑦′, 𝑥′−𝑦′, 𝑧′+𝑡′, 𝑧′−𝑡′), but also (by permutation) on (𝑥′+𝑡′, 𝑥′−𝑡′, 𝑧′+𝑦′, 𝑧′−𝑦′),
which is another form of the Riemann relations.

5. Lifting the DLP

As a particular case of lifting isogenies, we can lift DLPs canonically to the theta group
via the symmetric section. If 𝑄, 𝑃 are points of ℓ-torsion, with 𝑄 = 𝑚𝑃, we have the lift

ℎℓ,𝑄(𝑚𝑥) = (
𝛼𝑚(𝑥 − 𝑃)

𝛼𝑚(𝑥) )
ℓ
ℎℓ,𝑃(𝑥)𝑚2.

Here 𝑔𝑃 = (𝑃, ℎℓ,𝑃) and 𝑔𝑄 = (𝑄, ℎℓ,𝑄) are the canonical symmetric lift.
We remark that in this case, 𝛼𝑚 can be given by the division polynomial 𝜓𝑚.
Looking at the group law, since 𝑔𝑄 = 𝑔𝑚

𝑃 (because the canonical symmetric lifts of ⟨𝑃⟩
form a group), we also have ℎℓ,𝑄(𝑥) = ℎℓ,𝑃(𝑥)ℎℓ,𝑃(𝑥 − 𝑃) ⋯ ℎℓ,𝑃(𝑥 − (𝑚 − 1)𝑃).

If we could find a 𝑥 in which we knew both 𝑚𝑥 and 𝛼𝑚(𝑥−𝑃)
𝛼𝑚(𝑥)

ℓ
, then since we know ℎℓ,𝑄

and ℎℓ,𝑃 we could recover 𝑚 via a DLP over 𝔽∗
𝑝 . The obvious choice of using 𝑃0 does not

work since in this case ℎℓ,𝑃(𝑃0) = 1 by definition of the symmetric lift.
If we could find another lift, say 𝑔′

𝑄 = 𝑔′
𝑃

𝑚, then if 𝛾𝑃 = 𝑔′
𝑃/𝑔𝑃 and 𝛾𝑄 = 𝑔′

𝑄/𝑔𝑄 we
would have 𝛾𝑄 = 𝛾𝑚

𝑃 and we would reduce to a DLP in 𝔽∗
𝑞.

More generally, wewould like to exploit the arithmetic of the theta groups and biextensions
to study the DLP. Say we are on an elliptic curve, 𝑃 is of order 𝐿 and 𝑄 = 𝑚.𝑃 and we want
to recover the DLP 𝑚. If 𝜇ℓ ⊂ 𝔽𝑞 we can use the Tate pairing.

As explained in [Rob23b], we can understand the pairings 𝑒𝑇,ℓ(𝑃, 𝑄) and 𝑒𝑇,ℓ(𝑃, 𝑃), and
passing to the isomorphism classes we get an equation: [𝑒𝑇, 𝑙(𝑃, 𝑄)] = [𝑒𝑇, 𝑙(𝑃, 𝑃)]𝑚.

If 𝑙 is prime to 𝑞 − 1, then the isomorphism class is trivial so we obtain the non useful
equation [1] = [1]𝑚. So passing to the isomorphism class lose too much information. But
we might still hope that an explicit isomorphism between the two torsors can give us some
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information about 𝑚. Notice that the equation on the canonical symmetric lifts above is
essentially precisely such an isomorphism between 𝑒𝑇,ℓ(𝑄, 𝑄) and 𝑒𝑇,ℓ(𝑃, 𝑃).

Fix a trivialisation of 𝐿 at 0. Now since ℓ is prime to 𝑞 − 1, there is a unique rational
trivialisation of 𝐿 at 𝑃 which induces the symmetric element ℎℓ,𝑃 on 𝐿ℓ: the others ones are
given by multiplying by 𝜁 which is not rational by assumption.

In terms of affine lift: 𝑃 is of order ℓ, and if �̃� is any lift, ℓ.�̃� = 𝜆𝑂, so �̃� is of order dividing
ℓ(𝑞 − 1). The ”canonical lift” �̃�0 is the unique one of order ℓ. (So a way to compute it is to
start with an arbitrary lift, recover 𝜆 as above, and correct by 𝜆1/ℓ2 which is well defined
because ℓ is prime to 𝑞 − 1). (This ”canonical lift” is the same as defined on level 1 via elliptic
nets by Stange in [Sta08, Chapter 19].)

Now start with a lift �̃� (say with 𝑍(�̃�) = 1 as with elliptic nets). Take a lift 𝑄 of 𝑄 (say
with the same normalisation); and assume that the lift is defined in such a way that 𝑄 is in
the group generated by �̃�: 𝑄 = 𝑚′�̃�, with 𝑚′ = 𝑚 + 𝑎ℓ for some unknown 𝑎. Multiplying by

ℓ, we get an equation above 0: 𝜆′
𝑄 = 𝜆′

𝑃
𝑚′2

(and this gives a way to check that 𝑄 is indeed a
multiple of �̃�). Solving a DLP over 𝔽∗

𝑞, we recover 𝑚′2 modulo 𝑞 − 1. An alternative way is
to compare �̃�, 𝑄 with their canonical lift: �̃� = 𝜆𝑃�̃�0, 𝑄 = 𝜆𝑄𝑄0. Since 𝑄0 = 𝑚�̃�0 = 𝑚′�̃�0,
we get 𝜆𝑄 = 𝜆𝑚′2

𝑃 (and in fact 𝜆′
𝑄 = 𝜆ℓ2

𝑄 and the same for 𝜆′
𝑃).

However this information is not enough to recover anything about 𝑚: because ℓ is prime
to 𝑞 − 1, knowing 𝑚 + 𝑎ℓ modulo 𝑞 − 1 does not gives information about 𝑚 modulo ℓ since
𝑎 is unknown. This would change if we could force 𝑎 = 0 (say).

One way to do that is via ’projective coordinate leak’ [NSS04]. Say we do a Montgomery
ladder on (𝑋𝑃, 𝑍𝑃), and we are given (𝑋𝑄, 𝑍𝑄) rather than (𝑋𝑄 ∶ 𝑍𝑄). Then since the
(affine) ladder is essentially computing on the biextension rather than on 𝐸, we recover 𝑚2

modulo 𝑞−1 (here we know that 𝑎 = 0!) This allows to recover 𝑚2 (hence 𝑚 unless 𝑞−1 has
a lot of factors) from only one DLP in 𝔽∗

𝑞: so unlike [NSS04] only one projective coordinate
leak is enough for an attack.

Of course, nobody sends (𝑋𝑄 ∶ 𝑍𝑄) since sending 𝑥𝑄 = 𝑋𝑄/𝑍𝑄 saves bandwidth and
everyone is aware about the above attack. But that idea could still be used in some sidechannel
attacks I guess.

It would be nice if we could extend this approach to more general cases; or maybe use the
biextension law in some index calculus attacks. Some failed experiments are in the appendix.
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Appendix A. Failed experiments

A.1. Trying to reconstruct isogenies. Let 𝑓 ∶ 𝐸 = 𝐸1 → 𝐸2 be a cyclic 𝑁-isogeny with 𝑁
odd. We assume that 𝐸1, 𝐸2 and 𝑁 are known and we want to try to reconstruct 𝑓.

By the SIDH attacks [CD23; MMPPW23; Rob23a], it suffices to recover the image of 𝑓
on some basis of ℓ𝑖-torsion: 𝑓 ∶ 𝐸1[ℓ𝑖] → 𝐸2[ℓ𝑖] for enough ℓ𝑖 such that ∏ ℓ𝑖 > 𝑁. We can
assume ℓ𝑖 ∧ 𝑁 = 1, and we will restrict to ℓ𝑖 odd.

We first guess the image of 𝑓 on the ℓ0 torsion. Then we use Theorem 2.8 to recover the
action of 𝑓 on the ℓ𝑖 torsion. If our guess is wrong, we will detect it either on the intermediate
steps because we won’t have any solution, or at the end where our higher dimensional isogeny
embedding 𝑓 won’t give an isogeny which projects back to 𝐸2.

Since the action of 𝐺(𝑚(0𝐸)) on Γ(𝑚(0𝐸)) is irreducible, and the 𝑓𝑚,𝑃 are given by the
action of (𝑃, 𝑓𝑚,𝑃) on 1, we see that they generate Γ(𝑚(0𝐸)). By Lefschetz theorem, they
thus give a projective embedding of 𝐸 whenever 𝑚 ≥ 3. So a point 𝑥 ∈ 𝐸 is completely
determined by the projective point (𝑓𝑚,𝑃(𝑥))𝑃∈𝐸[𝑚].

Since we can assume that we know the action of 𝑓 on the ℓ0 torsion, we know that, setting

𝑚 = ℓ0, 𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥)) =
𝛼𝑚

𝑓 (𝑥−𝑃)
𝛼𝑚

𝑓 (𝑥) 𝑓 𝑁
𝑚,𝑃(𝑥) for all 𝑃 ∈ 𝐸[𝑚]. If we knew how to evaluate 𝛼𝑓,
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we could then evaluate 𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥)) on any point, by the remark above this would completely
determine 𝑓 (𝑥).

But of course being able to evaluate 𝛼𝑓 is closely related to evaluating 𝑓 in the first place,
see also Example 2.6. We need to tweak Equation (7) to not depend on 𝛼𝑓.

The first idea is to take a product ∏ 𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥 − 𝑖𝑃)), but of course because of the order
condition both members of Equation (7) become equal to 1.

Instead, we use that for 𝑃 ∈ 𝐸[𝑚] and any 𝑄,

(8)
𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥 + 𝑃 + 𝑄))

𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥 + 𝑃)) = ⎛⎜
⎝

𝛼𝑓(𝑥 + 𝑃)𝛼𝑓(𝑥 + 𝑄)
𝛼𝑓(𝑥 + 𝑃 + 𝑄)𝛼𝑓(𝑥)

⎞⎟
⎠

𝑚 𝑓 𝑁
𝑚,𝑃(𝑥 + 𝑃 + 𝑄)

𝑓 𝑁
𝑚,𝑃(𝑥 + 𝑃)

Note that when seen as 𝜇𝑚-torsors, the element on the left is in the isomorphism class of
the Tate pairing 𝑒𝑇,𝑚(𝑓 (𝑃), 𝑓 (𝑄)) while the one on the right of 𝑒𝑇,𝑚(𝑃, 𝑄)𝑁 (see [Rob23b]).

Now if 𝑄 ∈ 𝐸[ℓ𝑖], let 𝑚2 = ℓ𝑖. We make a guess for 𝑄′ = 𝑓 (𝑄). If our guess is correct,
the following equation should hold:

(9)
𝑓𝑚2,𝑄′(𝑓 (𝑥 + 𝑃 + 𝑄))

𝑓𝑚2,𝑄′(𝑓 (𝑥 + 𝑄)) = ⎛⎜
⎝

𝛼𝑓(𝑥 + 𝑃)𝛼𝑓(𝑥 + 𝑄)
𝛼𝑓(𝑥 + 𝑃 + 𝑄)𝛼𝑓(𝑥)

⎞⎟
⎠

𝑚2 𝑓 𝑁
𝑚2,𝑄(𝑥 + 𝑃 + 𝑄)

𝑓 𝑁
𝑚2,𝑄(𝑥 + 𝑄)

Fixing 𝑥 a point which we know the image of (for instance another point of 𝑚-torsion),

we let 𝐶1 =
𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥+𝑃+𝑄))

𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥+𝑃))
𝑓 𝑁
𝑚,𝑃(𝑥+𝑃)

𝑓 𝑁
𝑚,𝑃(𝑥+𝑃+𝑄)

, 𝐶2 =
𝑓𝑚2,𝑄′(𝑓 (𝑥+𝑃+𝑄))

𝑓𝑚2,𝑄′(𝑓 (𝑥+𝑃))

𝑓 𝑁
𝑚2,𝑃(𝑥+𝑄)

𝑓 𝑁
𝑚2,𝑃(𝑥+𝑃+𝑄)

, and 𝐶0 =
𝛼𝑓(𝑥+𝑃)𝛼𝑓(𝑥+𝑄)
𝛼𝑓(𝑥+𝑃+𝑄)𝛼𝑓(𝑥) .

We can evaluate 𝐶1 and 𝐶2, not 𝐶0 but we know (if our guess of 𝑄′ is correct) that
𝐶1 = 𝐶𝑚

0 and 𝐶2 = 𝐶𝑚2
0 . So we check if such a constant 𝐶0 exists. If not, we know our

choice of 𝑄′ is wrong, and we try with a new one.
Heuristic: only 𝑄′ = 𝑓 (𝑄) satisfy this condition.
Under this heuristic, we can uniquely recover 𝑓 (𝑄). We can thus hope to reconstruct 𝑓 in

polynomial time, given (𝐸1, 𝐸2, 𝑁).
Some justification for this heuristic: if 𝑓 ∶ 𝐸1 → 𝐸2 is a cyclic 𝑁-isogeny, 𝑓 may not be

uniquely determined from (𝐸1, 𝐸2, 𝑁). However, if 𝑓2 ∶ 𝐸1 → 𝐸2 is another cyclic 𝑁-isogeny,
then ̃𝑓2 ∘ 𝑓 ∶ 𝐸1 → 𝐸1 is an endomorphism of degree 𝑁2 different from [𝑁] (even up to
automorphism).

So this imposes 𝐸1 to have complex multiplication, and with a non integer endomorphism
of norm 𝑁2. If the image of 𝑓 on the 𝑚-torsion is further prescribed, and 𝑓2 has the same
image, then ̃𝑓2 ∘ 𝑓 and [𝑁] have the same image on 𝐸1[𝑁], so ̃𝑓2 ∘ 𝑓 − [𝑁] = 𝑚𝛼 for some
endomorphism 𝛼. This imposes further constraints on 𝐸1.

So, except for very few exceptions, 𝑓 is completely determined by (𝐸1, 𝐸2, 𝑁) and its
image on 𝐸1[𝑚]. That’s why we can hope to try to reconstruct 𝑓 from this data.

Actual experiments: The heuristic is wrong. Essentially because of Weil’s reciprocity
theorem, this equality is always satisfied, so the condition is not “generic”.

A.2. Playing with cocycles.
(13) We now focus on trying to reconstruct the isogeny from CSIDH. As above we want
to recover how 𝑓 acts on the ℓ-torsion: 𝐸1[ℓ] → 𝐸2[ℓ].
(14) Take ℓ which splits as ℓ = ℓ1ℓ2 in ℤ[𝛼]. This happens with probability 1/2.

Then 𝐸1[ℓ] = 𝐸1[ℓ1] ⊕ 𝐸1[ℓ2] (and we know which is which), and since 𝑓 commutes
with 𝛼, 𝑓 (𝐸1[ℓ𝑖]) = 𝐸2[ℓ𝑖]).
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Take (𝑃1, 𝑃2) a symplectic basis of 𝐸1[ℓ] with 𝑃𝑖 ∈ 𝐸1[ℓ𝑖] with respect to 𝜁 (for the Weil
pairing), (𝑄1, 𝑄2) a similar symplectic basis of 𝐸2[ℓ] but with respect to 𝜁𝑁. We know that
𝑓 is diagonal with respect to these basis: 𝑓 = diag(𝑢, 𝑣).

Furthermore since 𝑒𝑊,ℓ(𝑓 (𝑃1), 𝑓 (𝑃2)) = 𝑒𝑊,ℓ(𝑃1, 𝑃2)𝑁 = 𝑒𝑊,ℓ(𝑢𝑄1, 𝑣𝑄2), we know
that 𝑢𝑣 = 1 mod ℓ.

Thus it suffices to determine 𝑢 for sufficiently many small ℓ.
(15) Since ̃𝑓 sends symmetric elements, and that ̃𝑓 (𝛾𝑔𝑃) = 𝛾𝑁 ̃𝑓 (𝑔𝑃), ̃𝑓 is completely
determined by the restriction of 𝑓 to the ℓ-torsion.

So the fact that ̃𝑓 exists adds more constraints on the possible values of 𝑓 on the ℓ-torsion.
For instance the pairing condition above is one of the constraint induced by the existence of

̃𝑓.
(16) So fixing a basis (𝑃1, 𝑃2) and (𝑄1, 𝑄2) as above, we want to find the 𝑢, 𝑣 with
𝑣 = 𝑢−1 mod ℓ such that 𝑓 (𝑃1) = 𝑢𝑄1 and 𝑓 (𝑃2) = 𝑣𝑄2.

We have a canonical set section 𝑠1 ∶ 𝐸1[ℓ] → 𝐺(𝐸1[ℓ]) which sends 𝑃 to the unique sym-
metric lift 𝑔𝑃 of order ℓ.This defines a canonical 2-cocycle𝑆1(𝑇1, 𝑇2) = 𝑠1(𝑇1)𝑠1(𝑇2)𝑠1(𝑇1+
𝑇2)−1. Likewise we define 𝑠2, 𝑆2. Notice that these 2-cocycles are normalised: 𝑆(𝑇, 0) =
𝑆(0, 𝑇) = 1, and that since the commutator pairing is the Weil pairing, we have

(10) 𝑆(𝑇1, 𝑇2) = 𝑒𝑊,ℓ(𝑇1, 𝑇2)𝑆(𝑇2, 𝑇1).

Furthermore, if 𝑔1, 𝑔2 are two symmetric and commuting elements, then 𝑔1𝑔2 is also
symmetric, so 𝑠(𝑔𝑎) = 𝑠(𝑔)𝑎 and 𝑆(𝑎𝑇, 𝑏𝑇) = 1, or equivalently 𝑆(𝑇1, 𝑇2) = 1 if
𝑒𝑊,ℓ(𝑇1, 𝑇2) = 1.

Note that 𝐺(𝐸[ℓ]) is a central extension of 𝐸[ℓ] by 𝔾𝑚 so it corresponds to an element
in 𝐻2(𝐸[ℓ], 𝔾𝑚), the 2-cocycle 𝑆 above is a canonical representative of this element.

The cocycle condition is

(11) 𝑆(𝑇1, 𝑇2)𝑆(𝑇1 + 𝑇2, 𝑇3) = 𝑆(𝑇1, 𝑇2 + 𝑇3)𝑆(𝑇2, 𝑇3).

(17) Now since ̃𝑓 sends symmetric elements to symmetric elements, we get that 𝑠2 = ̃𝑓 ∘ 𝑠1,
hence

(12) 𝑆2(𝑓 (𝑇1), 𝑓 (𝑇2)) = ̃𝑓 ∘ 𝑆1(𝑇1, 𝑇2) = 𝑆1(𝑇1, 𝑇2)𝑁.

In particular, 𝑢, 𝑣 have to satisfy 𝑆2(𝑎𝑢𝑄1 +𝑏𝑣𝑄2, 𝑐𝑢𝑄1 +𝑑𝑣𝑄2) = 𝑆1(𝑎𝑃1 +𝑏𝑃2, 𝑐𝑃1 +
𝑑𝑃2)𝑁 for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ/ℓℤ.

By Equation (10) above, Equation (12) implies that 𝑒𝑊,ℓ(𝑓 (𝑇1), 𝑓 (𝑇2)) = 𝑒𝑊,ℓ(𝑇1, 𝑇2)𝑁.
A key difference is that unlike 𝑒𝑊,ℓ, 𝑆1 and 𝑆2 are not bilinear. So Equation (12) induces
some non trivial relations compared to just the ones coming from the Weil pairing.
(18) If 𝛼 is an 𝐴-endomorphism on 𝐸, and 𝐴∧ℓ = 1 for simplicity, it induces a morphism

̃𝛼 of the theta group 𝐺(𝐸[ℓ]). So the cocycle 𝑆 has to satisfy the compatibility conditions

(13) 𝑆(𝛼(𝑇1), 𝛼(𝑇2)) = ̃𝛼 ∘ 𝑆(𝑇1, 𝑇2) = 𝑆(𝑇1, 𝑇2)𝐴.

When𝛼 is the Frobenius𝜋𝑝,𝐴 = 𝑝, and it is easy to check that𝜋𝑝(𝑃, 𝑓𝑚,𝑃) = (𝜋(𝑃), 𝑓 𝑝
𝑚,𝑃)

if 𝑓𝑚,𝑃 is rational. More generally for a general 𝑃, write 𝜋𝑝 ∘ 𝑓𝑚,𝑃 = 𝑔𝑚,𝑃 ∘ 𝜋𝑝, then
𝜋𝑝(𝑃, 𝑓𝑚,𝑃) = (𝜋(𝑃), 𝑔𝑚,𝑃).

Taking 𝛼 = [𝑛], we get that 𝑆(𝑛𝑇1, 𝑛𝑇2) = 𝑆(𝑇1, 𝑇2)𝑛2. Taking 𝛼 = [ℓ], we get that
𝑆(𝑇1, 𝑇2)ℓ2 = 1, and taking 𝛼 = [1 + ℓ], we see that 𝑆(𝑇1, 𝑇2)1+ℓ2+2ℓ = 𝑆(𝑇1, 𝑇2), so
since ℓ is odd, 𝑆(𝑇1, 𝑇2)ℓ = 1.
(19) By taking 𝛼 = [−1], we also get 𝑆(−𝑇1, −𝑇2) = 𝑆(𝑇1, 𝑇2). So if 𝑓 satisfy Equa-
tion (12), then so does −𝑓, or more generally 𝛾𝑓 for any 𝛾 ∈ ℤ such that 𝛾2 = 1 mod ℓ.
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(20) Let us assume that ℓ is an odd prime (or a prime power), so that ±1 are the only two
square roots of 1. If 𝑢 is a solution for Equation (12), then so is −𝑢.

Heuristic: we expect that there are many ℓ for which there are only two possibilities ±𝑢
for 𝑢 which satisfy the compatible cocycle conditions from Equation (12) above.
(21) So if we take 𝑣 primes ℓ𝑖 satisfying the heuristic, we have 2𝑣 possibilities for the action,
so we cannot take 𝑣 too large. On the other hand we need ∏𝑣

𝑖=1 ℓ𝑖 > 𝑁 so if 𝑣 is small, the
primes ℓ𝑖 will be large. And our complexity is polynomial in ℓ𝑖.

We can hope for a subexponential attack by taking 𝑣 = 𝑂(√log𝑁), the primes ℓ𝑖 of size
𝐿(1/2) for an attack in 𝐿(1/2). If we manage to find a prime power ℓ = ℓ𝑒

0 with ℓ0 small and
𝐸𝑖[ℓ] living in a not too large extension it would be ideal.

It remains to justify our heuristic.
(22) Since we know that ̃𝑓 exists, we can always change 𝑄1, 𝑄2 so that 𝑢 = 𝑣 = 1.
In particular, we then have 𝑆2(𝑄1, 𝑄2) = 𝑆1(𝑃1, 𝑃2)𝑁. Note that since 𝑆1(𝑃1, 𝑃2) =
𝑆1(𝑃2, 𝑃1)𝑒ℓ(𝑃1, 𝑃2), at least one of 𝑆1(𝑃1, 𝑃2), 𝑆1(𝑃2, 𝑃1) is of order ℓ.

The question is then whether there can exist another 𝑢 (hence 𝑣), with 𝑢 ≠ ±1, such
that the compatibility conditions of Equation (12) are satisfied. A first condition is then that
𝑆2(𝑢𝑄1, 𝑣𝑄2) = 𝑆2(𝑄1, 𝑄2), or more generally that 𝑆2(𝑎𝑢𝑄1, 𝑏𝑣𝑄2) = 𝑆2(𝑎𝑄1, 𝑏𝑄2)
for all 𝑎, 𝑏. In particular, we want 𝑆2(𝑄1, 𝑢−2𝑐𝑄2)𝑢2 = 𝑆2(𝑄1, 𝑐𝑄2) for all 𝑐.

The points 𝑃1, 𝑄1, 𝑃2, 𝑄2 are eigenvectors for the orientation 𝛼, say of eigenvalue 𝜆1 ≠ 𝜆2.
We have 𝑆2(𝜆1𝑄1, 𝜆2𝑄2) = 𝑆2(𝑄1, 𝑄2)𝐴.

Using 𝛼 = 𝜋𝑝, 𝐴 = 𝑝, we have 𝑆2(𝑄1, 𝜆𝑄2)𝜆2
1 = 𝑆2(𝑄1, 𝑄2)𝑝 with 𝜆 = 𝜆2/𝜆1, and we

also have 𝜆1𝜆2 = 𝑝 mod ℓ. If 𝜆 is primitive modulo ℓ (argue that this happens often), we
have that there exists 𝑎 such that 𝜆𝑎 = 𝑢−2. Hence 𝑆2(𝑄1, 𝑢−2𝑄2)𝜆𝑎

1) = 𝑆2(𝑄1, 𝑄2)𝑝𝑎
, ie

𝑆2(𝑄1, 𝑢−2𝑄2)(𝜆1/𝑝)𝑎 = 𝑆2(𝑄1, 𝑄2). But 𝑢2 = (𝜆1/𝜆2)𝑎 ≠ (1/𝜆2)𝑎 unless 𝜆𝑎
1 = 1.

(23) Actual experiments: This fails, because a computation shows that the canonical
cocycle 𝑆 induced by the symmetric lift is given by the square root of the Weil pairing.

A.3. Lifting the DLP. What we can do is plug 𝑥 = −𝑃; we know 𝑚𝑥 = −𝑄 and obtain:

ℎℓ,𝑄(−𝑄) = (
𝛼𝑚(−2𝑃)
𝛼𝑚(−𝑃) )

ℓ
ℎℓ,𝑃(−𝑃)𝑚2.

Since 𝛼𝑚 = 𝜓𝑚 and 𝜓𝑎𝑏(𝑥) = 𝜓𝑎(𝑏𝑥)𝜓𝑏(𝑥)𝑎2 (if appropriately normalised at infinity), and
𝑚.𝑃 = (𝑥 − 𝜓𝑚−1𝜓𝑚+1/𝜓2

𝑚, 𝜓2𝑚/2𝜓4
𝑚) we decuce that

ℎ𝑙,𝑄(−𝑄) = (−2𝑦𝑄𝜓𝑚3(−𝑃)/𝜓2(−𝑃)𝑛2)
𝑙
ℎ𝑙,𝑃(−𝑃)𝑚2 = (−2𝑦𝑄)𝑙𝜓𝑚(−𝑃)3𝑙(ℎ𝑙,𝑃(−𝑃)/𝜓2(−𝑃)𝑙)𝑛2.

The unknown are 𝑚 and 𝜓𝑚(−𝑃)3𝑙. We obtain an equation in 𝜇3: 𝑈 = 𝑉𝑛2 , which provided
that 𝑉 ≠ 1 gives us 𝑛2 mod 3, hence if 𝑛 = 0, 𝑛 = ±1 mod 3.

Actual experiments: But this fails because 𝑉 = 1.
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Thesenotes are available at http://www.normalesup.org/~robert/pro/publications/notes/2023-06-optimising_
isogenies.pdf.
Most of the content (along with an efficient implementation [DMPR23b]!) is now available in

[DMPR23a], but some of the result of these notes were not incorporated in that article due to space
reason (beside they also deal with higher dimension than just two).

However, as explained in the introduction of these notes, most of their content are somewhat obsolete,
due to the more efficient formula I discovered while working on [DMPR23a], so I recommend looking
at [DMPR23a] for a much more streamlined presentation of the formulas.
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A note on optimising 2𝑛-isogenies in higher dimension

DAMIEN ROBERT

Abstract. We give various optimisations for the computations of 2𝑛-isogenies in higher
dimension. In particular, we explain how to compute 2𝑛-isogenies by pushing forward
𝑔 points (a basis of the kernel) rather than 2𝑔 points at each step. We detail the case of
𝑔 = 1 and 𝑔 = 2.
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A note on optimising 2𝑛-isogenies in higher dimension 3

1. Context

With the explosion of higher dimensional isogeny cryptography, a group of isogenies
enthusiasts have gathered around a Zulip chat (this includes Pierrick Dartois, Sabrina Kun-
zweiler, Luciano Maino, Giacomo Pope, …).

The goal was to first start with dimension 2 2𝑛-isogenies, with a focus on improving
Festa and the SIDH attacks, and to pave the way for the dimension 4 implementation of the
verification in SQISignHD.

The git repository https://github.com/GiacomoPope/Theta-Isogenies contains code
for 2𝑛-isogenies in dimension 2 via Richelot isogenies (+ splitting and gluing) in Mumford
coordinates, via Kummer coordinates (with formula due to Sabrina Kunzweiler), and via
theta coordinates (in level 2, hence also on the Kummer).

The goal was to optimize these three different models and compare them to each other.
These notes were written in June 2023 to describe both 2𝑛-isogenies algorithms in theta
coordinates and various optimisations (in any dimension) I had found compared to the
algorithm described in [DLRW23, Appendix C.2].

Strangely, theta functions have somewhat a reputation of being hard to work with and
slow (maybe because they can work in any dimension and any degree). Contrary to these
expectations, isogeny formula are actually pretty fast in theta coordinates, and most notably
for 2𝑛-isogenies in level 2: level 2 theta functions are precisely tailored so that the action by
translation of the 2-torsion (more precisely the theta group) gives extremely fast isogeny
images (see also the simplicity of the duplication formula Section 5). Notably a 2-isogeny
image in dimension 1 is even faster in theta coordinates than in Montgomery coordinates
(see Section 15).

Of course, operation count never beat actual profiling, which was the goal of our Sage
implementation (further comparison between the different dimension 2 models are out
of scope of these notes, but theta functions are indeed very fast! The current implementa-
tion gives a factor 9× for the computation of a 2602-isogeny chain, and images 17× faster,
compared to Richelot isogenies.)

Although image computation is naturally very fast in theta coordinates, the codomain
computation was originally a lot more involved. The original algorithm of [DLRW23, Ap-
pendix C.2]; involved a normalisation process involving 2𝑔 points of 8-torsion.

The original goal of these notes involved a faster normalisation process involving only
1 + 𝑔 points of 8-torsion, with some further optimisations like inlining what was needed for
the tripling formula used in the normalisation process. This is the version which was first
implemented in the git repository, by the people mentioned above.

Since then, I have found (in July 25) newer formula that completely bypass the normalisa-
tion process, see Section 17. These formula are both much simpler to implement1 and a lot
faster, they essentially boil down to 𝑔 images computations.

These makes most of these notes obsolete, notably Sections 7, 10, 11, 14 and 16. These
notes are still in their state of June 2023, except for this section and the newer Section 17,
written in August 2023.

The obsolete normalisation process described in these notes for 2-isogenies might still
have an interest to better explain the similar normalisation process using for higher degree
ℓ-isogenies. Indeed, for ℓ > 2 (and with theta functions of level 2) a normalisation process is
needed both for codomain computations but also for images computations.

1I recommend looking at the git history to compare the old formula with the newer ones
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One might wonder why this normalisation process is no longer needed for ℓ = 2 but
still needed for ℓ > 2. The answer is that with theta coordinates in level 2, the points of 2
torsion are already normalised with respect to each others, hence the normalisation process
was redundant. To have a similar process for ℓ = 3 (say), we would need to work with theta
functions of level 3 or 6. The normalisation process of the points of 3-torsion is essentially a
way to work in level 2 almost as if we were in level 6.

Apart from the results of Section 17, we give several formula in the dimension 1 case that
might be of interest in Section 15.

A word of warning: these are notes, not a research paper, and there are probably still a
lot of remaining typos in the formula. When in doubt look at the code itself, it should be
correct!

Update November 2023: we now have a paper [DMPR23a] detailing the formulas for a
dimension two 2𝑛-isogeny in the thetamodel.The code is also available [DMPR23b]. Pierrick
Dartois is working on a follow up paper for the adapation to dimension 4. We strongly
recommend reading this article rather than these notes, which as mentioned organically
grew as we went along and implemented the algorithm, so are not very readable!

2. Introduction

Computing isogenies in higher dimension has received considerable interest recently:
breaking SIDH, SQISignHD, Festa [CD23; MMPPW23; Rob23a; DLRW23; BMP23]. Al-
though algorithms in any dimensions are described in [LR12; CR15; LR15b; LR22a] in a
theta model of even level 𝑛, for simplicity only the case of an ℓ-isogeny with ℓ prime to 𝑛
is considered in these articles. For cryptographic applications, the most interesting case is
when ℓ = 2𝑢 and 𝑛 = 2, which does not satisfy these conditions. The general case of ℓ non
prime to 𝑛 case is briefly treated in [Rob10, Proposition 6.3.5; Rob21, Remarks 2.10.3, 2.10.7
and 2.10.14]. A particular difficulty when ℓ is even is that we need a symplectic basis of the
ℓ𝑛-torsion which is compatible with the symmetric level 𝑛 theta structure, a condition for
compatibility, due to David Lubicz, is described in [Rob21, Remark 2.10.7]. In an upcoming
article with David Lubicz, we will treat this general case in more detail, along with algorithms
to raise and descend the level (which are strongly linked to isogeny algorithms).

The purpose of these notes by contrary is to look only at speeding up the formula for the
computation of the specific case of 2𝑛-isogenies in level 2. As usual, this rely on splitting the
isogeny 𝜙 ∶ 𝐴 → 𝐵 into a product of 𝑛 2-isogenies 𝜙𝑖, and push forward points by the 𝜙𝑖, so
we reduce to 2-isogenies. Building on [Rob10, § 6, § 7; Rob21, § 2, § 4], an algorithm to do
so was presented in [DLRW23, Appendix C.2]; we will reuse the general notations of this
article. For our cryptographic application, our isogeny 𝜙 ∶ 𝐴 → 𝐵 has for domain 𝐴 = ∏ 𝐸𝑖
a product of elliptic curves. This also simplifies various steps of the algorithm, notably the
initialisation of the algorithm. Also, the compatibility conditions alluded to above is easy to
verify in dimension 1 (see Lemma 8.3), and can be propagated through the product theta
structure. This allows to essentially bypass it entirely in what follows.

Given 𝐾 = ⟨𝑇1, … , 𝑇𝑔⟩ an isotropic kernel of 𝐴, the standard method to split the isogeny
into 2-isogenies is to first compute a basis of 𝐾[2] via doubling formula, compute the isogeny
𝜙1 ∶ 𝐴 → 𝐴1 = 𝐴/𝐾[2], push the points 𝑇𝑖 via 𝜙1, compute a basis of 𝑓 (𝐾)[2] via a
combination of doubling and pushing points via 𝜙1 (the optimal strategy depends on the
relative cost of doubling and pushing points, given these costs an algorithm is described in
[DJP14, § 4.2.2]).

We assume that we are given a theta null point of level 2 on 𝐴 and that 𝐾 is compatible
with this theta null point (see Section 9). Given the theta null point of the isogeneous abelian
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variety 𝐴1 = 𝐴/𝐾[2], the theta model has particularly nice formula to compute the image
by a point (see Section 5); this cost 2𝑔𝑆 + (2𝑔 − 1)𝑀 assuming the theta constants of 𝐴1
are normalised so that 𝜃𝐴1

0 (0) = 1 and the inverse 1/𝜃𝐴1
𝑖 (0) have been computed. Also it is

possible to recover the squares 𝜃𝐴1
𝑖 (0)2 in only 2𝑔𝑆. Given the simplicity of these formula,

doubling and differential addition on 𝐴 are computed by going through the 2-isogeny to 𝐴1
(see Section 6). In particular, doubling essentially cost 2 isogeny evaluations. Furthermore, for

the arithmetic on 𝐴, the squares 𝜃𝐴1
𝑖

2
(0) are enough. However, for computing a 2𝑛-isogeny

as a chain of 2-isogenies, we actually need the correct square roots 𝜃𝐴1
𝑖 (0).

