
Improving the arithmetic of Kummer lines

DAMIEN ROBERT

Abstract. We explain some improvements to the arithmetic of Kummer lines: doublings,
differential additions, scalar multiplications, pairings, isogenies.

Contents

1. Introduction 2
2. Summary 2
2.1. Hybrid arithmetic 2
2.2. A time/memory trade off for scalar multiplication on Kummer lines 3
2.3. Pairings on Kummer lines 3
2.4. Monodromy leak: Projective coordinates leak revisited 4
3. Models 4
3.1. The Montgomery model 4
3.2. Twisted theta models 5
3.3. Montgomery and theta models 6
3.4. Conversion formula between the theta model and the Montgomery model in

dimension 1 6
4. Scalar multiplication on Kummer lines 8
4.1. Standard arithmetic in the Montgomery and theta models 8
4.2. Hybrid arithmetic 8
5. 2-isogenies between Kummer lines 9
5.1. Standard isogeny formulas 9
5.2. A general framework to derive 2-isogenies between Kummer lines 10
5.3. Translated isogenies 11
5.4. Theta versus Montgomery 13
6. Time-Memory trade off for the arithmetic 14
6.1. Overview 14
6.2. Explicit formula 16
6.3. A general framework to find differential additions 17
7. Pairings 18
7.1. The Tate pairing for pairing based cryptogrpahy 20
7.2. Monodromy leak 20
References 23

Date: November 2023.
1



2 DAMIEN ROBERT

1. Introduction

This is a summery of results that will be presented in a series of articles on the arithmetic
of Kummer lines.

• In [BRS23], we focus on the general theory of models of Kummer lines, the conver-
sions between them, and the arithmetic properties of their 2-torsion points (with
the relationship between the ramification, the 2-Tate pairing, the 2-theta group and
their Galois representation).

• In [RS24], we study isogenies between Kummer lines, and in particular we focus
on 2-isogenies. We use the action of the theta group 𝐺(2(0𝐸)) rather than Vélu’s
formula to compute invariant sections, and the fact that the Kummer model is
determined by its ramification, to find new and old formulas.This allows us to give a
general framework to find equations for 2-isogenies and doublings. We also develop
an hybrid arithmetic, combining the best of the (twisted) theta and Montgomery
models.

• In [Rob22], we extend the work of [RS24] from doublings to differential additions
on a Kummermodel (the formula crucially depend on the arithmetic property of the
2-torsion alluded to above). Notably, we explain how to find differential additions
formulae which factor through a 2-isogeny. As an application we develop a novel
time/memory trade off for the Montgomery ladder.

• In [Rob23c] we develop the arithmetic of the biextension associated to the divisor
2(0𝐸) on some Kummer models. We extend this to the effective computation of the
cubical torsor structure. We derive from this efficient pairing formulae.

• In [Rob23f], we use the formula from [Rob23c] to revisit the “Projective coordi-
nates leak” paper [NSS04]. We show that leaking the projectives coordinate in the
Montgomery ladder yields a subexponential time recovery of the full secret key (by
reduction to the DLP over the base field). The previous attacks only recovered a few
bits by leak.

A proof of concept implementation of these algorithms is available in [Rob23e].

2. Summary

In isogeny based cryptography, it is standard to work with the Montgomery model of
a Kummer line. In the case where we have an extra point of 2-torsion 𝑇2 along with the
standard point of 2-torsion 𝑇1 = (0 ∶ 1) (as happens for supersingular curves), we can use
𝑇2 to speed up the arithmetic.

2.1. Hybrid arithmetic. (This is joint work with Nicolas Sarkis):

2.1.1. Hybrid arithmetic for scalar multiplication. In the Montgomery ladder for computing
𝑚.𝑃, we use one doubling and one mixed differential addition by step. In the Montgomery
model, doubling is 2𝑀 + 2𝑆 + 1𝑚0 while a mdiffAdd (where we assume our base point
𝑃 = (𝑋𝑃 ∶ 1) is normalised) is 3𝑀 + 2𝑆, so a ladder step is 5𝑀 + 4𝑆 + 1𝑚0. Here 𝑚0
denotes a multiplication by a curve constant (typically the coefficient 𝐴 of the Montgomery
curve, or rather (𝐴 + 2)/4). If our starting point 𝑃 = (𝑋𝑃 ∶ 𝑍𝑃) is not normalised, we need
to add 1𝑀 by bit to the ladder cost.

When 𝑇2 is rational, we can also use a twisted theta model, where doubling is 4𝑆 + 2𝑚0,
andmdiffAdd is 3𝑀+2𝑆+1𝑚0, so a ladder step is 3𝑀+6𝑆+3𝑚0. (There is a 1𝑀−1𝑆−1𝑚0
tradeoff where a ladder step is 4𝑀 + 5𝑆 + 2𝑚0.)



Improving the arithmetic of Kummer lines 3

The two models differ by the translation by 𝑇2 (the doubling 𝑃 ↦ 2.𝑃 in twisted theta
can be interpreted as 𝑃 ↦ 2.𝑃 + 𝑇2 in the Montgomery model and conversely), we can
exploit that to combine the best of both worlds: using an hybrid arithmetic where doubling
is 4𝑆 + 2𝑚0 and mdiffAdd is 3𝑀 + 2𝑆. Keeping track of the translation by 𝑇2 we then have
a hybrid ladder which cost 3𝑀 + 6𝑆 + 2𝑚0.

2.1.2. Hybrid arithmetic for 2𝑛-isogenies. In the Montgomery model, a 2-isogeny codomain
costs 2𝑆, an image costs 4𝑀, and doubling cost 2𝑆+2𝑀+2𝑚0 (because our curve coefficients
are given by a projective point (𝐴 ∶ 𝐶) and we can no longer assume that 𝐶 = 1). In practice,
it is customary to use 4-isogenies instead where the codomain cost 4𝑆 and images 2𝑆 + 6𝑀.

In the twisted theta model, a 2-isogeny codomain costs 2𝑆, an image costs 2𝑆 + 2𝑀, and
doubling cost 4𝑆 + 4𝑚0.

Again, in a Montgomery model with full 2-torsion, it is possible to use an hybrid version,
with an image costing 2𝑆+2𝑚0 (translated image from the point of view of the Montgomery
model) and doubling costing 2𝑆 + 2𝑀 + 2𝑚0 (translated doubling from the point of view
of the twisted theta model).

This lines up the cost of two 2-isogeny with the cost of a 4-isogeny (and is actually slightly
better). However, for a 2𝑛-isogeny chain, it is still better to split into 4-isogenies since this
gain on the codomain computations.

2.2. A time/memory trade off for scalar multiplication on Kummer lines. We have a
time/memory trade off for aMontgomerymodel with full two-torsion, where we precompute
some points to speed up scalar multiplications.

We first start with a precomputation depending only on the base point 𝑃 and which cost
of 2𝑆 + 1𝑚0 by bits (+ the storage of 2 coefficients by bits). Then a scalar multiplication is in
4𝑀 + 2𝑆 + 1𝑚0 by bit (whether the base point is normalised or not).

The total cost, including the precomputation, is 4𝑀 + 4𝑆 + 2𝑚0 which makes it slightly
better than the standard Montgomery ladder (and saves 1𝑀 on non normalised points).

We can do more precomputions by using 1 global inversion and 2𝑆 + 1𝑚0 + 4𝑀 by bit,
then the following scalar multiplications will cost 3𝑀 + 2𝑆 + 1𝑚0 by bit.

A similar algorithm works in higher dimension. For a Kummer surface the precom-
putation step costs one global inversion and 12𝑀 + 4𝑆 + 3𝑚0 by bits, and then a scalar
multiplication with the same base point costs 7𝑀+4𝑆+3𝑚0; compared to 7𝑀+12𝑆+9𝑚0
or 10𝑀 + 9𝑆 + 6𝑚0 for the standard ladder.

2.3. Pairings on Kummer lines.

2.3.1. Generic pairings. Isogeny based cryptography rely on generic pairings, where we
cannot assume that one point lives in a smaller field. In [CLN16], the generic cost of the Tate
pairing then becomes 5𝑆 + 15𝑀 for doublings, and 4𝑆 + 20𝑀 for additions (see [Rei23]);
much more expansive than a simple scalar multiplication. The best generic algorithm in the
litterature, in [BELL10], uses 10𝑀 + 9𝑆 for doubling, and 11.5𝑀 + 3𝑆 by addition.

We work out the arithmetic of the biextension associated to the divisor 2(0𝐸) on the
Montgomery model of a Kummer line with full rational 2-torsion. We derive from this an
efficient ladder like algorithm for pairings computation. Our ladder algorithm costs 7𝑆+9𝑀
by bit, which is closer to the cost of a scalar multiplication via the Montgomery ladder. As
special cases, when 𝑛 = 2𝑚 or we compute a self pairing, the cost goes down to 4𝑆 + 6𝑀 by
bit.

We also explain how to compute a standard exponentiation (rather than a ladder) in the
biextension, this allows to use window-NAF methods. Our algorithm (for now only in the



4 DAMIEN ROBERT

theta model) costs 5𝑆 + 6𝑀 for a doubling, and 6𝑆 + 24𝑀 for an addition.1 This suggests
that the second algorithm will be faster than the first one when using a window 𝑤 ≥ 5 (or
when computing pairings between points of 2𝑛-torsion).

2.3.2. Pairing based cryptography. For pairing based cryptography on elliptic curves, it is
convenient to use the Tate pairing with 𝑃 ∈ 𝔾1 ⊂ 𝐸(𝔽𝑞), 𝑄 ∈ 𝔾2 ⊂ 𝐸(𝔽𝑞𝑘), and 𝑘 even
to allow for denominator elimination.

Counting only operations involving the big field𝔽𝑞𝑘 , Miller’s algorithm cost 1𝑀+1𝑆+1𝑚
by doubling, and 1𝑀+1𝑚 by addition.Here 1𝑚denotes amultiplication between a coefficient
in 𝔽𝑞 and a coefficient in 𝔽𝑞𝑘 .

When denominator elimination is not possible (because 𝑘 is odd or 𝑄 is not in 𝔾2), the
cost becomes 2𝑀 + 2𝑆 + 1𝑚 by doubling, and 2𝑀 + 1𝑚 by addition.

When 𝑃 is in the small field 𝐸(𝔽𝑞) and 𝑄 is in the big field 𝐸(𝔽𝑞𝑘), our Tate pairing
algorithm costs (counting only operations in the big field) 2𝑆 + 1𝑀 + 2𝑚 by bits. This is
competitive with the standard Miller’s algorithm, except when denominator elimination is
available.

2.4. Monodromy leak: Projective coordinates leak revisited. Assume that we are doing a
scalar multiplication via the Montgomery ladder: we start with 𝑃 = (𝑥𝑃 ∶ 1) and compute
𝑄 = 𝑛.𝑃 = (𝑋𝑄 ∶ 𝑍𝑄). In practice, during the ladder we work with affine coordinates
(𝑋𝑄, 𝑍𝑄) rather than projective coordinates (which would imply one division at each step,
or at least scaling by a random scalar). It is only at the end of the computation that a division
is computed and the coordinate 𝑥𝑄 = 𝑋𝑄/𝑍𝑄 is returned.

A projective coordinates leak happens whenever an attacker can retrieve (𝑋𝑄, 𝑍𝑄) di-
rectly. It was shown in [NSS04] how to use a projective coordinates leak to retrieve a few bits
of the secret scalar 𝑛. This was revisited in [AGB20] to adapt it to the Montgomery ladder,
still recovering only a few bits.

Instead, we can use the formula from the biextension arithmetic (more precisely, we use
the cubical torsor structure, a refinement of the biextension arithmetic) to fully recover the
secret 𝑛 via:

• Solving some DLPs in 𝔽∗
𝑞

• Solving a degree 2 equation in ℤ/(𝑞 − 1)ℤ.
In most cases (except if 𝑞 − 1 has a lot of prime divisors) this can be done in subexponential
time. The name monodromy leak comes from the fact that the biextension arithmetic and
cubical torsor structure gives the monodromy information underlying the Tate and Weil
pairing.

3. Models

3.1. The Montgomery model. The Montgomery model of 𝐸 is rational whenever there
is a rational cyclic subgroup of order 4 in 𝐸, i.e. a point 𝑅1 of order four which is rational
in the Kummer line (i.e. 𝜋(𝑅1) = ±𝑅1), i.e. there is a point of order 2 𝑇1 with trivial self
Tate pairing. The Montgomery model is the model where 𝑅1 is sent to (1 ∶ 1), 𝑇1 = 2𝑅1 to
(0 ∶ 1) and 0𝐸 to infinity.

The ramification is given by (0𝐸) = (1 ∶ 0), 𝑇1 = (0 ∶ 1), 𝑇2 = (𝐴2 ∶ 𝐵2), 𝑇3 =
𝑇1 + 𝑇2 = (𝐵2 ∶ 𝐴2). Here, 𝑇2, 𝑇3 are not necessarily rational, we denote their coordinates
by (𝐴2 ∶ 𝐵2) to make the link with the theta model more explicit later. Conversely, a Kummer

1Standard additions are not available on a Kummer line, but we can compute them over the biextension!



Improving the arithmetic of Kummer lines 5

line whose neutral point is at infinity, a ramification point is (0 ∶ 1), and the remaining two
ramifications points are invariant under (𝑋 ∶ 𝑍) ↦ (𝑍 ∶ 𝑋) gives a Montgomery model.

Above the canonical two torsion point 𝑇1 = (0 ∶ 1), we have the canonical four torsion
points 𝑅1 = (1 ∶ 1) = 𝑅1 + 𝑇1, 𝑅′

1 = (−1 ∶ 1) = 𝑅1 + 𝑇2 = 𝑅1 + 𝑇3.
If 𝑇2 is rational, its coefficients are enough to represent 𝐸.The translation by 𝑇2 is given by

(𝑥 ∶ 𝑧) ↦ (𝐴2𝑥 − 𝐵2𝑧 ∶ 𝐵2𝑥 − 𝐴2𝑧). From this we can recover the curve coefficient 𝒜 of the
Montgomery model by 𝒜 = (𝐴 ∶ 𝐶) = (𝐴4 + 𝐵4 ∶ −𝐴2𝐵2), (𝒜 + 2)/4 = ((𝐴2 − 𝐵2)2 ∶
−4𝐴2𝐵2).

In these notes, wewill often focus on the arithmetic of theKummer line𝐸 of aMontgomery
model with full rational 2-torsion. In this case, the quotient 𝐸′ = 𝐸/𝑇1 is also a Montgomery
model with full rational 2-torsion, so we can exploit the symmetry between 𝐸 and 𝐸′ in our
arithmetic by factorising through the isogeny 𝑓 ∶ 𝐸 → 𝐸′.

3.2. Twisted theta models. The Kummer line associated to a theta model 𝜃(𝑎 ∶ 𝑏) has for
neutral point 0𝐸 = (𝑎 ∶ 𝑏) and ramification 𝑇1 = (−𝑎 ∶ 𝑏), 𝑇2 = (𝑏 ∶ 𝑎), 𝑇3 = (−𝑏 ∶ 𝑎).
We have 𝑅1 = (1 ∶ 0), 𝑅′

1 = (0 ∶ 1) two 4-torsion points above 𝑇1 = (−𝑎 ∶ 𝑏), and
𝑅2 = (1 ∶ 1), 𝑅′

2 = (1 ∶ −1) above𝑇2 = (𝑏 ∶ 𝑎).We denote (𝐴2 ∶ 𝐵2) = (𝑎2+𝑏2 ∶ 𝑎2−𝑏2).
Conversely, a Kummer line with two rational points of 4-torsion 𝑅1, 𝑅2 such that 𝑇1 =

2𝑅1 ≠ 𝑇2 = 2𝑅2 admits a rational theta model. Equivalently, there are two cyclic subgroups
of degree 4 on 𝐸, 𝐾1, 𝐾2 such that 𝐾1 ∩ 𝐾2 = {0𝐸}.

We recall that a Montgomery model can be constructed as long as we have a point of
4-torsion on the Kummer. In theta we have two such points: (1 ∶ 0) above (−𝑎 ∶ 𝑏) and
(1 ∶ 1) above (𝑏 ∶ 𝑎), so we have two associated models. Conversion formula are given in
Section 3.4.

From a theta model, we explain how to construct several twisted theta models. When we
have a theta model 𝜃(𝑎 ∶ 𝑏), we can use the dual theta coordinates given by the Hadamard
transform, let me denote that by 𝜃′(𝑎′ ∶ 𝑏′) with (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏). We can also twist
the theta model by looking at the coordinates (𝑎𝑥 ∶ 𝑏𝑧) instead of (𝑥 ∶ 𝑧), let me call this
𝜃𝑡𝑤(𝑎2 ∶ 𝑏2). We can combine the Hadamard transform and the twisted models to obtain
four kind of twisted theta models: 𝜃𝑡𝑤, 𝜃𝑡𝑤′, 𝜃′𝑡𝑤, 𝜃′𝑡𝑤′.

A theta model on 𝐸 arises from a (symmetric) isomorphism of the Heisenberg group of
level 2 with the theta group 𝐺(2(0𝐸)). In a twisted theta model we take an isomorphism
from a twist of the Heisenberg group, so we are on the same elliptic curve, it is the theta
structure which is twisted. We will use the model 𝜃𝑡𝑤′, the conversion from 𝜃 is (𝑥 ∶ 𝑧) ↦
(𝑎𝑥 + 𝑏𝑧 ∶ 𝑎𝑥 − 𝑏𝑧); and the twisted model 𝜃′𝑡𝑤′, the conversion from 𝜃 is (𝑥 ∶ 𝑧) ↦
(𝑎′𝑥′ + 𝑏′𝑧′ ∶ 𝑎′𝑥′ − 𝑏′𝑧′) where (𝑥′ ∶ 𝑧′) = (𝑥 + 𝑧 ∶ 𝑥 − 𝑧). We will see that 𝜃′𝑡𝑤′ is (up
to translation) the Montgomery model associated to the four torsion point (1 ∶ 1), and the
Montgomery model (up to translation) corresponding to the four torsion point (1 ∶ 0) is
given by 𝜃𝑡𝑤′.

In the 𝜃𝑡𝑤′ model, the neutral point becomes 0𝐸 = (𝐴2 ∶ 𝐵2), the 2-torsion 𝑇1 = (𝐵2 ∶
𝐴2), 𝑇2 = (1 ∶ 0), 𝑇3 = (0 ∶ 1), and the 4-torsion is 𝑅1 = (1 ∶ 1), 𝑅′

1 = (−1 ∶ 1),
and 𝑅2 = (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏), 𝑅′

2 = (𝑏′, 𝑎′). In particular, the 4-torsion point
𝑅2 = (𝑎′ ∶ 𝑏′) above 𝑇2 = (1 ∶ 0) allows to recover (𝑎 ∶ 𝑏).

It is convenient to see 𝜃′𝑡𝑤′ coordinates as follow. Let start with a theta model 𝜃(𝑎 ∶ 𝑏)
on an elliptic curve 𝐸1; we have an isogeny 𝑓 ∶ 𝐸1 → 𝐸2 whose kernel is given by the two
torsion point (−𝑎 ∶ 𝑏). We also have a “contragredient” isogeny ̂𝑔 ∶ 𝐸1 → 𝐸0 whose kernel is
given by (𝑏 ∶ 𝑎).

If 𝐸0 is given by 𝜃(𝑎0 ∶ 𝑏0), then 𝑔 ∶ 𝐸0 → 𝐸1 has kernel (−𝑎0 ∶ 𝑏0). From the isogeny
formula [Rob23a], we see that a 𝜃′𝑡𝑤′ coordinate (𝑢 ∶ 𝑣) for 𝑃 ∈ 𝐸1 can be written as



6 DAMIEN ROBERT

(𝑢 ∶ 𝑣) = (𝑥2 ∶ 𝑧2) where (𝑥 ∶ 𝑧) is the theta coordinate of 𝑄 ∈ 𝐸0 ∣ 𝑔(𝑄) = 𝑃. In other
words: if we use squares of theta coordinates in 𝐸0 to represent points of 𝐸1 we obtain the
𝜃′𝑡𝑤′ model: 𝜃2

𝐸0
= 𝜃′𝑡𝑤′

𝐸1
. We have (𝑎2

0 ∶ 𝑏2
0) = (𝑎′2 + 𝑏′2 ∶ 𝑎′2 − 𝑏′2) = (𝑎2 + 𝑏2 ∶

2𝑎𝑎2 + 𝑏2 ∶ 2𝑎𝑏). A similar interpretation holds for the 𝜃𝑡𝑤′ model.

3.3. Montgomery and theta models. In the Montgomery model, the neutral point is 0 =
(1 ∶ 0), the 2-torsion is 𝑇1 = (0 ∶ 1), 𝑇2 = (𝐴2 ∶ 𝐵2), 𝑇3 = (𝐵2 ∶ 𝐴2), and the four torsion
is 𝑅1 = (1 ∶ 1), 𝑅′

1 = (−1 ∶ 1), 𝑅2 = (𝑎′ ∶ 𝑏′), 𝑅′
2 = (𝑏′ ∶ 𝑎′).

In the 𝜃𝑡𝑤′ model, the neutral point becomes 0𝐸 = (𝐴2 ∶ 𝐵2), the 2-torsion 𝑇1 = (𝐵2 ∶
𝐴2), 𝑇2 = (1 ∶ 0), 𝑇3 = (0 ∶ 1), and the 4-torsion is 𝑅1 = (1 ∶ 1), 𝑅′

1 = (−1 ∶ 1), and
𝑅2 = (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏), 𝑅′

2 = (𝑏′, 𝑎′).
The twisted theta model has the same ramification as the Montgomery model, except

the neutral point is (𝐴2 ∶ 𝐵2) which would be a point of 2-torsion 𝑇2 on the Montgomery
model, hence why they differ by translation by 𝑇2: (𝑥 ∶ 𝑧) ↦ (𝐴2𝑥 − 𝐵2𝑧 ∶ 𝐵2𝑥 − 𝐴2𝑧).
This sends (−1 ∶ 1) to (1 ∶ 1) and conversely (be careful that due to an unfortunate choice
of notations, the 𝑅1 on 𝜃𝑡𝑤′ is sent to 𝑅′

1 on Montgomery).
We also have a similar conversion to the Montgomery model on the 𝜃′𝑡𝑤′ model.The two

torsion on 𝜃′𝑡𝑤′ is given by 0𝐸 = (𝑎2
0 ∶ 𝑏2

0), 𝑇2 = (𝑏2
0 ∶ 𝑎2

0), 𝑇1 = (1 ∶ 0) and 𝑇3 = (0 ∶ 1).
We also have the four torsion point (1 ∶ 1) above (𝑏2

0 ∶ 𝑎2
0).

The two torsion gives the ramification on the Kummer line. Now notice how we have
exactly the same ramification as the Montgomery model 𝑀 ∶ 𝑦2 = 𝑥(𝑥 − 𝛼)(𝑥 − 1/𝛼) with
𝛼 = 𝑏2

0/𝑎2
0, except that in our case the neutral point is (𝑎2

0 ∶ 𝑏2
0) while in Montgomery the

neutral point is (0 ∶ 1).
This means that the map Id ∶ 𝜃′𝑡𝑤′ → 𝑀 corresponds to the translation by the two

torsion point 𝑇1 = (1 ∶ 0) on the 𝜃′𝑡𝑤′ model and by 𝑇1 = (𝑎2
0 ∶ 𝑏2

0) on the Montgomery
model. Via this translation, the four torsion point (1 ∶ 1) above (𝑏2

0 ∶ 𝑎2
0) indeed become the

four torsion point (1 ∶ 1) above (0 ∶ 1) in the Montgomery model as expected.
This gives the following fact: suitably twisting the theta structure, we obtain conversion

formula which are free (ie given by the identity) except that a point 𝑃 in the twisted theta
model will correspond to a point 𝑃 + 𝑇 in the Montgomery model for some two torsion
point 𝑇. If we can get an handle on this translation by 𝑇, we can combine the best formula
for both models.

This was already used in [BRS23] to construct a hybrid Montgomery ladder combining
the best of the theta and Montgomery formula. We now describe a similar approach for
isogenies. (It is Nicolas Sarkis who found out that we had a free conversion formula between
the two models up to a translation by a point of 2-torsion2, and I realised we could exploit
this for isogenies and the scalar multiplication; the implementation was done by Nicolas.)

3.4. Conversion formula between the theta model and the Montgomery model in dimen-
sion 1. See also [Rob23a, Appendix A].

Let 𝐸/𝑘 be an elliptic curve, and (𝑎 ∶ 𝑏) = (𝜃0(0𝐸), 𝜃1(0𝐸)) be its theta null point. We
give formula to convert the theta points (𝜃0(𝑃) ∶ 𝜃1(𝑃)) into the Montgomery coordinates
(𝑥(𝑃) ∶ 𝑧(𝑃)). The formulas follows by looking at the ramification on the Kummer line on
both models, and finding the homography that maps the ramification of one model to the
other.

2We found out afterwards that this was already done in [HR19]



Improving the arithmetic of Kummer lines 7

When the theta null point is rational, the elliptic curve 𝐸 admits both a rational Mont-
gomery model and a rational Legendre model. They are given by

𝑦2 = 𝑥(𝑥 − 𝛼)(𝑥 − 1/𝛼) = 𝑥(𝑥2 + 𝒜𝑥 + 1)

and (up to a quadratic twist, which is harmless because we work on the Kummer line anyway)
by

𝑦2 = 𝑥(𝑥 − 1)(𝑥 − 𝜆).

These constants are determined as follows: let (𝐴 ∶ 𝐵) be the dual coordinates of the
canonical 2-isogenous curve (we will only need their square). We have

𝐴2 = 𝑎2 + 𝑏2, 𝐵2 = 𝑎2 − 𝑏2,(1)

𝛼 = 𝐴2/𝐵2 = (𝑎2 + 𝑏2)/(𝑎2 − 𝑏2),(2)

𝜆 = 𝛼2 = 𝐴4/𝐵4 = (𝑎2 + 𝑏2)2/(𝑎2 − 𝑏2)2,(3)

𝒜 = −(𝛼 + 1/𝛼) = −(𝛼2 + 1)/𝛼 = −(𝐴4 + 𝐵4)/(𝐴2𝐵2) = −2(𝑎4 + 𝑏4)/(𝑎4 − 𝑏4),
(4)

(𝒜 + 2)/4 = −𝑏4/(𝑎4 − 𝑏4).(5)

Conversely, from 𝒜, we can recover (𝑎 ∶ 𝑏) via

𝛼 + 1/𝛼 = −𝒜,(6)

𝐴2/𝐵2 = 𝛼,(7)

𝑎2 = 𝐴2 + 𝐵2, 𝑏2 = 𝐴2 − 𝐵2, (𝑎2 ∶ 𝑏2) = (𝛼 + 1 ∶ 𝛼 − 1).(8)

We note that if (𝑎 ∶ 𝑏) is a solution, then (𝑎 ∶ 𝜁𝑏) also with 𝜁 ∈ 𝜇4, these correspond to
different theta structures.

With these constants defined, we can now explain how to convert the points. If𝑃 = (𝑥 ∶ 𝑧)
in Montgomery coordinates, then

(9) (𝜃0(𝑃) ∶ 𝜃1(𝑃)) = (𝑎(𝑥 − 𝑧) ∶ 𝑏(𝑥 + 𝑧)).