A big part of this article is to optimize the formula to obtain these correct square roots.
Let us explain the main idea, using 𝑔 = 2 as an exemple. We have the theta null point
(𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑), and we can easily compute the squares of the dual coordinates of the isogenous
theta null point (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷) via (𝐴2 ∶ 𝐵2 ∶ 𝐶2 ∶ 𝐷2) = 𝐻 ∘ 𝑆(𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑) =
𝐻(𝑎2 ∶ 𝑏2 ∶ 𝑐2 ∶ 𝑑2) where 𝐻 is the Hadamard transform and 𝑆 is the squaring operation, ie
𝐴2 = 𝑎2+𝑏2+𝑐2+𝑑2, 𝐵2 = 𝑎2−𝑏2+𝑐2−𝑑2, 𝐶2 = 𝑎2+𝑏2−𝑐2−𝑑2, 𝐷2 = 𝑎2−𝑏2−𝑐2+𝑑2.
If we have suitable points of 4-torsion 𝑇1, 𝑇2, then (𝐴𝐵 ∶ 𝐶𝐷 ∶ 𝐴𝐵 ∶ 𝐶𝐷) = 𝐻 ∘ 𝑆(𝑇1),
(𝐴𝐶 ∶ 𝐵𝐷 ∶ 𝐴𝐶 ∶ 𝐵𝐷) = 𝐻 ∘ 𝑆(𝑇2), (𝐴𝐷 ∶ 𝐵𝐶 ∶ 𝐵𝐶 ∶ 𝐴𝐷) = 𝐻 ∘ 𝑆(𝑇1 + 𝑇2). This is not
enough to recover (𝐴, 𝐵, 𝐶, 𝐷) because we are dealing with projective coordinates. What we
really need is to recover (𝐴𝐵, 𝐶𝐷, 𝐴𝐵, 𝐶𝐷) exactly. This can be done via a normalisation
procedure. In other words, computing the isogenous theta constant can be done from the
coordinates on some points of 4-torsion and a suitable normalisation procedure. This is not
specific to the case ℓ = 2, as mentioned above the general case of ℓ prime to 𝑛 is [LR12;
CR15; LR15b; LR22a] and the relatively straightforward adaptation (assuming that we are
given compatible points of 4-torsion) to all cases is in [Rob10, Proposition 6.3.5; Rob21,
Remarks 2.10.3, 2.10.7 and 2.10.14], and a more detailed algorithm for ℓ = 𝑛 = 2 given in
[DLRW23, Appendix C.2].

The normalisation procedure exploit the (algebraic) Riemann relations, as constructed by
Mumford in [Mum66] (see also [Rob10, Théorème 4.4.6]). These Riemann relations follow
from the duplication formula, whose algebraic version was proved by Mumford in [Mum66]
(see also [Rob10, Théorème 4.4.3]). The duplication formula is particularly well suited for
the algorithmic of 2-isogenies, and in these notes we will exploit it as much as possible in
order to speed up the generic algorithm working for any ℓ.

We describe two optimisations compared to [DLRW23, Appendix C.2].

(1) To compute the correct square roots, the equations in [DLRW23, § C.2] (derived
from the duplication formula, see [Rob10, § 4.3]) require 2𝑔 4-torsion points in
𝐾[4] (suitably normalised from our 8-torsion points), including the theta null point.
This means that when we decompose 𝜙, we need to push along 2𝑔-points at each
step (or more precisely compute the isogenous theta null point and then push 2𝑔 − 1
points). In this note we give a new algorithm that only require the 𝑔 generators of
𝐾[4] along with the theta null point. So once we have computed the isogenous theta
null point, we only require to push 𝑔 points for the next step. The total gain is almost
(2𝑔 − 1)/𝑔: while there is no difference for 𝑔 = 1, for 𝑔 = 2 we go from needing to
keep track of 3 (non null) points to only 2, and for 𝑔 = 4 from 15 points to only 4.

(2) Still to compute the correct square roots, a normalisation procedure is applied
in [DLRW23, § C.2] (described in more details in [Rob10, § 6.3, § 7.4]) to some
points of 8-torsion in 𝐾[8]. This normalisation procedure amount to choosing some
“correct” choice of affine lift; and it is repeated for each 2-isogeny 𝜙𝑖: for 𝜙2 we
will normalise points of 8-torsion in 𝜙1(𝐾)[8] and so on. Instead, we propose to
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normalize once and for all the 𝑔 generators 𝑇𝑖 of 𝐾. Essentially this amount, once
an affine lift of the theta null point of 𝐴 is chosen, to choose consistent lifts of the 𝑇𝑖
with respect to this lift. This means that from now on, all our algorithm have to work
on affine lifts. Luckily all our algorithms are derived from the Riemann relations and
duplication formula which naturally preserve this compatibility, so the compatibility
is already “baked-in”. Note that if compatible lifts 0̃𝐴, 𝑇𝑖 are chosen, then the lifts
𝜆 ⋆ 0̃𝐴, ⋆𝑇𝑖 are still compatible as long as 𝜆 does not depend on 𝑖. This allows for
some optimisation: for instance it is harmless to choose a different normalisation
of the theta null point of 𝐴1, as long as this different normalisation is taken into
account when pushing points.

The main advantage of normalising generators of 𝐾 at the start is that when 𝐴 is a
product of elliptic curves, the normalisation procedure can be done in dimension 1.

Points on an abelian variety in the theta model are represented by projective points, but
as explained above, at various points in the isogeny computations we need to work with
affine lifts. All our algorithms will be on affine lifts by default; the projective version follows
trivially.

3. The two torsion on a level 2 theta structure

Let (𝐴, ℒ, Θ𝐴) be a principally polarised abelian variety with a symmetric theta structure
of level 2. Let 0𝐴 = (𝑎𝑖)𝑖∈𝑍(2) be the theta null point.

The translation map by points of two torsion is defined as follows: the two torsion is
isomorphic to 𝑍(2)× �̂�(2), with 𝑍(2) = ℤ𝑔/2ℤ𝑔, and �̂�(2) its dual. If 𝑃 = (𝑥𝑖) is an affine
lift of a point on 𝐴, and 𝑇 the two torsion point corresponding to (𝑗, 𝜒), 𝑃 + 𝑇 = (𝜒(𝑖)𝑥𝑖+𝑗).

Applying this to the theta null point, we recover the theta coordinates of the points of
2-torsion. Fixing the canonical basis (𝑒1, … , 𝑒𝑔) of 𝑍(2), and letting 𝑓𝑖 be the dual character
of 𝑒𝑖, via our identification above the basis (𝑒𝑖, 𝑓𝑖) is the canonical symplectic basis of the
2-torsion induced by theta theta structure.

Example 3.1. When 𝑔 = 1, the theta null point is given by (𝑎, 𝑏) = (𝑎0, 𝑎1). We have
𝑒1 = (𝑏, 𝑎), 𝑓1 = (−𝑎, 𝑏). Dimension 1 is special in that we also have an explicit description
of points of 4-torsion: 𝑒′

1 = (1 ∶ 1) is the canonical point of 4-torsion above 𝑒1 (the other
one is 𝑒′

1 + 𝑓1 = (−1 ∶ 1)), and 𝑓 ′
1 = (1 ∶ 0) the canonical point of 4-torsion above 𝑓1 (the

other one is 𝑓 ′
1 + 𝑒1 = (0 ∶ 1)).

Example 3.2. When 𝑔 = 2, the theta null point is given by (𝑎00, 𝑎01, 𝑎10, 𝑎11). We have 𝑒1 =
(𝑎01, 𝑎00, 𝑎11, 𝑎10), 𝑒2 = (𝑎10, 𝑎00, 𝑎11, 𝑎01) and 𝑒1+𝑒2 = (𝑎11, 𝑎10, 𝑎01, 𝑎00). We have 𝑓1 =
(𝑎00, −𝑎01, 𝑎10, −𝑎11), 𝑓2 = (𝑎00, 𝑎01, −𝑎10, −𝑎11) and 𝑓1 + 𝑓2 = (𝑎00, −𝑎01, −𝑎10, 𝑎11).

4. The Hadamard transform

Let 𝐻 be the Hadamard matrix, given by 𝐻𝑖,𝜒 = 𝜒(𝑖). The action of 𝐻 corresponds to the

action of the modular matrix 𝒮 = ( 0 1
−1 0); in particular this transpose the 𝑒𝑖 with the 𝑓𝑖.

Starting with the theta coordinate 𝜃𝑖, the coordinates 𝜃′
𝜒 resulting from the action of 𝐻

are called the dual theta coordinates.

Example 4.1. When 𝑔 = 1, 𝐻(𝑥, 𝑧) = (𝑥 + 𝑧, 𝑥 − 𝑧).

One needs to be careful that 𝐻 ∘𝐻 = 2𝑔 Id. This is not a problem in projective coordinate,
but in affine coordinate we need to use 𝐻−1 = 𝐻/2𝑔.

87



A note on optimising 2𝑛-isogenies in higher dimension 7

5. The duplication formula

Let 𝐾 = ⟨𝑓1, … , 𝑓𝑔⟩ and 𝑓 ∶ 𝐴 → 𝐵 = 𝐴/𝐾 the quotient. There are several ways to
descend ℒ2 to a principal polarisation ℳ on 𝐵, but they all give the same totally symmetric
line bundle ℳ2 which is also the descent of ℒ4 by the unique symmetric lift of 𝐾 in the theta
group 𝐺(ℒ4) which extends to a totally isotropic subgroup. Fix a compatible symmetric
theta structure of level 2 on 𝐵.

Define the operation ⋆ by (𝑥𝑖)⋆(𝑦𝑖) = (𝑥𝑖𝑦𝑖). As a special case of the duplication formula,
we have:

𝜃𝐴(𝑃 + 𝑄) ⋆ 𝜃𝐴(𝑃 − 𝑄) = 𝐻(𝜃′,𝐵(𝑓 (𝑃)) ⋆ 𝜃′,𝐵(𝑓 (𝑄)))(1)

𝐻(𝜃𝐴( ̃𝑓 (𝑅)) ⋆ 𝜃𝐴( ̃𝑓 (𝑆))) = 𝜃′,𝐵(𝑅 + 𝑆) ⋆ 𝜃′,𝐵(𝑅 − 𝑆)(2)

This is the key for all our formula. First, using 𝑄 = 0, we can compute the image of a
point by 𝑓 via the operations

(3) 𝑃 = (𝜃𝑖(𝑃)) 𝑆−→ (𝜃2
𝑖 (𝑃)) 𝐻−−→ (𝜃

′,𝐵
𝜒 (𝑓 (𝑃))𝜃

′,𝐵
𝜒 (0))

𝐶1−−→ 𝜃
′
𝐵
𝜒(𝑓 (𝑃)) 𝐻−−→ 𝜃𝐵

𝑖 (𝑓 (𝑃))

(Note: here and in what follows, we are probably off by some factor 2𝑔 here; as long as this
factor is uniform across all points this is ok. Also here 𝑆 is the squaring map, not the modular
matrix 𝒮 from before).

Here the constants 𝐶1 are given by (1/𝜃
′,𝐵
𝜒 (0)), the inverse of the dual theta coordinates

of the theta null point on 𝐵. It is easy to compute their squares: 𝜃
′,𝐵
𝜒 (0)2 = 𝐻(𝜃𝐴

𝑖 (0)2).
The remainder of this paper is devoted to compute the correct square roots of these squares.

Note that compared to [DLRW23, Appendix C.2] we consider the isogeny with kernel ⟨𝑓𝑖⟩
instead of the one with kernel ⟨𝑒𝑖⟩. (We made a different choice in [DLRW23, Appendix C.2]
because we used the analytic formalism, where the above choice was slightly more natural.
In the algebraic formalism, it is slightly more natural to use our choice here. This does not
matter much, because via 𝐻 we can go from the coordinates to the dual coordinates. That’s
why our formula differ from [DLRW23, Appendix C.2] by the conjugation by 𝐻.)

6. Differential additions

We can also compute differential additions on 𝐴 this way. First we compute 𝑓 (𝑃) and
𝑓 (𝑄) using the differential addition formula as above, ie using them on the couple (𝑃, 0) and
(𝑄, 0). Then we use them again (in the other direction) to recover 𝜃𝐴

𝑖 (𝑃 + 𝑄)𝜃𝐴
𝑖 (𝑃 − 𝑄)

from (𝑓 (𝑃), 𝑓 (𝑄)).
We actually don’t need the 𝜃

′,𝐵
𝜒 (0), only their square, the trick is to start with 𝑃 and only

do the map 𝐻 ∘𝑆 to get (𝜃
′,𝐵
𝜒 (𝑓 (𝑃))𝜃

′,𝐵
𝜒 (0)), same with 𝑄. Then we apply the ⋆ operation on

these coordinates to get (𝜃
′,𝐵
𝜒 (𝑓 (𝑃))(𝜃

′,𝐵
𝜒 (𝑓 (𝑄))𝜃

′,𝐵
𝜒 (0)2), and now we can use 𝐶2

1 to clear
the extra factor (𝜃

′,𝐵
𝜒 (0)2). Using 𝑄 = 𝑃 we get the doubling map.

From the doubling and differential addition map, we can use the Montgomery ladder to
compute the scalar multiplication on affine coordinates.

Example 6.1. When 𝑔 = 1, 𝑃 = (𝑥 ∶ 𝑧), we compute 𝑓 (𝑃) = (𝑟 ∶ 𝑠) by doing (𝑥 ∶ 𝑧) 𝑆−→
(𝑥2 ∶ 𝑧2) 𝐻−−→ (𝑥2 + 𝑧2 ∶ 𝑥2 − 𝑧2) 𝐶−−→ ((𝑥2 + 𝑧2)/𝐴 ∶ (𝑥2 − 𝑧2)/𝐵). We can compute
𝑓 (𝑄) = (𝑢 ∶ 𝑣) in a similar way. Then 𝐻((𝑃 + 𝑄) ⋆ (𝑃 − 𝑄)) = 𝐻(𝑓 (𝑃)) ⋆ 𝐻(𝑓 (𝑄)),
so we compute ((𝑟 + 𝑠)(𝑢 + 𝑣) ∶ (𝑟 − 𝑠)(𝑢 − 𝑣)) (at this step we only need (𝐴2 ∶ 𝐵2)
which can be computed via (𝐴2 ∶ 𝐵2) = (𝑎2 + 𝑏2 ∶ 𝑎2 − 𝑏2)) and apply 𝐻 to it to recover
(𝑥(𝑃 + 𝑄)𝑥(𝑃 − 𝑄) ∶ 𝑧(𝑃 + 𝑄)𝑧(𝑃 − 𝑄)).
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We also recover exactly Gaudry’s addition formula for 𝑔 = 2.

The doubling and differential addition algorithm assume that we are in the generic case
and that none of the coordinates are zero. The general case is treated in [LR16], another
solution is to apply any linear change of variable coming from the symplectic modular action
(e.g., the action of 𝐻), we refer to Appendix B for the algebraic description of this action.

7. Normalising points

In [DLRW23, Appendix C] we explain how to use points of 4-torsion to compute the
correct choice of 𝜃

′,𝐵
𝜒 (0). A key step is a normalisation procedure, and we actually need the

points of 8-torsion to correctly normalize our points of 4-torsion (see also [Rob10; Rob21;
LR22a]).

Lemma 7.1. Let �̃� be an affine point. Then 𝑚(𝜆 ⋆ �̃�) = 𝜆𝑚2 ⋆ (𝑚�̃�).

Let 𝑇 be a 2-torsion point in our kernel 𝐾 = ⟨𝑓1, … , 𝑓𝑔⟩. Let 𝑇" be a point of 4𝑚-torsion
above 𝑇, ie 𝑇 = 𝑚𝑇". Write 2𝑚 = 2𝑚1 + 2. We have (𝑚1 + 2)𝑇" = −(𝑚1𝑇") + 𝑇.

Definition 7.2. Fix an affine lift 𝑇" of 𝑇". We say that 𝑇" is normalised if (𝑚1 + 2)𝑇" =
−(𝑚1𝑇") + 𝑇, where the action of translation by 𝑇 is the affine one described in Section 3.

Lemma 7.3. Fix an arbitrary affine lift 𝑇". By computing (𝑚1 + 2)𝑇" and (𝑚1)𝑇", we can
find an equation 𝜆4𝑚 = 𝐶 such that for any solution 𝜆, 𝜆 ⋆ 𝑇" is normalised.

Proof. Follows from Lemma 7.1. �

Example 7.4. Assume 𝑇" is a point of 2𝑛-torsion above 𝑇. Applying the normalisation
procedure of Lemma 7.3 to an arbitrary lift 𝑇", we get that 𝜆 ⋆ 𝑇" is normalised for 𝜆
satisfying some equation 𝜆2𝑛 = 𝐶. Then 2𝑛−2(𝜆 ⋆ 𝑇") = 𝜆22𝑛−4 ⋆ (2𝑛−2𝑇") by Lemma 7.1.

It follows that if 𝑛 ≥ 4, the point 𝑇" uniquely determines an affine lift 𝑇′ of the point of
4-torsion 𝑇′ = 2𝑛−2𝑇" above 𝑇. If 𝑛 = 3, 𝑇′ is uniquely determined up to a sign. Since the
isogeny formula starts by the square operator 𝑆, this sign won’t matter, so 𝑛 = 3 is enough to
normalize our points of 4-torsion.

Example 7.5. Let us start with 𝑇′ = (1 ∶ 0), the canonical point of 4-torsion above
𝑇 = (𝑎 ∶ −𝑏) in dimension 1. We take the lift 𝑇′ = (1, 0). We compute 2𝑇′ = ( 𝑎

𝐴2𝐵2 , −𝑏
𝐴2𝐵2 ).

The correct normalisation is thus 𝜆 ⋆ 𝑇′ = (𝜆, 0) with 𝜆4 = 𝐴2𝐵2.

8. The choice of the theta constant for a 2-isogeny

When we apply Equation (3) to compute the image of a point by our isogeny, we have
fixed the kernel of our 2-isogeny 𝑓 to be 𝐾 = ⟨𝑓1, … , 𝑓𝑔⟩.

If we start with another kernel, we need to apply an automorphism of the theta structure
so that 𝐾 corresponds to the ⟨𝑓1, … , 𝑓𝑔⟩ of the new theta null point; for instance if 𝐾 =
⟨𝑒1, … , 𝑒𝑔⟩ the automorphism is the one given by the Hadamard transform.

A general procedure is as follow. First recall that the theta null point is induced by a sym-
plectic basis of the 4-torsion. Fix such a basis (𝑒′

1, … , 𝑒′
𝑔, 𝑓 ′

1, … , 𝑓 ′
𝑔) inducing our theta null

point. Let (𝑇1, … , 𝑇𝑔) be a basis of 𝐾, choose any isotropic basis (𝑇′
1, … , 𝑇′

𝑔) of 4-torsion
point above the 𝑇𝑖, and complete the 𝑇′

𝑖 via a symplectic basis (𝑆′
1, … , 𝑆′

𝑔, 𝑇′
1, … , 𝑇′

𝑔). Com-
pute the symplectic base change ofmatrix from (𝑒′

1, … , 𝑒′
𝑔, 𝑓 ′

1, … , 𝑓 ′
𝑔) to (𝑆′

1, … , 𝑆′
𝑔, 𝑇′

1, … , 𝑇′
𝑔),

one can use the Weil pairing (an algorithm in theta coordinate is given in [LR10; LR15a;
Rob21]) to compute this matrix 𝑀. Then apply the theta transformation formula for 𝑀.
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It remains to explain how to fix (𝑒′
1, … , 𝑓 ′

𝑔). As explained in the introduction, the general
case will be treated in an upcoming article with David Lubicz. For our applications, we will
use that 𝐴 is a product of elliptic curve, so we only need to deal with 𝑔 = 1 and use the fact
that the product theta structure behaves as expected with respect to the symplectic basis:

Lemma 8.1. If 0𝐴 is induced by a basis (𝑒′
1, … , 𝑒′

𝑔1
, 𝑓 ′

1, … , 𝑓 ′
𝑔1

) on 𝐴 and 0𝐵 is induced by a
basis (𝑚′

1, … , 𝑚′
𝑔2

, 𝑛′
1, … , 𝑛′

𝑔2
) on 𝐵, then the theta null point (𝜃𝐴

𝑖 (0)𝜃𝐵
𝑗 (0)) of the product

theta structure is induced by the symplectic basis ((𝑒′
𝑖, 0), … (0, 𝑚′

𝑗), … (𝑓 ′
𝑖 , 0), … (0, 𝑛′

𝑗)) on
𝐴 × 𝐵.

We are thus reduced to give a compatible symplectic basis of the four torsion in dimen-
sion 1. This case is easy because on the theta model of level 2 we always have the full 4-torsion
(on the Kummer) when 𝑔 = 1 (this is specific to the dimension 1 case).

Lemma 8.2. On a theta model in dimension 1, a symplectic basis of 𝐸[4] is given by 𝑇′
1 =

(1 ∶ 1), 𝑇′
2 = (1 ∶ 0).

Proof. Let (𝑎 ∶ 𝑏) be the theta null point. Above 𝑇1 = (𝑏 ∶ 𝑎) we have two points of 4-torsion
(on the Kummer): (1 ∶ 1) and (−1 ∶ 1). Only one of the two is compatible with the theta
structure. To determine which we use an idea due to David Lubicz: from a compatible four
torsion point 𝑇′ = (𝑢 ∶ 𝑣) we can compute a level 4 isogenous theta null point (𝑎, 𝜆𝑢, 𝑏, 𝜆𝑣),
for λ an appropriate normalisation factor (see [Rob10; Rob21]). This level 4 theta null point
has to be symmetric, which implies 𝜆𝑢 = 𝜆𝑣. So we have 𝑇′

1 = (1 ∶ 1).
Above 𝑇2 = (−𝑎 ∶ 𝑏) we have two points of 4-torsion: (1 ∶ 0) and (0 ∶ 1). The Hadamard

transform of the first one is (1 ∶ 1) while for the second one we get (1 ∶ −1), so the correct
compatible point is 𝑇′

2 = (1 ∶ 0). �

We can use the lemma above to convert a basis of 4-torsion (𝑇′
1, 𝑇′

2) in a Montgomery
model to a theta null point induced by this basis.

Lemma 8.3. Let 𝐸 be a Montgomery curve. Let 𝑇′
1 = (1 ∶ 1) be the canonical point of

4-torsion on the Kummer line in the Montgomery model. Let 𝑇′
2 = (𝑟 ∶ 𝑠) be another point

of 4-torsion (with 2𝑇′
2 ≠ 2𝑇′

1). Then the theta null point associated to the basis (𝑇′
1, 𝑇′

2) is
(𝑎 ∶ 𝑏) = 𝐻(𝑇′

2) = (𝑟 + 𝑠, 𝑟 − 𝑠).
Proof. This follows by looking at the ramification of the Kummer map 𝐸 → 𝐸/ ± 1 on our
different models, see [BRS23]. �

We can use the above lemma on an arbitrary curve 𝐸 with two explicit points 𝑇′
1, 𝑇′

2 of
4-torsion (with 2𝑇′

1 ≠ 2𝑇′
2) by first converting 𝐸 toMontgomery formwith 𝑇′

1 sent to (1 ∶ 1)
and 𝑇1 to (0 ∶ 1). This map is given by the homography 𝑥 ↦ (𝑥 − 𝑥0)/𝛽 with 𝑥0 = 𝑥(2𝑇′

1)
and 𝛽 = 𝑥(𝑇′

1) − 𝑥0. See Appendix A for more details on converting to theta coordinates.

Example 8.4 (Dimension 2). If we have two elliptic curves 𝐸1, 𝐸2 given by the theta constants
(𝑎1 ∶ 𝑏1), (𝑎2 ∶ 𝑏2), then the theta constant on 𝐸1 × 𝐸2 is (𝑎1𝑎2 ∶ 𝑎1𝑏2 ∶ 𝑎2𝑏1 ∶ 𝑏1𝑏2). And
if 𝑃1 = (𝑥1 ∶ 𝑧1) ∈ 𝐸1, 𝑃2 = (𝑥2 ∶ 𝑧2) ∈ 𝐸2, (𝑃1, 𝑃2) = (𝑥1𝑥2 ∶ 𝑥1𝑧2 ∶ 𝑥2𝑧1 ∶ 𝑧1𝑧2) ∈
𝐸1 × 𝐸2.

Remark 8.5. We briefly explain how the general case would work.
Let 𝑇′

𝑖 be a point of 4-torsion above 𝑇𝑖 ∈ 𝐾2. Then we have 𝑇′
𝑖 + 𝑇𝑖 = −𝑇′

𝑖 , hence in
level 2, since we are on the Kummer, (𝜃𝑗(𝑇′

𝑖 + 𝑇𝑖)) = (𝜃𝑗(𝑇′
𝑖)) in projective coordinates.

From the action of 𝑇𝑖 described in Section 3, we get that either 𝜃𝑗(𝑇′
𝑖) = 0 for all 𝑗 such that

𝜒𝑖(𝑗) = 1 or 𝜃𝑗(𝑇′
𝑖) = 0 for all 𝑗 such that 𝜒𝑖(𝑗) = 0. The compatibility conditions holds if

we are in the first case for all 𝑖 (this follows by a counting argument).

90



10 DAMIEN ROBERT

For instance, when 𝑔 = 2, we should have 𝑇′
1 = (𝑥 ∶ 0 ∶ 𝑧 ∶ 0) and 𝑇′

2 = (𝑢 ∶ 𝑣 ∶ 0 ∶ 0).
If 𝑇′

1 = (0 ∶ 𝑥 ∶ 0 ∶ 𝑧) or 𝑇′
2 = (0 ∶ 0 ∶ 𝑢 ∶ 𝑣) then these points are not compatible. This

criteria can be used to check if our symplectic base change was correct.
Another difficulty in the general case, is that the 4-torsion is not immediately accessible

(unlike the case for a product of elliptic curve). Sowewould first need to compute a symplectic
basis (𝑒′

𝑖, 𝑓 ′
𝑖 ) of the 4-torsion above the one (𝑒𝑖, 𝑓𝑖) of the 2 torsion compatible with our

current theta null point to apply the above strategy. In dimension 2 a method is described in
Section 16.6, but this involves square roots.

We suggest the following alternative strategy: work only with the 2-torsion, and compute
the symplectic base change matrix 𝑀 ∈ Sp2𝑔(ℤ/2ℤ). It is easy to express our 2-torsion
points 𝑇𝑖 in terms of the 𝑒𝑖, 𝑓𝑖: essentially the Weil pairing is trivial to compute in level 2
(namely check the translation which match the coordinates up to a sign, and then look at
the signs). Lift 𝑀 to an arbitrary matrix 𝑀 ∈ Sp2𝑔(ℤ/4ℤ). While the points 𝑀.𝑇𝑖 will be
correct by construction, the points 𝑀.𝑇′

𝑖 probably won’t be correct: the zeros will not be in
the right position. But we can correct this via the action of Γ(2, 4)/ Sp2𝑔(ℤ/2ℤ), essentially
this acts like the translation of the 2-torsion so the correction is easy.

9. The choice of theta constants for a 2𝑛-isogeny

Let 𝐾 be an isotropic 2𝑛-kernel of rank 𝑔 on 𝐴. We want to first compute the quotient
𝑓 ∶ 𝐴 → 𝐵 = 𝐴/𝐾[2], and then compute 𝑓 (𝐾) in 𝐵, and recurse our formula.

First, our kernel 𝐾[2] has to be compatible with our chosen theta null point on 𝐴, as
explained in Section 8. Then as explained in Section 5, it is easy to recover the squares of the
dual theta coordinates of 𝐵.

While we can prove that any choice of square roots of these coordinates correspond to an
honest (dual) theta null point on 𝐵 when 𝑔 ≤ 2, this is no longer the case in higher dimension,
once we have fixed some square roots the other ones have to satisfy some compatibility
condition.

Most importantly, our choice of theta constant on 𝐵 determines the next 2-isogeny. But
we want to compute the isogeny with kernel 𝐾, so our next isogeny has to be 𝑓 (𝐾[4])! So we
do not want arbitrary (compatible) square roots anyway, but the ones which correspond to
𝑓 (𝐾[4]).

There is one remaining subtlety. Our theta constant on 𝐴 determines a bit more than the
symplectic basis of 2-torsion (hence the kernel of the first 2-isogeny). It is enough to fix a
symplectic basis of the 4-torsion (and several such basis will determine the same theta null
point). This means that we also require some compatibility between our kernel 𝐾 and our
theta null point on 𝐴: let (𝑓 ′

1, … , 𝑓 ′
𝑔) be a basis of 𝐾[4] with 𝑓𝑖 = 2𝑓 ′

𝑖 . Our first compatibility
condition was that 𝑓𝑖 is the canonical point of 2-torsion induced by our theta structure as
described in Section 3, ie 𝐾[2] and our theta null point are compatible. We require further-
more that our theta null point is induced by some symplectic basis (𝑒′

1, … , 𝑒′
𝑔, 𝑓 ′

1, … , 𝑓 ′
𝑔), in

which case we say that 𝐾[4] and our theta null point are compatible.
But now for our choice of sign for the theta null point of 𝐵, we want this theta null point to

be compatible with 𝑓 (𝐾)[4]. Since 𝑓 (𝐾)[4] = 𝑓 (𝐾[8]), we will also need to use the points
of 8-torsion in the kernel to fix our sign choice.

Given 𝐾[8], it is possible to use these points of 8-torsion to normalize the points of
4-torsion up to factors 𝜆2 = 𝐶 as explained in Section 7. Since the choice of signs for the
dual theta null point of 𝐵 depends only on the square of the theta coordinates of these points
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of 4-torsion (see [DLRW23, Equation (6) and (8)] or the duplication formula in [Rob10,
Théorème 4.4.3]) this is enough to completely determine the theta null point of 𝐵.

A problem remains at the last 2 steps of the isogeny chain, when we only have access to
4-torsion points (resp. 2-torsion points) in 𝐾. It is possible to show that when the 2-torsion
on 𝐵 is not fixed by 𝐾[4], there are 𝑔(𝑔 + 1)/2 possible choice of signs for the dual theta
null point of 𝐵. This follows by looking at the possible automorphisms of the theta structure
as in [Rob10, § 6.3]. If we have 𝐾[4] but not 𝐾[8], we only have 𝑔 possible choice of signs:
the isotropic part 𝑓 (𝐾[4]) of the 2-torsion on 𝐵 is fixed but we can change the symmetric
lifts above them. These sign can be determined as follow: take 𝑇′

1, … , 𝑇′
𝑔 a basis of 𝐾[4]

and normalize these points, we obtain equations 𝜆4
𝑖 = 𝐶𝑖. The points 𝑇′

𝑖 + 𝑇′
𝑗 can then be

normalised up to some equation 𝜆2
𝑖𝑗 = 𝐶𝑖𝑗, and from these all other points can be computed

from extended Riemann relations, notably the three way additions. Since the theta null
point on 𝐵 only depend on the squares of the theta coordinates of the normalised points of
4-torsion, we obtain our 𝑔-choice of sign corresponding to the choices of 𝜆2

𝑖 = ±√𝐶𝑖.
There are many reason to want more control on these last two steps. Typically for crypto-

graphic applications, the codomain 𝐵 of 𝜙 is also a product of elliptic curves, and we want
to map back to these curves. This is easy to do if the theta null point 𝜃𝑖(0𝐵) comes from a
product theta structure, but there is no reason for this to be the case. One would then need to
take an automorphism of the theta structure which brings it to a product theta structure. Also
it is often the case that the isogeny 𝜙 ∶ 𝐴 → 𝐵 is split as an isogeny 𝜙1 ∶ 𝐴 → 𝐶 and a dual
isogeny 𝜙2 ∶ 𝐵 → 𝐶. One then need to glue together the theta null point computed on 𝐶 from
𝜙1 and 𝜙2, they have no reason to be induced by the same theta structure, hence be the same.
Again they will differ by some automorphism of the theta structure. As carefully explained in
[DLRW23, § C.1], by keeping track of a bit more torsion it is possible to compute in advance
the correct automorphism of the theta structure that we need in these computation. This
means that our algorithm will start with 𝐾′ an isotropic kernel of rank 𝑔 of 𝐴[2𝑛+2], and we
compute the quotient 𝐵 = 𝐴/𝐾 where 𝐾 = 𝐾′[2𝑛] and the theta null point on 𝐵 is the one
induced by the theta null point on 𝐴 along with our choice of 𝐾′ (half the information given
by the theta null point on 𝐴 is killed by our isogeny 𝜙, and 𝐾′ allows precisely to uniquely
recover this missing information).

10. Normalising the points for a 2𝑛-isogeny

From now on we suppose that we have 𝐾′ a maximal isotropic subgroup of rank 𝑔 of
𝐴[2𝑛+2], 𝑇′

1, … , 𝑇′
𝑔 generators of 𝐾′, and we want to compute the isogeny 𝐾 = 𝐾′[2𝑛] with

generators 𝑇𝑖 = 4𝑇′
𝑖 . As explained in the introduction, we will normalise once and for all

the 𝑇′
𝑖 . The computations in Section 7 show that it is enough to completely normalise the

points of 4-torsion in each 𝐾𝑖 (up to a sign at the very last step when computing 𝜙𝑛, but as
always this sign does not matter because we only need the squares of these coordinates). So
each 𝑇𝑖 will give an equation 𝜆2𝑛+2

𝑖 = 𝐶𝑖, and we keep track of these normalisation factors
at each step of our algorithm. Once again, from Section 7 we know that we will only need
the values of the 𝐶𝑖 and we never need to know the 𝜆𝑖.

This global normalisation of 𝐾′ is particularly useful when 𝐴 is a product of 𝑔 elliptic
curves. Indeed, the normalisation procedure essentially boils down to a scalar multipli-
cation (computed via a Montgomery ladder), and it is slightly faster to compute 𝑔 such
multiplications in dimension 1 than one in dimension 𝑔 via the product theta structure.
Furthermore, most cryptographic applications come from Kani’s lemma, so that 𝐴 is of the
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form 𝐸𝑔/2
1 × 𝐸𝑔/2

2 . So we really only need to normalise 4 points in dimension 1 (a basis of
𝐸𝑖[2𝑛+2]) rather than 𝑔2, and then keep track of our normalisations across each copy of 𝐸𝑖.

11. Computing the isogenous theta null point

Let 𝐾 be our kernel, assume that it is compatible with the theta null point on 𝐴, and
that we have computed normalisation 𝑃𝑖 of a basis (𝑃1, … , 𝑃𝑔) of 𝐴[4] (either from 𝐾[8]
or via a global normalisation). Let 𝐵 = 𝐴/𝐾[2]. We can use these normalised points to
compute the correct choice of square roots for 𝜃′𝐵

𝜒(0). Let us first recall the formula from
[DLRW23, § C.2] (which as already mentioned result from the duplication formula [Rob10,
Théorème 4.4.3]), remembering that we need to conjugate them by 𝐻 in our situation because
here we consider the “dual” kernel on 𝐴.

In the original algorithm, we actually need 𝑃𝑡 for any 𝑡 ∈ 𝑍(2), where 𝑃𝑡 = ∑𝑔
𝑖=1 𝑡𝑖𝑃𝑖.

First use 𝐻 to convert 𝜃𝑖(𝑃𝑡) to 𝜃′
𝜒(𝑃𝑡), we then have:

𝜃′𝐵
𝜒𝑡

= ∑
𝜒

𝜃′
𝜒(𝑃𝑡)2

where 𝜒𝑡 is the character dual to 𝑡.

Example 11.1. When 𝑔 = 1, we have 𝑇0 = (𝑎, 𝑏) a lift of the theta null point (𝑎 ∶ 𝑏).
We have 𝜃′𝐵(0) = (𝐴, 𝐵), with 𝐴2 = 𝑎2 + 𝑏2, 𝐵2 = 𝑎2 − 𝑏2 by Section 5. We have
𝑇1 = (1 ∶ 0) (this is the only compatible point of 4-torsion above (−𝑎 ∶ 𝑏), the other one
is (0 ∶ 1) and is not compatible as we will see shortly), and 𝑇1 = (𝜆, 0) with 𝜆4 = 𝐴2𝐵2.
So 𝜃′(𝑇0) = (𝑎 + 𝑏, 𝑎 − 𝑏), 𝜃′(𝑇1) = (𝜆, 𝜆), and our formula above shows that 𝜃′𝐵

0 (0) =
(𝑎 + 𝑏)2 + (𝑎 − 𝑏)2 = 2𝑎2 + 2𝑏2 = 2𝐴2, and 𝜃′𝐵

1 (0) = 𝜆2 + 𝜆2 = 2𝜆2 = 2𝐴𝐵. The point
(2𝐴2 ∶ 2𝐴𝐵) = (𝐴 ∶ 𝐵), and we choose for affine lift on the dual theta null point of 𝐵 the
point (1, 𝐵/𝐴).

Given a point 𝑃 = (𝑥 ∶ 𝑧), as explained in Section 5 its image by the isogeny in theta
coordinates on 𝐵 is given by (𝑥 ∶ 𝑧) 𝑆−→ (𝑥2 ∶ 𝑧2) 𝐻−−→ (𝑥′ = 𝑥2 + 𝑧2 ∶ 𝑧′ = 𝑥2 − 𝑧2) 𝐶−−→
(𝑥" = 𝑥′/𝐴, 𝑧" = 𝑧′/𝐵) 𝐻−−→ (𝑥" + 𝑧", 𝑥" − 𝑧").

When working with projective coordinate, we only need the projective point 𝐶 = (1/𝐴 ∶
1/𝐵). However when working with affine coordinates, since we want to send (𝑎, 𝑏) to our
choice of (1, 𝐵/𝐴), we need to take 𝐶 = (1/𝐴2, 1/𝐴𝐵). Let (𝑎2 ∶ 𝑏2) be the theta null point
on 𝐵.

We remark that 𝑇1 is sent to (−𝑎2 ∶ 𝑏2), the kernel of the next isogeny, while (0 ∶ 1) is
sent to (−𝑏2 ∶ 𝑎2), which is not the kernel of the next isogeny.

We now describe our optimisation. Let 𝑖 ∈ 𝑍(2), and 𝑇𝑖 be the corresponding normalised
point of 4-torsion. Its image by our isogeny 𝑓 has to be the normalised point of 2-torsion
induced by 𝑖 given in Section 3. Since this image is given by the operator 𝐻 ∘ 𝐶 ∘ 𝐻 ∘ 𝑆 with
𝐶 = 1/𝜃′𝐵

𝑖 (0), this means that if we apply 𝐶 ∘ 𝐻 ∘ 𝑆 to 𝑇𝑖, we obtain the point (𝜃′𝐵
𝜒𝑖+𝜒(0))𝜒,

where 𝜒𝑖 is the character dual to 𝜒. So 𝐻 ∘ 𝑆(𝑇𝑖) = (𝜃′𝐵
𝜒𝑖+𝜒(0)𝜃′𝐵

𝜒(0)).
In particular, applying this to all the 𝑇𝑖, we recover all two by two product (𝜃′𝐵

𝜒(0)𝜃′𝐵
𝜒′(0)),

which gives an alternative way to recover the theta null point of 𝐵. But actually, it is enough
to recover this theta null point by applying 𝐻 ∘ 𝑆 to only a basis 𝑇1, … , 𝑇𝑔 along with the
theta null point 𝑇0. Indeed, an explicit computation shows that we recover all 𝜃′𝐵

𝜒(0)/𝜃′𝐵
0 (0)

for all characters 𝜒 of Hamming weight 1, then 2, and so on.
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Example 11.2. When 𝑔 = 1, we have 𝑇1 = (𝜆, 0) with 𝜆4 = 𝐴2𝐵2. We apply 𝐻 ∘ 𝑆 to
𝑇0 = (𝑎, 𝑏) to get (𝐴2, 𝐵2), and to 𝑇1 to get (𝜆2, 𝜆2) = (𝐴𝐵, 𝐴𝐵). From this we recover
𝐵/𝐴, hence (𝑎2, 𝑏2).

We remark that applying 𝐻 ∘ 𝑆 to (0, 𝜆) gives (𝐴𝐵, −𝐴𝐵). In fact, for all sign choices of
(𝐴 ∶ 𝐵), while 𝑓 (1 ∶ 0) = (𝑎2 ∶ −𝑏2), the kernel of the next isogeny, we have 𝑓 (0 ∶ 1) =
(𝑏2 ∶ 𝑎2).

The case 𝑔 = 1 is particular in that we have some explicit points of 4-torsion in the theta
model. So in that case, rather than looking at the preimage of our isogeny of the points
of 2-torsion, we could look at the preimage of (1 ∶ 0). So let 𝑇′ = (𝑟 ∶ 𝑠) a point of 8-
torsion, this point fixes the (projective) theta null point of 𝐵. In particular, we should have
𝑓 (𝑇′) = (1 ∶ 0). Doing the computation, we get (𝑟2 + 𝑠2 ∶ 𝑟2 − 𝑠2) = (𝐴 ∶ 𝐵). So in that
case we can directly recover (𝐴 ∶ 𝐵) from 𝑇′ in projective coordinates, without requiring
any normalisation. The sign choice of (𝐴 ∶ 𝐵) induced from 𝑇′ ensures that 𝑓 (𝑇′) = (1 ∶ 0)
becomes the compatible point of 4-torsion.

Example 11.3. When 𝑔 = 2, let (𝑎00, 𝑎01, 𝑎10, 𝑎11) be our theta null point on𝐴, (𝑎′
00, 𝑎′

01, 𝑎′
10, 𝑎′

11)
our theta null point on 𝐵, and (𝐴00, 𝐴01, 𝐴10, 𝐴11) = 𝐻(𝑎′

00, 𝑎′
01, 𝑎′

10, 𝑎′
11) our dual theta

null point on 𝐵. Recall that 𝐻 is given by 𝐻(𝑥00, 𝑥01, 𝑥10, 𝑥11) = (𝑥00 + 𝑥01 + 𝑥10 +
𝑥11, 𝑥00 + 𝑥01 − 𝑥10 − 𝑥11, 𝑥00 − 𝑥01 + 𝑥10 − 𝑥11, 𝑥00 − 𝑥01 − 𝑥10 + 𝑥11).

Assume that we have normalised our points of 4-torsion 𝑇𝑖. Recall that the isogeny is
given by 𝑓 = 𝐻 ∘ 𝐶 ∘ 𝐻 ∘ 𝑆 with 𝐶 = (1/𝐴𝑖), and let 𝑔 = 𝐻 ∘ 𝑓 = 𝐶 ∘ 𝐻 ∘ 𝑆 the isogeny
given in dual theta coordinates on 𝐵, and ℎ = 𝐻 ∘ 𝑆 the isogeny given in twisted dual
theta coordinates on 𝐵. We have 𝑓 (𝑇0) = 𝑓 (𝑎00, 𝑎01, 𝑎10, 𝑎11) = (𝑎′

00, 𝑎′
01, 𝑎′

10, 𝑎′
11), so

𝑔(𝑇0) = (𝐴00, 𝐴01, 𝐴10, 𝐴11), and ℎ(𝑇0) = (𝐴2
00, 𝐴2

01, 𝐴2
10, 𝐴2

11).
We know that 𝑓 (𝑇1) = (𝑎′

00, −𝑎′
01, 𝑎′

10, −𝑎′
11), so 𝑔(𝑇1) = (𝐴01, 𝐴00, 𝐴11, 𝐴10), and

ℎ(𝑇1) = (𝐴00𝐴01, 𝐴00𝐴01, 𝐴10𝐴11, 𝐴10𝐴11).
We know that 𝑓 (𝑇2) = (𝑎′

00, 𝑎′
01, −𝑎′

10, −𝑎′
11), so 𝑔(𝑇2) = (𝐴10, 𝐴11, 𝐴00, 𝐴01), and

ℎ(𝑇2) = (𝐴00𝐴10, 𝐴01𝐴11, 𝐴00𝐴10, 𝐴01𝐴11).
Finally, we know that 𝑓 ( ̃𝑇1 + 𝑇2) = (𝑎′

00, −𝑎′
01, −𝑎′

10, 𝑎′
11), so 𝑔( ̃𝑇1 + 𝑇2) = (𝐴11, 𝐴10, 𝐴01, 𝐴00),

and ℎ( ̃𝑇1 + 𝑇2) = (𝐴00𝐴11, 𝐴01𝐴10, 𝐴01𝐴10, 𝐴00𝐴11).
We see that the four points 𝑇0, 𝑇1, 𝑇2, ̃𝑇1 + 𝑇2 allow to recover all 2 by 2 products 𝐴𝑖𝐴𝑗.

But the first three are already enough: dividing by 𝐴2
00, we recover 𝐴01/𝐴00 from 𝑇1 and

𝐴10/𝐴00 from 𝑇2, which allows us to recover 𝐴11/𝐴00 from either of these two points.

Example 11.4. Assume that 𝑔 = 3, and lets look at the image of the operator ℎ = 𝐻 ∘ 𝑆, i.e,
the isogeny 𝑓 given in twisted dual theta coordinates on 𝐵.

We compute

ℎ(𝑇0) = (𝐴2
000, 𝐴2

001, 𝐴2
010, 𝐴2

011, 𝐴2
100, 𝐴2

101, 𝐴2
110, 𝐴2

111),
ℎ(𝑇1) = (𝐴000𝐴001, 𝐴001𝐴000, 𝐴010𝐴011, 𝐴011𝐴010, 𝐴100𝐴101, 𝐴101𝐴100, 𝐴110𝐴111, 𝐴111𝐴110),
ℎ(𝑇2) = (𝐴000𝐴001, 𝐴001𝐴011, 𝐴010𝐴000, 𝐴011𝐴001, 𝐴100𝐴110, 𝐴101𝐴111, 𝐴110𝐴100, 𝐴111𝐴101),
ℎ(𝑇3) = (𝐴000𝐴100, 𝐴001𝐴100, 𝐴010𝐴110, 𝐴011𝐴111, 𝐴100𝐴000, 𝐴101𝐴001, 𝐴110𝐴010, 𝐴111𝐴011).

Looking at the image of the ∑̃ 𝜀𝑖𝑇𝑖 wewould also get all the 2 by 2 products 𝐴𝑖𝐴𝑗, but these
points are enough. We first recover 𝐴001/𝐴000, 𝐴010/𝐴000, 𝐴100/𝐴000, then 𝐴011/𝐴000,
𝐴101/𝐴000, 𝐴110/𝐴000 and finally 𝐴111/𝐴000.
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12. The image of a point

We already saw how to compute the image of a point by the 2-isogeny 𝑓 once we have the
dual theta coordinates 𝜃′𝐵

𝜒(0) on 𝐵. Namely the formula is given by the operator 𝐻 ∘𝐶∘𝐻 ∘𝑆
where 𝐶 = 1/𝜃′𝐵

𝜒(0). This assume that these theta constants are non zero however.
In this section we explain how to deal with the annulation of some of these theta constants.

This will typically be the case when the starting variety is a product of elliptic curves and the
first isogeny a gluing isogeny.

Let (𝑇1, … , 𝑇𝑔) be our basis of normalised points in 𝐾[4]. Let 𝑃 be a point on 𝐴, fix an
arbitrary lift �̃�, and assume we have computed coherent lifts ̃𝑃 + 𝑇𝑖 relatively to �̃� and the
𝑇𝑖. Note that if 𝑃 ∈ 𝐾 and we have already normalised all points in 𝐾, we can use these as
normalisations.

The operator ℎ = 𝐻 ∘ 𝑆 gives the image of 𝑃 in terms of the twisted dual theta coordinates
on 𝐵. In particular, if 𝑄 = 𝑓 (�̃�), we have ℎ(�̃�) = (𝜃′𝐵

𝜒(𝑄)𝜃′𝐵
𝜒(0)), and for 𝑖 ∈ 𝑍(2),

ℎ( ̃𝑃 + 𝑇𝑖) = (𝜃′𝐵
𝜒+𝜒𝑖

(𝑄)𝜃′𝐵
𝜒(0)). So we can use these points to recover all the coordinates

of ℎ(�̃�).

Example 12.1. When 𝑔 = 2, and 𝜃′𝐵
𝜒(𝑓 (�̃�)) = (𝑥00, 𝑥01, 𝑥10, 𝑥11), we compute ℎ(�̃�) =

(𝐴00𝑥00, 𝐴01𝑥01, 𝐴10𝑥10, 𝐴11𝑥11, ℎ( ̃𝑃 + 𝑇1) = (𝐴00𝑥01, 𝐴01𝑥00, 𝐴10𝑥11, 𝐴11𝑥10, ℎ( ̃𝑃 + 𝑇2) =
(𝐴00𝑥10, 𝐴01𝑥11, 𝐴10𝑥00, 𝐴11𝑥01, and ℎ( ̃𝑃 + 𝑇1 + 𝑇2) = (𝐴00𝑥11, 𝐴01𝑥10, 𝐴10𝑥01, 𝐴11𝑥00.

We see that even if one of the dual isogenous theta null point 𝐴𝑖 is zero, knowing the
(affine) theta coordinates of 𝑃, 𝑃 + 𝑇1, 𝑃 + 𝑇2 still allows to compute ℎ(𝑃).

13. The full algorithm

Let us summarize the steps to compute a 2𝑛-isogeny with kernel 𝐾.
(1) Start with a theta null point of level 2 and 𝐴 induced by some explicit symplectic

basis (𝑒′
1, … , 𝑒′

𝑔, 𝑓 ′
1, … , 𝑓 ′

𝑔) of the 4-torsion. This can be done using Section 8 when
𝐴 is a product of elliptic curves.

(2) Let 𝑣′
1, … , 𝑣′

𝑔 be a basis of 𝐾[4], and complete this basis into a symplectic ba-
sis (𝑢′

1, … , 𝑢′
𝑔, 𝑣′

1, … , 𝑣′
𝑔). Let 𝑀 be the symplectic matrix (𝑒′

1, … , 𝑒′
𝑔, 𝑓 ′

1, … , 𝑓 ′
𝑔) to

(𝑢′
1, … , 𝑢′

𝑔, 𝑣′
1, … , 𝑣′

𝑔). Apply the theta transformation formula induced by 𝑀 to
get the linear change of variable inducing new theta coordinates compatible with
our kernel 𝐾.

(3) Let 𝑇1, … , 𝑇𝑔 be a basis of 𝐾. For reasons explained in Section 9, it is convenient to
assume that we are given 𝑇"𝑖 an isotropic basis of 𝐴[2𝑛+2] with 𝑇𝑖 = 4𝑇"𝑖. Using
Section 7, normalise each 𝑇"𝑖 to get an affine point 𝑇"𝑖. If 𝐴 is a product of elliptic
curves, it will be easier and faster to normalise before the linear change of variable
from the preceding step, because the normalisation for the product theta structure
can be done in dimension 1.

(4) Compute 2𝑛𝑇"𝑖 using Section 6, and use this normalised basis of 𝐾[4] to compute
the first isogeneous theta null point using Section 11.

(5) Compute the image of the 𝑇"𝑖 using Section 12.
(6) Go back to step Item 4, with 𝑛 decremented by 1.

We will also look at the variant where instead of normalising the points of 2𝑛+2-torsion
𝑇″

𝑖 at the beginning, we will only normalize points of 8-torsion at each step. In this variant
we compute 𝑈𝑖 = 2𝑛−1𝑇″

𝑖 to get 𝑔 points of 8-torsion, which we normalise using Section 7.
We then compute the affine 4-torsion point 2𝑈𝑖 to recover the isogeneous theta null point
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using Section 11. Then we compute the image of 𝑇″
𝑖 using Section 12 as above, except that

in this case we only need the projective image rather than the affine image since 𝑇″
𝑖 is no

longer normalised).

14. Complexity

Because of the dynamic nature of the algorithm optimising the number of isogeny images
vs doubling, we need to plug parameters to compare algorithm. Still, we can do some naive
complexity estimate to estimate the cost of the full isogeny computations with respect to the
dimension.

14.1. The old algorithm. For the isogeny algorithm of [DLRW23], the naive ratio was given
by 𝜅2𝑔2𝑔: 2𝑔 points to track, each point using 2𝑔 coordinates.

For the more refined estimation, we have the following complexities:
• Doubling a point still costs 2.2𝑔𝑆 + 2.2𝑔𝑀 = 4.2𝑔 operation by points and comput-

ing the image of a point 2𝑔𝑆 + 2𝑔𝑀 = 2.2𝑔 operations (without any inversions).
• Computing an isogenous theta null point costs 2𝑔(7.2𝑔−2)−2 arithmetic operations

(neglecting additions and soustractions). This involves computing the necessary
inverse needed for the doublings and images of points.

The discrepancy with themore precise estimated ratio comes from the fact that computing
the theta null points behave differently from computing the other 2𝑔 − 1 points.

2𝑛 𝑔 = 1 𝑔 = 2 𝑔 = 4 𝑔 = 8

2128 8028 44328 850464 228774144
2216 14476 80376 1546608 416370768
2250 17060 94860 1826700 491877900
2305 21350 118950 2292990 617612190
2372 26576 148296 2861016 770779416
2486 35904 200844 3879828 1045623348

𝑔 Naive ratios Estimated ratios

2 ×4 ×5.5
4 ×64 ×110
8 ×16384 ×29000

In these notes, we will try to minimise the number of inversions and divisions, since they
are much more expensive than the other arithmetic operations (squares and multiplications).
Also we will count one division as 1𝐼 + 1𝑀, so we will only track the number of inversions.

To normalize a point of 8-torsion 𝑇″
𝑖 , we compute 2𝑇″

𝑖 , 3𝑇″
𝑖 . The computations of the

theta coordinates of the 𝑇″
𝑖 require some divisions: the duplication formula naturally give

the 𝜃𝑗(3𝑇″
𝑖 )𝜃𝑗(𝑇″

𝑖 ). But we don’t actually need these divisions, 3𝑇″
𝑖 is needed only for the

normalisation constant, so we need just one of his coordinate. And we can compute this
constant as 𝐶 = 𝜃𝑗(3𝑇″

𝑖 )𝜃𝑗(𝑇″
𝑖 )/𝜃𝑗(5𝑇″

𝑖 )𝜃𝑗(𝑇″
𝑖 ). Recall that 5𝑇″

𝑖 is computed at 𝑇″
𝑖 + 𝑇𝑖

where 𝑇𝑖 = 4𝑇″
𝑖 is a point of 2-torsion (hence the translation is given by the explicit linear

action of Section 3).
So the first doubling for 2𝑇″

𝑖 (taking into account we are going to do a tripling) will cost
2𝑔𝑆 + 3.2𝑔𝑀 (using the fact that we precomputed the inverse of some theta constants). Then
for computing one coordinate of 3𝑇″

𝑖 we need 2𝑔𝑆 + 2𝑔𝑀. As an aside, this will compute
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the square of the coordinates of the 4-torsion points 2𝑇″
𝑖 , which are needed to compute the

isogenous theta null point.
We then compute 𝐶 by the equation above, this costs 2𝑀 + 1𝐼. Using this constant to

normalize our sum adds 1𝑀.
Since we normalize 2𝑔 − 1 points, the total cost to compute the isogenous theta null point

is (2𝑔 − 1)(2.2𝑔𝑆 + 4.2𝑔𝑀 + 3𝑀 + 1𝐼).
Note that here we don’t take into account the cost of computing the squares of the theta

null point, this was already done for the doubling computations. For the image of points we
need to invert the (dual) coordinates of the isogenous theta null point, this costs 2𝑔𝐼.

We also need to compute 2𝑔𝑆 + 2𝑔𝐼 for the doubling operations on 𝐵, for computing the
inverse of the square of the isogenous theta coordinates (it might seem that we would need
2𝑔𝐼 more to compute the inverse of the theta constants of 𝐵, but we already have the inverse
of the dual coordinates, so we can compute the doubling in dual coordinates, and we just
need the 1/𝜃𝐴

𝑖 (0)2).
So the total cost to compute the theta null point and all inverse needed for images and

doublings is (2𝑔 − 1)(2.2𝑔𝑆 + 4.2𝑔𝑀 + 3𝑀 + 1𝐼) + 2𝑔𝑆 + 2.2𝑔𝐼 = 2𝑔(6.2𝑔 + 1) − 4
arithmetic operations, including 3.2𝑔 − 1 inversions.

With these new estimates, the above tables become:

2𝑛 𝑔 = 1 𝑔 = 2 𝑔 = 4 𝑔 = 8

2128 8028 43560 823584 220483584
2216 14476 79080 1501248 402380448
2250 17060 93360 1774200 475685400
2305 21350 117120 2228940 597857340
2372 26576 146064 2782896 746684976
2486 35904 197928 3777768 1014145128

𝑔 Naive ratios Estimated ratios

2 ×4 ×5.5
4 ×64 ×105
8 ×16384 ×28000

We will use these operations count to compare the new algorithm with the old one.

14.2. The new algorithm. To compute a 2𝑛-isogeny in dimension 𝑔, we need to keep track
of the theta null points and of a basis 𝑇"𝑖. Then we only compute image of points, which cost
roughly 2𝑔(𝑆 + 𝑀) by point, doublings, which cost roughly the same as 2 images, and the
isogeneous theta null point, which cost roughly 1 + 𝑔 images, 𝑔 normalisations (which is
roughly one doubling + one differential additino) along with some inverse to speed up the
upcoming computations.

A rough estimate of the complexity to compute the isogenous theta constants is then
around 𝜅(1 + 𝑔)2𝑔, where 𝜅 will not depend too much on the dimension: we have (1 + 𝑔)
points to push and each point is represented by 2𝑔-coordinates. But for 2𝑛-isogenies we
need to keep track of the basis, the optimal strategy uses a dynamic strategy due to [DJP14]
optimising the number of doublings vs images according to their cost. This part of the
algorithm can be estimated as 𝜅2𝑔2𝑔: 𝑔 points for the basis with 2𝑔 coordinates each. In
practice this part is dominating, it is roughly twice as expensive as the theta constant phase
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(see below for more precise ratios). So we will use this to estimate our complexity ratio as
our dimension increase.

Amore refined estimate relies on using the optimal algorithm to choose between doubling
points and pushing them by the isogeny.

14.3. The new algorithm: normalising 8-torsion points at each steps. Let us first begin
with the case where we normalize at each step like the previous algorithm, rather than once
at the beginning. This allows for a better comparison with the old algorithm, the difference
being that we need to keep track of only 𝑔 points (along with the theta null point), rather
than 2𝑔 − 1.

(1) Doubling a point costs 2.2𝑔𝑆 + (2.2𝑔 − 1)𝑀 = 4.2𝑔 − 1 operation by points and
computing the image of a point 2𝑔𝑆 + (2𝑔 − 1)𝑀 = 2.2𝑔 − 1 operations (without
any inversion). The difference with the complexity of the old algorithm is that in this
case we naturally compute the isogenous theta null point with the first coordinate
normalised to 1.

(2) For each isogeny, we normalize points of 8 torsion (a basis of 𝐾[8]), we already saw
above that this costs 2.2𝑔𝑆 + 4.2𝑔𝑀 + 1𝑀 + 1𝐼 = 6.2𝑔 + 2 by point (we gain 1𝑀
in our doubling because of the normalised theta constant).

We compute 1/𝐴2
0 in 1𝐼, recover the 𝐴𝑖/𝐴0, 𝐴0/𝐴𝑖 for 𝑖 of Hamming weight

one in 1𝑀 + 1𝐼, and then the 𝐴𝑖/𝐴0, 𝐴0/𝐴𝑖 for the other 𝑖 in 2𝑀 + 1𝐼 (write
𝐴𝑖/𝐴0 = 𝐴𝑖𝐴𝑗×𝐴0/𝐴𝑗×1/𝐴2

0). Also each of these constants need to be normalised
by the appropriate projective factor, this costs (2𝑔−1)𝑀.The final cost is 1𝐼+𝑔(1𝑀+
1𝐼) + (2𝑔 − 𝑔 − 1)(2𝑀 + 1𝐼) + (2𝑔 − 1)𝑀 = 4.2𝑔 − 𝑔 − 3.

For our doubling on the isogenous variety, we need to precompute some constants,
for a total of 2𝑔𝑆 + 2𝑔𝐼.

The total cost to compute the isogenous theta null point along with all the inverses
needed for the doublings and images is thus of 𝑔(6.2𝑔 + 2) + 4.2𝑔 − 𝑔 − 3 + 2.2𝑔 =
6(𝑔 + 1)2𝑔 + 𝑔 − 3, including 2.2𝑔 inversions.

We can plug these costs into the dynamic algorithm optimising the number of doublings
vs images for a 2𝑛-isogeny. This gives us the following estimation of the number of arithmetic
operations for computing 2𝑛-isogenies in different dimensions, we can also estimate the
ratios and compare them with the naive expected ratios, and more importantly look at the
efficiency gain compared to the previous algorithm.

2𝑛 𝑔 = 1 𝑔 = 2 𝑔 = 4 𝑔 = 8

2128 7076 28032 224544 7099584
2216 12704 50688 407976 12930264
2250 14953 59776 481742 15277834
2305 18663 74841 604437 19187709
2372 23254 93340 754196 23951236
2486 31275 126096 1022034 32500950

𝑔 Naive ratios Estimated ratios Gain

1 ×0.87
2 ×4 ×4 ×0.64
4 ×32 ×32 ×0.27
8 ×1024 ×1024 ×0.032
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If we look at the proportion of operations needed to compute the isogenous theta constants
(along with all the constants needed for doubling and images), we see that depending on the
isogeny size, this proportion is 35–40% for 𝑔 = 1, 27–32% for 𝑔 = 2, 22–27% for 𝑔 = 4 and
20–25% for 𝑔 = 8 (the longer the isogeny, the less the proportion).

We remark that once the chain of 2-isogenous theta null point is computed (along with
the associated constants), we can compute the image of any point by our big 2𝑛-isogeny 𝑓 or
its dual in 𝑛 × (2𝑔𝑆 + 2𝑔𝑀) (we gain one 𝑀 by image if our constants have been normalised
to have one dual theta coordinate equal to 1).

14.4. The new algorithm, normalizing points at the beginning. Now we look at the
complexity of the new algorithm, where we normalize points at the beginning and use
affine images and doublings at every step. We treat here the case of a general kernel, already
compatible with the theta null point.

(1) Normalising the point𝑇″
𝑖 costs a scalarmultiplication to compute (2𝑛+1−1)𝑇″

𝑖 , 2𝑛+1𝑇″
𝑖 ,

and one more differential addition to compute (2𝑛+1 + 1)𝑇″
𝑖 . The scalar multipli-

cation costs 7.2𝑔 arithmetic operations by bits (in the general case, it is slightly
faster if we normalise one of the theta null coordinate to be 1). We need to compute
the inverse of the theta coordinates of 𝑇″

𝑖 first (for 2𝑔𝐼), and then we only need
multiplications and squares afterwards. The extra differential addition costs 4.2𝑔

arithmetic operations, but since this is only used to get the normalisation factor, as
explained above, we actually only need 2𝑔𝑆 + 2𝑔𝑀 + 2𝑀 + 1𝐼.

Since we have 𝑔 points to normalize, the normalisation phase costs 𝑔 × ((𝑛 +
1).7.2𝑔 + 3.2𝑔 + 3), including 𝑔(2𝑔 + 1) inversions.

(2) Keeping track of the normalisation factor. Recall that we have an equation 𝜆2𝑛+2
1 = 𝐶

for our each of our normalisation factor. To compute the points of 4-torsion from
the 𝑇″

𝑖 , we need to adjust our points by the normalisation factor 𝜆′
1 = 𝜆22𝑛

1 . For
computing the theta null point, we only need 𝜆′

1
2 = 𝜆22𝑛+1

1 = 𝐶2𝑛−1 .
When we compute the image of 𝑇″

𝑖 , the new normalisation factor is 𝜆2 = 𝜆2
1.

We have 𝜆2𝑛+1
2 = 𝜆2𝑛+2

1 = 𝐶. so for the second isogeny, the normalisation factor
on the points of 4-torsion is then 𝐶2𝑛−2 and so on, until at the last step we use 𝐶.
In total we need 𝑛 − 1 squares to compute the actual constants which will give us
our normalisation factors for each of our isogenies. Since we have 𝑔 normalisation
factors, this adds 𝑔(𝑛 − 1)𝑆 = 𝑔(𝑛 − 1) arithmetic operations.

(3) Doubling a point costs 4.2𝑔 − 1 operation by points (we are in a situation where
one of the theta constant is normalised to 1).

(4) Computing the image of a point costs 2.2𝑔 − 1 operations.
(5) Computing an isogenous theta null point require computing the squares of the

domain theta null point and the 𝑔 points of 4-torsion forming a basis of 𝐾[4]; this
costs (1 + 𝑔)2𝑔 squares.

We need to compute the 𝐴𝑖/𝐴0 (for the isogenous theta null point), 1/𝐴0𝐴𝑖 (for
the isogeny images, unlike the previous algorithm where we used 𝐴0/𝐴𝑖 here we
need to use the affine isogeny formula, so correct by the renormalisation we used
for the theta null point), and the 𝐴0/𝐴𝑖 (for doubling in the dual theta coordinates).

We can compute them as follow: first compute 1/𝐴2
0, then compute 𝐴𝑖/𝐴0 =

𝐴𝑖𝐴𝑗/𝐴𝑗𝐴0, 𝐴0/𝐴𝑖 = 1/(𝐴𝑖/𝐴0), 1/𝐴0𝐴𝑖 = 𝐴0/𝐴𝑖 × 1/𝐴2
0 for a total cost of

1𝐼 + 2𝑀 by coefficient. We need to add 1𝑀 to take into account the normalisation
factor. Thus computing the isogenous theta null points costs 1𝐼 + (2𝑔 − 1)(1𝐼 +
3𝑀) = 4.2𝑔 − 3 operations.
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For doubling (in dual theta coordinates) on the isogenous abelian variety, we need
the coefficients 𝐴2

0/𝑎2
𝑖 (because we need to do affine doublings and we renormalised

our theta null point), this costs 2𝑔𝐼 + 2𝑔𝑀.
The grand total to compute the theta null points and all inverse needed for images

and doublings is (1 + 𝑔)2𝑔 + 4.2𝑔 − 3 + 2.2𝑔 = 2𝑔(𝑔 + 7) − 3, including including
2.2𝑔𝐼.

In summary, the amortised cost for computing an isogenous theta null point (taking into
account the normalisation at the beginning) is of 𝑔.7.2𝑔+2𝑔(𝑔+7)−3 = 2𝑔(7𝑔+𝑔+7)−3
arithmetic operations, including 2.2𝑔𝐼.

The amortised cost for the normalisation is roughly a doubling and differential addition
for each of the 𝑔 points in our basis. So this is about the same cost as we obtain by normalising
the points of 8-torsion anew for each isogeny, except that in the latter case we don’t need
a full differential addition, only a partial one, and we can compute doublings and images
projectively since we don’t need to keep track of our normalisation factors because we
recompute them at each step.

Thats why, normalising at each steps gives better complexity. But note that for crypto-
graphic applications where 𝐴 = 𝐸𝑔

1 × 𝐸𝑔
2, we could just normalize a basis of 𝐸𝑖[𝑁], and

then switch to affine differential additions when computing Ker𝐹 to keep points normalised.
This allows to normalize only 4 points in dimension 1, instead of 2𝑔 points in dimension
2𝑔 (which amount roughly to normalizing 4𝑔2 points in dimension 1). This gains a factor
roughly 4 when 𝑔 = 2, i.e., dim𝐴 = 4 (roughly because once the points are normalised, to
compute the kernel of 𝐹 we need to use affine differential additions rather than projective
ones, this will cost 1𝑀 more). So we expect that for the cryptographic setting of 2𝑛-isogenies
in dimension 4, the method of normalising points globally will be more effective, because
we will be able to do the normalisation in dimension 1.

The estimated number of operations is summarised in the following table, note that here
these operations count do not assume that the initial variety is a product, so we compute the
normalisation in dimension 𝑔.

2𝑛 𝑔 = 1 𝑔 = 2 𝑔 = 4 𝑔 = 8

2128 7866 30676 243624 7677136
2216 14022 55092 439728 13890792
2250 16475 64860 518390 16386330
2305 20515 81025 649005 20535565
2372 26576 146064 2782896 746684976
2486 35904 197928 3777768 1014145128

𝑔 Naive ratios Estimated ratios Gain

1 ×0.95
2 ×3 ×4 ×0.7
4 ×20 ×32 ×0.29
8 ×576 ×1000 ×0.034

15. 2𝑛-isogenies in dimension 1

15.1. 2-isogenies in the theta model. The above algorithm is generic and work in any
dimension; the resulting number of operations in dimension 1 simply amount to plugging
𝑔 = 1 in the formula.
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However in practice computing 2𝑛-isogenies in the theta model in dimension 1 is faster
than the generic algorithm, because we can dispense with point normalisation in dimension
one. (Update: see Section 17 for the same tricks in higher dimension.)

The algorithm is thus as follow: let 0𝐸 = (𝑎 ∶ 𝑏) be the theta null point, given by a theta
structure such that our small kernel is generated by 𝑇 = (−𝑎 ∶ 𝑏).

We assume that we have a point of 8-torsion 𝑇″ above 𝑇, if 𝑛 ≥ 3 we want 𝑇″ ∈ 𝐾, and if
𝑛 = 2 we want 2𝑇″ in 𝐾, this ensure that if our isogenous theta null point on 𝐸2 is (𝑎2 ∶ 𝑏2),
our next kernel will be generated by the point (−𝑎2 ∶ 𝑏2).

The formula are sufficiently simple that we will also keep track of the additions/soustrac-
tions.

Let 𝑇″ = (𝑟 ∶ 𝑠), we have by Example 11.2 (𝐴 ∶ 𝐵) = (𝑟2 + 𝑠2 ∶ 𝑟2 − 𝑠2), and
(𝑎2 ∶ 𝑏2) = (𝐴 + 𝐵 ∶ 𝐴 − 𝐵) = (𝑟2 ∶ 𝑠2). This requires 2𝑆 + 2𝑎.

The image of a point 𝑃 = (𝑥 ∶ 𝑧) is given by (𝑥 ∶ 𝑧) ↦ (𝑥2 ∶ 𝑧2) ↦ (𝑋 = 𝑥2 + 𝑧2 ∶
𝑍 = 𝑥2 − 𝑧2) ↦ (𝐵𝑋 ∶ 𝐴𝑍) ↦ (𝑥′ = 𝐵𝑋 + 𝐴𝑍 ∶ 𝑧′ = 𝐵𝑋 − 𝐴𝑍), and is computed in
2𝑆 + 2𝑀 + 4𝑎.

Doubling on 𝐸2 cost two images, the first one for the dual isogeny ̃𝑓 using the coefficients
(𝑎 ∶ 𝑏) instead of (𝐴 ∶ 𝐵) in the formula above, and the second using 𝑓 to go back to 𝐸2, for a
total cost of 4𝑆 + 4𝑀 + 8𝑎.