Conversely, if 𝑃 = (𝜃0 ∶ 𝜃1), then in Montgomery coordinates

(10) (𝑥(𝑃) ∶ 𝑧(𝑃)) = (𝑎𝜃1 + 𝑏𝜃0 ∶ 𝑎𝜃1 − 𝑏𝜃0).

On the theta model 0𝐸 = (𝑎 ∶ 𝑏), we have a canonical basis of the 2-torsion given by
𝑇1 = (𝑎 ∶ −𝑏) and 𝑇2 = (𝑏 ∶ 𝑎). We have a canonical basis of the 4-torsion given by
𝑇′

1 = (1 ∶ 0) above 𝑇1 and 𝑇′
2 = (1 ∶ 1) above 𝑇2. The map above sends 𝑇1 to (0 ∶ 1) in the

Montgomery model, 𝑇′
1 to (1 ∶ 1), 𝑇2 to (𝐴2 ∶ 𝐵2), 𝑇′

2 to (𝑎 + 𝑏 ∶ 𝑎 − 𝑏).
So conversely, given a Montgomery curve, the canonical point 𝑇′ = (1 ∶ 1) of 4-torsion

above the 2-torsion point 𝑇 = (0 ∶ 1) and a second point 𝑇" = (𝑟 ∶ 𝑠) above another point
of 2-torsion, then the theta null point (𝑎 ∶ 𝑏) induced by the basis (𝑇′, 𝑇") of the 4-torsion
is given by (𝑟 + 𝑠 ∶ 𝑟 − 𝑠).

For the case of a general elliptic curve 𝐸 with a basis (𝑇′, 𝑇") of the 4-torsion, we first
convert 𝐸 to a Montgomery model by sending 𝑇′ to (1 ∶ 1) and 𝑇 = 2𝑇′ to (0 ∶ 1), the map
is then 𝑥 ↦ (𝑥 − 𝑥(𝑇))/(𝑥(𝑇′) − 𝑥(𝑇)). Then we apply the above formula to the image of
𝑇".



8 DAMIEN ROBERT

The alternative Montgomery model. When we have a theta model, we can also introduce the
dual theta coordinates

(𝜃′
0 ∶ 𝜃′

1) = (𝜃0 + 𝜃1 ∶ 𝜃0 − 𝜃1),

in particular the dual theta null point is given by (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏). We can
construct another Montgomery model by replacing in the above formula (𝑎, 𝑏, 𝜃0, 𝜃1) by
(𝑎′, 𝑏′, 𝜃′

0, 𝜃′
1).

Plugging in this different model the equations expressing (𝑎′, 𝑏′, 𝜃′
0, 𝜃′

1) in terms of
(𝑎, 𝑏, 𝜃0, 𝜃1), we obtain alternative formulas:

𝐴′2 = 𝑎′2 + 𝑏′2 = 2(𝑎2 + 𝑏2), 𝐵′2 = 𝑎′2 − 𝑏′2 = 4𝑎𝑏,(11)

𝛼′ = 𝐴′2/𝐵′2 = (𝑎2 + 𝑏2)/(2𝑎𝑏), 𝜆′ = 𝛼′2,(12)

𝒜 ′ = −(𝛼′ + 1/𝛼′) = −(𝑎4 + 6𝑎2𝑏2 + 𝑏4)/(2(𝑎3𝑏 + 𝑎𝑏3)),(13)
𝑃 = (𝑥 ∶ 𝑧) ↦ (𝜃0(𝑃), 𝜃1(𝑃)) = (𝑎𝑥 − 𝑏𝑧 ∶ 𝑏𝑥 − 𝑎𝑧),(14)
(𝜃0, 𝜃1) ↦ (𝑥(𝑃) ∶ 𝑧(𝑃)) = (𝑎𝜃0 − 𝑏𝜃1 ∶ 𝑏𝜃0 − 𝑎𝜃1).(15)

4. Scalar multiplication on Kummer lines

4.1. Standard arithmetic in the Montgomery and theta models. Let us first recall the
standard formulas in the theta and Montgomery models.

Differential additions in theta coordinates are computed as follow, using [Rob23a, § 5,
§ 6]. Let (𝑎 ∶ 𝑏) be the neutral point, and (𝐴 ∶ 𝐵) as usual: (𝐴2 ∶ 𝐵2) = (𝑎2 + 𝑏2 ∶ 𝑎2 − 𝑏2).
Let (𝑋𝑋𝑃 ∶ 𝑍𝑍𝑃) = (𝑋2

𝑃 + 𝑍2
𝑃 ∶ 𝑋2

𝑃 − 𝑍2
𝑃), (𝑋𝑋𝑄 ∶ 𝑍𝑍𝑄) = (𝑋2

𝑄 + 𝑍2
𝑄 ∶ 𝑋2

𝑄 − 𝑍2
𝑄),

(𝑈 ∶ 𝑉) = (𝐵2𝑋𝑋𝑃𝑋𝑋𝑄 ∶ 𝐴2𝑍𝑍𝑃𝑍𝑍𝑄), (𝑋(𝑃+𝑄) ∶ 𝑍(𝑃+𝑄)) = (𝑍(𝑃−𝑄)(𝑈+𝑉) ∶
𝑋(𝑃 − 𝑄)(𝑈 − 𝑉)). Applying this to 𝑃 = 𝑄 gives the doubling.

It is easy to extend these formula to the different twisted variant of the theta model.
In the Montgomery model, the usual differential addition is given as follow: (𝑈1 ∶ 𝑈2) =

(𝑋𝑃 + 𝑍𝑃 ∶ 𝑋𝑃 − 𝑍𝑃), (𝑈3 ∶ 𝑈4) = (𝑋𝑄 + 𝑍𝑄 ∶ 𝑋𝑄 − 𝑍𝑄), (𝑋(𝑃 + 𝑄) ∶ 𝑍(𝑃 + 𝑄)) =
(𝑍(𝑃 − 𝑄)(𝑈1𝑈4 + 𝑈2𝑈3)2 ∶ 𝑋(𝑃 − 𝑄)(𝑈1𝑈4 − 𝑈2𝑈3)2).

We cannot apply this for doubling however, because the neutral point in Montgomery is
(1 ∶ 0) so we get a division by zero. For doubling we instead use: (𝑈1 ∶ 𝑈2) = (𝑋𝑃 + 𝑍𝑃 ∶
𝑋𝑃 − 𝑍𝑃), 𝑈3 = (𝑈2

1 − 𝑈2
2), (𝑋(2𝑃) ∶ 𝑍(2𝑃)) = (𝑈2

1𝑈2
2 ∶ 𝑈3(𝑈2

2 + (𝒜 + 2)/4𝑈3). If
𝒜 = (A ∶ C), the last line becomes (𝑋(2𝑃) ∶ 𝑍(2𝑃)) = (𝑈2

1𝑈2
2𝑘2 ∶ 𝑈3(𝑈2

2𝑘2 + 𝑘1𝑈3)
with (𝑘1 ∶ 𝑘2) = (A + 2C ∶ 4C).

4.2. Hybrid arithmetic. From Section 3.3, if we work in 𝜃𝑡𝑤′ but use the doubling formula
in Montgomery to compute 𝑃 → 2𝑃 instead of the ones of the twisted theta model, we
actually obtain 2(𝑃 + 𝑇2) + 𝑇2 = 2𝑃 + 𝑇2 = 2𝑃 + (1 ∶ 0) in the 𝜃𝑡𝑤′ model. We can thus
compute a translated doubling 2𝑃 + 𝑇2 in 4𝑆 + 4𝑚0 (4𝑆 + 2𝑚0 if we normalize the curve
constants), which is interesting if 𝑆 < 𝑀 and 𝑚0 is small. We are off by a translation by the
point of 2-torsion 𝑇2, but this is easily adjusted to when doing a scalar multiplication by the
Montgomery ladder: this does not affect doublings, and for differential additions we just
need to track if the base point is 𝑃 or 𝑃 + 𝑇2.

More generally, given 𝑃, 𝑄, 𝑃 − 𝑄 + 𝑇2, we can compute 𝑃 + 𝑄 + 𝑇2 as follow: 𝑡 =
(𝑥𝑃 + 𝑧𝑃)(𝑥𝑄 + 𝑧𝑄)/(𝐴2 + 𝐵2), 𝑢 = (𝑥𝑃 − 𝑧𝑃)(𝑥𝑄 − 𝑧𝑄)/(𝐴2 − 𝐵2), (𝑃 + 𝑄 + 𝑇2) =
((𝑡 + 𝑢)2/𝑥(𝑃 − 𝑄 + 𝑇2) ∶ (𝑡 − 𝑢)2/𝑧(𝑃 − 𝑄 + 𝑇2)). This costs 2𝑆 + 4𝑀 + 2𝑚0, −1𝑚0
if the constants are normalised, −1𝑀 if the base point 𝑃 − 𝑄 + 𝑇2 is normalised.



Improving the arithmetic of Kummer lines 9

Applying the formula to 𝑃 = 𝑄, we get the (translated) doubling formula: 𝑡 = (𝑥𝑃 +
𝑧𝑃)2/(𝐴2 + 𝐵2), 𝑢 = (𝑥𝑃 − 𝑧𝑃)2/(𝐴2 − 𝐵2), (2𝑃 + 𝑇2) = ((𝑡 + 𝑢)2/𝐴2 ∶ (𝑡 − 𝑢)2/𝐵2),
which costs 4𝑆 + 4𝑚0 (−2𝑚0 if the constants are normalised).

Using these formula, we get the hybrid ladder whose cost is 3𝑀 + 6𝑆 + 2𝑚0.
Likewise, if working in 𝜃′𝑡𝑤′ we use the doubling formula in 𝑀 to compute 𝑃 → 2𝑃

instead of the ones of the twisted thetamodel, we actually obtain 2(𝑃+𝑇1)+𝑇1 = 2𝑃+𝑇1 =
2𝑃 + (1 ∶ 0) in the 𝜃𝑡𝑤′ model. The doubling formula on 𝑀 requires 𝒜 = −𝛼 − 1/𝛼 so that
𝑀 ∶ 𝑦2 = 𝑥(𝑥2+𝒜𝑥+1); more precisely it requires (𝒜+2 ∶ 4) = ((𝑎2

0−𝑏2
0)2 ∶ −(𝑎2

0+𝑏2
0)2)

so can be computed in 2𝑆 + 2𝑎 from (𝑎2
0 ∶ 𝑏2

0).

5. 2-isogenies between Kummer lines

5.1. Standard isogeny formulas. In the Montgomery model, for an isogeny with kernel
𝑇2 = (𝐴2 ∶ 𝐵2) ≠ 𝑇1 = (0 ∶ 1), the formula is given by [Ren18] (𝒜 ′ ∶ 1) = (2(𝐵4−2𝐴4) ∶
𝐵4), (𝒜 ′ + 2 ∶ 4) = (𝐵4 − 𝐴4 ∶ 𝐵4), and images are given by (𝑋 ∶ 𝑍) ↦ (𝑋(𝑋𝐴2 − 𝑍𝐵2) ∶
𝑍(𝑋𝐵2 − 𝑍𝐴2)).

In the theta model, the isogeny with kernel 𝑇1 = (𝑎 ∶ −𝑏) can be written as follow
[Rob23a, § 15.1]. Let 𝑇 = (𝑟 ∶ 𝑠) ∈ 𝐸0 be a 8-torsion point above the 4-torsion point
𝑅1 = (1 ∶ 0) which itself is above the 2-torsion point 𝑇1 = (−𝑎0 ∶ 𝑏0). Then (𝐴 ∶ 𝐵) =
(𝑟2 + 𝑠2 ∶ 𝑟2 − 𝑠2) so (𝑎2 ∶ 𝑏2) = (𝑟2 ∶ 𝑠2). And the isogeny 𝜃𝐸1

→ 𝜃′
𝐸2

is given by
(𝑥 ∶ 𝑧) ↦ (𝐵(𝑥2 + 𝑧2) ∶ 𝐴(𝑥2 − 𝑧2)); we need an Hadamard transform to obtain the
coordinates in 𝜃𝐸1

.
From these isogeny formula, we can recover isogeny formula on our twisted models and

also on the Montgomery model from applying base change. We explain a more general
method in Section 5.2.

Let us show how to use the second method, i.e. by base change. To express the isogeny 𝑓 ∶
𝐸1 → 𝐸2 in the models 𝜃′𝑡𝑤′

𝐸1
→ 𝜃′𝑡𝑤′

𝐸2
corresponds to writing the isogeny in the models

𝜃2
𝐸0

→ 𝜃2
𝐸1
. By the above description, the isogeny 𝑔 ∶ 𝐸0 → 𝐸1 can be written as follow. Let

𝑇 = (𝑟 ∶ 𝑠) ∈ 𝐸0 be a 8-torsion point above the 4-torsion point (1 ∶ 0) which itself is above
the 2-torsion point (−𝑎0 ∶ 𝑏0). Then (𝑎′ ∶ 𝑏′) = (𝑟2 + 𝑠2 ∶ 𝑟2 − 𝑠2) so (𝑎 ∶ 𝑏) = (𝑟2 ∶ 𝑠2).
And the isogeny 𝜃𝐸0

→ 𝜃′
𝐸1

is given by (𝑥 ∶ 𝑧) ↦ (𝑏′(𝑥2 + 𝑧2) ∶ 𝑎′(𝑥2 − 𝑧2)) so we need
an Hadamard transform to obtain the coordinates in 𝜃𝐸1

.
We can use this to describe the isogeny 𝜃2

𝐸0
→ 𝜃2

𝐸1
. The neutral point on 𝐸1 described

by the 𝜃2
𝐸0

= 𝜃′𝑡𝑤′
𝐸1

is (𝑎2
0 ∶ 𝑏2

0). The point 𝑇 above corresponds to a 4-torsion point
𝑇 = (𝑟2 ∶ 𝑠2) on 𝜃2

𝐸0
above the two torsion point (1 ∶ 0) (we can check that in 𝜃′𝑡𝑤′

𝐸1
(1 ∶ 0)

corresponds to the 2-torsion point (−𝑎 ∶ 𝑏) in 𝜃𝐸1
).