If we havemany doublings and images to compute, it might be worth to compute (1, 𝐵/𝐴).
This can be donewith one division, that is 1𝐼+1𝑀.We then gain 1𝑀 for images and doubling.
At this point we might as well compute also (1, 𝑏/𝑎). We can compute both 1/𝑎, 1/𝐴 in
1𝐼 + 3𝑀, so compute (1, 𝑏/𝑎), (1, 𝐵/𝐴) in 1𝐼 + 5𝑀. We then gain 2𝑀 for images and
doubling. In summary, adding one inversion, computing the normalised theta null points
and associated constant costs 1𝐼 + 5𝑀 + 2𝑆 + 2𝑎 (instead of 2𝑆 + 2𝑎), and the computing
an image costs 2𝑆 + 1𝑀 + 4𝑎 and a doubling 4𝑆 + 2𝑀 + 8𝑎 (instead of 2𝑆 + 2𝑀 + 4𝑎 and
4𝑆 + 4𝑀 + 8𝑎 respectively).

We obtain the following costs in dimension 1 (which give roughly a twenty percent
speedup compared to the generic algorithm, not counting the fact that here the arithmetic
operations are without any inversion).

2𝑛 𝑔 = 1

2128 5468
2216 10156
2250 12060
2305 15250
2372 19136
2486 26184

If we don’t have an available point of 8-torsion 𝑇″, we simply compute 𝐴2 = 𝑎2+𝑏2, 𝐵2 =
𝑎2 − 𝑏2 and take an arbitrary square root of 𝐵2/𝐴2. What we can do also, without requiring
a square root, is to compute the codomain in the Montgomery model, see the next section.

15.2. Theta versus Montgomery. To summarize, the complexities for computing isogenies
in the theta model are as follows:

(1) 2𝑆 + 2𝑎 for the codomain
(2) 2𝑆 + 2𝑀 + 4𝑎 for an image
(3) 4𝑆 + 4𝑀 + 8𝑎 for doubling
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The input is the theta null point (𝑎 ∶ 𝑏), which implicitly contains the 2-torsion point (−𝑎 ∶ 𝑏)
used for our kernel; and the images computations needs (some constants computed during)
the codomain. We refer to [Rob23b] for similar formulas on twisted theta models.

In the Montgomery model, the costs are, using [CLN16; CH17; Ren18]:
(1) 2𝑆 + 1𝑎 for the codomain
(2) 4𝑀 + 4𝑎 for an image (using a precomputation of 2𝑎)
(3) 2𝑆 + 4𝑀 + 4𝑎 for doubling

Here the input is a two torsion point (different from (0 ∶ 1)) giving the kernel (and implicitly
the curve); the image computation does not needs the codomain.

In [RS24] (see the notes [Rob23b] for more on the arithmetic of Kummer lines), we
explain how to combine the best of both worlds. Provided we have a point of 4-torsion 𝑇
above our kernel ⟨𝑇1⟩, we can:

(1) Compute a representation of the codomain in 2𝑆. The representation is given by the
2-torsion point 𝑓 (𝑇) = 𝑇2, which is the kernel of the next isogeny.

If we need to compute doublings on the codomain, we need to add a 2𝑆 + 2𝑎
precomputation to compute (𝒜 + 2 ∶ 4), and if we need to compute images we need
to add a 2𝑎 precomputation (which is already done if we did the previous 2𝑆 + 2𝑎
precomputation needed for doublings).

(2) Compute “images” in 2𝑀 + 2𝑆 + 4𝑎.
(3) Compute “doublings” in 4𝑀 + 2𝑆 + 4𝑎.

The words “images” and “doublings” are in quotes because if we consider that we are on a
twisted theta models the “doublings” we compute are actually 2𝑃 + 𝑇1, while if we consider
that we are in the Montgomery model it is the images that are actually given by 𝑓 (𝑃) + 𝑇2.
The images need some of the constants computed for the codomain.

As an aside, we can also explain how to compute the isogeny from a theta model to a
Montgomery model if we do not have access to a 8-torsion point. From the theta null point
(𝑎 ∶ 𝑏) of 𝐸1, we can compute (𝑎2 ∶ 𝑏2) the theta null point of 𝐸2 in the 𝜃2

𝐸1
= 𝜃′𝑡𝑤′

𝐸2
model,

and the isogeny map is (𝑥 ∶ 𝑧) ↦ (𝑥2 ∶ 𝑧2). Translating by 𝑇2 = (1 ∶ 0) we obtain the
coordinates on the Montgomery model of 𝐸2, with 𝒜2 = −𝛼2 − 1/𝛼2, 𝛼2 = 𝑏2/𝑎2.

We conclude this with a discussion on 4-isogenies. On theMontgomerymodel, a 4-isogeny
can be computed in [CH17]:

(1) 4𝑆 + 5𝑎 for the codomain
(2) 6𝑀 + 2𝑆 + 6𝑎 for images.

Using these formula, it is faster to split a 2𝑛-isogeny in dimension 1 into blocks of 4-isogenies
rather than blocks of 2-isogenies.

We leave as an open question the task of generalising these efficient 4-isogenies formula
to the theta model in dimension 1 (or even better in higher dimension).

16. 2𝑛-isogenies in dimension 2

16.1. Isogeny formula. The estimation above are very rough because we count an inversion
as much as a square or a multiplication. In this section we detail the detail the case of 𝑔 = 2,
and we try to use Montgomery’s trick as much as possible to reduce the number of inversions
needed by isogeny. Recall that this trick replace 𝑚 parallel inversions by 1𝐼 + 3(𝑚 − 1)𝑀.

For 𝑔 = 2 we normalize our basis (𝑃1, 𝑃2) of 8-torsion of 𝐾[8] by one doubling, which
cost (by point) 2.2𝑔𝑆 + (2.2𝑔 − 1)𝑀 = 8𝑆 + 7𝑀, and then a partial differential addition
which costs 2𝑔𝑆+2𝑔𝑀+2𝑀+1𝐼 = 4𝑆+6𝑀+1𝐼. Since we have two points, we can replace
2𝐼 by 1𝐼 +3𝑀. The total cost is then 1𝐼 +2.(8𝑆+7𝑀 +4𝑆+6𝑀)+3𝑀 = 1𝐼 +24𝑆+29𝑀.
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These operations already give us the squares of the coordinates of the points of 4-torsion
2𝑃1, 2𝑃2, and if we add the squares of the theta constants, we obtain by Example 11.3
(𝐴2, 𝐵2, 𝐶2, 𝐷2), (𝐴𝐵, 𝐴𝐵, 𝐶𝐷, 𝐶𝐷), (𝐴𝐶, 𝐵𝐷, 𝐴𝐶, 𝐵𝐷) (up to the projective factors com-
puted above) via 2𝑔𝑆 = 4𝑆. We need to add 3𝑀 to take into account the correcting
factors for the coefficients 𝐴𝐵, 𝐴𝐶, 𝐵𝐷, so the total cost is 4𝑆 + 3𝑀. We can exploit the
fact that we work with projective coordinates to dispense with the 1𝐼 in the computation
of the normalisation factor. If we don’t compute this inversion, what we obtain are the
points (𝐴2, 𝐵2, 𝐶2, 𝐷2, 𝜅𝐴𝐵, 𝜅𝐶𝐷, 𝜅𝐴𝐶, 𝜅𝐵𝐷) where 𝜅 is the element we did not inverse
(which is the product of all elements we needed to inverse in parallel and which is com-
puted as part of Montgomery’s trick). So via 4𝑀, we can recover the projective vector
(𝐴2 ∶ 𝐵2 ∶ 𝐶2, 𝐷2 ∶ 𝐴𝐵 ∶ 𝐴𝐶 ∶ 𝐵𝐷), we actually won’t need 𝐶2 so we just need 3𝑀. The
final cost for this vector, in order to gain our 1𝐼, is 4𝑆 + 6𝑀.

We want to compute the isogeneous dual theta null point (1 ∶ 𝐵/𝐴 ∶ 𝐶/𝐴 ∶ 𝐷/𝐴),
and also for the image of the points the constants (1 ∶ 𝐴/𝐵 ∶ 𝐴/𝐶, 𝐴/𝐷). We compute
1/𝐴2, 1/𝐴𝐵, 1/𝐴𝐶, 1/𝐵𝐷.We recover 𝐵/𝐴 = 𝐴𝐵∗1/𝐴2, 𝐴/𝐵 = 1/𝐴𝐵∗𝐴2, 𝐶/𝐴 = 𝐴𝐶∗
1/𝐴2, 𝐴/𝐶 = 1/𝐴𝐶∗𝐴2, 𝐷/𝐴 = 1/𝐵𝐷∗𝐵/𝐴∗𝐷2, 𝐴/𝐷 = 1/𝐵𝐷∗𝐴/𝐵∗𝐵2 in 4𝐼+8𝑀 =
1𝐼 + 17𝑀. In fact, using the same trick as above, we can entirely dispense with the inversion.
If we do we obtain the coordinates 𝜅′𝐵/𝐴, 𝜅′𝐴/𝐵, 𝜅′𝐶/𝐴, 𝜅′𝐴/𝐶, 𝜅′2𝐷/𝐴𝜅′2𝐴/𝐷 where 𝜅′

is the product of all coordinates we inverted. To recover the projective vectors (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷)
and (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶ 1/𝐷) we thus need to compute 𝜅′2 and do 4𝑀. This adds 1𝑆 + 4𝑀,
for a cost of 1𝑆 + 21𝑀.

For the doubling on the isogenous abelian variety, we need to inverse 4 coordinates (the
4 squares of the theta constants needed are already taken into account above), for 4𝐼, i.e.,
1𝐼 + 9𝑀. In this case, the inversion is not needed, since the projective factor will be the same.

However, while this is ok for projective doubling, for the affine doubling and differential
addition we need when computing 3.𝑇″

𝑖 for the normalisation, we will be off by some
projective factors. Namely, since I compute the vector (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶ 1/𝐷) up to some
factor 𝜅1, and the vector (1/𝑎2 ∶ 1/𝑏2 ∶ 1/𝑐2 ∶ 1/𝑑2) up to some projective factor 𝜅2, the first
doubling is off by a factor 𝜅1𝜅2, and then the differential addition is off by a factor (𝜅1𝜅2)3.
This constant is computed via 2𝑀 + 1𝑆, and we need to use it for our 2 normalisation which
adds 2𝑀.

The final cost is (24𝑆 + 29𝑀) + (4𝑆 + 6𝑀) + (1𝑆 + 21𝑀) + (9𝑀) + (1𝑆 + 4𝑀) =
30𝑆 + 69𝑀 ≤ 99𝑀. In this case, the (dual) theta null point (𝐴, 𝐵, 𝐶, 𝐷) is not normalised
to have 𝐴 = 1, so the image of a point then costs 4𝑆 + 4𝑀, and doubling costs 8𝑆 + 8𝑀.

If we have many doublings and images to compute, it might be interesting to add back
1𝐼 to normalise our coefficient 𝐴 to be 𝐴 = 1, and while we are at it 𝑎 = 1. The image of a
point then costs 4𝑆 + 3𝑀, and (projective) doubling costs 8𝑆 + 6𝑀.

We obtain the following number of arithmetic operations for our isogenies, without
any inversion. We see that replacing all inversions by multiplication roughly augment the
arithmetic count by twenty percent compared to the previous table, which is mainly due
to the fact that our images are 15% slower (4𝑆 + 4𝑀 vs 4𝑆 + 3𝑀) and our doublings 5%
slower (8𝑆 + 8𝑀 vs 8𝑆 + 7𝑀); the remaining cost being due to the fact that the isogenous
theta constant and the associated constants needed for images and doublings take more
arithmetic operations when we remove all inversions. The proportion of operations related
to computing the isogenous theta null points (and associated constants for doubling and
images) compared to doublings and images is between 32–37%.
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2𝑛 𝑔 = 2

2128 33520
2216 60280
2250 70990
2305 88755
2372 110396
2486 148962

Remark 16.1. In our estimation of roughly 100𝑀 to compute the theta null point, half of it
(24𝑆 + 29𝑀) is spent normalizing our two points of 8-torsion (𝑃1, 𝑃2). The normalisation
computes (affinely) 2𝑃𝑖, 3𝑃𝑖. At the next isogeny step, say we have for 8-torsion points on 𝐵
the points (𝑃′

1, 𝑃′
2). Then we have 2𝑃′

𝑖 = 𝑓 (𝑃𝑖) projectively. So we can replace a doubling by
an image (which is twice as fast, and in fact when computing 3𝑃𝑖 we essentially compute
𝑓 (𝑃𝑖) along the way), and we just need one affine coordinate of 2𝑃′

𝑖 to correct 𝑓 (𝑃𝑖) to obtain
the correct affine lift of 2𝑃′

𝑖 .
In other words, we can reuse part of the work of normalising our 8-torsion points on 𝐴

to speed up normalising our 8-torsion points on 𝐵.

16.2. Splitting isogenies. In the contest of cryptography, the last 2-isogeny will be a splitting
𝐴 → 𝐸1 × 𝐸2. During the isogeny computation, we will not in general obtain a product
theta structure on 𝐸1 × 𝐸2. In [DLRW23, Appendix C.1] we explain how, if we have enough
information, we can precompute (by working in dimension 1) the linear change of variable
giving a product theta structure.

But in dimension 2 it is easy to obtain it directly. First we know that we are on a product
when one of the 10 even level (2, 2)-theta constant is zero, and we know that we have a
product theta structure where the zero theta constant is 𝜃[11; 11].

We might as well take a random linear change of variable induced by a symplectic action
until we are on this case. A more deterministic algorithm (using Appendix B to stay in level 2)
is as follows:

(1) The square of the level (2, 2) theta functions can be computed from the level 2 theta
function via (this is a special case of the duplication formula) 𝑈2

𝜒,𝑖 = ∑𝑡 𝜒(𝑡)𝜃𝑡𝜃𝑖+𝑡.
Suppose that we have a theta null point (𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑) on a product. Let (𝜒, 𝑖) be

the coordinate of the even theta constant which is zero.
(2) if 𝜒 = 𝑖 = (00), act by (𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑) ↦ (𝑎 ∶ 𝑖𝑏 ∶ 𝑐 ∶ 𝑖𝑑), the new zero level

(2, 2)-theta function is given by (𝜒′, 𝑖′) with 𝜒′ ≠ 0, 𝑖′ = 0.
(3) if 𝑖 = 0 but 𝜒 ≠ 0 uses the action by 𝐻, this permutes 𝜒 and 𝑖.
(4) We can now assume 𝑖 ≠ 0. Take any invertible matrix 𝐴 such that 𝐴(11) = 𝑖. Acting

by 𝜃𝑖 ↦ 𝜃𝐴𝑖 we get that the new zero theta function is (𝜒′, 𝑖′) with 𝜒′ = 𝜒𝑜𝐴, and
𝑖′ = (11).

(5) We can now assume 𝑖 = (11). Act by 𝜃𝑖 ↦ (−1)(1−𝜒)(𝑖)𝜃𝑖. The new zero theta
function is given by (chi’, i’)=(1 1, 1 1) and we have won.

(6) If we have a point (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑡) on the product theta structure, the theta coordinates
on 𝐸1, 𝐸2 are given by (𝑥 ∶ 𝑧), (𝑥 ∶ 𝑦).

16.3. Gluing isogenies. When we start with a product of two elliptic curves 𝐸1 × 𝐸2 and a
product theta structure (𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑), then since the dual theta coordinates on the isogeneous
surface (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷) can also be interpreted as the level (2, 2)-theta coordinates on
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the original surface given by 𝑈𝜒,0(0), they are not zero (because the one which is zero
corresponds to 𝜒 = 𝑖 = (11)).

However, if we take an isogeny which is not a diagonal isogeny, we will do a linear change
of variable as explained in Sections 8 and 9 and one of the 𝐴, 𝐵, 𝐶, 𝐷 will become zero.

For the arithmetic on 𝐸1 × 𝐸2 this is not a problem (we would compute the arithmetic
in dimension 1 before taking the product theta structure and doing the linear change of
variable anyway), but this is a problem for the images of a point. The solution is given in
Section 12: to compute 𝑓 (𝑃), we need one of 𝑃 + 𝑇1, 𝑃 + 𝑇2 for 𝑇1, 𝑇2 the 2-points of
4-torsion compatible with our isogeny.

We note that if we only have 𝑃 and 𝑇1, there are four choices for 𝑃 + 𝑇1 on the Kummer.
This corresponds to the fact that the map 𝐸1 × 𝐸2 → 𝐸1/ ± 1 × 𝐸2/ ± 1 has degree 4, and
given a point [𝑃] ∈ 𝐸1/ ± 1 × 𝐸2/ ± 1 we have 4 possibilities for 𝑃 on 𝐸1 × 𝐸2, which
induces 4 possibilities on the codomain 𝐵, which induces 2 possibilities on 𝐵/ ± 1. So [𝑃]
has two possible images on 𝐵/ ± 1, and we need a point of 4 torsion to fix one.

If our big kernel 𝐾 is generated by 𝑃1, 𝑃2 of 2𝑛-torsion, we can take 𝑇𝑖 = 2𝑛−2𝑃𝑖. To
compute our isogenies we need 𝑓 (𝑃1), 𝑓 (𝑃2). But 𝑃𝑖 + 𝑇𝑖 = (1 + 2𝑛−2)𝑃𝑖 which can be
computed via a scalar multiplication.

More concretely write 𝑃𝑖 = (𝑅𝑖, 𝑆𝑖), then the four possibilities for 𝑃𝑖+𝑇𝑖 can be written as
(1 ± 2𝑛−2𝑅𝑖, 1 ± 2𝑛−2𝑆𝑖). If we make some choice of sign for 𝑃1 (say (+, +)) it is important
to make the same for 𝑃2 (say (+, +) or (−, −) but not (+, −) or (−, +)) for our images of
𝑃1, 𝑃2 to be compatible. (The four choices for 𝑃1 + 𝑇1 corresponds to replacing 𝑃1 by −𝑃1
or 𝑓 by −𝑓 in Kani’s lemma. It might seem that we would need to fix 𝑇1 + 𝑇2 in order to fix
the sign of 𝑃1 relatively to 𝑃2, but this is already done, at least implicitly, in our linear change
of variable from our product theta structure: for this theta structure the basis of 4-torsion is
of the form (𝑈1, 0), (0, 𝑈2), (𝑉1, 0), (0, 𝑉2) which are points that only admits 2 preimages
on 𝐸1 × 𝐸2).

16.4. Annulation of the theta null points. Analytically, if 𝐴 corresponds to the period
matrix Ω, we have (𝑎, 𝑏, 𝑐, 𝑑) = 𝜃[0, 𝑖/2](0, Ω/2) and (𝐴, 𝐵, 𝐶, 𝐷) = 𝜃[𝑖/2, 0](0, Ω).

The 10 level four even theta constants are 𝜃[𝑖/2, 𝑗/2](0, Ω) are non zero, except when 𝐴
is a product where exactly one of them is zero. And if 𝐴 has a product theta structure, the
zero even theta constant is 𝜃[1/21/2; 1/21/2](0, Ω).

From this we deduce that:
• (𝐴, 𝐵, 𝐶, 𝐷) are non zero, except if 𝐴 is a product with a non product theta structure.
• (𝑎, 𝑏, 𝑐, 𝑑) are non zero, except if the isogenous abelian variety 𝐴/𝐾2 corresponding

to Ω/2 is a product with a non product theta structure.
So unless we encounter a product along our path (very unlikely), the only annulation we will
see is at the first and last isogeny.

16.5. Further optimisations in dimension 2. Due to the ongoing work on implementing
the formula in dimension 2, it is now easier to find new optimisation possibilities.

The image of a point is pretty fast, so the remaining bottleneck is to try to compute the
theta constants as fast as possible.

There are two optimisations: first the normalisation procedure, a lot of the computations
can be shared. Secondly, as remarked by Pierrick Dartois, the points of 4-torsion we deal
with have 2 zero coordinates, so this simplify the computations.

First let’s explain look at the points of 4-torsion: we have 𝑇′ + 𝑇 = 𝑇′ in the Kummer,
where 𝑇 = 2𝑇′ ∈ 𝐾2. Since 𝑇 acts by sign, this equation gives that half of the coordinates
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are zero (we can even know which ones should be zero since we require the compatibility
with the theta structure).

Secondly, let’s look at the normalisation procedure. We have 𝑇″ a point of 8-torsion, and
we compute 3𝑇″ to compute the correct projective factor 𝜆. Note that we only need to apply
this factor to 𝜃′(𝑓 (𝑇′)).

Now from Section 5, our first (affine) doubling 𝑇′ = 2𝑇″ can be written as 𝜃𝑖(𝑇′)𝜃𝑖(0) =
𝐻(𝜃′

𝑖(𝑇″)2). As explained in Section 16.1, a doubling is 8𝑀 +8𝑆 (if the appropriate inverses
have been computed), but since we have two zero coordiantes the cost reduces to 6𝑀 + 8𝑆.

The main gain we can have is for the differential addition 3𝑇″ = 𝑇″ + 𝑇′, remember that
𝜃𝑖(3𝑇″) = 𝜃𝑖(5𝑇″) = 𝜃𝑖(𝑇″ + 𝑇) hence is equal to 𝜃𝑖(𝑇″) up to an explicit sign.

In particular, by the duplication formula, we have 𝜃′
𝑖(𝑓 (𝑇″))𝜃′

𝑖(𝑓 (𝑇′)) = 𝐻(𝜃𝑖(3𝑇″)𝜃𝑖(𝑇″)).
Now we have already mostly computed 𝜃′

𝑖(𝑓 (𝑇″)) and 𝜃𝑖(𝑇″)2 during the doubling. To com-
pute 𝜃′

𝑖(𝑓 (𝑇′)) usually requires 4𝑆 + 4𝑀, but the multiplication by the required constants
can already be done during the doubling of 𝑇″, and the 4𝑆 is a 2𝑆 because two coordinates
are zero. However this changes the ordering of operations for the doubling, which now costs
10𝑀 + 4𝑆 rather than 6𝑀 + 8𝑆.

So 𝜃′
0(𝑓 (𝑇′)) requires (essentially) 2𝑆, and 𝜃′

0(𝑓 (𝑇″))𝜃′
0(𝑓 (𝑇′)) adds 1𝑀. The correcting

factor is then one division 𝐷, which we use to multiply two coordinates (because 𝑇′ give
half of the coordinates we are interested in), for a cost of 2𝑀. And in fact for the second
generator, we just need one coefficient of 𝑓 (𝑇′) so we just add 1𝑀 for the correction.

In total, we have spent (10𝑀 + 4𝑆) + (2𝑆 + 1𝑀) + 1𝐷 + 2𝑀 = 13𝑀 + 6𝑆 + 1𝐷 to
get the correct affine value of 𝑓 (𝑇′). Doing this twice (once for each projective factor), we
get (𝐴𝐵, 𝐶𝐷, 𝐴𝐶) with a cost of 25𝑀 + 12𝑆 + 2𝐷. Since we already know the value of
(𝐴2, 𝐵2, 𝐶2, 𝐷2) (since they were used for doubling; if we count them as precomputed then
we need to add the computation of (𝐴2

2 ∶ 𝐵2
2 ∶ 𝐶2

2 ∶ 𝐷2
2) as required precomputations for

our theta null point), we recover as in Section 16.1 the values (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷), and then
(𝑎2 ∶ 𝑏2 ∶ 𝑐2 ∶ 𝑑2).

By contrast, the method outlined in Section 16.1 was costing 32𝑀 + 24𝑆 + 2𝐼 for the
same result. We gain about 19 arithmetic operations.

We also need for the images (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶ 1/𝐷) (which can be done in 4𝑀 because
we already have (1/𝐴2 ∶ 1/𝐵2 ∶ 1/𝐶2 ∶ 1/𝐷2) and for doublings on the isogenous curve
(𝑎2

2 ∶ 𝑏2
2 ∶ 𝑐2

2 ∶ 𝑑2
2) to compute (𝐴2

2 ∶ 𝐵2
2 ∶ 𝐶2

2 ∶ 𝐷2
2), (1/𝐴2

2 ∶ 1/𝐵2
2 ∶ 1/𝐶2

2 ∶ 1/𝐷2
2) and

(1/𝑎2 ∶ 1/𝑏2 ∶ 1/𝑐2 ∶ 1/𝑑2). This requires 4𝑆 + 4𝑀 + 8𝐼.
A trick is to instead do doubling in 𝜃′ coordinates; for that we need (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶

1/𝐷) which we already have for images, and (1/𝑎2 ∶ 1/𝑏2 ∶ 1/𝑐2 ∶ 1/𝑑2). So from this point
of view, anticipating the next isogeny, we need (𝑎2

2 ∶ 𝑏2
2 ∶ 𝑐2

2 ∶ 𝑑2
2) and their inverse, so this

does not change much the number of operations: 4𝑆 + 8𝐼, so we save 4𝑀.
For this part, we refer to Section 16.1; we can apply the same various 𝑀/𝐼 tradeoffs to get

rid of all inversions at the cost of more multiplication. Remark 16.1 also apply, at the next
step we could compute an isogeny image rather to speed up the doubling procedure.

16.6. What if we don’t have 8-torsion points? If we only have points of 4-torsion 𝑇′
1, 𝑇′

2
above our kernel 𝐾2, applying ℎ ≔ 𝐻 ∘ 𝑆 to them gives (𝐴𝐵 ∶ 𝐴𝐵 ∶ 𝐶𝐷 ∶ 𝐶𝐷), (𝐴𝐶 ∶ 𝐴𝐶 ∶
𝐵𝐷 ∶ 𝐵𝐷). We also have (𝐴2 ∶ 𝐵2 ∶ 𝐶2 ∶ 𝐷2) from the theta null point.

We cannot recover the theta null point (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷) directly because we are in
projective coordinates. We can normalize 𝑇′

𝑖 via the equation 2.𝑇′
𝑖 = 𝑇𝑖, this determines the

normalisation factor 𝜆𝑖 up to an equation 𝜆4
𝑖 = 𝐶𝑖, hence this we square the coordinates,

ℎ(𝑇′
𝑖) up to a sign. Hence we have 2 signs; and by the same method in dimension 𝑔 we would

have 𝑔 signs, which are all valid by Appendix B.2. In particular, in dimension 2 we need
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two square roots to compute the codomain theta null point when we only have points of
4-torsion and not of 8-torsion. In fact, we can rewrite the normalisation process as follow:
let ℎ(𝑇′

1) = (𝜆1𝑥, 𝜆1𝑥, 𝜆1𝑦, 𝜆1𝑦) for some unknown projective factor 𝜆1. Fix a choice of
(𝐴2, 𝐵2, 𝐶2, 𝐷2). Then for the correct choice of 𝜆1, we should have 𝜆1𝑥 = 𝐴𝐵, 𝜆1𝑦 = 𝐶𝐷,
and we have an equation 𝜆2

1𝑥2 = 𝐴2𝐵2, which gives 𝜆1 from a square root computation.
The same method works for 𝜆2. If (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷) is one of the computed isogeneous theta
null point, the other choice of signs give (𝐴 ∶ −𝐵 ∶ 𝐶 ∶ −𝐷), (𝐴 ∶ 𝐵 ∶ −𝐶 ∶ −𝐷), (𝐴 ∶ −𝐵 ∶
−𝐶 ∶ 𝐷).

If we don’t even have the compatible points of 4-torsion above the kernel, we can write
down equations which determines 𝑇′

1, 𝑇′
2, or even just ℎ(𝑇′

1), ℎ(𝑇′
2) which is what we really

need for the codomain. Since 𝑇′
1 is a compatible point of 4-torsion, and 𝑇′

1 + 𝑇1 = 𝑇′
1, we

have 𝑇′
1 = (𝑥 ∶ 0 ∶ 𝑧 ∶ 0). From ℎ(𝑇′

1) = (𝐴𝐵 ∶ 𝐴𝐵 ∶ 𝐶𝐷 ∶ 𝐶𝐷) we obtain a degree 2
homogeneous equation in 𝑥2, 𝑧2 (say ℎ(𝑇′

1) = (𝑥1 ∶ 𝑥1 ∶ 𝑧1 ∶ 𝑧1) with 𝑥1, 𝑧1 homogeneous
of degree 2 in 𝑥, 𝑧, then 𝐶2𝐷2𝑥2

1 − 𝐴2𝐵2𝑧2
1), so we have two solutions for ℎ(𝑇′

1) (which is
linear in 𝑥2, 𝑧2). Now 𝑇′

2 = (𝑢 ∶ 𝑣 ∶ 0 ∶ 0), and write ℎ(𝑇′
2) = (𝑥2 ∶ 𝑧2 ∶ 𝑥2 ∶ 𝑧2). We have

1/𝐴2𝑥1𝑥2 − 1/𝐷2𝑧1𝑧2. This equation determines the projective point ℎ(𝑇′
2) uniquely from

𝑥2, 𝑧2. To our choice of signs above, this adds the possibility (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ −𝐷).

17. Even better formula: getting rid of the normalisation process

We have seen that in dimension 1 (Example 11.2) we don’t need to normalize points of
8 and 4-torsion. So why do we need to normalize points in higher dimension? The answer
is that we actually don’t need this, which leads to both faster formula and much easier
implementations.

The basic idea is as follow. Let’s work in dimension 𝑔 = 2 for simplicity. Let 𝑃1, 𝑃2 be a
basis of 𝐾[8], then we know that applying 𝑆 → 𝐻 → 𝐶 gives the images 𝑓 (𝑃1), 𝑓 (𝑃2) in 𝜃′

coordinates.
Our kernels are set up so that 𝐾[2] = 𝐾2, in particular 4𝑃1, 4𝑃2 acts by sign. So in 𝜃′

coordinates, 2𝑓 (𝑃𝑖) acts by permutation. 𝑓 (𝑃1), 𝑓 (𝑃2) are points of 4-torsions, and since we
are on the Kummer, we have 𝑓 (𝑃𝑖) + 2𝑓 (𝑃𝑖) = 𝑓 (𝑃𝑖).

Recall that 𝜃′(𝑓 (𝑃)) = 𝑔(𝑃) ≔ 𝐶∘𝐻∘𝑆.Thismeans that 𝑔(𝑃1) = (𝑥1 ∶ 𝑥1 ∶ 𝑧1 ∶ 𝑧1) and
𝑔(𝑃2) = (𝑥2 ∶ 𝑧2 ∶ 𝑥2 ∶ 𝑧2). Going one step back in the isogeny image formula, it means that
if we apply ℎ ≔ 𝑆 → 𝐻 to 𝑃1, 𝑃2 (remember that 𝐶 = (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶ 1/𝐷) is unknown
for now), we have ℎ(𝑃1) = (𝐴𝑥1 ∶ 𝐵𝑥1 ∶ 𝐶𝑧1 ∶ 𝐷𝑧1) and ℎ(𝑃2) = (𝐴𝑥2 ∶ 𝐵𝑧2 ∶ 𝐶𝑥2 ∶ 𝐷𝑧2)
where 𝑥1, 𝑧1, 𝑥2, 𝑧2 are unknown projective factors.

But from this we can recover 𝐵/𝐴, 𝐶/𝐴 and 𝐷/𝐴 = 𝐷/𝐶×𝐶/𝐴 in only 2×4𝑆+1𝑀+3𝐷.
Actually, for isogeny images we need (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶ 1/𝐷), and we can compute
(1, 𝐴/𝐵, 𝐴/𝐶, 𝐴/𝐷) in 2 × 4𝑆 + 1𝑀 + 3𝐷. The nice thing is that a constant is normalised
to 1, so images only cost 4𝑆 + 3𝑀. Then doublings could be implemented as composing ̂𝑓
with 𝑓. For that we need (1/𝑎 ∶ 1/𝑏 ∶ 1/𝑐 ∶ 1/𝑑), or better (1, 𝑎/𝑏, 𝑎/𝑐, 𝑎/𝑑); each doubling
would cost 8𝑆 + 6𝑀.

As for doubling precomputations, for the next isogeny we would need to compute (1/𝑎2 ∶
1/𝑏2 ∶ 1/𝑐2 ∶ 1/𝑑2) (or better (1, 𝑎2/𝑏2, 𝑎2/𝑐2, 𝑎2/𝑑2)) from (1, 𝐴/𝐵, 𝐴/𝐶, 𝐴/𝐷). This can
clearly be done through 3𝐼 + 3𝐷, but maybe there are some optimisations to be gained.

In higher dimension, the same strategy as in Section 11 holds. Let’s work out the case 𝑔 = 3,
we have for𝑃1, 𝑃2, 𝑃3 a basis of𝐾[8], 𝑔(𝑃1) = (𝑥1𝐴000, 𝑥1𝐴001, 𝑦1𝐴010, 𝑦1𝐴011, 𝑧1𝐴100, 𝑧1𝐴101, 𝑡1𝐴110, 𝑡1𝐴111),
𝑔(𝑃2) = (𝑥2𝐴000, 𝑦2𝐴001, 𝑥2𝐴010, 𝑦2𝐴011, 𝑧2𝐴100, 𝑡2𝐴101, 𝑧2𝐴110, 𝑡2𝐴111), 𝑔(𝑃3) =
(𝑥3𝐴000, 𝑦3𝐴001, 𝑧3𝐴010, 𝑡3𝐴011, 𝑥3𝐴100, 𝑦3𝐴101, 𝑧3𝐴110, 𝑡3𝐴111).

107



A note on optimising 2𝑛-isogenies in higher dimension 27

So from the 𝑔(𝑃𝑖), whichwe can compute, we can recover the quotients𝐴001/𝐴000, 𝐴010/𝐴000, 𝐴100/𝐴000,
and then iteratively 𝐴011/𝐴000 = 𝐴011/𝐴010 × 𝐴010/𝐴000, 𝐴110/𝐴000 = 𝐴110/𝐴100 ×
𝐴100/𝐴000, 𝐴111/𝐴000 = 𝐴111/𝐴110 × 𝐴110/𝐴000.

In dimension 𝑔, computing the 𝑔(𝑃𝑖) costs 𝑔 × 2𝑔𝑆, and then reconstituting the 𝐴𝑖/𝐴0
for isogeny images costs at most 2𝑔 × (1𝑀 + 1𝐷), to which we need to add 2.2𝑔𝐼 for the
arithmetic precomputations. So the total cost for the codomain, including the arithmetic
precomputation, is 2𝑔(𝑔 + 4) arithmetic operations.

It is time for our table counting the number of arithmetic operations: we count each image
as costing 2𝑔𝑆+(2𝑔 −1)𝑀 = 2.2𝑔 −1, and each doubling 2.2𝑔𝑆+2.(2𝑔 −1)𝑀 = 4.2𝑔 −2.
We have seen that the codomain and arithmetic precomputation costs 2𝑔(𝑔 + 4).

2𝑛 𝑔 = 1 𝑔 = 2 𝑔 = 4 𝑔 = 8

2128 5189 21314 177956 5719880
2216 9453 39218 329092 10601480
2250 11170 46460 390360 12582320
2305 14030 58560 492880 15899040
2372 17514 73300 617768 19939408
2486 23769 99906 843780 27259656

As a concrete example, the strategy for computing a 2602-isogeny in dimension 2 involves
3274 doublings and 7108 images (plus 26 gluing images).

17.1. Removing inversions. It is also much easier to analyze the complexity where we get
rid of all inversions. We treat the case 𝑔 = 2 for simplicity.

We compute ℎ(𝑃1) = (𝐴𝑥1 ∶ 𝐵𝑥1 ∶ 𝐶𝑧1 ∶ 𝐷𝑧1) and ℎ(𝑃2) = (𝐴𝑥2 ∶ 𝐵𝑧2 ∶ 𝐶𝑥2 ∶ 𝐷𝑧2)
in 2.2𝑔𝑆 = 8, since 𝑔 = 2. From this data we want (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶ 1/𝐷) projectively
for images, and also (1/𝑎2 ∶ 1/𝑏2 ∶ 1/𝑐2 ∶ 1/𝑑2) for doublings.

Batching inversions, we can compute 𝐵/𝐴, 𝐶/𝐴, 𝐷/𝐶 in 1𝐼 + 6𝑀 + 3𝑀, except we don’t
want to actually compute the inversion so we have (𝜅𝐵/𝐴, 𝜅𝐶/𝐴, 𝜅𝐷/𝐶) for some known
factor 𝜆. We then get (𝜅2, 𝜅2𝐵/𝐴, 𝜅2𝐶/𝐴, 𝜅2𝐷/𝐶) in 1𝑆 + 3𝑀. We compute the inverse of
these coordinates in 1𝐼 + 9𝑀 (except we don’t actually compute the inverse), and likewise
we have (𝑎2 ∶ 𝑏2 ∶ 𝑐2 ∶ 𝑑2) through a Hadamard transform of (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷) and
then compute the inverses in 1𝐼 + 9𝑀. The total cost for the codomain is than 8𝑆 + 9𝑀 +
(1𝑆 + 3𝑀) + 9𝑀 + 9𝑀 = 30𝑀 + 9𝑆 ≥ 39𝑀. Comparing with Section 16 we see that the
codomain computation is more than twice as fast, as was expected (since the normalisation
process took half the time). Here, images and doublings costs 2𝑔𝑆 + 2𝑔𝑀 ≤ 2.2𝑔𝑀 and
2.(2𝑔𝑆 + 2𝑔𝑀) ≤ 4.2𝑔𝑀 respectively because the coordinates of our theta null points are
no longer normalised.

Depending on the number of doubling and isogeny images we need, it might make sense
(especially at the beginning of the isogeny chain) to bach one inversion to gain the 1𝑀 (resp.
2𝑀) by doublings and images.

We obtain the following number of arithmetic operations, whenwe get rid of all inversions:
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2𝑛 𝑔 = 2

2128 25840
2216 47320
2250 55990
2305 70455
2372 88076
2486 119802
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Appendix A. Conversion formula between the theta model and the
Montgomery model in dimension 1

These formula are extracted from [BRS23].

A.1. Theta and Montgomery. Let 𝐸/𝑘 be an elliptic curve, and (𝑎 ∶ 𝑏) = (𝜃0(0𝐸), 𝜃1(0𝐸))
be its theta null point. We give formula to convert the theta points (𝜃0(𝑃) ∶ 𝜃1(𝑃)) into the
Montgomery coordinates (𝑥(𝑃) ∶ 𝑧(𝑃)).

When the theta null point is rational, the elliptic curve 𝐸 admits both a rational Mont-
gomery model and a rational Legendre model. They are given by

𝑦2 = 𝑥(𝑥 − 𝛼)(𝑥 − 1/𝛼) = 𝑥(𝑥2 + 𝒜𝑥 + 1)

and (up to a quadratic twist, which is harmless because we work on the Kummer line anyway)
by

𝑦2 = 𝑥(𝑥 − 1)(𝑥 − 𝜆).
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These constants are determined as follows: let (𝐴 ∶ 𝐵) be the dual coordinates of the
canonical 2-isogenous curve (we will only need their square). We have

𝐴2 = 𝑎2 + 𝑏2, 𝐵2 = 𝑎2 − 𝑏2,(4)

𝛼 = 𝐴2/𝐵2 = (𝑎2 + 𝑏2)/(𝑎2 − 𝑏2),(5)

𝜆 = 𝛼2 = 𝐴4/𝐵4 = (𝑎2 + 𝑏2)2/(𝑎2 − 𝑏2)2,(6)

𝒜 = −(𝛼 + 1/𝛼) = −(𝛼2 + 1)/𝛼 = −(𝐴4 + 𝐵4)/(𝐴2𝐵2) = −2(𝑎4 + 𝑏4)/(𝑎4 − 𝑏4),
(7)

(𝒜 + 2)/4 = −𝑏4/(𝑎4 − 𝑏4).(8)

Conversely, from 𝒜, we can recover (𝑎 ∶ 𝑏) via

𝛼 + 1/𝛼 = −𝒜,(9)

𝐴2/𝐵2 = 𝛼,(10)

𝑎2 = 𝐴2 + 𝐵2, 𝑏2 = 𝐴2 − 𝐵2, (𝑎2 ∶ 𝑏2) = (𝛼 + 1 ∶ 𝛼 − 1).(11)

We note that if (𝑎 ∶ 𝑏) is a solution, then (𝑎 ∶ 𝜁𝑏) also with 𝜁 ∈ 𝜇4, these correspond to
different theta structures.

With these constants defined, we can now explain how to convert the points. If 𝑃 = (𝑥 ∶ 𝑧)
in Montgomery coordinates, then

(12) (𝜃0(𝑃) ∶ 𝜃1(𝑃)) = (𝑎(𝑥 − 𝑧) ∶ 𝑏(𝑥 + 𝑧)).

Conversely, if 𝑃 = (𝜃0 ∶ 𝜃1), then in Montgomery coordinates

(13) (𝑥(𝑃) ∶ 𝑧(𝑃)) = (𝑎𝜃1 + 𝑏𝜃0 ∶ 𝑎𝜃1 − 𝑏𝜃0).

On the theta model 0𝐸 = (𝑎 ∶ 𝑏), we have a canonical basis of the 2-torsion given by
𝑇1 = (𝑎 ∶ −𝑏) and 𝑇2 = (𝑏 ∶ 𝑎). We have a canonical basis of the 4-torsion given by
𝑇′

1 = (1 ∶ 0) above 𝑇1 and 𝑇′
2 = (1 ∶ 1) above 𝑇2. The map above sends 𝑇1 to (0 ∶ 1) in the

Montgomery model, 𝑇′
1 to (1 ∶ 1), 𝑇2 to (𝐴2 ∶ 𝐵2), 𝑇′

2 to (𝑎 + 𝑏 ∶ 𝑎 − 𝑏).
So conversely, given a Montgomery curve, the canonical point 𝑇′ = (1 ∶ 1) of 4-torsion

above the 2-torsion point 𝑇 = (0 ∶ 1) and a second point 𝑇" = (𝑟 ∶ 𝑠) above another point
of 2-torsion, then the theta null point (𝑎 ∶ 𝑏) induced by the basis (𝑇′, 𝑇") of the 4-torsion
is given by (𝑟 + 𝑠 ∶ 𝑟 − 𝑠).

For the case of a general elliptic curve 𝐸 with a basis (𝑇′, 𝑇") of the 4-torsion, we first
convert 𝐸 to a Montgomery model by sending 𝑇′ to (1 ∶ 1) and 𝑇 = 2𝑇′ to (0 ∶ 1), the map
is then 𝑥 ↦ (𝑥 − 𝑥(𝑇))/(𝑥(𝑇′) − 𝑥(𝑇)). Then we apply the above formula to the image of
𝑇".

A.2. The alternative Montgomery model. When we have a theta model, we can also intro-
duce the dual theta coordinates

(𝜃′
0 ∶ 𝜃′

1) = (𝜃0 + 𝜃1 ∶ 𝜃0 − 𝜃1),

in particular the dual theta null point is given by (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏). We can
construct another Montgomery model by replacing in the above formula (𝑎, 𝑏, 𝜃0, 𝜃1) by
(𝑎′, 𝑏′, 𝜃′

0, 𝜃′
1).
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Plugging in this different model the equations expressing (𝑎′, 𝑏′, 𝜃′
0, 𝜃′

1) in terms of
(𝑎, 𝑏, 𝜃0, 𝜃1), we obtain alternative formulas:

𝐴′2 = 𝑎′2 + 𝑏′2 = 2(𝑎2 + 𝑏2), 𝐵′2 = 𝑎′2 − 𝑏′2 = 4𝑎𝑏,(14)

𝛼′ = 𝐴′2/𝐵′2 = (𝑎2 + 𝑏2)/(2𝑎𝑏), 𝜆′ = 𝛼′2,(15)

𝒜 ′ = −(𝛼′ + 1/𝛼′) = −(𝑎4 + 6𝑎2𝑏2 + 𝑏4)/(2(𝑎3𝑏 + 𝑎𝑏3)),(16)
𝑃 = (𝑥 ∶ 𝑧) ↦ (𝜃0(𝑃), 𝜃1(𝑃)) = (𝑎𝑥 − 𝑏𝑧 ∶ 𝑏𝑥 − 𝑎𝑧),(17)
(𝜃0, 𝜃1) ↦ (𝑥(𝑃) ∶ 𝑧(𝑃)) = (𝑎𝜃0 − 𝑏𝜃1 ∶ 𝑏𝜃0 − 𝑎𝜃1).(18)

Appendix B. The algebraic theta transformation formula

We briefly describe the algebraic theta transformation formula in level 𝑛, see [Rob10] for
more details.

Assume that we have a symmetric theta structure of level 𝑛, induced by a symplectic
basis (𝑒′

1, … , 𝑒′
𝑔, 𝑓 ′

1, … , 𝑓 ′
𝑔) of 𝐴[2𝑛]. Let 𝑀 ∈ Sp2𝑔(ℤ), this induces a symplectic matrix of

ℤ/𝑛ℤ hence a symplectic change of variable on our basis above. The new symplectic basis
will give a new symmetric theta structure, hence a linear change of variable on our theta
functions. We now describe this action.

The group Sp2𝑔(ℤ) is generated by these three types of matrices:

(1) The matrix 𝒮 = ( 0 1
−1 0). This matrix acts by the Hadamard transform 𝐻.

(2) The matrix 𝑀 = (𝐴 0
0 𝐴−𝑇) where 𝐴 is in Gl𝑔(ℤ). This matrix acts by 𝜃𝑖 ↦ 𝜃𝐴.𝑖,

where the action is the natural action of 𝐴 on (ℤ/𝑛ℤ)𝑔 induced by the action of 𝐴
on ℤ𝑔.

(3) The matrix 𝑀 = (1 𝐶
0 1) where 𝐶 is symmetric. Fix 𝜁 a primitive 2𝑛-root of unity

induced by a symplectic basis of the 2𝑛-torsion inducing our theta strucutre. This
matrix acts by 𝜃𝑖 ↦ 𝜁 𝑖𝑇𝐶𝑖𝜃𝑖. For instance if 𝐶 is diagonal with the only non zero
entry being a one at position (𝑗, 𝑗), the action is 𝜃𝑥 ↦ 𝜁𝑥2

𝑗 𝜃𝑥. If 𝐶 is diagonal with
only two non zero entries at position (𝑖, 𝑗), (𝑗, 𝑖), the action is 𝜃𝑥 ↦ 𝜁2𝑥𝑖𝑥𝑗𝜃𝑥.

Example B.1. In dimension 1, Γ/Γ(2, 4) is of cardinal 6 ∗ 4 = 24, the modular action
induces all possible permutation on the four points of ramification of 𝐸 → ℙ1.

Example B.2. In dimension 2, Γ/Γ(2, 4) is of cardinal 720 ∗ 24. If the abelian surface is
a product of two elliptic curves, the subgroup preserving a product theta structure is of
cardinal 2 ∗ 24 ∗ 24 so is of index 10. There are ten even theta constants of level (2, 2), an
abelian surface is a product theta if and only if the even theta constant 𝜃[11; 11](0) = 0. The
index 10 corresponds to sending this null theta constant to one of the other 10 even theta.

B.1. Directly computing theta constants. The original proposal of these notes suggested
to compute the theta constants in level 2 by going through the product theta structure (via
the dimension 1 conversion of Appendix A) followed by a symplectic transform.

However, Sage’s linear algebra is quite slow, so the current implementation directly com-
putes the theta constants from a symplectic basis on the elliptic product.

An advantage of this approach is as follow: going to the direct product theta structure
involve starting with a tuple (𝑃1, 𝑃2) in Montgomery coordinate, applying a linear trans-
form (in dimension 1) on the coordinates of 𝑃𝑖 to obtain theta coordinates, take the Segre
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embedding to get the product theta structure coordinates, and apply a linear transform again
(in dimension 2) to get the theta coordinates compatible with our kernel. With the direct
approach we take the Segre embedding on the Montgomery coordinate and directly apply a
dimension 2 base change; this save the 2 dimension 1 linear base change.

We briefly explain how this works: on a dimension 1 theta model (𝑎 ∶ 𝑏), the point
𝑇2 = (−𝑎 ∶ 𝑏) as for symmetric lifts in the theta group the linear transformation (𝑋, 𝑍) ↦
(𝑋, −𝑍) (associated to the 4-torsion point (1 ∶ 0)) and (𝑋, 𝑍) ↦ (−𝑋, 𝑍) (associated to
the 4-torsion point (0 ∶ 1)). And the point 𝑇1 = (𝑏 ∶ 𝑎) as for symmetric lifts the linear
transformation (𝑋, 𝑍) ↦ (𝑍, 𝑋) (associated to the 4-torsion point (1 ∶ 1)) and the linear
transformation (𝑋, 𝑍) ↦ (−𝑍, −𝑋) (associated to the 4-torsion point (−1 ∶ 1)).

From the conversionmaps Appendix A, we see that on aMontgomery curve, the 4-torsion
point 𝑇 = (1 ∶ 1) above (0 ∶ 1) is associated to the linear map 𝑔𝑇 ∶ (𝑋, 𝑍) ↦ (−𝑍, −𝑋),
while the point (−1 ∶ 1) is associated to (𝑋, 𝑍) ↦ (𝑍, 𝑋).

For a general elliptic curve, if 𝑇 = (𝑥, 𝑦, 𝑧) is a point of 4-torsion and 2𝑇 = (𝑢, 𝑣, 𝑤), we
can map 𝑇 to the Montgomery point (1 ∶ 1) via the linear transformation (in the Kummer
line): (𝑋 ∶ 𝑍) ↦ (𝑋′, 𝑍′) = (𝑧𝑤𝑋 − 𝑧𝑢𝑍 ∶ (𝑥𝑤 − 𝑧𝑢)𝑍). It follows that in (𝑋, 𝑍)
coordinates, the action of 𝑔𝑇 is given by

𝑀𝑇𝑈𝑀−𝑇 = ( 𝑢𝑧/(𝑤𝑥 − 𝑢𝑧) 𝑧𝑤/(𝑤𝑥 − 𝑢𝑧)
(−𝑤𝑥2 + 2𝑢𝑧𝑥)/(−𝑧𝑤𝑥 + 𝑢𝑧2) −𝑢𝑧/(𝑤𝑥 − 𝑢𝑧)) ,

with 𝑀 = (𝑤𝑧 −𝑧𝑢
0 𝑥𝑤 − 𝑢𝑧), 𝑈 = (0 1

1 0).

Given a symplectic decomposition 𝐴[2] = 𝐾1⊕𝐾2 and a decomposition𝐴[4] = 𝐾′
1⊕𝐾′

2
above it, and a section 𝑠 ∈ Γ(𝐿) (𝐿 of level 2), we can construct a basis of level 2 theta
functions by taking the trace (provided it is non zero) 𝜃0 of 𝑠 under the level 2 elements
induced by the linear transformation 𝑔𝑇′, 𝑇′ ∈ 𝐾′

2 above each 𝑇 ∈ 𝐾2. Then for 𝑖 ∈ 𝐾1,
𝑖′ ∈ 𝐾′

1 above 𝑖, we let 𝜃𝑖 = 𝑔𝑖′ ⋅ 𝜃0.
As an example, on aMontgomery curvewe have𝑇2 = (−1 ∶ 1)which acts by 𝑔2⋅(𝑋, 𝑍) =

(−𝑍, −𝑋). Taking the trace of 𝑋 under this action we get: 𝜃0 = id ⋅𝑋 + 𝑔1 ⋅ 𝑋 = 𝑋 − 𝑍.
Let 𝑇1 = (𝑎+𝑏 ∶ 𝑎−𝑏) be another point of 4-torsion; its double is then (𝑎2+𝑏2 ∶ 𝑎2−𝑏2).

So with 𝑥 = 𝑎 + 𝑏,𝑧 = 𝑎 − 𝑏,𝑢 = 𝑎2 + 𝑏2,𝑤 = 𝑎2 − 𝑏2, we compute 𝜃1 = 𝑔1 ⋅ 𝜃0 =
𝑔1 ⋅ (𝑋 −𝑍) = (𝑢𝑧−𝑤𝑥𝑥/𝑧+2𝑢𝑥)/(𝑤𝑥−𝑢𝑧)𝑋 +𝑧(𝑤+𝑢)/(𝑤𝑥−𝑢𝑧)𝑍 = 𝑏/𝑎𝑋 +𝑏/𝑎𝑍.
Hence we recover exactly the base change (𝑋, 𝑍) ↦ (𝑎(𝑋 − 𝑍) ∶ 𝑏(𝑋 + 𝑍)) of Appendix A
from Montgomery to theta.

We can use the same strategy to compute the theta null point associated to a symplectic
basis of the 4-torsion on a product of elliptic curve. If 𝑇 = (𝑇1, 𝑇2) ∈ 𝐸1 ×𝐸2 is a point of 4-
torsion, the associated element 𝑔𝑇 is given by 𝑔𝑇 = 𝑔𝑇1

⊗𝑔𝑇2
.Thenwe can (for instance) take

𝜃0 as the trace of 𝑋1 ⊗𝑋2 under 𝐾2, with (𝑔𝑇1
⊗𝑔𝑇2

) ⋅(𝑋1 ⊗𝑋2) = (𝑔𝑇1
⋅𝑋1)⊗(𝑔𝑇2

⋅𝑋2).

B.2. Thechoice of signs. Wecanuse this action to explore our choice of sign. Fix (𝑒′
1, … , 𝑒′

𝑔, 𝑓 ′
1, … , 𝑓 ′

𝑔)
a symplectic basis of 𝐴[4] inducing our symmetric theta structure, and let 𝐾 = ⟨𝑓1, … , 𝑓𝑔⟩
where 𝑓𝑖 = 2𝑓 ′

𝑖 our kernel, and let 𝑓 ∶ 𝐴 → 𝐵 = 𝐴/𝐾. The image 𝑓 (𝑒′
𝑖) gives an isotropic sub-

group 𝐵1[4] of 𝐵[4], while 𝑓 (𝑓 ′
𝑖 ) gives 𝐵2[2] such that we have a symplectic decomposition

𝐵[2] = 𝐵1[2] ⊕ 𝐵2[2]. The choice of sign in our isogenous theta constant corresponds to
fixing a symplectic basis of 𝐵[4] compatible with the 𝑓 (𝑒′

𝑖), 𝑓 (𝑓𝑖).

These choice of signs corresponds to the action of thematrix 𝑀 = (1 𝐶
0 1) on 𝐵. We note

that there are two kind of action: the one where 𝐶 leaves 𝐵[2] invariant, this corresponds on
𝐴 to leaving the 𝑓 ′

𝑖 invariant and changing the points of 8-torsion above them. An example
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is given by 𝐶 which is diagonal with entries equal to 0 modulo 2. The second type changes
𝐵[2], hence changes the 𝑓 ′

𝑖 (but in a way that is still compatible with our theta structure on
𝐴).

This shows that we have 𝑔(𝑔 + 1)/2 choice of sign possible on 𝐵 (because the matrix 𝐶
has to be symmetric), but that if we fix the 4-torsion 𝑓 ′

1, 𝑓 ′
2 on 𝐴 we now only have 𝑔 choice

of signs. Algebraically these can be determined as follow: normalize the 𝑓 ′
𝑖 , because 𝑓 ′

𝑖 is of
order 4 this still leaves a choice of sign for each 𝑓 ′

𝑖 (specifically, we have an equation 𝜆4
𝑖 = 𝐶𝑖,

but the duplication formula only involve the 𝜆2
𝑖 ). This is enough to compute the isogenous

theta null point by Section 11.
In fact this is also enough to also normalize all of 𝐾[4]: normalize 𝑓 ′

𝑖 +𝑓 ′
𝑗 via ̃𝑓 ′

𝑖 + 𝑓 ′
𝑗 +𝑓 ′

𝑗 =
𝑓 ′
𝑖 + ̃𝑓𝑗, this involve an equation 𝜆2

𝑖𝑗 = 𝐶𝑖𝑗 so no choice of sign since the duplication formula
only involve the 𝜆2

𝑖𝑗. Next use the differential additions and three way additions to normalize
any remaining point. See [Rob10] for more details.

Example B.3. When 𝑔 = 1, our point of 4-torsion is 𝑇′ = (1 ∶ 0), which is normalized
to (𝜆, 0) where 𝜆4 = 𝐴2𝐵2. Since we know 𝐴2 = 𝑎2 + 𝑏2, 𝐵2 = 𝑎2 − 𝑏2, fixing 𝜆2 = 𝐴𝐵
is enough to fix (𝐴 ∶ 𝐵); changing to 𝜆2 = −𝐴𝐵 gives (𝐴 ∶ −𝐵), and this correspond to
normalising 𝑇′ by another point of 8-torsion above it.

When 𝑔 = 2, let’s say that our point of 8-torsion determined the coefficients (𝐴 ∶ 𝐵 ∶
𝐶 ∶ 𝐷). Our points of four torsion (suitably normalised by the 8-torsion) is then 𝑓 ′

1 which
determines (𝐴𝐵, 𝐶𝐷, 𝐴𝐵, 𝐶𝐷) and 𝑓 ′

2 which determines (𝐴𝐶, 𝐵𝐷, 𝐴𝐶, 𝐵𝐷). Changing 𝑓 ′
1

by 𝑓 ′
1 + 𝑒2 and 𝑓 ′

2 by 𝑓 ′
2 + 𝑒1 will give instead the coefficients (𝐴𝐵, −𝐶𝐷, 𝐴𝐵, −𝐶𝐷) and

(𝐴𝐶, −𝐵𝐷, 𝐴𝐶, −𝐵𝐷), hence corresponds to changing the sign of 𝐷. Keeping 𝑓 ′
1 and 𝑓 ′

2
but changing the points of 8-torsion above 𝑓 ′

1, hence changing their normalisation, then 𝑓 ′
1

will now give (−𝐴𝐵, −𝐶𝐷, −𝐴𝐵, −𝐶𝐷), hence this changes the sign of 𝐵 and 𝐷. Similarly
changing the point of 8-torsion above 𝑓 ′

2 will change the sign of 𝐶 and 𝐷. We do recover that
we have 2 possible choice of signs when the 𝑓 ′

1, 𝑓 ′
2 are fixed, and one more when we change

them (while staying compatible with the theta structure).
By theway,we remark that if we don’t normalize 𝑓 ′

1, 𝑓 ′
2, we recover𝜆1𝐴𝐵, 𝜆1𝐶𝐷, 𝜆2𝐴𝐶, 𝜆2𝐵𝐷

for some unknown projective factors 𝜆1, 𝜆2. Since we also know 𝐴2, 𝐵2, 𝐶2, 𝐷2, it is easy
to find equations for 𝜆2

1, 𝜆2
2. By the above discussion, all 4 solutions of these two equations

determine a valid isogenous (dual) theta null point; but they require to take two square roots.
The advantage of requiring points of 8-torsion is to dispense with these square roots.

However, for a 2𝑛-isogeny, this requires to start with points of 2𝑛+2-torsion above our kernel
𝐾. If we only have 𝐾, we could switch to the square root method for the second to last (which
requires 2 square roots because we have points of 4-torsion), and last (which requires 3
square roots because we now only have the 2-torsion) isogenies. This slow down the last two
codomain computations, however this does not change the images.

Example B.4. When 𝑔 = 2, it was remarked by Giacomo Pope that we don’t need to start
our isogeny chain with isotropic 2𝑛+2-torsion points 𝑃″

1, 𝑃″
2 above the kernel 𝑃1, 𝑃2, we just

need non necessarily isotropic points.
The first 𝑛 − 2 steps are the same, we just need to explain why the formula still work at

the last two steps.
At the penultimate step, assume that our 8-torsion 𝑇"1, 𝑇"2 is correct and that 𝑓 (𝑇"1) =

(𝑥 ∶ 𝑥 ∶ 𝑦 ∶ 𝑦), and 𝑓 (𝑇"2) = (𝑧 ∶ 𝑡 ∶ 𝑧 ∶ 𝑡) in 𝜃′ coordinate. If we change our points by
𝑇 ∈ 𝐾2 this changes nothing because 𝐾2 is our kernel so the images are the same. If 𝑇 ∈ 𝐾1,
𝑇 acts by a shift in 𝜃 coordinates, so by a sign in 𝜃′-coordinate. So if 𝑇"2 is wrong we could
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have 𝑓 (𝑇"2) = (𝑧 ∶ 𝑡 ∶ −𝑧 ∶ −𝑡). If we look at our code, we see that this changes by a sign
one of the constant (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷) we compute.

So when the 4-torsion is correct, but the 8 torsion is wrong, then in the codomain the
4-torsion is wrong, rather than getting (𝑥 ∶ 𝑥 ∶ 𝑦 ∶ 𝑦) say above (𝐵 ∶ 𝐴 ∶ 𝐷 ∶ 𝐶), we get
(𝑥 ∶ −𝑥 ∶ 𝑦 ∶ −𝑦). So instead of getting (𝐴, 𝐵, 𝐶, 𝐷), we get −𝐵, −𝐷, but (𝐴 ∶ −𝐵 ∶ 𝐶 ∶ −𝐷)
is still a valid theta null point. But compared to our true image map, our image map has sign
flips. In particular, the 4-torsion point which was sent to (𝐵 ∶ 𝐴 ∶ 𝐷 ∶ 𝐶) before, is now sent
to (𝐵 ∶ −𝐴 ∶ 𝐷 ∶ −𝐶). But compared our new theta null point (𝐴 ∶ −𝐵 ∶ 𝐶 ∶ −𝐷), this is
still the correct 2-torsion point for the next isogeny!

We can do a similar reasoning for the last isogeny. Here even the 4-torsion is wrong, so
our 2-torsion on the codomain is wrong: say rather than getting (𝐵 ∶ 𝐴 ∶ 𝐷 ∶ 𝐶) we get
(𝐵 ∶ −𝐴 ∶ 𝐷 ∶ −𝐶). Then it follows that our 8-torsion point is sent to a 4-torsion point
above this 2-torsion, which means it is of the form (𝑥, 𝑖𝑥, 𝑦, 𝑖𝑦) or (𝑥, −𝑖𝑥, 𝑦, −𝑖𝑦). If we use
this point, this will change 𝐵 to 𝑖𝐵 say (and maybe for 𝐷 too), but this kind of change also
comes from a symplectic automorphism. And since we don’t take any more kernel, we don’t
care what the images of our 4-torsion points are anyway afterwards.

Appendix C. Other applications of the duplication formula

By now the reader should be convinced that the duplication formula for theta functions
allows for very fast 2-isogeny formula. The Sage implementation (due to Pierrick Dartois,
Sabrina Kunzweiler, Luciano Maino, Giacomo Pope and myself) shows a nice speed up
compared to Richelot formula, this will be detailed in a follow up work.

One can wonder if theta coordinates can be used for other applications. The following use
case was suggested by Sabrina Kunzweiler in dimension 2: look at CGL like hash function in
dimension 2 in the theta model, by computing chuncks of 2𝑛-isogenies.

Altough the formula from these notes can be used, there are two problems remaining:
• Compute the symplectic change of basis to make the kernels 𝐾 in a way such that

𝐾[4] is canonical. A method is probably to compute a basis of 𝐴[4] compatible
with our theta structure (unfortunately this involves square roots), as described in
Section 16.6, complete 𝐾[4] into a symplectic basis, compute the symplectic change
of basis, eg using Weil pairings (but since we are in level 2 this involves more square
roots), and apply the theta transformation formula. If we start with a Jacobian, and
we compute the theta constants through Thomaes formula, a better method would
be to use formula due to Sabrina which gives the correct square roots to take in
Thomae’s formula according to a fixed symplectic basis of Jac𝐶[4].

• Once 𝐾 is in suitable form, andmore generally we have 𝑒′
1, 𝑒′

2, 𝑓 ′
1, 𝑓 ′

2 a symplectic basis
of 𝐴[2𝑛], such that the induced symplectic basis 𝑒1, 𝑒2, 𝑓1, 𝑓2 a symplectic basis of
𝐴[4] is compatible with the theta structure and 𝐾 = ⟨𝑓 ′

1, 𝑓 ′
2⟩ (so that ⟨𝑓1, 𝑓2⟩ = 𝐾[4]

and 𝐾 is compatible with our theta structure); we can compute the isogeny 𝑓 ∶ 𝐴 → 𝐵
and the images 𝑓 (𝑒′

1), 𝑓 (𝑒′
2).

We now need to regenerate the 2𝑛-torsion of 𝐵 by computing a symplectic basis
𝑓 (𝑒′

1), 𝑓 (𝑒′
2), 𝑔′

1, 𝑔′
2 and take a kernel 𝐾′ whose intersection with ⟨𝑓 (𝑒′

1), 𝑓 (𝑒′
2)⟩ is

trivial (so the next isogeny has no (partial) backtracking.
Since we are in level 2 however it is not clear how to best do this step. Sample ran-

dom points, multiply by the cofactor, and do someWeil pairing computations (which
as mentioned involve square roots since we are in level 2)? Go back to a Jacobian
representation to compute the 2𝑛-torsion and switch back to theta afterwards?

We leave the best method as an open problem.
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What is much easier though is to only do chuncks of 2-isogenies and use multiradical
2-isogeny formula in the spirit of [CD21] to regenerate the 2-torsion at each step (in a
non backtracking way). Remember that in dimension 𝑔, multiradical formula will involve
𝑔(𝑔 + 1)/2 square roots.

Using the duplication formula, 2-isogeny multiradical formula are particularly simple in
the level 2 theta model in dimension 1 and 2:

• In dimension 1 start with the theta null point (𝑎 ∶ 𝑏), apply the square operator
𝑆 to get (𝑎2 ∶ 𝑏2), the Hadamard operator 𝐻(𝑥 ∶ 𝑦) = (𝑥 + 𝑦 ∶ 𝑥 − 𝑦) to get
(𝐴2 ∶ 𝐵2) = (𝑎2 +𝑏2 ∶ 𝑎2 −𝑏2). Take an arbitrary square root of 𝐵2/𝐴2. To prevent
an inversion, a solution is to instead take an arbitrary square root 𝐴𝐵 (depending on
the current bit of the message we want to hash) of 𝐴2𝐵2, which give the projective
dual isogeneous theta null point (𝐴2 ∶ 𝐴𝐵). Apply the Hadamard operator 𝐻 again
to get (𝑎2 ∶ 𝑏2), this is our isogeneous theta null point. Iterate for each bit of our
message. The whole formula cost one square root, 2𝑆 + 1𝑀 + 4𝑎.

• In dimension 2, the same formula hold: start with the theta null point (𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑),
apply 𝑆 to get (𝑎2 ∶ 𝑏2 ∶ 𝑐2 ∶ 𝑑2), then 𝐻(𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑡) = (𝑥 + 𝑦 + 𝑧 + 𝑡, 𝑥 −
𝑦 + 𝑧 − 𝑡, 𝑥 + 𝑦 − 𝑧 − 𝑡, 𝑥 − 𝑦 − 𝑧 + 𝑡) to get (𝐴2 ∶ 𝐵2 ∶ 𝐶2 ∶ 𝐷2), take arbitrary
square roots (depending on our bits) 𝐴𝐵, 𝐴𝐶, 𝐴𝐷 of 𝐴2𝐵2, 𝐴2𝐶2, 𝐴2𝐷2 to get
(𝐴2 ∶ 𝐴𝐵 ∶ 𝐴𝐶 ∶ 𝐴𝐷), and apply 𝐻 again to get (𝑎2 ∶ 𝑏2 ∶ 𝑐2 ∶ 𝑑2) for a total cost of
three square roots and 4𝑆 + 3𝑚 + 8𝑎.

It would be interesting to compare these methods with the usual methods:
• In dimension 1 using themodular polynomial 𝜙2, removing the linear factor coming

from the preceding isogeny and solving a degree 2 equation
• In dimension 2 using Richelot formula, factorizing 3 degree 2 polynomials at each

step.
We also leave that for future work!

An interesting open problem is to generalize this approach to higher dimension. From
the theta transformation formula, one can see that we can only take 𝑔(𝑔 + 1)/2 arbitrary
square roots (the ones coming from 𝑒𝑖, 𝑒𝑖 + 𝑒𝑗 where 𝑒𝑖 is a basis of (ℤ/2ℤ)𝑔), once these are
taken the rest are fixed. But I don’t know how to most efficiently determine these remaining
choices (apart from a rather expensive Grobner basis computation), unless we already have
some information on the 4-torsion on the domain. When 𝑔 = 1, 2, all choices are possible,
so this problem goes away.

Another interesting direction is to extend these 2-radical formulas to 4-radical and 8-
radical formula. Using the generic isogeny algorithm [LR12; CR15; LR22a] combined with
[FLR11], I have a generic multiradical isogeny formula in any dimension in the theta model
[LR22b]. But we have just seen that 2𝑛-isogenies in the theta model can be made much faster
than the generic isogeny computation, so it’s probably better to find direct radical isogeny
formula for ℓ = 4, 8.
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9 I M P ROV ING THE AR I THME T I C OF KUMMER L I N E S ( 2 0 2 3 - 1 1 )

Thesenotes are available at http://www.normalesup.org/~robert/pro/publications/notes/2023-11-kummer_
lines.pdf.

These notes cover results obtained between the end of 2022 and the beginning 2023 on improving the
arithmetic of Kummer lines (and Kummer surfaces). Part of these results were obtained in collaboration
with Barbulescu and Sarkis. A small part of these results are now published in [RS24]. The arithmetic
of biextension is detailed in more details in the slides http://www.normalesup.org/~robert/pro/
publications/slides/2023-10-Leuven.pdf of my presentation “Arithmetic and pairings on Kum-
mer lines” for the Leuven isogeny days 4.The code of the algorithms described in these notes is available
at [Rob23].
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Improving the arithmetic of Kummer lines
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Abstract. We explain some improvements to the arithmetic of Kummer lines: doublings,
differential additions, scalar multiplications, pairings, isogenies.
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2 DAMIEN ROBERT

1. Introduction

This is a summery of results that will be presented in a series of articles on the arithmetic
of Kummer lines.

• In [BRS23], we focus on the general theory of models of Kummer lines, the conver-
sions between them, and the arithmetic properties of their 2-torsion points (with
the relationship between the ramification, the 2-Tate pairing, the 2-theta group and
their Galois representation).

• In [RS24], we study isogenies between Kummer lines, and in particular we focus
on 2-isogenies. We use the action of the theta group 𝐺(2(0𝐸)) rather than Vélu’s
formula to compute invariant sections, and the fact that the Kummer model is
determined by its ramification, to find new and old formulas.This allows us to give a
general framework to find equations for 2-isogenies and doublings. We also develop
an hybrid arithmetic, combining the best of the (twisted) theta and Montgomery
models.

• In [Rob22], we extend the work of [RS24] from doublings to differential additions
on a Kummermodel (the formula crucially depend on the arithmetic property of the
2-torsion alluded to above). Notably, we explain how to find differential additions
formulae which factor through a 2-isogeny. As an application we develop a novel
time/memory trade off for the Montgomery ladder.

• In [Rob23c] we develop the arithmetic of the biextension associated to the divisor
2(0𝐸) on some Kummer models. We extend this to the effective computation of the
cubical torsor structure. We derive from this efficient pairing formulae.

• In [Rob23f], we use the formula from [Rob23c] to revisit the “Projective coordi-
nates leak” paper [NSS04]. We show that leaking the projectives coordinate in the
Montgomery ladder yields a subexponential time recovery of the full secret key (by
reduction to the DLP over the base field). The previous attacks only recovered a few
bits by leak.

A proof of concept implementation of these algorithms is available in [Rob23e].

2. Summary

In isogeny based cryptography, it is standard to work with the Montgomery model of
a Kummer line. In the case where we have an extra point of 2-torsion 𝑇2 along with the
standard point of 2-torsion 𝑇1 = (0 ∶ 1) (as happens for supersingular curves), we can use
𝑇2 to speed up the arithmetic.