Then we can compute (𝑎 ∶ 𝑏) = (𝑟2 ∶ 𝑠2), (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏) and the neutral
point of 𝐸2 in the 𝜃′𝑡𝑤′

𝐸2
= 𝜃2

𝐸1
model is (𝑎2 ∶ 𝑏2) can be computed in 2𝑆, 2𝑆 + 2𝑎 if we

include (𝑎′ ∶ 𝑏′) which will be needed for images.
Let 𝑃 = (𝑥2 ∶ 𝑧2) ∈ 𝐸1 in the 𝜃2

𝐸0
model. The image of 𝑃 in 𝐸2 in the 𝜃2

𝐸1
model can be

computed as follows: compute (𝑏′(𝑥2 + 𝑧2) ∶ 𝑎′(𝑥2 − 𝑧2)) apply the Hadamard transform
and then square the coordinates; this costs 2𝑆 + 2𝑀 + 4𝑎.

This gives the isogeny algorithm in the 𝜃2 model, it is also well known how to compute
doublings in this model, see [BRS23] for more details.

A similar approach gives formula in the 𝜃𝑡𝑤′ model. In the 𝜃𝑡𝑤′ model, the isogeny 𝑓
with kernel by 𝑇1 is given by (𝑥 ∶ 𝑧) ↦ ((𝑥 + 𝑧)2/𝑎2 ∶ (𝑥 − 𝑧)2/𝑏2). The neutral point of



10 DAMIEN ROBERT

𝐸′ is then (𝑎2 ∶ 𝑏2), 𝑇2, 𝑇3 are mapped to (𝑏2 ∶ 𝑎2), 𝑅1 is mapped to (1 ∶ 0), 𝑅′
1 to (0 ∶ 1),

𝑅2, 𝑅′
2 to (1 ∶ 1). The dual isogeny ̃𝑓 is given by (𝑥 ∶ 𝑧) ↦ ((𝑥 + 𝑧)2/𝐴2 ∶ (𝑥 − 𝑧)2/𝐵2).

And the isogeny with kernel 𝑇2 is given by 𝑔 ∶ (𝑥 ∶ 𝑧) ↦ (((𝑥 + 𝑧)/𝑎 + (𝑥 − 𝑧)/𝑏)2 ∶
((𝑥+𝑧)/𝑎−(𝑥−𝑧)/𝑏)2).We recall that (𝑎 ∶ 𝑏) can be recovered from𝑅2.The neutral point is
then 𝑔(0) = 𝑔(𝑇2) = (𝑎′2 ∶ 𝑏′2), 𝑔(𝑇1) = 𝑔(𝑇3) = (𝑏′2 ∶ 𝑎′2), 𝑔(𝑅1) = 𝑔(𝑅′

1) = (1 ∶ 1),
𝑔(𝑅2) = (1 ∶ 0), 𝑔(𝑅′

2) = (0 ∶ 1).

5.2. A general framework to derive 2-isogenies between Kummer lines. Now we want to
extend these classical formulas to more general models.

In dimension one, we can work on any model of a Kummer line by specifying its ramifi-
cation (+ the neutral point). From this data it is easy to recover the action of the theta group
𝐺(20𝐸), and hence compute formula for 2-isogenies between two models. This also allows
to obtain doubling formula, and by considering the isogeny: (𝑃1, 𝑃2) ↦ (𝑃1 + 𝑃2, 𝑃1 − 𝑃2)
differential addition formula.

If𝑇 is a rational two torsion point on ourmodel, we can consider the action 𝑔𝑇 of a rational
element 𝑔𝑇 ∈ 𝐺(20𝐸) in the theta group above 𝑇 on the sections Γ(𝐸, 20𝐸) = ⟨𝑋, 𝑍⟩.
This action is irreducible and faithful, so 𝑔𝑇 is completely determined by this action. Then
𝜆 = 𝑔2

𝑇 ∈ 𝔾𝑚 is an element, and its class in 𝑘∗/𝑘∗,2 does not depend on the representative,
only on 𝑇. A small computation shows that this is exactly the (non reduced) Tate pairing
𝑒𝑇,2(𝑇, 𝑇). The symmetric elements above 𝑇 are of order exactly 2, so 𝑒𝑇,2(𝑇, 𝑇) is trivial
precisely when these symmetric elements are rational.

We remark that the translation by 𝑇 is given by a projective homography, which can be
determined by the fact that it maps 0 ↦ 𝑇, 𝑇 ↦ 0, 𝑇2 ↦ 𝑇3, 𝑇3 ↦ 𝑇2; and we can take for
𝑔𝑇 any rational affine lift of this projective translation.

By an homography, we can always send 0𝐸 to (1 ∶ 0) and 𝑇 to (0 ∶ 1). An element 𝑔𝑇
can be given in the form (𝑋 ∶ 𝑍) ↦ (𝑍 ∶ 𝜆𝑋), so if 𝑇2 = (𝑥2 ∶ 𝑧2), 𝑇3 = (𝑥3 ∶ 𝑧3), so
𝜆 = 𝑥3𝑧3/𝑥2𝑧2, this is well defined in 𝑘∗/𝑘∗,2. Notice that𝑇2, 𝑇3 are projectively determined
only up to an homotety, but this does not change the class of 𝜆.

We can also describe the two points of 4-torsion above 𝑇 (rember that we are on the
Kummer, so [𝑇′ + 𝑇] = [𝑇′] by solving the equation 𝑇′ + 𝑇 = 𝑇′.

From all this discussion, it follows that 𝜆 = 1 iff the symmetric elements ±𝑔𝑇 are rational
iff 𝑒𝑇,2(𝑇, 𝑇) = 1, iff the curve is of Montgomery type when 𝑇 is sent to (0 ∶ 1) and 0𝐸 to
infinity, iff (still if these two points are sent likewise) 𝑇′ = (1 ∶ 1) is a point of 4-torsion
above 𝑇, iff there are sections 𝑋, 𝑍 of 2(0𝐸) such that 𝑔𝑇(𝑋, 𝑍) = (𝑍, 𝑋) iff (by Hadamard)
there are sections such that 𝑔𝑇(𝑋, 𝑍) = (−𝑋, 𝑍), iff the quotient 𝐸/𝑇 is of Legendre type.
In particular, if 𝑇 is of Montgomery type and the full 2-torsion is rational, then 𝐸/𝑇 has
full 2-torsion and the generator of the dual isogeny is of Montgomery type, which is a nice
symmetric situation.

Anyway, to study the 2-isogeny with kernel 𝑇, 𝑓 ∶ 𝐸 → 𝐸′ = 𝐸/𝑇, we need to descend the
divisor 4(0𝐸) to 2(0𝐸′). Since the descent is symmetric, it is given by one of the symmetric
element 𝐻𝑇 ∈ 𝐺(4(0𝐸)) above 𝑇, and it is not hard to prove that it is the symmetric element
which is given by 𝐻𝑇 = ℎ⊗2

𝑇 where ±ℎ𝑇 is any of the two symmetric element above 𝑇 in
𝐺(2(0𝐸)). Although ℎ𝑇 may not be rational, if we have 𝑔𝑇 of type 𝜆, then by definition of 𝜆,
𝐻𝑇 = 𝑔⊗2

𝑇 /𝜆, so 𝐻𝑇 is always rational.
It follows that the elements of Γ(2(0𝐸′)) are the sections of Γ(4(0𝐸)) invariant by 𝐻𝑇.

Now since we only have (𝑋, 𝑍) ∈ Γ(2(0𝐸)) = Γ(2(0𝐸))+, we can only construct the even
elements (𝑋2, 𝑋𝑍, 𝑍2) ∈ Γ(4(0𝐸)+) (and these span the space of even elements, the rest of
Γ(4(0𝐸)) is obtained by adding the odd element 𝑌𝑍). Now take 𝑋, 𝑍 such that 𝑔𝑇.(𝑋, 𝑍) =



Improving the arithmetic of Kummer lines 11

(𝑍, 𝜆𝑋) as above, then 𝐻𝑇 = 𝑔⊗2
𝑇 /𝜆 acts on this basis by 𝐻𝑇.𝑋2 = 𝑍2/𝜆, 𝐻𝑇.𝑍2 =

𝜆𝑋2, 𝐻𝑇.𝑋𝑍 = 𝜆𝑋𝑍. Take a space (𝑈, 𝑉) of invariants under this action, and compute
the ramification of 𝐸′ by computing (𝑈, 𝑉) on 𝑇2, 𝑇3 and 𝑇′

1. This give a model of 𝐸′, then
eventually compose by an homography to make it of nice form. All this gives a very general
framework to compute formulas for 2-isogenies between different models of Kummer line.

The nicest case is when 𝑇 is of Montgomery type, ie 𝜆 = 1. If we put 𝑇 in position (0 ∶ 1)
and 0𝐸 to (1 ∶ 0), like in the Montgomery model, then 𝑔𝑇 is given by (𝑋, 𝑍) ↦ (𝑍, 𝑋). We
apply the Hadamard change of variable: (𝑋′, 𝑍′) = (𝑋 + 𝑍, 𝑋 − 𝑍). Via this change of
variable, the action of the symmetric 𝑔𝑇 is given by (𝑋′, 𝑍′) ↦ (𝑋′, −𝑍′), so we can take
𝑈 = 𝑋′2, 𝑉 = 𝑍′2. This explain why on a Montgomery point, the 2-isogeny images is given
by two squares (followed by a nice homography to make 𝐸′ still of Montgomery type).

There are two ways to ensure that 𝐸′ is still of Montgomery type. The first one is to ask for
𝑇2, 𝑇3 to be rational; this was handled above. The second one is to ask for a rational point of
8-torsion 𝑇"1 above 𝑇′

1 = (1 ∶ 1), then 𝑓 (𝑇"1) gives a 4-torsion point above 𝑓 (𝑇′
1), hence

𝑓 (𝑇′
1) is still of Montgomery type. Following the above strategy, we get the following isogeny

formula: (𝑋 ∶ 𝑍) ↦ (𝛾(𝑋 − 𝑍)2 ∶ 4𝑋𝑍), with 𝛾 = (4𝑟𝑠 ∶ (𝑟 − 𝑠)2) where 𝑇"1 = (𝑟 ∶ 𝑠).
(Recall that 4𝑋𝑍 = (𝑋 + 𝑍)2 − (𝑋 − 𝑍)2). We have 𝑓 (0) = 𝑓 (𝑇1) = (1 ∶ 0), 𝑓 (𝑇2) =
𝑓 (𝑇3) = (1 ∶ −𝛾), 𝑓 (𝑅1) = (0 ∶ 1), 𝑓 (𝑅2) = (−𝛾 ∶ 1). We recover formulas from [DJP14].

The reader can check thatwe can recover all formulas fromSection 5.1 thisway. From these,
we can recover the standard doubling addition and differential addition via Montgomery’s
formula, they cost 2𝑀+2𝑆+2𝑚0 and 4𝑀+2𝑆 respectively.These cost drop to 2𝑀+2𝑆+1𝑚0
if we normalize the constants to have 𝐶 = 1 and to 3𝑀 +2𝑆 if the base point 𝑃 = (𝑋𝑃 ∶ 𝑍𝑃)
is normalised to have 𝑍𝑃 = 1.

Example 5.1. Let’s explain how to compute an isogeny from a theta model to a Montgomery
model when we do not have access to a 8-torsion point. From the theta null point (𝑎 ∶ 𝑏) of
𝐸1, we can compute (𝑎2 ∶ 𝑏2) the theta null point of 𝐸2 in the 𝜃2

𝐸1
= 𝜃′𝑡𝑤′

𝐸2
model, and the

isogeny map is (𝑥 ∶ 𝑧) ↦ (𝑥2 ∶ 𝑧2). Translating by 𝑇2 = (1 ∶ 0) we obtain the coordinates
on the Montgomery model of 𝐸2, with 𝒜2 = −𝛼2 − 1/𝛼2, 𝛼2 = 𝑏2/𝑎2.

5.3. Translated isogenies. There are two ways to obtain translated isogeny formulas. The
first one is to remark that computing isogenies in the 𝜃𝑡𝑤′ model (or 𝜃′𝑡𝑤′ model) is slightly
faster than in Montgomery, but doubling is faster in Montgomery. Then we can apply the
same strategy as in Section 4.2 and work in (say) the Montgomery model but apply the
isogeny formula from 𝜃𝑡𝑤′, which from the point of view of the Montgomery model looks
like a translated isogeny.

The second way is to apply the method of Section 5.2, find invariant sections, look at the
image ramification, but not translate back to send the isogeneous neutral point to infinity.
Since we skip the translation, we get faster formula, but if we work in the new codomain as
if the point at infinity was our neutral point, we are off by translation by some point. This
method is more generic (it applies to all models), but of course give back the same formula
as the first model. We will illustrate both. As an aside, translated isogenies allows to recover
translated doublings too (by applying the translated dual isogeny). This gives an alternative
way to recover the formula from Section 4.2 directly on a Montgomery model, without going
through the change of variable to the twisted theta model.

Let’s first look at what happens in the Montgomery model where we use the theta formula
for images, using the model 𝜃′𝑡𝑤′. As explained above, the point (𝑎2

0 ∶ 𝑏2
0) corresponding

to the neutral point in the 𝜃′𝑡𝑤′ model now corresponds to a 2-torsion point 𝑇1 in 𝑀. We
can represent 𝑀 by this 2-torsion point, for doubling we need (𝒜 + 2 ∶ 4) = ((𝑎2

0 − 𝑏2
0)2 ∶



12 DAMIEN ROBERT

−(𝑎2
0 + 𝑏2

0)2) which we can recover in 2𝑆 from 𝑇1. The equation is given by 𝑀 ∶ 𝑦2 =
𝑥(𝑥 − 𝛼)(𝑥 − 1/𝛼) = 𝑥(𝑥2 + 𝒜𝑥 + 1) with 𝛼 = 𝑏2

0/𝑎2
0.

We want to compute the isogeny 𝐸1 → 𝐸2 with kernel 𝑇1. Here 𝐸1 is in a Montgomery
model where the full 2-torsion is rational, and we quotient by a 2-torsion point which is
different from (0 ∶ 1), so that the four torsion point (1 ∶ 1) in 𝐸1 is still of four torsion in 𝐸2
and 𝐸2 still has a Montgomery model.

But we want to represent 𝐸2 via a two torsion point like we did for 𝐸1 (more precisely the
two torsion point giving the next kernel). So we need to assume that we have a 4-torsion
point 𝑇 = (𝑟2 ∶ 𝑠2) above 𝑇1. Then 𝑓 (𝑇) = 𝑇′

1 ≔ (𝑟4 ∶ 𝑠4) on 𝐸2 is the two torsion point
we use to represent 𝐸2 and is computed in 2𝑆. This point 𝑇′

1 will be the kernel of our next
isogeny.

From theMontgomery point of view, given a point𝑃 = (𝑥2 ∶ 𝑧2), then computing (𝑏′(𝑥2+
𝑧2) ∶ 𝑎′(𝑥2 − 𝑧2)) followed by the Hadamard transform then squaring the coordinates
corresponds to computing 𝑓 (𝑃) + 𝑇′

1 on 𝐸2 and can be done in 2𝑆 + 2𝑀 + 4𝑎. Since 𝑇′
1 is

the kernel of the next isogeny, it does not matter that we translate the image, except at the
very last step.

In other words: if on a Montgomery curve we have a point of four torsion 𝑇 which does
lies above a two torsion point 𝑇1 ≠ (0 ∶ 1), then if 𝑓 is the isogeny with kernel 𝑇1 we can use
the coordinates of 𝑇 to compute 𝑃 ↦ 𝑓 (𝑃) + 𝑓 (𝑇) in 2𝑀 + 2𝑆 + 4𝑎 compared to 4𝑀 + 4𝑎
for computing 𝑓 (𝑃). And 𝑓 (𝑇) can be computed in 2𝑆.

For a 2𝑛-isogeny, if we select 𝑇 to be the point giving the next kernel, this extra translation
in images does not matter (except at the last step).

Now, we reexplain how to get formula by working on the Montgomery model directly,
but using the methods of Section 5.2. Let’s look at the isogeny 𝑓 ∶ 𝐸 → 𝐸/𝑇1, we have seen
that invariant sections are given by 𝑈 = (𝑋 + 𝑍)2, 𝑉 = (𝑋 − 𝑍)2. Let’s look at the images
of the ramification and 4-torsion points under 𝐺 = (𝑈, 𝑉). First we apply the Hadamard
transform: 𝐻(0𝐸 = (1 ∶ 0)) = (1 ∶ 1), 𝐻(𝑇1 = (0 ∶ 1)) = (−1 ∶ 1), 𝐻(𝑇2 = (𝐴2 ∶
𝐵2)) = (𝑎2 ∶ 𝑏2), 𝐻(𝑇3 = (𝐵2 ∶ 𝐴2)) = (−𝑎2 ∶ 𝑏2), 𝐻(𝑅1 = (1 ∶ 1)) = (1 ∶ 0),
𝐻(𝑅′

1 = (−1 ∶ 1)) = (0 ∶ 1), 𝐻(𝑅2 = (𝑎′ ∶ 𝑏′)) = (𝑎 ∶ 𝑏), 𝐻(𝑅′
2 = (𝑏′ ∶ 𝑎′)) = (−𝑎 ∶ 𝑏).

It follows that 𝐺(0𝐸) = 𝑔(𝑇1) = (1 ∶ 1), 𝐺(𝑇2) = 𝑔(𝑇3) = (𝑎4 ∶ 𝑏4), 𝐺(𝑅1) = (1 ∶ 0),
𝐺(𝑅′

1) = 𝑔(𝑅1 + 𝑇2) = (0 ∶ 1), 𝐺(𝑅2) = 𝑔(𝑅′
2) = (𝑎2 ∶ 𝑏2). The ramification on the

codomain is (1 ∶ 1), (𝑎4 ∶ 𝑏4), (1 ∶ 0), (0 ∶ 1), given as the image of 0𝐸, 𝑇2, 𝑅1, 𝑅′
1. We can

scale it to be invariant by (𝑋 ∶ 𝑍) ↦ (𝑍 ∶ 𝑋) as in the Montgomery form, the scaling is
(𝑋 ∶ 𝑍) ↦ (𝑏2𝑋 ∶ 𝑎2𝑍) and the ramification is then (𝑏2 ∶ 𝑎2), (𝑎2 ∶ 𝑏2), (1 ∶ 0), (0 ∶ 1).
However, the point 0𝐸 is sent to 𝑇′

2 ≔ (𝑏2 ∶ 𝑎2). So in summary, if 𝐻 is the Hadamard
transform and 𝑆 the squaring (𝑋 ∶ 𝑍) ↦ (𝑋2 ∶ 𝑍2) transform, and 𝐶 the scaling transform
above, we have that 𝐶 ∘ 𝑆 ∘ 𝐻 is an isogeny with kernel 𝑇1 between our Montgomery curve,
and a curve 𝑀″ that has the same ramification as a Montgomery curve 𝑀′ except the neutral
point is 𝑇′

2 = (𝑏2 ∶ 𝑎2). So the full isogeny, if we want to work on 𝑀′ rather than 𝑀″, is
given by translating by 𝑇′

2; in other word 𝐶 ∘ 𝑆 ∘ 𝐻 ∶ 𝑀 → 𝑀′ gives the isogeny translated
by 𝑇′

2 = 𝑓 (𝑅1).
In summary, applying the above method, we get the following formulas.
The (translated) isogeny 𝑓 ∶ 𝐸 → 𝐸/𝑇1 is given by, if 𝑃 = (𝑥 ∶ 𝑧), 𝑓 (𝑃 + 𝑅1) =

((𝑥 + 𝑧)2/𝑎2 ∶ (𝑥 − 𝑧)2/𝑏2), with (𝑎2 ∶ 𝑏2) = (𝐴2 + 𝐵2 ∶ 𝐴2 − 𝐵2). Notice that 𝐸′ = 𝐸/𝑇1
is still a Montgomery curve with full rational 2-torsion, so there is a perfect symmetry
between 𝐸 and 𝐸′. We have 𝑇′

2 = 𝑓 (𝑅1) = (𝑏2 ∶ 𝑎2), 𝑓 (0) = 𝑓 (𝑇1) = (1 ∶ 0) = 0,
𝑓 (𝑇2) = 𝑓 (𝑇3) = (0 ∶ 1) = 𝑇′

1, 𝑓 (𝑅1) = 𝑇′
2 = (𝑏2 ∶ 𝑎2), 𝑓 (𝑅2) = (𝑎2 ∶ 𝑏2) = 𝑇′

3.



Improving the arithmetic of Kummer lines 13

The (translated) dual isogeny with kernel 𝑇′
1 is given by ̃𝑓 (𝑃 + 𝑅′

1) = ̃𝑓 (𝑃) + 𝑇2 =
((𝑥 + 𝑧)2/𝐴2 ∶ (𝑥 − 𝑧)2/𝐵2). Composing ̃𝑓 ∘ 𝑓 we recover the (translated) doubling formula
𝑃 ↦ 2𝑃 + 𝑇2 as above. We have ̃𝑓 (0) = ̃𝑓 (𝑇′

1) = (1 ∶ 0), ̃𝑓 (𝑇′
2) = ̃𝑓 (𝑇′

3) = 𝑇1, ̃𝑓 (𝑅′
1) =

𝑇2 = (𝐴2 ∶ 𝐵2), ̃𝑓 (𝑅′
2) = (𝐵2 ∶ 𝐴2) = 𝑇3.

Now, let 𝑔 ∶ 𝐸 → 𝐸2 = 𝐸/𝑇2 be the isogeny with kernel 𝑇2. Since we want 𝐸2 to be
Montgomery with full rational two torsion, we need a point 𝑆2 = (𝑎′ ∶ 𝑏′) above 𝑇2.

The isogeny 𝑔 is then given by 𝑔(𝑃 + 𝑆2) = (((𝑥 + 𝑧)/𝑎 + (𝑥 − 𝑧)/𝑏)2 ∶ ((𝑥 + 𝑧)/𝑎 −
(𝑥 − 𝑧)/𝑏)2), with (𝑎 ∶ 𝑏) = (𝑎′ + 𝑏′ ∶ 𝑎′ − 𝑏′). (Remark that (𝐴2 ∶ 𝐵2) = (𝑎2 + 𝑏2 ∶
𝑎2 − 𝑏2) = (𝑎′2 + 𝑏′2 ∶ 2𝑎′𝑏′)). The curve 𝐸2 is represented by its two torsion point
𝑇′

2 = 𝑔(𝑆2) = (𝑎′2 ∶ 𝑏′2). The codomain computation costs 2𝑆, and a translated image
2𝑆 + 2𝑚0.

We have 𝑔(0) = 𝑔(𝑇2) = 0, 𝑔(𝑇1) = 𝑔(𝑇3) = 𝑇′
1 = (0 ∶ 1), 𝑔(𝑅1) = 𝑔(𝑅2) =

𝑅′
2 = (1 ∶ −1), 𝑔(𝑅1 + 𝑆2) = 𝑅′

1 = (1 ∶ 1), 𝑔(𝑆2) = 𝑇′
2 = (𝑎′2 ∶ 𝑏′2), 𝑔(𝑆2 + 𝑇1) =

𝑔(𝑆2 + 𝑇3) = (𝑏′2 ∶ 𝑎′2) = 𝑇′
3. The dual isogeny ̃𝑔 has kernel 𝑇′

1 = (0 ∶ 1) and is given by
̃𝑔(𝑃) = (𝐵2(𝑥+𝑧)2 ∶ 4𝐴2𝑥𝑧). (Notice that 4𝑥𝑧 = (𝑥+𝑧)2 −(𝑥−𝑧)2 so ̃𝑔 can be computed

in 2𝑆 + 2𝑚0.) We have ̃𝑔(0) = ̃𝑔(𝑇′
1) = (1 ∶ 0), ̃𝑔(𝑇′

2) = ̃𝑔(𝑇′
3) = 𝑇2, ̃𝑔(𝑅′

1) = 𝑇3,
̃𝑔(𝑅′

2) = 𝑇1. The composition ̃𝑔 ∘ 𝑔 gives an alternative formula to compute 𝑃 ↦ 2𝑃 + 𝑇2
in 4𝑆 + 2𝑚0.

5.4. Theta versus Montgomery. To summarize, the complexities for computing isogenies
in the theta model are as follows:

(1) 2𝑆 + 2𝑎 for the codomain
(2) 2𝑆 + 2𝑀 + 4𝑎 for an image
(3) 4𝑆 + 4𝑀 + 8𝑎 for doubling

The input is the theta null point (𝑎 ∶ 𝑏), which implicitly contains the 2-torsion point (−𝑎 ∶ 𝑏)
used for our kernel; and the images computations needs (some constants computed during)
the codomain.

In the Montgomery model, the costs are, using [CLN16; CH17; Ren18]:
(1) 2𝑆 + 1𝑎 for the codomain
(2) 4𝑀 + 4𝑎 for an image (using a precomputation of 2𝑎)
(3) 2𝑆 + 4𝑀 + 4𝑎 for doubling

Here the input is a two torsion point (different from (0 ∶ 1)) giving the kernel (and implicitly
the curve); the image computation does not needs the codomain.

We see that the theta model is slightly faster then the Montgomery model except for
doublings. Using hybrid isogenies allows to combine the best of both models.

To sum up, we can, provided we have a point of 4-torsion 𝑇 above our kernel ⟨𝑇2⟩:
(1) Compute a representation of the codomain in 2𝑆. The representation is given by the

2-torsion point 𝑓 (𝑇) = 𝑇2, which is the kernel of the next isogeny.
If we need to compute doublings on the codomain, we need to add a 2𝑆 + 2𝑎

precomputation to compute (𝒜 + 2 ∶ 4), and if we need to compute images we need
to add a 2𝑎 precomputation (which is already done if we did the previous 2𝑆 + 2𝑎
precomputation needed for doublings).

(2) Compute “images” in 2𝑀 + 2𝑆 + 4𝑎.
(3) Compute “doublings” in 4𝑀 + 2𝑆 + 4𝑎.

The words “images” and “doublings” are in quotes because if we consider that we are on a
twisted theta models the “doublings” we compute are actually 2𝑃 + 𝑇2, while if we consider
that we are in the Montgomery model it is the images that are actually given by 𝑓 (𝑃) + 𝑇2.



14 DAMIEN ROBERT

The images need some of the constants computed for the codomain. In both cases, this
translation is by an element of the next kernel, so does not affect the rest of the computation.

We conclude this with a discussion on 4-isogenies. On theMontgomerymodel, a 4-isogeny
can be computed in [CH17]:

(1) 4𝑆 + 5𝑎 for the codomain
(2) 6𝑀 + 2𝑆 + 6𝑎 for images.

Here the input for the codomain is given by the coordinates of a 4 torsion point 𝑇, and the
input for the images needs some of the constants for the codomain.

If the kernel is given by 𝐾 = ⟨𝑇⟩, we can also look at the cost of decomposing this 4-
isogeny as a 2-isogeny where we exploit the 4-torsion point followed by a standard 2-isogeny
formula in the Montgomery model:

(1) 4𝑆 + 3𝑎 for the codomain
(2) 6𝑀 + 2𝑆 + 8𝑎 for images.