2.1. Hybrid arithmetic. (This is joint work with Nicolas Sarkis):

2.1.1. Hybrid arithmetic for scalar multiplication. In the Montgomery ladder for computing
𝑚.𝑃, we use one doubling and one mixed differential addition by step. In the Montgomery
model, doubling is 2𝑀 + 2𝑆 + 1𝑚0 while a mdiffAdd (where we assume our base point
𝑃 = (𝑋𝑃 ∶ 1) is normalised) is 3𝑀 + 2𝑆, so a ladder step is 5𝑀 + 4𝑆 + 1𝑚0. Here 𝑚0
denotes a multiplication by a curve constant (typically the coefficient 𝐴 of the Montgomery
curve, or rather (𝐴 + 2)/4). If our starting point 𝑃 = (𝑋𝑃 ∶ 𝑍𝑃) is not normalised, we need
to add 1𝑀 by bit to the ladder cost.

When 𝑇2 is rational, we can also use a twisted theta model, where doubling is 4𝑆 + 2𝑚0,
andmdiffAdd is 3𝑀+2𝑆+1𝑚0, so a ladder step is 3𝑀+6𝑆+3𝑚0. (There is a 1𝑀−1𝑆−1𝑚0
tradeoff where a ladder step is 4𝑀 + 5𝑆 + 2𝑚0.)
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Improving the arithmetic of Kummer lines 3

The two models differ by the translation by 𝑇2 (the doubling 𝑃 ↦ 2.𝑃 in twisted theta
can be interpreted as 𝑃 ↦ 2.𝑃 + 𝑇2 in the Montgomery model and conversely), we can
exploit that to combine the best of both worlds: using an hybrid arithmetic where doubling
is 4𝑆 + 2𝑚0 and mdiffAdd is 3𝑀 + 2𝑆. Keeping track of the translation by 𝑇2 we then have
a hybrid ladder which cost 3𝑀 + 6𝑆 + 2𝑚0.

2.1.2. Hybrid arithmetic for 2𝑛-isogenies. In the Montgomery model, a 2-isogeny codomain
costs 2𝑆, an image costs 4𝑀, and doubling cost 2𝑆+2𝑀+2𝑚0 (because our curve coefficients
are given by a projective point (𝐴 ∶ 𝐶) and we can no longer assume that 𝐶 = 1). In practice,
it is customary to use 4-isogenies instead where the codomain cost 4𝑆 and images 2𝑆 + 6𝑀.

In the twisted theta model, a 2-isogeny codomain costs 2𝑆, an image costs 2𝑆 + 2𝑀, and
doubling cost 4𝑆 + 4𝑚0.

Again, in a Montgomery model with full 2-torsion, it is possible to use an hybrid version,
with an image costing 2𝑆+2𝑚0 (translated image from the point of view of the Montgomery
model) and doubling costing 2𝑆 + 2𝑀 + 2𝑚0 (translated doubling from the point of view
of the twisted theta model).

This lines up the cost of two 2-isogeny with the cost of a 4-isogeny (and is actually slightly
better). However, for a 2𝑛-isogeny chain, it is still better to split into 4-isogenies since this
gain on the codomain computations.

2.2. A time/memory trade off for scalar multiplication on Kummer lines. We have a
time/memory trade off for aMontgomerymodel with full two-torsion, where we precompute
some points to speed up scalar multiplications.

We first start with a precomputation depending only on the base point 𝑃 and which cost
of 2𝑆 + 1𝑚0 by bits (+ the storage of 2 coefficients by bits). Then a scalar multiplication is in
4𝑀 + 2𝑆 + 1𝑚0 by bit (whether the base point is normalised or not).

The total cost, including the precomputation, is 4𝑀 + 4𝑆 + 2𝑚0 which makes it slightly
better than the standard Montgomery ladder (and saves 1𝑀 on non normalised points).

We can do more precomputions by using 1 global inversion and 2𝑆 + 1𝑚0 + 4𝑀 by bit,
then the following scalar multiplications will cost 3𝑀 + 2𝑆 + 1𝑚0 by bit.

A similar algorithm works in higher dimension. For a Kummer surface the precom-
putation step costs one global inversion and 12𝑀 + 4𝑆 + 3𝑚0 by bits, and then a scalar
multiplication with the same base point costs 7𝑀+4𝑆+3𝑚0; compared to 7𝑀+12𝑆+9𝑚0
or 10𝑀 + 9𝑆 + 6𝑚0 for the standard ladder.

2.3. Pairings on Kummer lines.

2.3.1. Generic pairings. Isogeny based cryptography rely on generic pairings, where we
cannot assume that one point lives in a smaller field. In [CLN16], the generic cost of the Tate
pairing then becomes 5𝑆 + 15𝑀 for doublings, and 4𝑆 + 20𝑀 for additions (see [Rei23]);
much more expansive than a simple scalar multiplication. The best generic algorithm in the
litterature, in [BELL10], uses 10𝑀 + 9𝑆 for doubling, and 11.5𝑀 + 3𝑆 by addition.

We work out the arithmetic of the biextension associated to the divisor 2(0𝐸) on the
Montgomery model of a Kummer line with full rational 2-torsion. We derive from this an
efficient ladder like algorithm for pairings computation. Our ladder algorithm costs 7𝑆+9𝑀
by bit, which is closer to the cost of a scalar multiplication via the Montgomery ladder. As
special cases, when 𝑛 = 2𝑚 or we compute a self pairing, the cost goes down to 4𝑆 + 6𝑀 by
bit.

We also explain how to compute a standard exponentiation (rather than a ladder) in the
biextension, this allows to use window-NAF methods. Our algorithm (for now only in the
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theta model) costs 5𝑆 + 6𝑀 for a doubling, and 6𝑆 + 24𝑀 for an addition.1 This suggests
that the second algorithm will be faster than the first one when using a window 𝑤 ≥ 5 (or
when computing pairings between points of 2𝑛-torsion).

2.3.2. Pairing based cryptography. For pairing based cryptography on elliptic curves, it is
convenient to use the Tate pairing with 𝑃 ∈ 𝔾1 ⊂ 𝐸(𝔽𝑞), 𝑄 ∈ 𝔾2 ⊂ 𝐸(𝔽𝑞𝑘), and 𝑘 even
to allow for denominator elimination.

Counting only operations involving the big field𝔽𝑞𝑘 , Miller’s algorithm cost 1𝑀+1𝑆+1𝑚
by doubling, and 1𝑀+1𝑚 by addition.Here 1𝑚denotes amultiplication between a coefficient
in 𝔽𝑞 and a coefficient in 𝔽𝑞𝑘 .

When denominator elimination is not possible (because 𝑘 is odd or 𝑄 is not in 𝔾2), the
cost becomes 2𝑀 + 2𝑆 + 1𝑚 by doubling, and 2𝑀 + 1𝑚 by addition.

When 𝑃 is in the small field 𝐸(𝔽𝑞) and 𝑄 is in the big field 𝐸(𝔽𝑞𝑘), our Tate pairing
algorithm costs (counting only operations in the big field) 2𝑆 + 1𝑀 + 2𝑚 by bits. This is
competitive with the standard Miller’s algorithm, except when denominator elimination is
available.

2.4. Monodromy leak: Projective coordinates leak revisited. Assume that we are doing a
scalar multiplication via the Montgomery ladder: we start with 𝑃 = (𝑥𝑃 ∶ 1) and compute
𝑄 = 𝑛.𝑃 = (𝑋𝑄 ∶ 𝑍𝑄). In practice, during the ladder we work with affine coordinates
(𝑋𝑄, 𝑍𝑄) rather than projective coordinates (which would imply one division at each step,
or at least scaling by a random scalar). It is only at the end of the computation that a division
is computed and the coordinate 𝑥𝑄 = 𝑋𝑄/𝑍𝑄 is returned.

A projective coordinates leak happens whenever an attacker can retrieve (𝑋𝑄, 𝑍𝑄) di-
rectly. It was shown in [NSS04] how to use a projective coordinates leak to retrieve a few bits
of the secret scalar 𝑛. This was revisited in [AGB20] to adapt it to the Montgomery ladder,
still recovering only a few bits.

Instead, we can use the formula from the biextension arithmetic (more precisely, we use
the cubical torsor structure, a refinement of the biextension arithmetic) to fully recover the
secret 𝑛 via:

• Solving some DLPs in 𝔽∗
𝑞

• Solving a degree 2 equation in ℤ/(𝑞 − 1)ℤ.
In most cases (except if 𝑞 − 1 has a lot of prime divisors) this can be done in subexponential
time. The name monodromy leak comes from the fact that the biextension arithmetic and
cubical torsor structure gives the monodromy information underlying the Tate and Weil
pairing.

3. Models

3.1. The Montgomery model. The Montgomery model of 𝐸 is rational whenever there
is a rational cyclic subgroup of order 4 in 𝐸, i.e. a point 𝑅1 of order four which is rational
in the Kummer line (i.e. 𝜋(𝑅1) = ±𝑅1), i.e. there is a point of order 2 𝑇1 with trivial self
Tate pairing. The Montgomery model is the model where 𝑅1 is sent to (1 ∶ 1), 𝑇1 = 2𝑅1 to
(0 ∶ 1) and 0𝐸 to infinity.

The ramification is given by (0𝐸) = (1 ∶ 0), 𝑇1 = (0 ∶ 1), 𝑇2 = (𝐴2 ∶ 𝐵2), 𝑇3 =
𝑇1 + 𝑇2 = (𝐵2 ∶ 𝐴2). Here, 𝑇2, 𝑇3 are not necessarily rational, we denote their coordinates
by (𝐴2 ∶ 𝐵2) to make the link with the theta model more explicit later. Conversely, a Kummer

1Standard additions are not available on a Kummer line, but we can compute them over the biextension!
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line whose neutral point is at infinity, a ramification point is (0 ∶ 1), and the remaining two
ramifications points are invariant under (𝑋 ∶ 𝑍) ↦ (𝑍 ∶ 𝑋) gives a Montgomery model.

Above the canonical two torsion point 𝑇1 = (0 ∶ 1), we have the canonical four torsion
points 𝑅1 = (1 ∶ 1) = 𝑅1 + 𝑇1, 𝑅′

1 = (−1 ∶ 1) = 𝑅1 + 𝑇2 = 𝑅1 + 𝑇3.
If 𝑇2 is rational, its coefficients are enough to represent 𝐸.The translation by 𝑇2 is given by

(𝑥 ∶ 𝑧) ↦ (𝐴2𝑥 − 𝐵2𝑧 ∶ 𝐵2𝑥 − 𝐴2𝑧). From this we can recover the curve coefficient 𝒜 of the
Montgomery model by 𝒜 = (𝐴 ∶ 𝐶) = (𝐴4 + 𝐵4 ∶ −𝐴2𝐵2), (𝒜 + 2)/4 = ((𝐴2 − 𝐵2)2 ∶
−4𝐴2𝐵2).

In these notes, wewill often focus on the arithmetic of theKummer line𝐸 of aMontgomery
model with full rational 2-torsion. In this case, the quotient 𝐸′ = 𝐸/𝑇1 is also a Montgomery
model with full rational 2-torsion, so we can exploit the symmetry between 𝐸 and 𝐸′ in our
arithmetic by factorising through the isogeny 𝑓 ∶ 𝐸 → 𝐸′.

3.2. Twisted theta models. The Kummer line associated to a theta model 𝜃(𝑎 ∶ 𝑏) has for
neutral point 0𝐸 = (𝑎 ∶ 𝑏) and ramification 𝑇1 = (−𝑎 ∶ 𝑏), 𝑇2 = (𝑏 ∶ 𝑎), 𝑇3 = (−𝑏 ∶ 𝑎).
We have 𝑅1 = (1 ∶ 0), 𝑅′

1 = (0 ∶ 1) two 4-torsion points above 𝑇1 = (−𝑎 ∶ 𝑏), and
𝑅2 = (1 ∶ 1), 𝑅′

2 = (1 ∶ −1) above𝑇2 = (𝑏 ∶ 𝑎).We denote (𝐴2 ∶ 𝐵2) = (𝑎2+𝑏2 ∶ 𝑎2−𝑏2).
Conversely, a Kummer line with two rational points of 4-torsion 𝑅1, 𝑅2 such that 𝑇1 =

2𝑅1 ≠ 𝑇2 = 2𝑅2 admits a rational theta model. Equivalently, there are two cyclic subgroups
of degree 4 on 𝐸, 𝐾1, 𝐾2 such that 𝐾1 ∩ 𝐾2 = {0𝐸}.

We recall that a Montgomery model can be constructed as long as we have a point of
4-torsion on the Kummer. In theta we have two such points: (1 ∶ 0) above (−𝑎 ∶ 𝑏) and
(1 ∶ 1) above (𝑏 ∶ 𝑎), so we have two associated models. Conversion formula are given in
Section 3.4.

From a theta model, we explain how to construct several twisted theta models. When we
have a theta model 𝜃(𝑎 ∶ 𝑏), we can use the dual theta coordinates given by the Hadamard
transform, let me denote that by 𝜃′(𝑎′ ∶ 𝑏′) with (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏). We can also twist
the theta model by looking at the coordinates (𝑎𝑥 ∶ 𝑏𝑧) instead of (𝑥 ∶ 𝑧), let me call this
𝜃𝑡𝑤(𝑎2 ∶ 𝑏2). We can combine the Hadamard transform and the twisted models to obtain
four kind of twisted theta models: 𝜃𝑡𝑤, 𝜃𝑡𝑤′, 𝜃′𝑡𝑤, 𝜃′𝑡𝑤′.

A theta model on 𝐸 arises from a (symmetric) isomorphism of the Heisenberg group of
level 2 with the theta group 𝐺(2(0𝐸)). In a twisted theta model we take an isomorphism
from a twist of the Heisenberg group, so we are on the same elliptic curve, it is the theta
structure which is twisted. We will use the model 𝜃𝑡𝑤′, the conversion from 𝜃 is (𝑥 ∶ 𝑧) ↦
(𝑎𝑥 + 𝑏𝑧 ∶ 𝑎𝑥 − 𝑏𝑧); and the twisted model 𝜃′𝑡𝑤′, the conversion from 𝜃 is (𝑥 ∶ 𝑧) ↦
(𝑎′𝑥′ + 𝑏′𝑧′ ∶ 𝑎′𝑥′ − 𝑏′𝑧′) where (𝑥′ ∶ 𝑧′) = (𝑥 + 𝑧 ∶ 𝑥 − 𝑧). We will see that 𝜃′𝑡𝑤′ is (up
to translation) the Montgomery model associated to the four torsion point (1 ∶ 1), and the
Montgomery model (up to translation) corresponding to the four torsion point (1 ∶ 0) is
given by 𝜃𝑡𝑤′.

In the 𝜃𝑡𝑤′ model, the neutral point becomes 0𝐸 = (𝐴2 ∶ 𝐵2), the 2-torsion 𝑇1 = (𝐵2 ∶
𝐴2), 𝑇2 = (1 ∶ 0), 𝑇3 = (0 ∶ 1), and the 4-torsion is 𝑅1 = (1 ∶ 1), 𝑅′

1 = (−1 ∶ 1),
and 𝑅2 = (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏), 𝑅′

2 = (𝑏′, 𝑎′). In particular, the 4-torsion point
𝑅2 = (𝑎′ ∶ 𝑏′) above 𝑇2 = (1 ∶ 0) allows to recover (𝑎 ∶ 𝑏).

It is convenient to see 𝜃′𝑡𝑤′ coordinates as follow. Let start with a theta model 𝜃(𝑎 ∶ 𝑏)
on an elliptic curve 𝐸1; we have an isogeny 𝑓 ∶ 𝐸1 → 𝐸2 whose kernel is given by the two
torsion point (−𝑎 ∶ 𝑏). We also have a “contragredient” isogeny ̂𝑔 ∶ 𝐸1 → 𝐸0 whose kernel is
given by (𝑏 ∶ 𝑎).

If 𝐸0 is given by 𝜃(𝑎0 ∶ 𝑏0), then 𝑔 ∶ 𝐸0 → 𝐸1 has kernel (−𝑎0 ∶ 𝑏0). From the isogeny
formula [Rob23a], we see that a 𝜃′𝑡𝑤′ coordinate (𝑢 ∶ 𝑣) for 𝑃 ∈ 𝐸1 can be written as
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(𝑢 ∶ 𝑣) = (𝑥2 ∶ 𝑧2) where (𝑥 ∶ 𝑧) is the theta coordinate of 𝑄 ∈ 𝐸0 ∣ 𝑔(𝑄) = 𝑃. In other
words: if we use squares of theta coordinates in 𝐸0 to represent points of 𝐸1 we obtain the
𝜃′𝑡𝑤′ model: 𝜃2

𝐸0
= 𝜃′𝑡𝑤′

𝐸1
. We have (𝑎2

0 ∶ 𝑏2
0) = (𝑎′2 + 𝑏′2 ∶ 𝑎′2 − 𝑏′2) = (𝑎2 + 𝑏2 ∶

2𝑎𝑎2 + 𝑏2 ∶ 2𝑎𝑏). A similar interpretation holds for the 𝜃𝑡𝑤′ model.

3.3. Montgomery and theta models. In the Montgomery model, the neutral point is 0 =
(1 ∶ 0), the 2-torsion is 𝑇1 = (0 ∶ 1), 𝑇2 = (𝐴2 ∶ 𝐵2), 𝑇3 = (𝐵2 ∶ 𝐴2), and the four torsion
is 𝑅1 = (1 ∶ 1), 𝑅′

1 = (−1 ∶ 1), 𝑅2 = (𝑎′ ∶ 𝑏′), 𝑅′
2 = (𝑏′ ∶ 𝑎′).

In the 𝜃𝑡𝑤′ model, the neutral point becomes 0𝐸 = (𝐴2 ∶ 𝐵2), the 2-torsion 𝑇1 = (𝐵2 ∶
𝐴2), 𝑇2 = (1 ∶ 0), 𝑇3 = (0 ∶ 1), and the 4-torsion is 𝑅1 = (1 ∶ 1), 𝑅′

1 = (−1 ∶ 1), and
𝑅2 = (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏), 𝑅′

2 = (𝑏′, 𝑎′).
The twisted theta model has the same ramification as the Montgomery model, except

the neutral point is (𝐴2 ∶ 𝐵2) which would be a point of 2-torsion 𝑇2 on the Montgomery
model, hence why they differ by translation by 𝑇2: (𝑥 ∶ 𝑧) ↦ (𝐴2𝑥 − 𝐵2𝑧 ∶ 𝐵2𝑥 − 𝐴2𝑧).
This sends (−1 ∶ 1) to (1 ∶ 1) and conversely (be careful that due to an unfortunate choice
of notations, the 𝑅1 on 𝜃𝑡𝑤′ is sent to 𝑅′

1 on Montgomery).
We also have a similar conversion to the Montgomery model on the 𝜃′𝑡𝑤′ model.The two

torsion on 𝜃′𝑡𝑤′ is given by 0𝐸 = (𝑎2
0 ∶ 𝑏2

0), 𝑇2 = (𝑏2
0 ∶ 𝑎2

0), 𝑇1 = (1 ∶ 0) and 𝑇3 = (0 ∶ 1).
We also have the four torsion point (1 ∶ 1) above (𝑏2

0 ∶ 𝑎2
0).

The two torsion gives the ramification on the Kummer line. Now notice how we have
exactly the same ramification as the Montgomery model 𝑀 ∶ 𝑦2 = 𝑥(𝑥 − 𝛼)(𝑥 − 1/𝛼) with
𝛼 = 𝑏2

0/𝑎2
0, except that in our case the neutral point is (𝑎2

0 ∶ 𝑏2
0) while in Montgomery the

neutral point is (0 ∶ 1).
This means that the map Id ∶ 𝜃′𝑡𝑤′ → 𝑀 corresponds to the translation by the two

torsion point 𝑇1 = (1 ∶ 0) on the 𝜃′𝑡𝑤′ model and by 𝑇1 = (𝑎2
0 ∶ 𝑏2

0) on the Montgomery
model. Via this translation, the four torsion point (1 ∶ 1) above (𝑏2

0 ∶ 𝑎2
0) indeed become the

four torsion point (1 ∶ 1) above (0 ∶ 1) in the Montgomery model as expected.
This gives the following fact: suitably twisting the theta structure, we obtain conversion

formula which are free (ie given by the identity) except that a point 𝑃 in the twisted theta
model will correspond to a point 𝑃 + 𝑇 in the Montgomery model for some two torsion
point 𝑇. If we can get an handle on this translation by 𝑇, we can combine the best formula
for both models.

This was already used in [BRS23] to construct a hybrid Montgomery ladder combining
the best of the theta and Montgomery formula. We now describe a similar approach for
isogenies. (It is Nicolas Sarkis who found out that we had a free conversion formula between
the two models up to a translation by a point of 2-torsion2, and I realised we could exploit
this for isogenies and the scalar multiplication; the implementation was done by Nicolas.)

3.4. Conversion formula between the theta model and the Montgomery model in dimen-
sion 1. See also [Rob23a, Appendix A].

Let 𝐸/𝑘 be an elliptic curve, and (𝑎 ∶ 𝑏) = (𝜃0(0𝐸), 𝜃1(0𝐸)) be its theta null point. We
give formula to convert the theta points (𝜃0(𝑃) ∶ 𝜃1(𝑃)) into the Montgomery coordinates
(𝑥(𝑃) ∶ 𝑧(𝑃)). The formulas follows by looking at the ramification on the Kummer line on
both models, and finding the homography that maps the ramification of one model to the
other.

2We found out afterwards that this was already done in [HR19]
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When the theta null point is rational, the elliptic curve 𝐸 admits both a rational Mont-
gomery model and a rational Legendre model. They are given by

𝑦2 = 𝑥(𝑥 − 𝛼)(𝑥 − 1/𝛼) = 𝑥(𝑥2 + 𝒜𝑥 + 1)

and (up to a quadratic twist, which is harmless because we work on the Kummer line anyway)
by

𝑦2 = 𝑥(𝑥 − 1)(𝑥 − 𝜆).

These constants are determined as follows: let (𝐴 ∶ 𝐵) be the dual coordinates of the
canonical 2-isogenous curve (we will only need their square). We have

𝐴2 = 𝑎2 + 𝑏2, 𝐵2 = 𝑎2 − 𝑏2,(1)

𝛼 = 𝐴2/𝐵2 = (𝑎2 + 𝑏2)/(𝑎2 − 𝑏2),(2)

𝜆 = 𝛼2 = 𝐴4/𝐵4 = (𝑎2 + 𝑏2)2/(𝑎2 − 𝑏2)2,(3)

𝒜 = −(𝛼 + 1/𝛼) = −(𝛼2 + 1)/𝛼 = −(𝐴4 + 𝐵4)/(𝐴2𝐵2) = −2(𝑎4 + 𝑏4)/(𝑎4 − 𝑏4),
(4)

(𝒜 + 2)/4 = −𝑏4/(𝑎4 − 𝑏4).(5)

Conversely, from 𝒜, we can recover (𝑎 ∶ 𝑏) via

𝛼 + 1/𝛼 = −𝒜,(6)

𝐴2/𝐵2 = 𝛼,(7)

𝑎2 = 𝐴2 + 𝐵2, 𝑏2 = 𝐴2 − 𝐵2, (𝑎2 ∶ 𝑏2) = (𝛼 + 1 ∶ 𝛼 − 1).(8)

We note that if (𝑎 ∶ 𝑏) is a solution, then (𝑎 ∶ 𝜁𝑏) also with 𝜁 ∈ 𝜇4, these correspond to
different theta structures.

With these constants defined, we can now explain how to convert the points. If𝑃 = (𝑥 ∶ 𝑧)
in Montgomery coordinates, then

(9) (𝜃0(𝑃) ∶ 𝜃1(𝑃)) = (𝑎(𝑥 − 𝑧) ∶ 𝑏(𝑥 + 𝑧)).

Conversely, if 𝑃 = (𝜃0 ∶ 𝜃1), then in Montgomery coordinates

(10) (𝑥(𝑃) ∶ 𝑧(𝑃)) = (𝑎𝜃1 + 𝑏𝜃0 ∶ 𝑎𝜃1 − 𝑏𝜃0).

On the theta model 0𝐸 = (𝑎 ∶ 𝑏), we have a canonical basis of the 2-torsion given by
𝑇1 = (𝑎 ∶ −𝑏) and 𝑇2 = (𝑏 ∶ 𝑎). We have a canonical basis of the 4-torsion given by
𝑇′

1 = (1 ∶ 0) above 𝑇1 and 𝑇′
2 = (1 ∶ 1) above 𝑇2. The map above sends 𝑇1 to (0 ∶ 1) in the

Montgomery model, 𝑇′
1 to (1 ∶ 1), 𝑇2 to (𝐴2 ∶ 𝐵2), 𝑇′

2 to (𝑎 + 𝑏 ∶ 𝑎 − 𝑏).
So conversely, given a Montgomery curve, the canonical point 𝑇′ = (1 ∶ 1) of 4-torsion

above the 2-torsion point 𝑇 = (0 ∶ 1) and a second point 𝑇" = (𝑟 ∶ 𝑠) above another point
of 2-torsion, then the theta null point (𝑎 ∶ 𝑏) induced by the basis (𝑇′, 𝑇") of the 4-torsion
is given by (𝑟 + 𝑠 ∶ 𝑟 − 𝑠).

For the case of a general elliptic curve 𝐸 with a basis (𝑇′, 𝑇") of the 4-torsion, we first
convert 𝐸 to a Montgomery model by sending 𝑇′ to (1 ∶ 1) and 𝑇 = 2𝑇′ to (0 ∶ 1), the map
is then 𝑥 ↦ (𝑥 − 𝑥(𝑇))/(𝑥(𝑇′) − 𝑥(𝑇)). Then we apply the above formula to the image of
𝑇".
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The alternative Montgomery model. When we have a theta model, we can also introduce the
dual theta coordinates

(𝜃′
0 ∶ 𝜃′

1) = (𝜃0 + 𝜃1 ∶ 𝜃0 − 𝜃1),

in particular the dual theta null point is given by (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏). We can
construct another Montgomery model by replacing in the above formula (𝑎, 𝑏, 𝜃0, 𝜃1) by
(𝑎′, 𝑏′, 𝜃′

0, 𝜃′
1).

Plugging in this different model the equations expressing (𝑎′, 𝑏′, 𝜃′
0, 𝜃′

1) in terms of
(𝑎, 𝑏, 𝜃0, 𝜃1), we obtain alternative formulas:

𝐴′2 = 𝑎′2 + 𝑏′2 = 2(𝑎2 + 𝑏2), 𝐵′2 = 𝑎′2 − 𝑏′2 = 4𝑎𝑏,(11)

𝛼′ = 𝐴′2/𝐵′2 = (𝑎2 + 𝑏2)/(2𝑎𝑏), 𝜆′ = 𝛼′2,(12)

𝒜 ′ = −(𝛼′ + 1/𝛼′) = −(𝑎4 + 6𝑎2𝑏2 + 𝑏4)/(2(𝑎3𝑏 + 𝑎𝑏3)),(13)
𝑃 = (𝑥 ∶ 𝑧) ↦ (𝜃0(𝑃), 𝜃1(𝑃)) = (𝑎𝑥 − 𝑏𝑧 ∶ 𝑏𝑥 − 𝑎𝑧),(14)
(𝜃0, 𝜃1) ↦ (𝑥(𝑃) ∶ 𝑧(𝑃)) = (𝑎𝜃0 − 𝑏𝜃1 ∶ 𝑏𝜃0 − 𝑎𝜃1).(15)

4. Scalar multiplication on Kummer lines

4.1. Standard arithmetic in the Montgomery and theta models. Let us first recall the
standard formulas in the theta and Montgomery models.

Differential additions in theta coordinates are computed as follow, using [Rob23a, § 5,
§ 6]. Let (𝑎 ∶ 𝑏) be the neutral point, and (𝐴 ∶ 𝐵) as usual: (𝐴2 ∶ 𝐵2) = (𝑎2 + 𝑏2 ∶ 𝑎2 − 𝑏2).
Let (𝑋𝑋𝑃 ∶ 𝑍𝑍𝑃) = (𝑋2

𝑃 + 𝑍2
𝑃 ∶ 𝑋2

𝑃 − 𝑍2
𝑃), (𝑋𝑋𝑄 ∶ 𝑍𝑍𝑄) = (𝑋2

𝑄 + 𝑍2
𝑄 ∶ 𝑋2

𝑄 − 𝑍2
𝑄),

(𝑈 ∶ 𝑉) = (𝐵2𝑋𝑋𝑃𝑋𝑋𝑄 ∶ 𝐴2𝑍𝑍𝑃𝑍𝑍𝑄), (𝑋(𝑃+𝑄) ∶ 𝑍(𝑃+𝑄)) = (𝑍(𝑃−𝑄)(𝑈+𝑉) ∶
𝑋(𝑃 − 𝑄)(𝑈 − 𝑉)). Applying this to 𝑃 = 𝑄 gives the doubling.

It is easy to extend these formula to the different twisted variant of the theta model.
In the Montgomery model, the usual differential addition is given as follow: (𝑈1 ∶ 𝑈2) =

(𝑋𝑃 + 𝑍𝑃 ∶ 𝑋𝑃 − 𝑍𝑃), (𝑈3 ∶ 𝑈4) = (𝑋𝑄 + 𝑍𝑄 ∶ 𝑋𝑄 − 𝑍𝑄), (𝑋(𝑃 + 𝑄) ∶ 𝑍(𝑃 + 𝑄)) =
(𝑍(𝑃 − 𝑄)(𝑈1𝑈4 + 𝑈2𝑈3)2 ∶ 𝑋(𝑃 − 𝑄)(𝑈1𝑈4 − 𝑈2𝑈3)2).

We cannot apply this for doubling however, because the neutral point in Montgomery is
(1 ∶ 0) so we get a division by zero. For doubling we instead use: (𝑈1 ∶ 𝑈2) = (𝑋𝑃 + 𝑍𝑃 ∶
𝑋𝑃 − 𝑍𝑃), 𝑈3 = (𝑈2

1 − 𝑈2
2), (𝑋(2𝑃) ∶ 𝑍(2𝑃)) = (𝑈2

1𝑈2
2 ∶ 𝑈3(𝑈2

2 + (𝒜 + 2)/4𝑈3). If
𝒜 = (A ∶ C), the last line becomes (𝑋(2𝑃) ∶ 𝑍(2𝑃)) = (𝑈2

1𝑈2
2𝑘2 ∶ 𝑈3(𝑈2

2𝑘2 + 𝑘1𝑈3)
with (𝑘1 ∶ 𝑘2) = (A + 2C ∶ 4C).

4.2. Hybrid arithmetic. From Section 3.3, if we work in 𝜃𝑡𝑤′ but use the doubling formula
in Montgomery to compute 𝑃 → 2𝑃 instead of the ones of the twisted theta model, we
actually obtain 2(𝑃 + 𝑇2) + 𝑇2 = 2𝑃 + 𝑇2 = 2𝑃 + (1 ∶ 0) in the 𝜃𝑡𝑤′ model. We can thus
compute a translated doubling 2𝑃 + 𝑇2 in 4𝑆 + 4𝑚0 (4𝑆 + 2𝑚0 if we normalize the curve
constants), which is interesting if 𝑆 < 𝑀 and 𝑚0 is small. We are off by a translation by the
point of 2-torsion 𝑇2, but this is easily adjusted to when doing a scalar multiplication by the
Montgomery ladder: this does not affect doublings, and for differential additions we just
need to track if the base point is 𝑃 or 𝑃 + 𝑇2.

More generally, given 𝑃, 𝑄, 𝑃 − 𝑄 + 𝑇2, we can compute 𝑃 + 𝑄 + 𝑇2 as follow: 𝑡 =
(𝑥𝑃 + 𝑧𝑃)(𝑥𝑄 + 𝑧𝑄)/(𝐴2 + 𝐵2), 𝑢 = (𝑥𝑃 − 𝑧𝑃)(𝑥𝑄 − 𝑧𝑄)/(𝐴2 − 𝐵2), (𝑃 + 𝑄 + 𝑇2) =
((𝑡 + 𝑢)2/𝑥(𝑃 − 𝑄 + 𝑇2) ∶ (𝑡 − 𝑢)2/𝑧(𝑃 − 𝑄 + 𝑇2)). This costs 2𝑆 + 4𝑀 + 2𝑚0, −1𝑚0
if the constants are normalised, −1𝑀 if the base point 𝑃 − 𝑄 + 𝑇2 is normalised.
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Applying the formula to 𝑃 = 𝑄, we get the (translated) doubling formula: 𝑡 = (𝑥𝑃 +
𝑧𝑃)2/(𝐴2 + 𝐵2), 𝑢 = (𝑥𝑃 − 𝑧𝑃)2/(𝐴2 − 𝐵2), (2𝑃 + 𝑇2) = ((𝑡 + 𝑢)2/𝐴2 ∶ (𝑡 − 𝑢)2/𝐵2),
which costs 4𝑆 + 4𝑚0 (−2𝑚0 if the constants are normalised).

Using these formula, we get the hybrid ladder whose cost is 3𝑀 + 6𝑆 + 2𝑚0.
Likewise, if working in 𝜃′𝑡𝑤′ we use the doubling formula in 𝑀 to compute 𝑃 → 2𝑃

instead of the ones of the twisted thetamodel, we actually obtain 2(𝑃+𝑇1)+𝑇1 = 2𝑃+𝑇1 =
2𝑃 + (1 ∶ 0) in the 𝜃𝑡𝑤′ model. The doubling formula on 𝑀 requires 𝒜 = −𝛼 − 1/𝛼 so that
𝑀 ∶ 𝑦2 = 𝑥(𝑥2+𝒜𝑥+1); more precisely it requires (𝒜+2 ∶ 4) = ((𝑎2

0−𝑏2
0)2 ∶ −(𝑎2

0+𝑏2
0)2)

so can be computed in 2𝑆 + 2𝑎 from (𝑎2
0 ∶ 𝑏2

0).

5. 2-isogenies between Kummer lines

5.1. Standard isogeny formulas. In the Montgomery model, for an isogeny with kernel
𝑇2 = (𝐴2 ∶ 𝐵2) ≠ 𝑇1 = (0 ∶ 1), the formula is given by [Ren18] (𝒜 ′ ∶ 1) = (2(𝐵4−2𝐴4) ∶
𝐵4), (𝒜 ′ + 2 ∶ 4) = (𝐵4 − 𝐴4 ∶ 𝐵4), and images are given by (𝑋 ∶ 𝑍) ↦ (𝑋(𝑋𝐴2 − 𝑍𝐵2) ∶
𝑍(𝑋𝐵2 − 𝑍𝐴2)).

In the theta model, the isogeny with kernel 𝑇1 = (𝑎 ∶ −𝑏) can be written as follow
[Rob23a, § 15.1]. Let 𝑇 = (𝑟 ∶ 𝑠) ∈ 𝐸0 be a 8-torsion point above the 4-torsion point
𝑅1 = (1 ∶ 0) which itself is above the 2-torsion point 𝑇1 = (−𝑎0 ∶ 𝑏0). Then (𝐴 ∶ 𝐵) =
(𝑟2 + 𝑠2 ∶ 𝑟2 − 𝑠2) so (𝑎2 ∶ 𝑏2) = (𝑟2 ∶ 𝑠2). And the isogeny 𝜃𝐸1

→ 𝜃′
𝐸2

is given by
(𝑥 ∶ 𝑧) ↦ (𝐵(𝑥2 + 𝑧2) ∶ 𝐴(𝑥2 − 𝑧2)); we need an Hadamard transform to obtain the
coordinates in 𝜃𝐸1

.
From these isogeny formula, we can recover isogeny formula on our twisted models and

also on the Montgomery model from applying base change. We explain a more general
method in Section 5.2.