It is probable (but I haven’t checked) that we actually obtain essentially the same formula
as the 4-isogeny algorithm above, except 2 of the additions needed for images could be
moved to a precomputation done in the codomain computation. So the standard 4-isogeny
formula can essentially be interpreted as alternating the 2𝑀 + 2𝑆 isogeny formula with the
4𝑀 isogeny formula. But if we have a 2𝑛-isogeny to compute, we might as well keep using
the 2𝑀 + 2𝑆 formula, except at the very end where we use the 4𝑀 formula to not be off
by translation by a point of 2-torsion (and we might not have a 4-torsion point available
anymore anyway).

Remark 5.2. Decomposing a 2𝑛-isogeny via 2-isogenies or 4-isogenies. While the above
formula for 2-isogenies in theMontgomerymodel are fun to look at, they are not really useful
in practice: it is better to decompose a 2𝑛-isogenies as a sequence of 4-isogenies rather than
as a sequence of 2-isogenies.The reason is that the decomposition algorithm is quasi-linear, if
we split into blocks of 2𝑚-isogenies, we gain a bit more than 𝑚 images and doublings because
of the quasi-linearity. Usually this is not interesting because a 2𝑚-isogeny costs 𝑂(2𝑚) to
compute, so is 2𝑚−1 more expansive than a 2-isogeny but 22 = 4 hits the sweet spot for
an optimal decomposition time. Once an isogeny is decomposed, for a 2𝑛-image, using the
slightly faster 2-isogeny images rather than 4-isogenies would be better however.

6. Time-Memory trade off for the arithmetic

I found these formula (first for the theta model) in December 2022, while working with
Barbulescu and Sarkis on models of Kummer lines.

6.1. Overview. Although the Montgomery ladder is very efficient, for fast scalar multiplica-
tion the twisted Edward model is often faster because it allows for a time/memory trade off
by using the window-NAF method to reduce the amount of additions.

However, when the scalar is a secret, these time/memory trade off are often susceptible
to side channel attacks, so although signing on Curve25519 is implemented in Edwards
coordinate, the DH key exchange uses the Montgomery ladder.

It might seem that a time/memory trade off is not possible on a Kummer line because
standard additions are not available. A way to precompute the Montgomery ladder was
presented in [OLHFR18]. When 𝑇2 is rational, we present a novel approach to precompute
the ladder that:

(1) does a precomputation of points 𝑃𝑖 = (𝑋𝑖 ∶ 𝑍𝑖) costing 2𝑆 + 1𝑚0 by bit, and
requiring to store two field coefficients by bit.



Improving the arithmetic of Kummer lines 15

(2) using this precomputation, the ladder then costs 2𝑆 + 1𝑚0 for doubling, and 4𝑀
for a differential addition by bit.

The total cost, including the precomputation, is thus of 4𝑆 + 4𝑀 + 2𝑚0, and further
scalar multiples with the same base point then cost 2𝑆 + 4𝑀 + 1𝑚0. Here it does not matter
whether 𝑃 = (𝑋𝑃 ∶ 𝑍𝑃) is normalised or not.

We stress that the scalar multiplication still uses a ladder approach, with one doubling and
one differential addition by bit, thus retaining the same side channel resistance as the standard
Montgomery ladder. (We recall that the Montgomery ladder without precomputation costs
5𝑀 + 4𝑆 + 1𝑚0 when the base point 𝑃 is normalised, and 6𝑀 + 4𝑆 + 1𝑚0 if 𝑃 is not
normalised.)

If we know that 𝑃 will be used several time (like for the first step of a DH key exchange),
we can increase the precomputation to normalise the points 𝑃𝑖 = (𝑋𝑖/𝑍𝑖 ∶ 1). This costs
one field division by bit, and reduces the storage to one field coefficient by bit. We can batch
the inversions, to replace the one division by bits by one global inversions and 3 + 1 = 4
multiplications by bit.

The precomputation is then one global inversion, and 4𝑀 + 2𝑆 + 1𝑚0 by bit (the storage
drops to one coefficient by bit).Themultiples𝑚.𝑃 then cost 2𝑆+3𝑀+1𝑚0 by bit, significantly
improving on the standard ladder.

Unfortunately, for Curve25519 the point 𝑇2 is not rational. But its 2-isogeneous curve is a
Montgomery curve with full rational 2-torsion, so by computing an isogeny at the beginning
and the end we can still use our novel time/memory trade off on Curve25519 (however,
unlike Curve25519, the curve constant on the isogeneous curve is not small, so we don’t gain
as much as if we had selected from the beginning a suitable curve with a small 𝑚0).

A similar algorithm works in higher dimension. For a Kummer surface the precom-
putation step costs one global inversion and 12𝑀 + 4𝑆 + 3𝑚0 by bits, and then a scalar
multiplication with the same base point costs 7𝑀+4𝑆+3𝑚0; compared to 7𝑀+12𝑆+9𝑚0
or 10𝑀 + 9𝑆 + 6𝑚0 for the standard ladder.

Now let us compare with the results of [OLHFR18]. Their idea is to use a right to left
Montgomery ladder rather than the usual left to right ladder. The right to left ladder always
involve the points 𝑃𝑖 = 2𝑖𝑃 (where 𝑃 is the base point), so these can be precomputed.
(Our approach is related: we remark that we can factor doublings and differential additions
through 2-isogenies to get half doublings and half differential additions. We permute the
order: rather than at each step, compute an image through a 2-isogeny and then do a half
differential additions, we precompute all images and then only do half differential additions
for the ladder).

With these precomputations done, the right to left Montgomery ladder then only needs
differential additions, except that the difference is not fixed anymore. So a priori we need a
full DiffAdd at each step rather than a mDiffAdd. In [OLHFR18], the authors explain how
to extract from the 𝑃𝑖 a coordinate 𝜇𝑖 (this requires a division) which can be used to get a
DiffAdd formula (involving 𝑃𝑖) in 3𝑀 + 2𝑆, exactly like the mDiffAdd.

Their precomputation cost is then the cost of one doubling by bit (to compute the 2𝑖𝑃,
aka 2𝑀 + 2𝑆 + 1𝑚0 and one division, so batching inversions we get a precomputation cost
of one global division and 6𝑀 + 2𝑆 + 1𝑚0 by bit. The scalar multiplication is then like
the standard ladder, except all doublings have been removed and only differential addition
remains, so it costs 3𝑀 + 2𝑆 by bit. Without the computation of the 𝜇𝑖, the precomputation
would be 2𝑀 + 2𝑆 + 1𝑚0 and the multiplication cost 4𝑀 + 2𝑆 by bit.

We compare two cases. We recall that the standard Montgomery ladder costs 5𝑀 + 4𝑆 +
1𝑚0 by bit when 𝑃 is normalised.



16 DAMIEN ROBERT

• We only do a light precomputation without inversions. By bit, our ladder requires a
2𝑆 + 1𝑚0 precomputation, followed by a 4𝑀 + 2𝑆 + 1𝑚0 for multiplication. The
ladder in [OLHFR18] requires a 2𝑀 + 2𝑆 + 1𝑚0 precomputation, followed by
4𝑀 + 2𝑆 for multiplication.

• We allow a global inversion in the precomputations. By bit, our ladder requires a
4𝑀 + 2𝑆 + 1𝑚0 precomputation, followed by a 3𝑀 + 2𝑆 + 1𝑚0 for multiplication.
The ladder in [OLHFR18] requires a 6𝑀 + 2𝑆 + 1𝑚0 precomputation, followed by
3𝑀 + 2𝑆 for multiplication.

We see that in both cases, our precomputation is smaller, but we pay for it by needing an extra
𝑚0 in the multiplication step. However, an important point is that our light precomputation
is so cheap that even including it we are only at 4𝑀 + 4𝑆 + 2𝑚0, which gains 1𝑀 − 1𝑚0
compared to the Montgomery formula (and 2𝑀 − 1𝑚0 if the base point is not normalised).

Furthermore, for Kummer surfaces, our precomputation and multiplication are both
faster than an equivalent approach as [OLHFR18] would provide.

6.2. Explicit formula. In the theta model, the arithmetic ladder stems from the duplication
formula (see [Rob23a]): 𝜃𝐸(𝑃 + 𝑄) ⋆ 𝜃𝐸(𝑃 − 𝑄) = 𝐻(𝜃′

𝐸′(𝑓 (𝑃)) ⋆ 𝜃′
𝐸′(𝑓 (𝑄))).

The ladder use two steps for the differential addition (doubling is a special case where
𝑃 − 𝑄 = 0): compute 𝑓 (𝑃) via 𝜃𝐸(𝑃) ⋆ 𝜃𝐸(𝑃) = 𝐻(𝜃′

𝐸′(𝑓 (𝑃)) ⋆ 𝜃′
𝐸′(𝑓 (0))). This costs

2𝑆 + 1𝑚0. Do the same for 𝑓 (𝑄). Then use 𝜃𝐸(𝑃 + 𝑄) ⋆ 𝜃𝐸(𝑃 − 𝑄) = 𝐻(𝜃′
𝐸′(𝑓 (𝑃)) ⋆

𝜃′
𝐸′(𝑓 (𝑄))) to compute (𝑃 + 𝑄) ⋆ (𝑃 − 𝑄) in 2𝑀, and then 𝑃 + 𝑄 in again 2𝑀 (or 1𝑀 if

𝑃 − 𝑄 is normalised).
A large part of the ladder is hence spent in isogeny images. Let 𝑓1 = 𝑓, 𝑓2 = ̃𝑓 ∘𝑓1, 𝑓3 = 𝑓 ∘𝑓2,

𝑓4 = ̃𝑓 ∘ 𝑓3 and so on. Assume we had 𝑓𝑖+1(𝑛𝑃), 𝑓𝑖+1((𝑛 + 1))𝑃. Then from the duplication
formula, we could directly find 𝑓𝑖(2𝑛𝑃), 𝑓𝑖(2(𝑛 + 1)𝑃), 𝑓𝑖((2𝑛 + 1)𝑃).

The doublings only require the points 𝑓𝑖(0𝐸) which are given by the two curves 𝐸 and 𝐸′.
However the differential addition needs 𝑓𝑖(𝑃). So what we can do is compute 𝑓𝑖(𝑃), 𝑓𝑖(0𝐸)
then apply our duplication formula. This inverse the order: rather than doing two isogeny
images and two duplication at each step, we compute all the images first and then do all the
duplications. We gain because the images 𝑓𝑖(0𝐸) are free. We could expect to gain 2𝑆 + 1𝑚0,
but because our points 𝑓𝑖(𝑃) are no longer normalised, we only gain 2𝑆+1𝑚0 −𝑀 compared
to the normal ladder with a normalised 𝑃.

In summary: we do a precomputation phase with all the 𝑓𝑖(𝑃). This cost 2𝑆 + 1𝑚0 by bit,
along with 2 field coefficients.Then we do our duplication formula: this cost 2𝑆+1𝑚0 for our
doublings, and 4𝑀 for our differential additions (again, because the 𝑓𝑖(𝑃) are not normalised).
The final cost including the precomputation is 4𝑀 + 4𝑆 + 2𝑚0. Further multiplication with
the same base point 𝑃 will cost 4𝑀 + 2𝑆 + 1𝑚0. We note that this cost is the same whether
𝑃 is normalised or not (because even if 𝑃 is normalised, the 𝑓𝑖(𝑃) won’t be).

When we know in advance 𝑃 will be used (for public key encryption, or the first phase of
DH key exchange), it is worth it to normalise the 𝑓𝑖(𝑃) at the cost of 1𝐼 by bit (the storage is
then 1 coeff by bit). Then scalar multiplication will cost 3𝑀 + 2𝑆 + 1𝑚0.

The big advantage compared to other time/memory trade off with elliptic curves (naf,
window, …) is that the scalar multiplication is still a ladder with a double and diff add by bit,
hence much less susceptible to side channel attack.

The same principle apply to the twisted theta model 𝜃𝑡𝑤′, by using the linear change
of variable from the theta model, but we need some careful translation by 𝑓𝑖(𝑇2) to gain
1𝑀 at each step (essentially we use a trick similar to the hybrid ladder): for the differential
addition we assume that we have 𝑓𝑖+1(𝑛𝑃), 𝑓𝑖+1((𝑛 + 1)𝑃 + 𝑇2) (say) and we compute
𝑓𝑖((2𝑛 + 1)𝑃 + 𝑇2). (Doublings are no problem). We obtain the same cost as in the 𝜃 model,



Improving the arithmetic of Kummer lines 17

except the initial translation by the two torsion point; likewise in the Montgomery cap
Legendre model.

The formula are as follow (pending typos, I recommend to look at the code in [Rob23e]
instead to be sure to use correct formulas...): given (𝑥𝑃𝑖 ∶ 𝑧𝑃𝑖), the isogenous point 𝑃𝑖+1 is
given by: 𝑋 = (𝑥2

𝑃𝑖 + 𝑧2
𝑃𝑖)𝑏2

𝑖 ∶ (𝑥2
𝑃𝑖 − 𝑧2

𝑃𝑖)𝑎2
𝑖 ). From 𝑃𝑖+1 we can compute 2𝑃𝑖 via the dual

isogeny: (𝑋 + 𝑍)2𝑏𝑖+1, (𝑋 − 𝑍)2𝑎𝑖+1). The more interesting part is the differential addition,
given 𝑃𝑖+1 = (𝑥𝑔𝑃 ∶ 𝑧𝑔𝑃), 𝑄𝑖+1 + 𝑇2𝑖+1 = (𝑥𝑔𝑄′ ∶ 𝑧𝑔𝑄′), (𝑃 − 𝑄)𝑖 = (𝑥𝑃𝑄 ∶ 𝑧𝑃𝑄)
we recover (𝑃 + 𝑄)𝑖 via: 𝑠 = (𝑥𝑔𝑃 + 𝑧𝑔𝑃)(𝑥𝑔𝑄′ + 𝑧𝑔𝑄′); 𝑡 = (𝑥𝑔𝑃 − 𝑧𝑔𝑃)(𝑥𝑔𝑄′ − 𝑧𝑔𝑄′);
𝑢 = 𝑠+𝑡; 𝑣 = 𝑠−𝑡;𝑋 = 𝑢/(𝑥𝑃𝑄+𝑧𝑃𝑄); 𝑍 = 𝑣/(𝑥𝑃𝑄−𝑧𝑃𝑄); (𝑃+𝑄)𝑖 = (𝑋+𝑍 ∶ 𝑋−𝑍).

For Curve25519, since the two torsion is not rational, we need to move via a 2-isogeny to
the curve above it which is bothMontgomery and has full rational two torsion. Unfortunately
the constant is large, so the cost of 4𝑀 + 4𝑆 + 2𝑚0 when including the precomputation
is essentially the same as with a standard Montgomery ladder: 5𝑀 + 4𝑆 + 1𝑚0 (assum-
ing 𝑃 is normalised; we gain 1𝑀 on a non normalised point). Still, with the normalised
precomputation, the cost of 3𝑀 + 2𝑆 + 1𝑚0 is still very interesting, even with a large 𝑚0.

The reason we work to work on the Montgomery cap Legendre model, is that if we want
the relations 𝑥(𝑃 + 𝑄)𝑧(𝑃 + 𝑄), 𝑥(𝑃 − 𝑄)𝑧(𝑃 − 𝑄) to factor through the isogeny 𝑓 with
kernel a 2-torsion point 𝑇, we need 𝑇 to be of Montgomery type (equivalently the Tate
pairing 𝑒(𝑇, 𝑇) = 1, or the symmetric element in the theta group above 𝑇 is rational). So
the curve needs to be Montgomery, but the isogeneous curve should be too (because we go
back and forth between the two curves), which is equivalent to the starting curve being in
Legendre form.

6.3. Ageneral framework tofinddifferential additions. Wecan extend our general isogeny
framework from Section 5.2 to differential additions. In this case we study the isogeny 𝜉 ∶
(𝑃1, 𝑃2) → (𝑃1+𝑃2, 𝑃1−𝑃2), the pullback 𝜉∗(2(0𝐸′)⋆2(0𝐸′) = 4(0𝐸)⋆4(0𝐸).The kernel
is given by the diagonal embedding of 𝐸[2], and the symmetric lift giving our divisor descent
is given by ℎ𝑇 ⊗ ℎ𝑇 for 𝑇 ∈ 𝐸[2] and ℎ𝑇 any of the two symmetric lift above 𝑇; even if ℎ𝑇 is
not rational the tensor product is. We can thus compute the actions on Γ(2(0𝐸) ⋆ 2(0𝐸))⊗2,
these span the even elements of Γ(4(0𝐸) ⋆ 4(0𝐸)), of dimension 9. It follows that on 𝐸′ × 𝐸′

we can only construct the even elements in Γ(2(0𝐸) ⋆ 2(0𝐸))+, where the involution is
given here by the descent of (𝑃1, 𝑃2) → (𝑃1, −𝑃2), in other words we can only express
elements invariant under the involution 𝑃1 + 𝑃2 ↦ 𝑃1 − 𝑃2: 𝑥(𝑃1 + 𝑃2)𝑥(𝑃1 − 𝑃2),
𝑧(𝑃1 + 𝑃2)𝑧(𝑃1 − 𝑃2), 𝑥(𝑃1 + 𝑃2)𝑧(𝑃1 − 𝑃2) + 𝑧(𝑃1 + 𝑃2)𝑥(𝑃1 − 𝑃2).

Now, it is useful to factorize doubling through the isogeny 𝑓 with kernel 𝑇: [2] = ̃𝑓 ∘ 𝑓,
and we want to do the same with differential additions. In other words, we have 𝑓 (𝑃1), 𝑓 (𝑃2)
and we want to find from this some functions involving 𝑃1 + 𝑃2, 𝑃1 − 𝑃2. So consider
𝐹 ∶ 𝐸 × 𝐸 → 𝐸′ × 𝐸′ given by the diagonal of 𝑓. Then ker𝐹 = {(0, 0), (0, 𝑇), (𝑇, 0), (𝑇, 𝑇)};
notice that it is not included in ker 𝜉, so 𝜉 does not factorize through 𝐹. So we need to consider
the pushforward 𝐶 of 𝐹 and 𝜉 of kernelKer𝐹 +Ker 𝜉. From 𝑓 (𝑃1), 𝑓 (𝑃2), we can not express
all even functions in 𝑃1 + 𝑃2, 𝑃1 − 𝑃2, but we can only obtain those that descend to 𝐶, ie
are invariants by (0, 𝑇), (𝑇, 0) (or more precisely 1 ⊗ ℎ𝑇 and ℎ𝑇 ⊗ 1). It is instructive to
look at the case 𝜆𝑇 = 1, in which case 𝑥(𝑃1 + 𝑃2)𝑥(𝑃1 − 𝑃2), 𝑧(𝑃1 + 𝑃2)𝑧(𝑃1 − 𝑃2) are
invariants. This explain the form the differential addition formula take for a Montgomery
point.

As explained in Section 6.2, when doing a Montgomery ladder, we can then use a cycle of
𝑓 and ̂𝑓 to interleave the order of isogenies and differential additions: rather than computing
images and differential additions (or doublings) at each step, we can compute iterated image,
and then compute iterated differential additions (and doublings).The advantage is that in the



18 DAMIEN ROBERT

standard ladder we compute two images at each step, while here we only need to compute the
iterated image of our base point, so we gain one image. On the other hand we need memory
to store our iterated images, and we cannot assume that these images are normalised (unless
we do a normalisation step on our points at the end). So to compute 𝑁.𝑃 we compute log𝑁
iterated images of 𝑃 (one by bit), then we do a ladder doing one doubling-through-isogeny,
differential-addition through isogeny by step. This gives a general time/memory trade off for
the Montgomery ladder.

Since we need to use differential addition formula that factorize through both 𝑓 and ̃𝑓, the
best case is thus when both are given by kernels of Montgomery type, ie our starting curve is
in Montgomery cap Legendre.

7. Pairings

On a Kummer line, it is useful to interpret pairings as coming from the biextension law
[Gro72; Sta08] associated to the divisor 2(0𝐸). It is shown in [Gro72] how the biextension
gives rise to the Weil pairing, and [Sta08] extends this to the Tate pairing.

In this section I only give a very brief overview of the algorithm, and refer to the talk
[Rob23b] for a bit more details.

For the biextension 𝑋 associated to the divisor (0𝐸), an element 𝑔𝑃,𝑄 corresponds to a
function on 𝑘(𝐸) with divisor (𝑃) + (𝑄) − (𝑃 + 𝑄) − (0𝐸). The biextension partial group
laws are given by:

(𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄)(𝑅) = 𝑔𝑃1,𝑄(𝑅)𝑔𝑃2,𝑄(𝑅 − 𝑃1)

(𝑔𝑃,𝑄1
⋆2 𝑔𝑃,𝑄2

)(𝑅) = 𝑔𝑃,𝑄1
(𝑅)𝑔𝑃,𝑄2

(𝑅)
𝑔𝑄1,𝑄2

(𝑅 − 𝑃)
𝑔𝑄1,𝑄2

(𝑅)
Moreover, since the divisor is symmetric, the biextension is symmetric too: 𝑔𝑃1,𝑄 ⋆1

𝑔𝑃2,𝑄 = 𝑔𝑄,𝑃1
⋆2 𝑔𝑄,𝑃2

. This implies: 𝜇𝑃1,𝑃2
(−𝑃3) = 𝜇𝑃2,𝑃3

(−𝑃1) = 𝜇𝑃3,𝑃1
(−𝑃2). A

convenient way to represent a biextension element 𝑔𝑃,𝑄 is via (𝑃, 𝑄) and its evaluation on
some point 𝑅. The group law becomes

(𝑄, 𝑃1, 𝑐1) ⋆2 (𝑄, 𝑃2, 𝑐2) = 𝑐1𝑐2
𝑔𝑃1,𝑃2

(𝑅 − 𝑄)
𝑔𝑃1,𝑃2

(𝑅) ,

and in particular we have:

𝑔⋆2,ℓ
𝑄,𝑃 = 𝑔𝑄,𝑃(𝑅)ℓ𝑓ℓ,𝑃((𝑅 − 𝑄) − (𝑅)),

where div 𝑓ℓ,𝑃 = ℓ𝑃 − (ℓ𝑃) − (ℓ − 1)(0𝐸). Thus Miller’s algorithm is simply the biextension
exponentiation via this representation (and taking 𝑅 = 0𝐸). We also have the following
variant, using the symmetry:

(𝑄, 𝑃1, 𝑐1) ⋆2 (𝑄, 𝑃2, 𝑐2) = 𝑐1𝑐2𝜇𝑃1,𝑃2
(−𝑄) = 𝑐1𝑐2𝜇𝑃1,𝑄(−𝑃2),

which give the following alternative formula for the Miller addition:

𝑓𝑚+1,𝑃(−𝑄) = 𝑓𝑚,𝑃(−𝑄)𝜇𝑚𝑃,𝑃(−𝑄) = 𝑓𝑚,𝑃(−𝑄)𝜇𝑃,𝑄(−𝑚𝑃).
In particular, the biextension arithmetic gives theTate andWeil pairing. Let 𝑔𝑃,𝑄 ∈ 𝑋(𝔽𝑞)

be any element above (𝑃, 𝑄), 𝑃 ∈ 𝐸[ℓ]. since ℓ𝑃 = 0, 𝑔⋆1,ℓ
𝑃,𝑄 is a constant 𝜆𝑃. If 𝜇 ∈ 𝔾𝑚(𝔽𝑞)

and 𝑔′
𝑃,𝑄 = 𝜇 ⋅ 𝑔𝑃,𝑄, then 𝑔′⋆1,ℓ

𝑃,𝑄 = 𝜇ℓ𝜆𝑃, and the class of 𝜆𝑃 in 𝔽∗
𝑞/𝔽∗,ℓ

𝑞 is the non reduced

Tate pairing. Furthermore, 𝑔⋆1,𝑞−1
𝑃,𝑄 = 𝜆(𝑞−1)/ℓ

𝑃 is the reduced Tate pairing 𝑒𝑇,ℓ(𝑃, 𝑄); it does
not depends on the choice of 𝑔𝑃,𝑄. If 𝑄 ∈ 𝐸[ℓ], 𝑔⋆2,ℓ

𝑃,𝑄 = 𝜆𝑄; the Weil pairing is given by



Improving the arithmetic of Kummer lines 19

𝑒𝑊,ℓ(𝑃, 𝑄) = 𝜆𝑃/𝜆𝑄. We also have similar formulas for the Ate and optimal Ate pairing,
see [Rob23b].

We have the following monodromy interpretation of the pairings. The non reduced Tate
pairing is then given by 𝑔ℓ

𝑃,𝑄, which can be computed from ℓ�̃�, ̃ℓ𝑃 + 𝑄, which in turn can
be computed from a three way affine Montgomery ladder: 1 affine doubling and 2 affine
differential addition by step. Equivalently, the non reduced Tate pairing is given by comparing
𝑔ℓ+1

𝑃,𝑄 with 𝑔𝑃,𝑄, they differ by a projective factor 𝜆𝑄 which is precisely the pairing. This 𝜆𝑄
can be interpreted as a monodromy action: 𝑄 ↦ (ℓ + 1)𝑄 is trivial at the level of the elliptic
curve, but not at the biextension level. Likewise, the Weil pairing is given by the quotient
of monodromy 𝜆𝑄/𝜆𝑃. The reduced Tate pairing is given by comparing 𝑔𝑞

𝑃,𝑄 with 𝑔𝑃,𝑄,
since 𝑞 − 1 is divisible by ℓ in our pairing situations, this is indeed the same as raising the
non reduced Tate pairing to the power (𝑞 − 1)/ℓ. From this point of view the reduced Tate
pairing is the Weil-Cartier pairing associated to 𝜋𝑞 − 1.

For our efficient formulae, rather than using the Miller representation of the biextension
elements, we will use the cubical torsor structure. We refer to [Bre83; Mor85] for cubical
torsors.

We can indeed reinterpret the biextension law as follow: the key point is that with a
symmetric line bundle, there is a canonical isomorphism 𝑡∗

𝑃𝐿 ⊗ 𝑡∗
𝑄𝐿 ⊗ 𝑡∗

𝑅𝐿 ⊗ 𝑡∗
𝑆𝐿 ≃ 𝑡∗

𝑈𝐿 ⊗
𝑡∗
𝑉𝐿⊗𝑡∗

𝑊𝐿⊗𝑡∗
𝑋𝐿whenever 𝑃+𝑄+𝑅+𝑆 = 2𝑍,𝑈 = 𝑍−𝑃, 𝑉 = 𝑍−𝑄, 𝑊 = 𝑍−𝑅, 𝑋 =

𝑍 − 𝑆.
Specialising, we get partial group law on trivialisations of line bundle: ̃0, �̃�, 𝑄, ̃𝑃 − 𝑄 ↦

̃𝑃 + 𝑄, ̃0, �̃�, 𝑄, �̃�, ̃𝑃 + 𝑄, 𝑃 + 𝑅, 𝑄 + 𝑅 ↦ ̃𝑃 + 𝑄 + 𝑅. Technically, these relations give the
cubical torsor structure, which is a refinement of the arithmetic in the biextension.

(Note: in [Sta08] the biextension appears in the guise of elliptic nets. From our point of
view, we can reinterpret elliptic nets as trivialisation of the line bundle 𝐷 = (0𝐸) at points 𝑃,
notably by specifying the value of 𝑍(𝑃) where 𝑍 is the section of (0𝐸). A slight difficulty is
that𝑍 has a zero on 0𝐸, so we need some offset to compute the pairings.The remarkable thing
about elliptic nets is that even through we are on level 1 we can still compute the arithmetic
of biextension through the linear recurrence of elliptic nets, see [Sta08] for details.