Let us show how to use the second method, i.e. by base change. To express the isogeny 𝑓 ∶
𝐸1 → 𝐸2 in the models 𝜃′𝑡𝑤′

𝐸1
→ 𝜃′𝑡𝑤′

𝐸2
corresponds to writing the isogeny in the models

𝜃2
𝐸0

→ 𝜃2
𝐸1
. By the above description, the isogeny 𝑔 ∶ 𝐸0 → 𝐸1 can be written as follow. Let

𝑇 = (𝑟 ∶ 𝑠) ∈ 𝐸0 be a 8-torsion point above the 4-torsion point (1 ∶ 0) which itself is above
the 2-torsion point (−𝑎0 ∶ 𝑏0). Then (𝑎′ ∶ 𝑏′) = (𝑟2 + 𝑠2 ∶ 𝑟2 − 𝑠2) so (𝑎 ∶ 𝑏) = (𝑟2 ∶ 𝑠2).
And the isogeny 𝜃𝐸0

→ 𝜃′
𝐸1

is given by (𝑥 ∶ 𝑧) ↦ (𝑏′(𝑥2 + 𝑧2) ∶ 𝑎′(𝑥2 − 𝑧2)) so we need
an Hadamard transform to obtain the coordinates in 𝜃𝐸1

.
We can use this to describe the isogeny 𝜃2

𝐸0
→ 𝜃2

𝐸1
. The neutral point on 𝐸1 described

by the 𝜃2
𝐸0

= 𝜃′𝑡𝑤′
𝐸1

is (𝑎2
0 ∶ 𝑏2

0). The point 𝑇 above corresponds to a 4-torsion point
𝑇 = (𝑟2 ∶ 𝑠2) on 𝜃2

𝐸0
above the two torsion point (1 ∶ 0) (we can check that in 𝜃′𝑡𝑤′

𝐸1
(1 ∶ 0)

corresponds to the 2-torsion point (−𝑎 ∶ 𝑏) in 𝜃𝐸1
).

Then we can compute (𝑎 ∶ 𝑏) = (𝑟2 ∶ 𝑠2), (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏) and the neutral
point of 𝐸2 in the 𝜃′𝑡𝑤′

𝐸2
= 𝜃2

𝐸1
model is (𝑎2 ∶ 𝑏2) can be computed in 2𝑆, 2𝑆 + 2𝑎 if we

include (𝑎′ ∶ 𝑏′) which will be needed for images.
Let 𝑃 = (𝑥2 ∶ 𝑧2) ∈ 𝐸1 in the 𝜃2

𝐸0
model. The image of 𝑃 in 𝐸2 in the 𝜃2

𝐸1
model can be

computed as follows: compute (𝑏′(𝑥2 + 𝑧2) ∶ 𝑎′(𝑥2 − 𝑧2)) apply the Hadamard transform
and then square the coordinates; this costs 2𝑆 + 2𝑀 + 4𝑎.

This gives the isogeny algorithm in the 𝜃2 model, it is also well known how to compute
doublings in this model, see [BRS23] for more details.

A similar approach gives formula in the 𝜃𝑡𝑤′ model. In the 𝜃𝑡𝑤′ model, the isogeny 𝑓
with kernel by 𝑇1 is given by (𝑥 ∶ 𝑧) ↦ ((𝑥 + 𝑧)2/𝑎2 ∶ (𝑥 − 𝑧)2/𝑏2). The neutral point of
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𝐸′ is then (𝑎2 ∶ 𝑏2), 𝑇2, 𝑇3 are mapped to (𝑏2 ∶ 𝑎2), 𝑅1 is mapped to (1 ∶ 0), 𝑅′
1 to (0 ∶ 1),

𝑅2, 𝑅′
2 to (1 ∶ 1). The dual isogeny ̃𝑓 is given by (𝑥 ∶ 𝑧) ↦ ((𝑥 + 𝑧)2/𝐴2 ∶ (𝑥 − 𝑧)2/𝐵2).

And the isogeny with kernel 𝑇2 is given by 𝑔 ∶ (𝑥 ∶ 𝑧) ↦ (((𝑥 + 𝑧)/𝑎 + (𝑥 − 𝑧)/𝑏)2 ∶
((𝑥+𝑧)/𝑎−(𝑥−𝑧)/𝑏)2).We recall that (𝑎 ∶ 𝑏) can be recovered from𝑅2.The neutral point is
then 𝑔(0) = 𝑔(𝑇2) = (𝑎′2 ∶ 𝑏′2), 𝑔(𝑇1) = 𝑔(𝑇3) = (𝑏′2 ∶ 𝑎′2), 𝑔(𝑅1) = 𝑔(𝑅′

1) = (1 ∶ 1),
𝑔(𝑅2) = (1 ∶ 0), 𝑔(𝑅′

2) = (0 ∶ 1).

5.2. A general framework to derive 2-isogenies between Kummer lines. Now we want to
extend these classical formulas to more general models.

In dimension one, we can work on any model of a Kummer line by specifying its ramifi-
cation (+ the neutral point). From this data it is easy to recover the action of the theta group
𝐺(20𝐸), and hence compute formula for 2-isogenies between two models. This also allows
to obtain doubling formula, and by considering the isogeny: (𝑃1, 𝑃2) ↦ (𝑃1 + 𝑃2, 𝑃1 − 𝑃2)
differential addition formula.

If𝑇 is a rational two torsion point on ourmodel, we can consider the action 𝑔𝑇 of a rational
element 𝑔𝑇 ∈ 𝐺(20𝐸) in the theta group above 𝑇 on the sections Γ(𝐸, 20𝐸) = ⟨𝑋, 𝑍⟩.
This action is irreducible and faithful, so 𝑔𝑇 is completely determined by this action. Then
𝜆 = 𝑔2

𝑇 ∈ 𝔾𝑚 is an element, and its class in 𝑘∗/𝑘∗,2 does not depend on the representative,
only on 𝑇. A small computation shows that this is exactly the (non reduced) Tate pairing
𝑒𝑇,2(𝑇, 𝑇). The symmetric elements above 𝑇 are of order exactly 2, so 𝑒𝑇,2(𝑇, 𝑇) is trivial
precisely when these symmetric elements are rational.

We remark that the translation by 𝑇 is given by a projective homography, which can be
determined by the fact that it maps 0 ↦ 𝑇, 𝑇 ↦ 0, 𝑇2 ↦ 𝑇3, 𝑇3 ↦ 𝑇2; and we can take for
𝑔𝑇 any rational affine lift of this projective translation.

By an homography, we can always send 0𝐸 to (1 ∶ 0) and 𝑇 to (0 ∶ 1). An element 𝑔𝑇
can be given in the form (𝑋 ∶ 𝑍) ↦ (𝑍 ∶ 𝜆𝑋), so if 𝑇2 = (𝑥2 ∶ 𝑧2), 𝑇3 = (𝑥3 ∶ 𝑧3), so
𝜆 = 𝑥3𝑧3/𝑥2𝑧2, this is well defined in 𝑘∗/𝑘∗,2. Notice that𝑇2, 𝑇3 are projectively determined
only up to an homotety, but this does not change the class of 𝜆.

We can also describe the two points of 4-torsion above 𝑇 (rember that we are on the
Kummer, so [𝑇′ + 𝑇] = [𝑇′] by solving the equation 𝑇′ + 𝑇 = 𝑇′.

From all this discussion, it follows that 𝜆 = 1 iff the symmetric elements ±𝑔𝑇 are rational
iff 𝑒𝑇,2(𝑇, 𝑇) = 1, iff the curve is of Montgomery type when 𝑇 is sent to (0 ∶ 1) and 0𝐸 to
infinity, iff (still if these two points are sent likewise) 𝑇′ = (1 ∶ 1) is a point of 4-torsion
above 𝑇, iff there are sections 𝑋, 𝑍 of 2(0𝐸) such that 𝑔𝑇(𝑋, 𝑍) = (𝑍, 𝑋) iff (by Hadamard)
there are sections such that 𝑔𝑇(𝑋, 𝑍) = (−𝑋, 𝑍), iff the quotient 𝐸/𝑇 is of Legendre type.
In particular, if 𝑇 is of Montgomery type and the full 2-torsion is rational, then 𝐸/𝑇 has
full 2-torsion and the generator of the dual isogeny is of Montgomery type, which is a nice
symmetric situation.

Anyway, to study the 2-isogeny with kernel 𝑇, 𝑓 ∶ 𝐸 → 𝐸′ = 𝐸/𝑇, we need to descend the
divisor 4(0𝐸) to 2(0𝐸′). Since the descent is symmetric, it is given by one of the symmetric
element 𝐻𝑇 ∈ 𝐺(4(0𝐸)) above 𝑇, and it is not hard to prove that it is the symmetric element
which is given by 𝐻𝑇 = ℎ⊗2

𝑇 where ±ℎ𝑇 is any of the two symmetric element above 𝑇 in
𝐺(2(0𝐸)). Although ℎ𝑇 may not be rational, if we have 𝑔𝑇 of type 𝜆, then by definition of 𝜆,
𝐻𝑇 = 𝑔⊗2

𝑇 /𝜆, so 𝐻𝑇 is always rational.
It follows that the elements of Γ(2(0𝐸′)) are the sections of Γ(4(0𝐸)) invariant by 𝐻𝑇.

Now since we only have (𝑋, 𝑍) ∈ Γ(2(0𝐸)) = Γ(2(0𝐸))+, we can only construct the even
elements (𝑋2, 𝑋𝑍, 𝑍2) ∈ Γ(4(0𝐸)+) (and these span the space of even elements, the rest of
Γ(4(0𝐸)) is obtained by adding the odd element 𝑌𝑍). Now take 𝑋, 𝑍 such that 𝑔𝑇.(𝑋, 𝑍) =
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(𝑍, 𝜆𝑋) as above, then 𝐻𝑇 = 𝑔⊗2
𝑇 /𝜆 acts on this basis by 𝐻𝑇.𝑋2 = 𝑍2/𝜆, 𝐻𝑇.𝑍2 =

𝜆𝑋2, 𝐻𝑇.𝑋𝑍 = 𝜆𝑋𝑍. Take a space (𝑈, 𝑉) of invariants under this action, and compute
the ramification of 𝐸′ by computing (𝑈, 𝑉) on 𝑇2, 𝑇3 and 𝑇′

1. This give a model of 𝐸′, then
eventually compose by an homography to make it of nice form. All this gives a very general
framework to compute formulas for 2-isogenies between different models of Kummer line.

The nicest case is when 𝑇 is of Montgomery type, ie 𝜆 = 1. If we put 𝑇 in position (0 ∶ 1)
and 0𝐸 to (1 ∶ 0), like in the Montgomery model, then 𝑔𝑇 is given by (𝑋, 𝑍) ↦ (𝑍, 𝑋). We
apply the Hadamard change of variable: (𝑋′, 𝑍′) = (𝑋 + 𝑍, 𝑋 − 𝑍). Via this change of
variable, the action of the symmetric 𝑔𝑇 is given by (𝑋′, 𝑍′) ↦ (𝑋′, −𝑍′), so we can take
𝑈 = 𝑋′2, 𝑉 = 𝑍′2. This explain why on a Montgomery point, the 2-isogeny images is given
by two squares (followed by a nice homography to make 𝐸′ still of Montgomery type).

There are two ways to ensure that 𝐸′ is still of Montgomery type. The first one is to ask for
𝑇2, 𝑇3 to be rational; this was handled above. The second one is to ask for a rational point of
8-torsion 𝑇"1 above 𝑇′

1 = (1 ∶ 1), then 𝑓 (𝑇"1) gives a 4-torsion point above 𝑓 (𝑇′
1), hence

𝑓 (𝑇′
1) is still of Montgomery type. Following the above strategy, we get the following isogeny

formula: (𝑋 ∶ 𝑍) ↦ (𝛾(𝑋 − 𝑍)2 ∶ 4𝑋𝑍), with 𝛾 = (4𝑟𝑠 ∶ (𝑟 − 𝑠)2) where 𝑇"1 = (𝑟 ∶ 𝑠).
(Recall that 4𝑋𝑍 = (𝑋 + 𝑍)2 − (𝑋 − 𝑍)2). We have 𝑓 (0) = 𝑓 (𝑇1) = (1 ∶ 0), 𝑓 (𝑇2) =
𝑓 (𝑇3) = (1 ∶ −𝛾), 𝑓 (𝑅1) = (0 ∶ 1), 𝑓 (𝑅2) = (−𝛾 ∶ 1). We recover formulas from [DJP14].

The reader can check thatwe can recover all formulas fromSection 5.1 thisway. From these,
we can recover the standard doubling addition and differential addition via Montgomery’s
formula, they cost 2𝑀+2𝑆+2𝑚0 and 4𝑀+2𝑆 respectively.These cost drop to 2𝑀+2𝑆+1𝑚0
if we normalize the constants to have 𝐶 = 1 and to 3𝑀 +2𝑆 if the base point 𝑃 = (𝑋𝑃 ∶ 𝑍𝑃)
is normalised to have 𝑍𝑃 = 1.

Example 5.1. Let’s explain how to compute an isogeny from a theta model to a Montgomery
model when we do not have access to a 8-torsion point. From the theta null point (𝑎 ∶ 𝑏) of
𝐸1, we can compute (𝑎2 ∶ 𝑏2) the theta null point of 𝐸2 in the 𝜃2

𝐸1
= 𝜃′𝑡𝑤′

𝐸2
model, and the

isogeny map is (𝑥 ∶ 𝑧) ↦ (𝑥2 ∶ 𝑧2). Translating by 𝑇2 = (1 ∶ 0) we obtain the coordinates
on the Montgomery model of 𝐸2, with 𝒜2 = −𝛼2 − 1/𝛼2, 𝛼2 = 𝑏2/𝑎2.

5.3. Translated isogenies. There are two ways to obtain translated isogeny formulas. The
first one is to remark that computing isogenies in the 𝜃𝑡𝑤′ model (or 𝜃′𝑡𝑤′ model) is slightly
faster than in Montgomery, but doubling is faster in Montgomery. Then we can apply the
same strategy as in Section 4.2 and work in (say) the Montgomery model but apply the
isogeny formula from 𝜃𝑡𝑤′, which from the point of view of the Montgomery model looks
like a translated isogeny.

The second way is to apply the method of Section 5.2, find invariant sections, look at the
image ramification, but not translate back to send the isogeneous neutral point to infinity.
Since we skip the translation, we get faster formula, but if we work in the new codomain as
if the point at infinity was our neutral point, we are off by translation by some point. This
method is more generic (it applies to all models), but of course give back the same formula
as the first model. We will illustrate both. As an aside, translated isogenies allows to recover
translated doublings too (by applying the translated dual isogeny). This gives an alternative
way to recover the formula from Section 4.2 directly on a Montgomery model, without going
through the change of variable to the twisted theta model.

Let’s first look at what happens in the Montgomery model where we use the theta formula
for images, using the model 𝜃′𝑡𝑤′. As explained above, the point (𝑎2

0 ∶ 𝑏2
0) corresponding

to the neutral point in the 𝜃′𝑡𝑤′ model now corresponds to a 2-torsion point 𝑇1 in 𝑀. We
can represent 𝑀 by this 2-torsion point, for doubling we need (𝒜 + 2 ∶ 4) = ((𝑎2

0 − 𝑏2
0)2 ∶
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−(𝑎2
0 + 𝑏2

0)2) which we can recover in 2𝑆 from 𝑇1. The equation is given by 𝑀 ∶ 𝑦2 =
𝑥(𝑥 − 𝛼)(𝑥 − 1/𝛼) = 𝑥(𝑥2 + 𝒜𝑥 + 1) with 𝛼 = 𝑏2

0/𝑎2
0.

We want to compute the isogeny 𝐸1 → 𝐸2 with kernel 𝑇1. Here 𝐸1 is in a Montgomery
model where the full 2-torsion is rational, and we quotient by a 2-torsion point which is
different from (0 ∶ 1), so that the four torsion point (1 ∶ 1) in 𝐸1 is still of four torsion in 𝐸2
and 𝐸2 still has a Montgomery model.

But we want to represent 𝐸2 via a two torsion point like we did for 𝐸1 (more precisely the
two torsion point giving the next kernel). So we need to assume that we have a 4-torsion
point 𝑇 = (𝑟2 ∶ 𝑠2) above 𝑇1. Then 𝑓 (𝑇) = 𝑇′

1 ≔ (𝑟4 ∶ 𝑠4) on 𝐸2 is the two torsion point
we use to represent 𝐸2 and is computed in 2𝑆. This point 𝑇′

1 will be the kernel of our next
isogeny.

From theMontgomery point of view, given a point𝑃 = (𝑥2 ∶ 𝑧2), then computing (𝑏′(𝑥2+
𝑧2) ∶ 𝑎′(𝑥2 − 𝑧2)) followed by the Hadamard transform then squaring the coordinates
corresponds to computing 𝑓 (𝑃) + 𝑇′

1 on 𝐸2 and can be done in 2𝑆 + 2𝑀 + 4𝑎. Since 𝑇′
1 is

the kernel of the next isogeny, it does not matter that we translate the image, except at the
very last step.

In other words: if on a Montgomery curve we have a point of four torsion 𝑇 which does
lies above a two torsion point 𝑇1 ≠ (0 ∶ 1), then if 𝑓 is the isogeny with kernel 𝑇1 we can use
the coordinates of 𝑇 to compute 𝑃 ↦ 𝑓 (𝑃) + 𝑓 (𝑇) in 2𝑀 + 2𝑆 + 4𝑎 compared to 4𝑀 + 4𝑎
for computing 𝑓 (𝑃). And 𝑓 (𝑇) can be computed in 2𝑆.

For a 2𝑛-isogeny, if we select 𝑇 to be the point giving the next kernel, this extra translation
in images does not matter (except at the last step).

Now, we reexplain how to get formula by working on the Montgomery model directly,
but using the methods of Section 5.2. Let’s look at the isogeny 𝑓 ∶ 𝐸 → 𝐸/𝑇1, we have seen
that invariant sections are given by 𝑈 = (𝑋 + 𝑍)2, 𝑉 = (𝑋 − 𝑍)2. Let’s look at the images
of the ramification and 4-torsion points under 𝐺 = (𝑈, 𝑉). First we apply the Hadamard
transform: 𝐻(0𝐸 = (1 ∶ 0)) = (1 ∶ 1), 𝐻(𝑇1 = (0 ∶ 1)) = (−1 ∶ 1), 𝐻(𝑇2 = (𝐴2 ∶
𝐵2)) = (𝑎2 ∶ 𝑏2), 𝐻(𝑇3 = (𝐵2 ∶ 𝐴2)) = (−𝑎2 ∶ 𝑏2), 𝐻(𝑅1 = (1 ∶ 1)) = (1 ∶ 0),
𝐻(𝑅′

1 = (−1 ∶ 1)) = (0 ∶ 1), 𝐻(𝑅2 = (𝑎′ ∶ 𝑏′)) = (𝑎 ∶ 𝑏), 𝐻(𝑅′
2 = (𝑏′ ∶ 𝑎′)) = (−𝑎 ∶ 𝑏).

It follows that 𝐺(0𝐸) = 𝑔(𝑇1) = (1 ∶ 1), 𝐺(𝑇2) = 𝑔(𝑇3) = (𝑎4 ∶ 𝑏4), 𝐺(𝑅1) = (1 ∶ 0),
𝐺(𝑅′

1) = 𝑔(𝑅1 + 𝑇2) = (0 ∶ 1), 𝐺(𝑅2) = 𝑔(𝑅′
2) = (𝑎2 ∶ 𝑏2). The ramification on the

codomain is (1 ∶ 1), (𝑎4 ∶ 𝑏4), (1 ∶ 0), (0 ∶ 1), given as the image of 0𝐸, 𝑇2, 𝑅1, 𝑅′
1. We can

scale it to be invariant by (𝑋 ∶ 𝑍) ↦ (𝑍 ∶ 𝑋) as in the Montgomery form, the scaling is
(𝑋 ∶ 𝑍) ↦ (𝑏2𝑋 ∶ 𝑎2𝑍) and the ramification is then (𝑏2 ∶ 𝑎2), (𝑎2 ∶ 𝑏2), (1 ∶ 0), (0 ∶ 1).
However, the point 0𝐸 is sent to 𝑇′

2 ≔ (𝑏2 ∶ 𝑎2). So in summary, if 𝐻 is the Hadamard
transform and 𝑆 the squaring (𝑋 ∶ 𝑍) ↦ (𝑋2 ∶ 𝑍2) transform, and 𝐶 the scaling transform
above, we have that 𝐶 ∘ 𝑆 ∘ 𝐻 is an isogeny with kernel 𝑇1 between our Montgomery curve,
and a curve 𝑀″ that has the same ramification as a Montgomery curve 𝑀′ except the neutral
point is 𝑇′

2 = (𝑏2 ∶ 𝑎2). So the full isogeny, if we want to work on 𝑀′ rather than 𝑀″, is
given by translating by 𝑇′

2; in other word 𝐶 ∘ 𝑆 ∘ 𝐻 ∶ 𝑀 → 𝑀′ gives the isogeny translated
by 𝑇′

2 = 𝑓 (𝑅1).
In summary, applying the above method, we get the following formulas.
The (translated) isogeny 𝑓 ∶ 𝐸 → 𝐸/𝑇1 is given by, if 𝑃 = (𝑥 ∶ 𝑧), 𝑓 (𝑃 + 𝑅1) =

((𝑥 + 𝑧)2/𝑎2 ∶ (𝑥 − 𝑧)2/𝑏2), with (𝑎2 ∶ 𝑏2) = (𝐴2 + 𝐵2 ∶ 𝐴2 − 𝐵2). Notice that 𝐸′ = 𝐸/𝑇1
is still a Montgomery curve with full rational 2-torsion, so there is a perfect symmetry
between 𝐸 and 𝐸′. We have 𝑇′

2 = 𝑓 (𝑅1) = (𝑏2 ∶ 𝑎2), 𝑓 (0) = 𝑓 (𝑇1) = (1 ∶ 0) = 0,
𝑓 (𝑇2) = 𝑓 (𝑇3) = (0 ∶ 1) = 𝑇′

1, 𝑓 (𝑅1) = 𝑇′
2 = (𝑏2 ∶ 𝑎2), 𝑓 (𝑅2) = (𝑎2 ∶ 𝑏2) = 𝑇′

3.

131



Improving the arithmetic of Kummer lines 13

The (translated) dual isogeny with kernel 𝑇′
1 is given by ̃𝑓 (𝑃 + 𝑅′

1) = ̃𝑓 (𝑃) + 𝑇2 =
((𝑥 + 𝑧)2/𝐴2 ∶ (𝑥 − 𝑧)2/𝐵2). Composing ̃𝑓 ∘ 𝑓 we recover the (translated) doubling formula
𝑃 ↦ 2𝑃 + 𝑇2 as above. We have ̃𝑓 (0) = ̃𝑓 (𝑇′

1) = (1 ∶ 0), ̃𝑓 (𝑇′
2) = ̃𝑓 (𝑇′

3) = 𝑇1, ̃𝑓 (𝑅′
1) =

𝑇2 = (𝐴2 ∶ 𝐵2), ̃𝑓 (𝑅′
2) = (𝐵2 ∶ 𝐴2) = 𝑇3.

Now, let 𝑔 ∶ 𝐸 → 𝐸2 = 𝐸/𝑇2 be the isogeny with kernel 𝑇2. Since we want 𝐸2 to be
Montgomery with full rational two torsion, we need a point 𝑆2 = (𝑎′ ∶ 𝑏′) above 𝑇2.

The isogeny 𝑔 is then given by 𝑔(𝑃 + 𝑆2) = (((𝑥 + 𝑧)/𝑎 + (𝑥 − 𝑧)/𝑏)2 ∶ ((𝑥 + 𝑧)/𝑎 −
(𝑥 − 𝑧)/𝑏)2), with (𝑎 ∶ 𝑏) = (𝑎′ + 𝑏′ ∶ 𝑎′ − 𝑏′). (Remark that (𝐴2 ∶ 𝐵2) = (𝑎2 + 𝑏2 ∶
𝑎2 − 𝑏2) = (𝑎′2 + 𝑏′2 ∶ 2𝑎′𝑏′)). The curve 𝐸2 is represented by its two torsion point
𝑇′

2 = 𝑔(𝑆2) = (𝑎′2 ∶ 𝑏′2). The codomain computation costs 2𝑆, and a translated image
2𝑆 + 2𝑚0.

We have 𝑔(0) = 𝑔(𝑇2) = 0, 𝑔(𝑇1) = 𝑔(𝑇3) = 𝑇′
1 = (0 ∶ 1), 𝑔(𝑅1) = 𝑔(𝑅2) =

𝑅′
2 = (1 ∶ −1), 𝑔(𝑅1 + 𝑆2) = 𝑅′

1 = (1 ∶ 1), 𝑔(𝑆2) = 𝑇′
2 = (𝑎′2 ∶ 𝑏′2), 𝑔(𝑆2 + 𝑇1) =

𝑔(𝑆2 + 𝑇3) = (𝑏′2 ∶ 𝑎′2) = 𝑇′
3. The dual isogeny ̃𝑔 has kernel 𝑇′

1 = (0 ∶ 1) and is given by
̃𝑔(𝑃) = (𝐵2(𝑥+𝑧)2 ∶ 4𝐴2𝑥𝑧). (Notice that 4𝑥𝑧 = (𝑥+𝑧)2 −(𝑥−𝑧)2 so ̃𝑔 can be computed

in 2𝑆 + 2𝑚0.) We have ̃𝑔(0) = ̃𝑔(𝑇′
1) = (1 ∶ 0), ̃𝑔(𝑇′

2) = ̃𝑔(𝑇′
3) = 𝑇2, ̃𝑔(𝑅′

1) = 𝑇3,
̃𝑔(𝑅′

2) = 𝑇1. The composition ̃𝑔 ∘ 𝑔 gives an alternative formula to compute 𝑃 ↦ 2𝑃 + 𝑇2
in 4𝑆 + 2𝑚0.

5.4. Theta versus Montgomery. To summarize, the complexities for computing isogenies
in the theta model are as follows:

(1) 2𝑆 + 2𝑎 for the codomain
(2) 2𝑆 + 2𝑀 + 4𝑎 for an image
(3) 4𝑆 + 4𝑀 + 8𝑎 for doubling

The input is the theta null point (𝑎 ∶ 𝑏), which implicitly contains the 2-torsion point (−𝑎 ∶ 𝑏)
used for our kernel; and the images computations needs (some constants computed during)
the codomain.

In the Montgomery model, the costs are, using [CLN16; CH17; Ren18]:
(1) 2𝑆 + 1𝑎 for the codomain
(2) 4𝑀 + 4𝑎 for an image (using a precomputation of 2𝑎)
(3) 2𝑆 + 4𝑀 + 4𝑎 for doubling

Here the input is a two torsion point (different from (0 ∶ 1)) giving the kernel (and implicitly
the curve); the image computation does not needs the codomain.

We see that the theta model is slightly faster then the Montgomery model except for
doublings. Using hybrid isogenies allows to combine the best of both models.

To sum up, we can, provided we have a point of 4-torsion 𝑇 above our kernel ⟨𝑇2⟩:
(1) Compute a representation of the codomain in 2𝑆. The representation is given by the

2-torsion point 𝑓 (𝑇) = 𝑇2, which is the kernel of the next isogeny.
If we need to compute doublings on the codomain, we need to add a 2𝑆 + 2𝑎

precomputation to compute (𝒜 + 2 ∶ 4), and if we need to compute images we need
to add a 2𝑎 precomputation (which is already done if we did the previous 2𝑆 + 2𝑎
precomputation needed for doublings).

(2) Compute “images” in 2𝑀 + 2𝑆 + 4𝑎.
(3) Compute “doublings” in 4𝑀 + 2𝑆 + 4𝑎.

The words “images” and “doublings” are in quotes because if we consider that we are on a
twisted theta models the “doublings” we compute are actually 2𝑃 + 𝑇2, while if we consider
that we are in the Montgomery model it is the images that are actually given by 𝑓 (𝑃) + 𝑇2.
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The images need some of the constants computed for the codomain. In both cases, this
translation is by an element of the next kernel, so does not affect the rest of the computation.

We conclude this with a discussion on 4-isogenies. On theMontgomerymodel, a 4-isogeny
can be computed in [CH17]:

(1) 4𝑆 + 5𝑎 for the codomain
(2) 6𝑀 + 2𝑆 + 6𝑎 for images.

Here the input for the codomain is given by the coordinates of a 4 torsion point 𝑇, and the
input for the images needs some of the constants for the codomain.

If the kernel is given by 𝐾 = ⟨𝑇⟩, we can also look at the cost of decomposing this 4-
isogeny as a 2-isogeny where we exploit the 4-torsion point followed by a standard 2-isogeny
formula in the Montgomery model:

(1) 4𝑆 + 3𝑎 for the codomain
(2) 6𝑀 + 2𝑆 + 8𝑎 for images.

It is probable (but I haven’t checked) that we actually obtain essentially the same formula
as the 4-isogeny algorithm above, except 2 of the additions needed for images could be
moved to a precomputation done in the codomain computation. So the standard 4-isogeny
formula can essentially be interpreted as alternating the 2𝑀 + 2𝑆 isogeny formula with the
4𝑀 isogeny formula. But if we have a 2𝑛-isogeny to compute, we might as well keep using
the 2𝑀 + 2𝑆 formula, except at the very end where we use the 4𝑀 formula to not be off
by translation by a point of 2-torsion (and we might not have a 4-torsion point available
anymore anyway).

Remark 5.2. Decomposing a 2𝑛-isogeny via 2-isogenies or 4-isogenies. While the above
formula for 2-isogenies in theMontgomerymodel are fun to look at, they are not really useful
in practice: it is better to decompose a 2𝑛-isogenies as a sequence of 4-isogenies rather than
as a sequence of 2-isogenies.The reason is that the decomposition algorithm is quasi-linear, if
we split into blocks of 2𝑚-isogenies, we gain a bit more than 𝑚 images and doublings because
of the quasi-linearity. Usually this is not interesting because a 2𝑚-isogeny costs 𝑂(2𝑚) to
compute, so is 2𝑚−1 more expansive than a 2-isogeny but 22 = 4 hits the sweet spot for
an optimal decomposition time. Once an isogeny is decomposed, for a 2𝑛-image, using the
slightly faster 2-isogeny images rather than 4-isogenies would be better however.

6. Time-Memory trade off for the arithmetic

I found these formula (first for the theta model) in December 2022, while working with
Barbulescu and Sarkis on models of Kummer lines.

6.1. Overview. Although the Montgomery ladder is very efficient, for fast scalar multiplica-
tion the twisted Edward model is often faster because it allows for a time/memory trade off
by using the window-NAF method to reduce the amount of additions.

However, when the scalar is a secret, these time/memory trade off are often susceptible
to side channel attacks, so although signing on Curve25519 is implemented in Edwards
coordinate, the DH key exchange uses the Montgomery ladder.

It might seem that a time/memory trade off is not possible on a Kummer line because
standard additions are not available. A way to precompute the Montgomery ladder was
presented in [OLHFR18]. When 𝑇2 is rational, we present a novel approach to precompute
the ladder that:

(1) does a precomputation of points 𝑃𝑖 = (𝑋𝑖 ∶ 𝑍𝑖) costing 2𝑆 + 1𝑚0 by bit, and
requiring to store two field coefficients by bit.
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(2) using this precomputation, the ladder then costs 2𝑆 + 1𝑚0 for doubling, and 4𝑀
for a differential addition by bit.

The total cost, including the precomputation, is thus of 4𝑆 + 4𝑀 + 2𝑚0, and further
scalar multiples with the same base point then cost 2𝑆 + 4𝑀 + 1𝑚0. Here it does not matter
whether 𝑃 = (𝑋𝑃 ∶ 𝑍𝑃) is normalised or not.

We stress that the scalar multiplication still uses a ladder approach, with one doubling and
one differential addition by bit, thus retaining the same side channel resistance as the standard
Montgomery ladder. (We recall that the Montgomery ladder without precomputation costs
5𝑀 + 4𝑆 + 1𝑚0 when the base point 𝑃 is normalised, and 6𝑀 + 4𝑆 + 1𝑚0 if 𝑃 is not
normalised.)

If we know that 𝑃 will be used several time (like for the first step of a DH key exchange),
we can increase the precomputation to normalise the points 𝑃𝑖 = (𝑋𝑖/𝑍𝑖 ∶ 1). This costs
one field division by bit, and reduces the storage to one field coefficient by bit. We can batch
the inversions, to replace the one division by bits by one global inversions and 3 + 1 = 4
multiplications by bit.

The precomputation is then one global inversion, and 4𝑀 + 2𝑆 + 1𝑚0 by bit (the storage
drops to one coefficient by bit).Themultiples𝑚.𝑃 then cost 2𝑆+3𝑀+1𝑚0 by bit, significantly
improving on the standard ladder.

Unfortunately, for Curve25519 the point 𝑇2 is not rational. But its 2-isogeneous curve is a
Montgomery curve with full rational 2-torsion, so by computing an isogeny at the beginning
and the end we can still use our novel time/memory trade off on Curve25519 (however,
unlike Curve25519, the curve constant on the isogeneous curve is not small, so we don’t gain
as much as if we had selected from the beginning a suitable curve with a small 𝑚0).

A similar algorithm works in higher dimension. For a Kummer surface the precom-
putation step costs one global inversion and 12𝑀 + 4𝑆 + 3𝑚0 by bits, and then a scalar
multiplication with the same base point costs 7𝑀+4𝑆+3𝑚0; compared to 7𝑀+12𝑆+9𝑚0
or 10𝑀 + 9𝑆 + 6𝑚0 for the standard ladder.

Now let us compare with the results of [OLHFR18]. Their idea is to use a right to left
Montgomery ladder rather than the usual left to right ladder. The right to left ladder always
involve the points 𝑃𝑖 = 2𝑖𝑃 (where 𝑃 is the base point), so these can be precomputed.
(Our approach is related: we remark that we can factor doublings and differential additions
through 2-isogenies to get half doublings and half differential additions. We permute the
order: rather than at each step, compute an image through a 2-isogeny and then do a half
differential additions, we precompute all images and then only do half differential additions
for the ladder).

With these precomputations done, the right to left Montgomery ladder then only needs
differential additions, except that the difference is not fixed anymore. So a priori we need a
full DiffAdd at each step rather than a mDiffAdd. In [OLHFR18], the authors explain how
to extract from the 𝑃𝑖 a coordinate 𝜇𝑖 (this requires a division) which can be used to get a
DiffAdd formula (involving 𝑃𝑖) in 3𝑀 + 2𝑆, exactly like the mDiffAdd.

Their precomputation cost is then the cost of one doubling by bit (to compute the 2𝑖𝑃,
aka 2𝑀 + 2𝑆 + 1𝑚0 and one division, so batching inversions we get a precomputation cost
of one global division and 6𝑀 + 2𝑆 + 1𝑚0 by bit. The scalar multiplication is then like
the standard ladder, except all doublings have been removed and only differential addition
remains, so it costs 3𝑀 + 2𝑆 by bit. Without the computation of the 𝜇𝑖, the precomputation
would be 2𝑀 + 2𝑆 + 1𝑚0 and the multiplication cost 4𝑀 + 2𝑆 by bit.

We compare two cases. We recall that the standard Montgomery ladder costs 5𝑀 + 4𝑆 +
1𝑚0 by bit when 𝑃 is normalised.
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• We only do a light precomputation without inversions. By bit, our ladder requires a
2𝑆 + 1𝑚0 precomputation, followed by a 4𝑀 + 2𝑆 + 1𝑚0 for multiplication. The
ladder in [OLHFR18] requires a 2𝑀 + 2𝑆 + 1𝑚0 precomputation, followed by
4𝑀 + 2𝑆 for multiplication.

• We allow a global inversion in the precomputations. By bit, our ladder requires a
4𝑀 + 2𝑆 + 1𝑚0 precomputation, followed by a 3𝑀 + 2𝑆 + 1𝑚0 for multiplication.
The ladder in [OLHFR18] requires a 6𝑀 + 2𝑆 + 1𝑚0 precomputation, followed by
3𝑀 + 2𝑆 for multiplication.

We see that in both cases, our precomputation is smaller, but we pay for it by needing an extra
𝑚0 in the multiplication step. However, an important point is that our light precomputation
is so cheap that even including it we are only at 4𝑀 + 4𝑆 + 2𝑚0, which gains 1𝑀 − 1𝑚0
compared to the Montgomery formula (and 2𝑀 − 1𝑚0 if the base point is not normalised).

Furthermore, for Kummer surfaces, our precomputation and multiplication are both
faster than an equivalent approach as [OLHFR18] would provide.

6.2. Explicit formula. In the theta model, the arithmetic ladder stems from the duplication
formula (see [Rob23a]): 𝜃𝐸(𝑃 + 𝑄) ⋆ 𝜃𝐸(𝑃 − 𝑄) = 𝐻(𝜃′

𝐸′(𝑓 (𝑃)) ⋆ 𝜃′
𝐸′(𝑓 (𝑄))).

The ladder use two steps for the differential addition (doubling is a special case where
𝑃 − 𝑄 = 0): compute 𝑓 (𝑃) via 𝜃𝐸(𝑃) ⋆ 𝜃𝐸(𝑃) = 𝐻(𝜃′

𝐸′(𝑓 (𝑃)) ⋆ 𝜃′
𝐸′(𝑓 (0))). This costs

2𝑆 + 1𝑚0. Do the same for 𝑓 (𝑄). Then use 𝜃𝐸(𝑃 + 𝑄) ⋆ 𝜃𝐸(𝑃 − 𝑄) = 𝐻(𝜃′
𝐸′(𝑓 (𝑃)) ⋆

𝜃′
𝐸′(𝑓 (𝑄))) to compute (𝑃 + 𝑄) ⋆ (𝑃 − 𝑄) in 2𝑀, and then 𝑃 + 𝑄 in again 2𝑀 (or 1𝑀 if

𝑃 − 𝑄 is normalised).
A large part of the ladder is hence spent in isogeny images. Let 𝑓1 = 𝑓, 𝑓2 = ̃𝑓 ∘𝑓1, 𝑓3 = 𝑓 ∘𝑓2,

𝑓4 = ̃𝑓 ∘ 𝑓3 and so on. Assume we had 𝑓𝑖+1(𝑛𝑃), 𝑓𝑖+1((𝑛 + 1))𝑃. Then from the duplication
formula, we could directly find 𝑓𝑖(2𝑛𝑃), 𝑓𝑖(2(𝑛 + 1)𝑃), 𝑓𝑖((2𝑛 + 1)𝑃).

The doublings only require the points 𝑓𝑖(0𝐸) which are given by the two curves 𝐸 and 𝐸′.
However the differential addition needs 𝑓𝑖(𝑃). So what we can do is compute 𝑓𝑖(𝑃), 𝑓𝑖(0𝐸)
then apply our duplication formula. This inverse the order: rather than doing two isogeny
images and two duplication at each step, we compute all the images first and then do all the
duplications. We gain because the images 𝑓𝑖(0𝐸) are free. We could expect to gain 2𝑆 + 1𝑚0,
but because our points 𝑓𝑖(𝑃) are no longer normalised, we only gain 2𝑆+1𝑚0 −𝑀 compared
to the normal ladder with a normalised 𝑃.

In summary: we do a precomputation phase with all the 𝑓𝑖(𝑃). This cost 2𝑆 + 1𝑚0 by bit,
along with 2 field coefficients.Then we do our duplication formula: this cost 2𝑆+1𝑚0 for our
doublings, and 4𝑀 for our differential additions (again, because the 𝑓𝑖(𝑃) are not normalised).
The final cost including the precomputation is 4𝑀 + 4𝑆 + 2𝑚0. Further multiplication with
the same base point 𝑃 will cost 4𝑀 + 2𝑆 + 1𝑚0. We note that this cost is the same whether
𝑃 is normalised or not (because even if 𝑃 is normalised, the 𝑓𝑖(𝑃) won’t be).

When we know in advance 𝑃 will be used (for public key encryption, or the first phase of
DH key exchange), it is worth it to normalise the 𝑓𝑖(𝑃) at the cost of 1𝐼 by bit (the storage is
then 1 coeff by bit). Then scalar multiplication will cost 3𝑀 + 2𝑆 + 1𝑚0.

The big advantage compared to other time/memory trade off with elliptic curves (naf,
window, …) is that the scalar multiplication is still a ladder with a double and diff add by bit,
hence much less susceptible to side channel attack.

The same principle apply to the twisted theta model 𝜃𝑡𝑤′, by using the linear change
of variable from the theta model, but we need some careful translation by 𝑓𝑖(𝑇2) to gain
1𝑀 at each step (essentially we use a trick similar to the hybrid ladder): for the differential
addition we assume that we have 𝑓𝑖+1(𝑛𝑃), 𝑓𝑖+1((𝑛 + 1)𝑃 + 𝑇2) (say) and we compute
𝑓𝑖((2𝑛 + 1)𝑃 + 𝑇2). (Doublings are no problem). We obtain the same cost as in the 𝜃 model,
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except the initial translation by the two torsion point; likewise in the Montgomery cap
Legendre model.

The formula are as follow (pending typos, I recommend to look at the code in [Rob23e]
instead to be sure to use correct formulas...): given (𝑥𝑃𝑖 ∶ 𝑧𝑃𝑖), the isogenous point 𝑃𝑖+1 is
given by: 𝑋 = (𝑥2

𝑃𝑖 + 𝑧2
𝑃𝑖)𝑏2

𝑖 ∶ (𝑥2
𝑃𝑖 − 𝑧2

𝑃𝑖)𝑎2
𝑖 ). From 𝑃𝑖+1 we can compute 2𝑃𝑖 via the dual

isogeny: (𝑋 + 𝑍)2𝑏𝑖+1, (𝑋 − 𝑍)2𝑎𝑖+1). The more interesting part is the differential addition,
given 𝑃𝑖+1 = (𝑥𝑔𝑃 ∶ 𝑧𝑔𝑃), 𝑄𝑖+1 + 𝑇2𝑖+1 = (𝑥𝑔𝑄′ ∶ 𝑧𝑔𝑄′), (𝑃 − 𝑄)𝑖 = (𝑥𝑃𝑄 ∶ 𝑧𝑃𝑄)
we recover (𝑃 + 𝑄)𝑖 via: 𝑠 = (𝑥𝑔𝑃 + 𝑧𝑔𝑃)(𝑥𝑔𝑄′ + 𝑧𝑔𝑄′); 𝑡 = (𝑥𝑔𝑃 − 𝑧𝑔𝑃)(𝑥𝑔𝑄′ − 𝑧𝑔𝑄′);
𝑢 = 𝑠+𝑡; 𝑣 = 𝑠−𝑡;𝑋 = 𝑢/(𝑥𝑃𝑄+𝑧𝑃𝑄); 𝑍 = 𝑣/(𝑥𝑃𝑄−𝑧𝑃𝑄); (𝑃+𝑄)𝑖 = (𝑋+𝑍 ∶ 𝑋−𝑍).

For Curve25519, since the two torsion is not rational, we need to move via a 2-isogeny to
the curve above it which is bothMontgomery and has full rational two torsion. Unfortunately
the constant is large, so the cost of 4𝑀 + 4𝑆 + 2𝑚0 when including the precomputation
is essentially the same as with a standard Montgomery ladder: 5𝑀 + 4𝑆 + 1𝑚0 (assum-
ing 𝑃 is normalised; we gain 1𝑀 on a non normalised point). Still, with the normalised
precomputation, the cost of 3𝑀 + 2𝑆 + 1𝑚0 is still very interesting, even with a large 𝑚0.

The reason we work to work on the Montgomery cap Legendre model, is that if we want
the relations 𝑥(𝑃 + 𝑄)𝑧(𝑃 + 𝑄), 𝑥(𝑃 − 𝑄)𝑧(𝑃 − 𝑄) to factor through the isogeny 𝑓 with
kernel a 2-torsion point 𝑇, we need 𝑇 to be of Montgomery type (equivalently the Tate
pairing 𝑒(𝑇, 𝑇) = 1, or the symmetric element in the theta group above 𝑇 is rational). So
the curve needs to be Montgomery, but the isogeneous curve should be too (because we go
back and forth between the two curves), which is equivalent to the starting curve being in
Legendre form.

6.3. Ageneral framework tofinddifferential additions. Wecan extend our general isogeny
framework from Section 5.2 to differential additions. In this case we study the isogeny 𝜉 ∶
(𝑃1, 𝑃2) → (𝑃1+𝑃2, 𝑃1−𝑃2), the pullback 𝜉∗(2(0𝐸′)⋆2(0𝐸′) = 4(0𝐸)⋆4(0𝐸).The kernel
is given by the diagonal embedding of 𝐸[2], and the symmetric lift giving our divisor descent
is given by ℎ𝑇 ⊗ ℎ𝑇 for 𝑇 ∈ 𝐸[2] and ℎ𝑇 any of the two symmetric lift above 𝑇; even if ℎ𝑇 is
not rational the tensor product is. We can thus compute the actions on Γ(2(0𝐸) ⋆ 2(0𝐸))⊗2,
these span the even elements of Γ(4(0𝐸) ⋆ 4(0𝐸)), of dimension 9. It follows that on 𝐸′ × 𝐸′

we can only construct the even elements in Γ(2(0𝐸) ⋆ 2(0𝐸))+, where the involution is
given here by the descent of (𝑃1, 𝑃2) → (𝑃1, −𝑃2), in other words we can only express
elements invariant under the involution 𝑃1 + 𝑃2 ↦ 𝑃1 − 𝑃2: 𝑥(𝑃1 + 𝑃2)𝑥(𝑃1 − 𝑃2),
𝑧(𝑃1 + 𝑃2)𝑧(𝑃1 − 𝑃2), 𝑥(𝑃1 + 𝑃2)𝑧(𝑃1 − 𝑃2) + 𝑧(𝑃1 + 𝑃2)𝑥(𝑃1 − 𝑃2).

Now, it is useful to factorize doubling through the isogeny 𝑓 with kernel 𝑇: [2] = ̃𝑓 ∘ 𝑓,
and we want to do the same with differential additions. In other words, we have 𝑓 (𝑃1), 𝑓 (𝑃2)
and we want to find from this some functions involving 𝑃1 + 𝑃2, 𝑃1 − 𝑃2. So consider
𝐹 ∶ 𝐸 × 𝐸 → 𝐸′ × 𝐸′ given by the diagonal of 𝑓. Then ker𝐹 = {(0, 0), (0, 𝑇), (𝑇, 0), (𝑇, 𝑇)};
notice that it is not included in ker 𝜉, so 𝜉 does not factorize through 𝐹. So we need to consider
the pushforward 𝐶 of 𝐹 and 𝜉 of kernelKer𝐹 +Ker 𝜉. From 𝑓 (𝑃1), 𝑓 (𝑃2), we can not express
all even functions in 𝑃1 + 𝑃2, 𝑃1 − 𝑃2, but we can only obtain those that descend to 𝐶, ie
are invariants by (0, 𝑇), (𝑇, 0) (or more precisely 1 ⊗ ℎ𝑇 and ℎ𝑇 ⊗ 1). It is instructive to
look at the case 𝜆𝑇 = 1, in which case 𝑥(𝑃1 + 𝑃2)𝑥(𝑃1 − 𝑃2), 𝑧(𝑃1 + 𝑃2)𝑧(𝑃1 − 𝑃2) are
invariants. This explain the form the differential addition formula take for a Montgomery
point.

As explained in Section 6.2, when doing a Montgomery ladder, we can then use a cycle of
𝑓 and ̂𝑓 to interleave the order of isogenies and differential additions: rather than computing
images and differential additions (or doublings) at each step, we can compute iterated image,
and then compute iterated differential additions (and doublings).The advantage is that in the
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standard ladder we compute two images at each step, while here we only need to compute the
iterated image of our base point, so we gain one image. On the other hand we need memory
to store our iterated images, and we cannot assume that these images are normalised (unless
we do a normalisation step on our points at the end). So to compute 𝑁.𝑃 we compute log𝑁
iterated images of 𝑃 (one by bit), then we do a ladder doing one doubling-through-isogeny,
differential-addition through isogeny by step. This gives a general time/memory trade off for
the Montgomery ladder.

Since we need to use differential addition formula that factorize through both 𝑓 and ̃𝑓, the
best case is thus when both are given by kernels of Montgomery type, ie our starting curve is
in Montgomery cap Legendre.

7. Pairings

On a Kummer line, it is useful to interpret pairings as coming from the biextension law
[Gro72; Sta08] associated to the divisor 2(0𝐸). It is shown in [Gro72] how the biextension
gives rise to the Weil pairing, and [Sta08] extends this to the Tate pairing.

In this section I only give a very brief overview of the algorithm, and refer to the talk
[Rob23b] for a bit more details.

For the biextension 𝑋 associated to the divisor (0𝐸), an element 𝑔𝑃,𝑄 corresponds to a
function on 𝑘(𝐸) with divisor (𝑃) + (𝑄) − (𝑃 + 𝑄) − (0𝐸). The biextension partial group
laws are given by:

(𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄)(𝑅) = 𝑔𝑃1,𝑄(𝑅)𝑔𝑃2,𝑄(𝑅 − 𝑃1)

(𝑔𝑃,𝑄1
⋆2 𝑔𝑃,𝑄2

)(𝑅) = 𝑔𝑃,𝑄1
(𝑅)𝑔𝑃,𝑄2

(𝑅)
𝑔𝑄1,𝑄2

(𝑅 − 𝑃)
𝑔𝑄1,𝑄2

(𝑅)
Moreover, since the divisor is symmetric, the biextension is symmetric too: 𝑔𝑃1,𝑄 ⋆1

𝑔𝑃2,𝑄 = 𝑔𝑄,𝑃1
⋆2 𝑔𝑄,𝑃2

. This implies: 𝜇𝑃1,𝑃2
(−𝑃3) = 𝜇𝑃2,𝑃3

(−𝑃1) = 𝜇𝑃3,𝑃1
(−𝑃2). A

convenient way to represent a biextension element 𝑔𝑃,𝑄 is via (𝑃, 𝑄) and its evaluation on
some point 𝑅. The group law becomes

(𝑄, 𝑃1, 𝑐1) ⋆2 (𝑄, 𝑃2, 𝑐2) = 𝑐1𝑐2
𝑔𝑃1,𝑃2

(𝑅 − 𝑄)
𝑔𝑃1,𝑃2

(𝑅) ,

and in particular we have:

𝑔⋆2,ℓ
𝑄,𝑃 = 𝑔𝑄,𝑃(𝑅)ℓ𝑓ℓ,𝑃((𝑅 − 𝑄) − (𝑅)),

where div 𝑓ℓ,𝑃 = ℓ𝑃 − (ℓ𝑃) − (ℓ − 1)(0𝐸). Thus Miller’s algorithm is simply the biextension
exponentiation via this representation (and taking 𝑅 = 0𝐸). We also have the following
variant, using the symmetry:

(𝑄, 𝑃1, 𝑐1) ⋆2 (𝑄, 𝑃2, 𝑐2) = 𝑐1𝑐2𝜇𝑃1,𝑃2
(−𝑄) = 𝑐1𝑐2𝜇𝑃1,𝑄(−𝑃2),

which give the following alternative formula for the Miller addition:

𝑓𝑚+1,𝑃(−𝑄) = 𝑓𝑚,𝑃(−𝑄)𝜇𝑚𝑃,𝑃(−𝑄) = 𝑓𝑚,𝑃(−𝑄)𝜇𝑃,𝑄(−𝑚𝑃).
In particular, the biextension arithmetic gives theTate andWeil pairing. Let 𝑔𝑃,𝑄 ∈ 𝑋(𝔽𝑞)

be any element above (𝑃, 𝑄), 𝑃 ∈ 𝐸[ℓ]. since ℓ𝑃 = 0, 𝑔⋆1,ℓ
𝑃,𝑄 is a constant 𝜆𝑃. If 𝜇 ∈ 𝔾𝑚(𝔽𝑞)

and 𝑔′
𝑃,𝑄 = 𝜇 ⋅ 𝑔𝑃,𝑄, then 𝑔′⋆1,ℓ

𝑃,𝑄 = 𝜇ℓ𝜆𝑃, and the class of 𝜆𝑃 in 𝔽∗
𝑞/𝔽∗,ℓ

𝑞 is the non reduced

Tate pairing. Furthermore, 𝑔⋆1,𝑞−1
𝑃,𝑄 = 𝜆(𝑞−1)/ℓ

𝑃 is the reduced Tate pairing 𝑒𝑇,ℓ(𝑃, 𝑄); it does
not depends on the choice of 𝑔𝑃,𝑄. If 𝑄 ∈ 𝐸[ℓ], 𝑔⋆2,ℓ

𝑃,𝑄 = 𝜆𝑄; the Weil pairing is given by
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𝑒𝑊,ℓ(𝑃, 𝑄) = 𝜆𝑃/𝜆𝑄. We also have similar formulas for the Ate and optimal Ate pairing,
see [Rob23b].

We have the following monodromy interpretation of the pairings. The non reduced Tate
pairing is then given by 𝑔ℓ

𝑃,𝑄, which can be computed from ℓ�̃�, ̃ℓ𝑃 + 𝑄, which in turn can
be computed from a three way affine Montgomery ladder: 1 affine doubling and 2 affine
differential addition by step. Equivalently, the non reduced Tate pairing is given by comparing
𝑔ℓ+1

𝑃,𝑄 with 𝑔𝑃,𝑄, they differ by a projective factor 𝜆𝑄 which is precisely the pairing. This 𝜆𝑄
can be interpreted as a monodromy action: 𝑄 ↦ (ℓ + 1)𝑄 is trivial at the level of the elliptic
curve, but not at the biextension level. Likewise, the Weil pairing is given by the quotient
of monodromy 𝜆𝑄/𝜆𝑃. The reduced Tate pairing is given by comparing 𝑔𝑞

𝑃,𝑄 with 𝑔𝑃,𝑄,
since 𝑞 − 1 is divisible by ℓ in our pairing situations, this is indeed the same as raising the
non reduced Tate pairing to the power (𝑞 − 1)/ℓ. From this point of view the reduced Tate
pairing is the Weil-Cartier pairing associated to 𝜋𝑞 − 1.

For our efficient formulae, rather than using the Miller representation of the biextension
elements, we will use the cubical torsor structure. We refer to [Bre83; Mor85] for cubical
torsors.

We can indeed reinterpret the biextension law as follow: the key point is that with a
symmetric line bundle, there is a canonical isomorphism 𝑡∗

𝑃𝐿 ⊗ 𝑡∗
𝑄𝐿 ⊗ 𝑡∗

𝑅𝐿 ⊗ 𝑡∗
𝑆𝐿 ≃ 𝑡∗

𝑈𝐿 ⊗
𝑡∗
𝑉𝐿⊗𝑡∗

𝑊𝐿⊗𝑡∗
𝑋𝐿whenever 𝑃+𝑄+𝑅+𝑆 = 2𝑍,𝑈 = 𝑍−𝑃, 𝑉 = 𝑍−𝑄, 𝑊 = 𝑍−𝑅, 𝑋 =

𝑍 − 𝑆.
Specialising, we get partial group law on trivialisations of line bundle: ̃0, �̃�, 𝑄, ̃𝑃 − 𝑄 ↦

̃𝑃 + 𝑄, ̃0, �̃�, 𝑄, �̃�, ̃𝑃 + 𝑄, 𝑃 + 𝑅, 𝑄 + 𝑅 ↦ ̃𝑃 + 𝑄 + 𝑅. Technically, these relations give the
cubical torsor structure, which is a refinement of the arithmetic in the biextension.

(Note: in [Sta08] the biextension appears in the guise of elliptic nets. From our point of
view, we can reinterpret elliptic nets as trivialisation of the line bundle 𝐷 = (0𝐸) at points 𝑃,
notably by specifying the value of 𝑍(𝑃) where 𝑍 is the section of (0𝐸). A slight difficulty is
that𝑍 has a zero on 0𝐸, so we need some offset to compute the pairings.The remarkable thing
about elliptic nets is that even through we are on level 1 we can still compute the arithmetic
of biextension through the linear recurrence of elliptic nets, see [Sta08] for details.

In [LR10; LR15], the biextension is hidden through the guise of the analytic Riemann
relations giving the transcendental group law.)

We then represent an element 𝑔𝑃,𝑄 of the biextension by the trivialisations ̃𝑥, 𝑥 + 𝑃, ̃𝑥 + 𝑄, ̃𝑥 + 𝑃 + 𝑄.
Changing the trivialisations by 𝜆𝑥, 𝜆𝑃, 𝜆𝑄, 𝜆𝑃+𝑄 give the same element iff 𝜆𝑥𝜆𝑃+𝑄 = 𝜆𝑃𝜆𝑄
(So our affine lifts represent a cubical torsor structure, and the associated biextension element
is an equivalence class under this action).

The affine doublings and affine differential additions are formula lifting the standard
projective doublings and projective differential additions. When working on the biextension
we have more leeway, but when working on the cubical torsor structure we must be careful to
use the correct affine formulas. We refer to the implementation in [Rob23e] for the explicit
formula.

In the theta or twisted theta model, using [LR10; LR15] this amount to 7𝑆 + 7𝑀 + 2𝑚0
by bit, assuming our base points are normalised (else add 2𝑀 by bit). On the Montgomery
model, the biextension ladder costs 8𝑀 + 6𝑆 + 1𝑚0 by bit.

By comparison, the best formula I have found for generic pairing computations in the
Jacobian model cost 10𝑀 + 9𝑆 for doubling, and 11.5𝑀 + 3𝑆 by addition [BELL10].

In certain cases, we can compute the biextension exponentiation faster:
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• In the general case, we compute 𝑔ℓ
𝑃,𝑄 via one affine doubling and two affine dif-

ferential additions by bits, for a total cost of 8𝑀 + 6𝑆 + 1𝑚0 in the Montgomery
model;

• For a self pairing,𝑃 = 𝑄, we only need one affine doubling and one affine differential
addition, for a total cost of 5𝑀 +4𝑆+1𝑚0 by bits. (A word of warning: for a fast self
pairing we really need to use the cubical arithmetic rather than just the biextension
arithmetic).

• When 𝑛 = 2𝑚 is a power of 2, we also need only one affine doubling and one affine
differential addition, for a total cost of 5𝑀 + 4𝑆 + 1𝑚0 by bits.

• When 𝑛 = 2𝑚 and 𝑃 = 𝑄, we only need one affine doubling, for a total cost of
2𝑀 + 2𝑆 + 1𝑚0 by bits.

We can also do a standard exponentiation on 𝑔𝑃,𝑄 on our biextension, this allows to use
the standard NAF and windowingmethod.We can do additions on the biextensionmodel (at
least with our representation), even through we are on the Kummer line on the underlying
curve!

I worked out the formula in the theta model, using [LR15; LR16]: doubling cost 1 double
and 1 diff add on the underlying curve, for a cost of 4𝑀 + 5𝑆 + 2𝑚0. Addition is more
complicated: on the underlying curve this amount to one (projective) compatible addition
which cost 27𝑀 (I am not distinguishing 𝑀, 𝑆 and 𝑚0 here), followed by an affine three way
addition which cost 17𝑀, for a grand total of 44𝑀. But since our base points are always the
same (the ones we computed for our window), we can do some precomputations for these
steps, and the compatible addition then cost 17𝑀, and the three way addition 13𝑀, for a
total of 30𝑀.

Since doubling is 11𝑀, this might be competitive with the ladder method (which costs
16𝑀 by bit) when using a NAF-window with 𝑤 ≥ 5.

Remark 7.1. When working on the Kummer line, we are naturally working with the
biextension associated to the divisor 2(0𝐸) rather than (0𝐸), because our coordinates
𝑋, 𝑍 ∈ Γ(2(0𝐸)). The corresponding biextension monodromy gives thus the square of
the usual Tate and Weil pairing; which is no problem when ℓ is odd. This however lose one
bit of information when ℓ is even; luckily in this case we can use the natural action of the
theta group 𝐺(2(0𝐸)) on Γ(2(0𝐸)) to recover the Weil and Tate pairings exactly rather than
just their squares. Once again we refer to [Rob23e] for the formulas.

7.1. The Tate pairing for pairing based cryptogrpahy. For pairing based cryptography on
elliptic curves, it is convenient to use the Tate pairing with 𝑃 ∈ 𝔾1 ⊂ 𝐸(𝔽𝑞), 𝑄 ∈ 𝔾2 ⊂
𝐸(𝔽𝑞𝑘), and 𝑘 even to allow for denominator elimination.

Counting only operations involving the big field𝔽𝑞𝑘 , Miller’s algorithm cost 1𝑀+1𝑆+1𝑚
by doubling, and 1𝑀+1𝑚 by addition.Here 1𝑚denotes amultiplication between a coefficient
in 𝔽𝑞 and a coefficient in 𝔽𝑞𝑘 .

When denominator elimination is not possible (because 𝑘 is odd or 𝑄 is not in 𝔾2), the
cost becomes 2𝑀 + 2𝑆 + 1𝑚 by doubling, and 2𝑀 + 1𝑚 by addition.

Using our arithmetic of biextension on Kummer lines, only counting the operations on
the big field, we have 2𝑆 + 1𝑀 + 2𝑚 by bit. So better than Miller’s algorithm, except when
denominator elimination is available.

7.2. Monodromy leak. It is well known, when 𝜇ℓ ⊂ 𝔽𝑞, that the Tate pairing allows to
reduce the DLP from an elliptic curve to 𝔽∗

𝑞.
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From the point of view of étale torsors [Rob23g], the Tate pairing 𝑒𝑇,ℓ(𝑃, 𝑄) is an isomor-
phism class of the torsion 𝑓 −1(𝑄) where 𝑓 is the isogeny of kernel ⟨𝑃⟩.

When 𝔽𝑞 does not contains 𝜇ℓ (say ℓ prime for simplicity), a torsor is always trivial, ie
𝑓 −1(𝑄) always contains one rational point.

However, we can still recover informations on the DLP if we manage to track explicit
isomorphisms between 𝑓 −1(𝑄) and 𝑓 −1(𝑛.𝑄). The theta group is precisely calibrated to
keep track of such isomorphisms. Theta groups and biextensions are closely related (we will
explore this topic further in [Rob23d]), and in this section we explore how to use biextensions
to attack the DLP. (Very similar ideas were already pursued via elliptic nets in [LS08].)

We assume from now on that we are in this case.

The general idea is as follows: the biextension arithmetic is a juxtaposition of arithmetic
on the underlying elliptic curve and in 𝔽∗

𝑞. When computing an exponentiation 𝑛 ↦ 𝑛.𝑃,
leaking instead a biextension exponentiation 𝑛 ↦ 𝑔𝑛

𝑃 allows to recover 𝑛 via a DLP in 𝔽∗
𝑞.

It might seem hard to leak such a biextension exponentiation on purpose, but from the
pairing formula we see that since we are naturally working on affine coordinates, and the
natural affine additions formulas are the ones coming from the biextension arithmetic, we
see that on the contrary doing a Montgomery ladder leaks the biextension exponentiation as
long as we don’t randomize the coordinates (𝑋, 𝑍) by a factor (𝜆𝑋, 𝜆𝑍) or we don’t output
the division 𝑥 = 𝑋/𝑍.

There are two versions of the projective coordinates leak. The key idea is as follow: from
our assumptions there is a unique lift 𝑔𝑃 of 𝑃 in the biextension that is still of order ℓ. This
“canonical lift” can be computed efficiently by a scalar multiplication in the biextension, this
scalar being determined by being 0 modulo 𝑝 − 1 and 1 modulo ℓ.

We now start with 𝑃 = (𝑥𝑃, 1) corresponding to some 𝑔𝑃 = 𝜆1𝑔𝑃, and with overwhelm-
ing probability 𝜆1 is not trivial (we use 𝑔𝑃 as a shortcut for the biextension element associated
to 𝑔𝑃,𝑃). The value of 𝑔𝑛

𝑃 is leaked, which gives us 𝑔𝑛
𝑃 = 𝜆2𝑔𝑛𝑃. But since 𝑔𝑛𝑃 = 𝑔𝑃

𝑛, we
get that 𝜆2 = 𝜆𝑛

1 . From 𝜆2, 𝜆1, we recover 𝑛 via a DLP in 𝔽∗
𝑞. This version requires 𝑔𝑛

𝑃, so a
leak of both 𝑛𝑃, ̃(𝑛 + 1)𝑃. Furthermore, the biextension arithmetic is slightly different from
the way the Montgomery ladder is implemented in practice, so we need to do some slight
adjustments (see below).

The stronger version of the projective coordinate leak only requires a leak of 𝑛𝑃. This
time we need the full power of the cubical torsor structure rather than just of biextension;
there is still a unique (using our assumption that ℓ is prime to 𝑞 − 1) canonical lift �̃� which
is of ℓ-torsion and can be efficiently computed from 𝑃. So we start with 𝑃 = (𝑥𝑃, 1) = 𝜆1�̃�
and we are leaked 𝑛.𝑃 = (𝑋, 𝑍) = 𝜆2𝑛𝑃. This time, we have 𝜆2 = 𝜆𝑛2

1 , so we need a DLP
and then solve a square root.

However, taking into account that the actual Montgomery ladder is different from the
exact cubical torsor structure arithmetic, we need to correct by some factor, so we actually
solve a more general degree two polynomial.

Explicitly, computing 𝑛.𝑃 via the standard ladder arithmetic rather than via the correct
cubical ladder, we are off by a factor (4𝑥𝑃)𝑛(2𝑏−𝑛) where 𝑏 is the bit length of 𝑛. Taking a
multiplicative generator 𝜁 of 𝐹∗

𝑞 , we thus need to solve the equation:

(16) 𝑋2(dlp𝜁(𝜆1) − dlp𝜁(4𝑥𝑃)) + 𝑋2𝑏 dlp𝜁(4𝑥𝑃) − dlp𝜁(𝜆2) = 0.
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The number of solutions depends to check for afterwards depends on the number of
prime factors of 𝑞−1. In good cases, there are few enough factors to reconstruct the solutions
modulo a large enough modulus efficiently. We refer to the code [Rob23e] for more details.

We call this a monodromy leak for the following reason. We’ll use the biextension version
rather than the cubical version for simplicity. Assume that we are not given the projective
coordinate leak of 𝑛.𝑃, which encodes the information about 𝑔𝑛

𝑃. We can still take any
biextension element 𝑔𝑃,𝑛𝑃 above 𝑛𝑃. There is a 𝑚 such that 𝑔𝑃,𝑛𝑃 = 𝑔𝑚

𝑃 , where the value of
𝑚 is determined modulo ℓ(𝑞−1) and is congruent to 𝑛 modulo ℓ. We have 𝑔𝑃,𝑛𝑃 = 𝜆2𝑔𝑃,𝑛𝑃
and 𝑔𝑃 = 𝜆1𝑔𝑃, so we have the equation 𝜆2 = 𝜆𝑚

1 in 𝔽∗
𝑞. Unfortunately, this only recover

the value of 𝑚 modulo 𝑞 − 1 (at best, if 𝜆1 is a multiplicative generator), which gives no
information on 𝑛 modulo ℓ since ℓ is prime to 𝑞 − 1. The reason the projective coordinate
leak above works is that in this case we know that 𝑚 ≤ ℓ, so is equal to 𝑛. Essentially, we
know that the value of 𝑔𝑃,𝑛𝑃 we obtain from the projective coordinate leak is 𝑔𝑚

𝑃 with 𝑚
small enough and not wrapping an unknown number of time around ℓ; which is why we call
it a monodromy leak.

Compared to [NSS04], our monodromy leak requires to know the starting coordinates
(𝑋𝑃, 𝑍𝑃) used in the ladder (usually the point 𝑃 is normalised so that 𝑧𝑃 = 1 which is
the assumption we have used in the above formulaes; but the general case is not harder, as
long as we know the choice of 𝑧𝑃), rather than just the leak of the projective coordinates of
𝑛𝑃 = (𝑋𝑛𝑃, 𝑍𝑛𝑃). On the other hand, it is much more devastating: rather than leaking a
few bits of 𝑛, we recover it fully via some DLPs in 𝔽∗

𝑞, so in subexponential time. (In practice
𝑞 is of 256 bits, so the DLP is quite effective).

The monodromy leak is thwarted e.g. by doing a constant time division at the end to only
send 𝑥𝑛𝑃 = 𝑋𝑛𝑃/𝑍𝑛𝑃. For extra security measure, a supplementary countermeasure is also
to mask the projective coordinates of 𝑃 by a random scalar at the beginning. This protect
in case side channels information allows to recover some informations on the intermediate
projective coordinates during the ladder. This means that 𝑃 won’t be normalised any longer,
so this adds 1𝑀 by bits in the usual ladder, but luckily the complexity of the time/memory
trade off described in Section 6 does not depends on whether 𝑃 is normalised or not.

Remark 7.2. Fre Vercauteren informed me that the curve NISTp521 uses the prime 𝑝 =
2521 − 1 such that 𝔽∗

𝑝 has very smooth order (the largest factor has 60 bits). The DLP is very
easy in this field.

It is plausible that themonodromy leak described here for theMontgomery ladder extends
to more general scalar multiplication, albeit with a more complicated polynomial depending
on the exact implementation of the scalar multiplication.

More precisely, what is certainly true is that the biextension and cubical torsor structure
exist for all models (see the code [Rob23e]), and that we can efficiently compute “canonical
lifts” as above. The only issue is that the scalar multiplication implemented, when interpreted
on the affine lifts, won’t be the same as the cubical multiplication. For the usual Montgomery
ladder, it was easy to keep track of the corrective factor (4𝑥𝑃)𝑛(2𝑏−𝑛) above, because the
formulas are quite close to the “correct” cubical formulas. In general, it is plausible that there
is still a corrective factor that can still be expressed in the exponent as some polynomial in 𝑛.
This then would give a more complicated polynomial equation than Equation (16).

The main difficulty would be to handle the addition: the cubical arithmetic really needs
to use some differential additions (or alternatively would write (2𝑛 + 1)𝑃 as a three way
addition (2𝑛 + 1)𝑃, 𝑃, 𝑛𝑃, 𝑛𝑃; 0, 2𝑛𝑃, (𝑛 + 1)𝑃, (𝑛 + 1)𝑃), which Kummer lines arithmetic
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also uses (maybe with a different constant than the cubical one) but not standard elliptic
curve arithmetic.

Anyway, going further into wild speculations, it would not be surprising if the NSA was
aware of these kind of “monodromy attacks” or variants. Continuing our wild speculations,
we remark that the NIST curves are from 1999, and at that time a 512 bits DLP in 𝔽∗

𝑝 was
probably quite expensive even for the NSA: even in 2005 the public record for a DLP was
for 430 bits. But selecting 𝑝 such that 𝑝 − 1 is smooth would render the DLP in 𝔽∗

𝑝 trivial,
and at that time [NSS04] was not yet published, so probably not all implementations were
protected against projective coordinates leaks…
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