In [LR10; LR15], the biextension is hidden through the guise of the analytic Riemann
relations giving the transcendental group law.)

We then represent an element 𝑔𝑃,𝑄 of the biextension by the trivialisations ̃𝑥, 𝑥 + 𝑃, ̃𝑥 + 𝑄, ̃𝑥 + 𝑃 + 𝑄.
Changing the trivialisations by 𝜆𝑥, 𝜆𝑃, 𝜆𝑄, 𝜆𝑃+𝑄 give the same element iff 𝜆𝑥𝜆𝑃+𝑄 = 𝜆𝑃𝜆𝑄
(So our affine lifts represent a cubical torsor structure, and the associated biextension element
is an equivalence class under this action).

The affine doublings and affine differential additions are formula lifting the standard
projective doublings and projective differential additions. When working on the biextension
we have more leeway, but when working on the cubical torsor structure we must be careful to
use the correct affine formulas. We refer to the implementation in [Rob23e] for the explicit
formula.

In the theta or twisted theta model, using [LR10; LR15] this amount to 7𝑆 + 7𝑀 + 2𝑚0
by bit, assuming our base points are normalised (else add 2𝑀 by bit). On the Montgomery
model, the biextension ladder costs 8𝑀 + 6𝑆 + 1𝑚0 by bit.

By comparison, the best formula I have found for generic pairing computations in the
Jacobian model cost 10𝑀 + 9𝑆 for doubling, and 11.5𝑀 + 3𝑆 by addition [BELL10].

In certain cases, we can compute the biextension exponentiation faster:



20 DAMIEN ROBERT

• In the general case, we compute 𝑔ℓ
𝑃,𝑄 via one affine doubling and two affine dif-

ferential additions by bits, for a total cost of 8𝑀 + 6𝑆 + 1𝑚0 in the Montgomery
model;

• For a self pairing,𝑃 = 𝑄, we only need one affine doubling and one affine differential
addition, for a total cost of 5𝑀 +4𝑆+1𝑚0 by bits. (A word of warning: for a fast self
pairing we really need to use the cubical arithmetic rather than just the biextension
arithmetic).

• When 𝑛 = 2𝑚 is a power of 2, we also need only one affine doubling and one affine
differential addition, for a total cost of 5𝑀 + 4𝑆 + 1𝑚0 by bits.

• When 𝑛 = 2𝑚 and 𝑃 = 𝑄, we only need one affine doubling, for a total cost of
2𝑀 + 2𝑆 + 1𝑚0 by bits.

We can also do a standard exponentiation on 𝑔𝑃,𝑄 on our biextension, this allows to use
the standard NAF and windowingmethod.We can do additions on the biextensionmodel (at
least with our representation), even through we are on the Kummer line on the underlying
curve!

I worked out the formula in the theta model, using [LR15; LR16]: doubling cost 1 double
and 1 diff add on the underlying curve, for a cost of 4𝑀 + 5𝑆 + 2𝑚0. Addition is more
complicated: on the underlying curve this amount to one (projective) compatible addition
which cost 27𝑀 (I am not distinguishing 𝑀, 𝑆 and 𝑚0 here), followed by an affine three way
addition which cost 17𝑀, for a grand total of 44𝑀. But since our base points are always the
same (the ones we computed for our window), we can do some precomputations for these
steps, and the compatible addition then cost 17𝑀, and the three way addition 13𝑀, for a
total of 30𝑀.

Since doubling is 11𝑀, this might be competitive with the ladder method (which costs
16𝑀 by bit) when using a NAF-window with 𝑤 ≥ 5.

Remark 7.1. When working on the Kummer line, we are naturally working with the
biextension associated to the divisor 2(0𝐸) rather than (0𝐸), because our coordinates
𝑋, 𝑍 ∈ Γ(2(0𝐸)). The corresponding biextension monodromy gives thus the square of
the usual Tate and Weil pairing; which is no problem when ℓ is odd. This however lose one
bit of information when ℓ is even; luckily in this case we can use the natural action of the
theta group 𝐺(2(0𝐸)) on Γ(2(0𝐸)) to recover the Weil and Tate pairings exactly rather than
just their squares. Once again we refer to [Rob23e] for the formulas.

7.1. The Tate pairing for pairing based cryptogrpahy. For pairing based cryptography on
elliptic curves, it is convenient to use the Tate pairing with 𝑃 ∈ 𝔾1 ⊂ 𝐸(𝔽𝑞), 𝑄 ∈ 𝔾2 ⊂
𝐸(𝔽𝑞𝑘), and 𝑘 even to allow for denominator elimination.

Counting only operations involving the big field𝔽𝑞𝑘 , Miller’s algorithm cost 1𝑀+1𝑆+1𝑚
by doubling, and 1𝑀+1𝑚 by addition.Here 1𝑚denotes amultiplication between a coefficient
in 𝔽𝑞 and a coefficient in 𝔽𝑞𝑘 .

When denominator elimination is not possible (because 𝑘 is odd or 𝑄 is not in 𝔾2), the
cost becomes 2𝑀 + 2𝑆 + 1𝑚 by doubling, and 2𝑀 + 1𝑚 by addition.

Using our arithmetic of biextension on Kummer lines, only counting the operations on
the big field, we have 2𝑆 + 1𝑀 + 2𝑚 by bit. So better than Miller’s algorithm, except when
denominator elimination is available.

7.2. Monodromy leak. It is well known, when 𝜇ℓ ⊂ 𝔽𝑞, that the Tate pairing allows to
reduce the DLP from an elliptic curve to 𝔽∗

𝑞.



Improving the arithmetic of Kummer lines 21

From the point of view of étale torsors [Rob23g], the Tate pairing 𝑒𝑇,ℓ(𝑃, 𝑄) is an isomor-
phism class of the torsion 𝑓 −1(𝑄) where 𝑓 is the isogeny of kernel ⟨𝑃⟩.

When 𝔽𝑞 does not contains 𝜇ℓ (say ℓ prime for simplicity), a torsor is always trivial, ie
𝑓 −1(𝑄) always contains one rational point.

However, we can still recover informations on the DLP if we manage to track explicit
isomorphisms between 𝑓 −1(𝑄) and 𝑓 −1(𝑛.𝑄). The theta group is precisely calibrated to
keep track of such isomorphisms. Theta groups and biextensions are closely related (we will
explore this topic further in [Rob23d]), and in this section we explore how to use biextensions
to attack the DLP. (Very similar ideas were already pursued via elliptic nets in [LS08].)

We assume from now on that we are in this case.

The general idea is as follows: the biextension arithmetic is a juxtaposition of arithmetic
on the underlying elliptic curve and in 𝔽∗

𝑞. When computing an exponentiation 𝑛 ↦ 𝑛.𝑃,
leaking instead a biextension exponentiation 𝑛 ↦ 𝑔𝑛

𝑃 allows to recover 𝑛 via a DLP in 𝔽∗
𝑞.

It might seem hard to leak such a biextension exponentiation on purpose, but from the
pairing formula we see that since we are naturally working on affine coordinates, and the
natural affine additions formulas are the ones coming from the biextension arithmetic, we
see that on the contrary doing a Montgomery ladder leaks the biextension exponentiation as
long as we don’t randomize the coordinates (𝑋, 𝑍) by a factor (𝜆𝑋, 𝜆𝑍) or we don’t output
the division 𝑥 = 𝑋/𝑍.

There are two versions of the projective coordinates leak. The key idea is as follow: from
our assumptions there is a unique lift 𝑔𝑃 of 𝑃 in the biextension that is still of order ℓ. This
“canonical lift” can be computed efficiently by a scalar multiplication in the biextension, this
scalar being determined by being 0 modulo 𝑝 − 1 and 1 modulo ℓ.

We now start with 𝑃 = (𝑥𝑃, 1) corresponding to some 𝑔𝑃 = 𝜆1𝑔𝑃, and with overwhelm-
ing probability 𝜆1 is not trivial (we use 𝑔𝑃 as a shortcut for the biextension element associated
to 𝑔𝑃,𝑃). The value of 𝑔𝑛

𝑃 is leaked, which gives us 𝑔𝑛
𝑃 = 𝜆2𝑔𝑛𝑃. But since 𝑔𝑛𝑃 = 𝑔𝑃

𝑛, we
get that 𝜆2 = 𝜆𝑛

1 . From 𝜆2, 𝜆1, we recover 𝑛 via a DLP in 𝔽∗
𝑞. This version requires 𝑔𝑛

𝑃, so a
leak of both 𝑛𝑃, ̃(𝑛 + 1)𝑃. Furthermore, the biextension arithmetic is slightly different from
the way the Montgomery ladder is implemented in practice, so we need to do some slight
adjustments (see below).

The stronger version of the projective coordinate leak only requires a leak of 𝑛𝑃. This
time we need the full power of the cubical torsor structure rather than just of biextension;
there is still a unique (using our assumption that ℓ is prime to 𝑞 − 1) canonical lift �̃� which
is of ℓ-torsion and can be efficiently computed from 𝑃. So we start with 𝑃 = (𝑥𝑃, 1) = 𝜆1�̃�
and we are leaked 𝑛.𝑃 = (𝑋, 𝑍) = 𝜆2𝑛𝑃. This time, we have 𝜆2 = 𝜆𝑛2

1 , so we need a DLP
and then solve a square root.

However, taking into account that the actual Montgomery ladder is different from the
exact cubical torsor structure arithmetic, we need to correct by some factor, so we actually
solve a more general degree two polynomial.

Explicitly, computing 𝑛.𝑃 via the standard ladder arithmetic rather than via the correct
cubical ladder, we are off by a factor (4𝑥𝑃)𝑛(2𝑏−𝑛) where 𝑏 is the bit length of 𝑛. Taking a
multiplicative generator 𝜁 of 𝐹∗

𝑞 , we thus need to solve the equation:

(16) 𝑋2(dlp𝜁(𝜆1) − dlp𝜁(4𝑥𝑃)) + 𝑋2𝑏 dlp𝜁(4𝑥𝑃) − dlp𝜁(𝜆2) = 0.



22 DAMIEN ROBERT

The number of solutions depends to check for afterwards depends on the number of
prime factors of 𝑞−1. In good cases, there are few enough factors to reconstruct the solutions
modulo a large enough modulus efficiently. We refer to the code [Rob23e] for more details.

We call this a monodromy leak for the following reason. We’ll use the biextension version
rather than the cubical version for simplicity. Assume that we are not given the projective
coordinate leak of 𝑛.𝑃, which encodes the information about 𝑔𝑛

𝑃. We can still take any
biextension element 𝑔𝑃,𝑛𝑃 above 𝑛𝑃. There is a 𝑚 such that 𝑔𝑃,𝑛𝑃 = 𝑔𝑚

𝑃 , where the value of
𝑚 is determined modulo ℓ(𝑞−1) and is congruent to 𝑛 modulo ℓ. We have 𝑔𝑃,𝑛𝑃 = 𝜆2𝑔𝑃,𝑛𝑃
and 𝑔𝑃 = 𝜆1𝑔𝑃, so we have the equation 𝜆2 = 𝜆𝑚

1 in 𝔽∗
𝑞. Unfortunately, this only recover

the value of 𝑚 modulo 𝑞 − 1 (at best, if 𝜆1 is a multiplicative generator), which gives no
information on 𝑛 modulo ℓ since ℓ is prime to 𝑞 − 1. The reason the projective coordinate
leak above works is that in this case we know that 𝑚 ≤ ℓ, so is equal to 𝑛. Essentially, we
know that the value of 𝑔𝑃,𝑛𝑃 we obtain from the projective coordinate leak is 𝑔𝑚

𝑃 with 𝑚
small enough and not wrapping an unknown number of time around ℓ; which is why we call
it a monodromy leak.

Compared to [NSS04], our monodromy leak requires to know the starting coordinates
(𝑋𝑃, 𝑍𝑃) used in the ladder (usually the point 𝑃 is normalised so that 𝑧𝑃 = 1 which is
the assumption we have used in the above formulaes; but the general case is not harder, as
long as we know the choice of 𝑧𝑃), rather than just the leak of the projective coordinates of
𝑛𝑃 = (𝑋𝑛𝑃, 𝑍𝑛𝑃). On the other hand, it is much more devastating: rather than leaking a
few bits of 𝑛, we recover it fully via some DLPs in 𝔽∗

𝑞, so in subexponential time. (In practice
𝑞 is of 256 bits, so the DLP is quite effective).

The monodromy leak is thwarted e.g. by doing a constant time division at the end to only
send 𝑥𝑛𝑃 = 𝑋𝑛𝑃/𝑍𝑛𝑃. For extra security measure, a supplementary countermeasure is also
to mask the projective coordinates of 𝑃 by a random scalar at the beginning. This protect
in case side channels information allows to recover some informations on the intermediate
projective coordinates during the ladder. This means that 𝑃 won’t be normalised any longer,
so this adds 1𝑀 by bits in the usual ladder, but luckily the complexity of the time/memory
trade off described in Section 6 does not depends on whether 𝑃 is normalised or not.

Remark 7.2. Fre Vercauteren informed me that the curve NISTp521 uses the prime 𝑝 =
2521 − 1 such that 𝔽∗

𝑝 has very smooth order (the largest factor has 60 bits). The DLP is very
easy in this field.

It is plausible that themonodromy leak described here for theMontgomery ladder extends
to more general scalar multiplication, albeit with a more complicated polynomial depending
on the exact implementation of the scalar multiplication.

More precisely, what is certainly true is that the biextension and cubical torsor structure
exist for all models (see the code [Rob23e]), and that we can efficiently compute “canonical
lifts” as above. The only issue is that the scalar multiplication implemented, when interpreted
on the affine lifts, won’t be the same as the cubical multiplication. For the usual Montgomery
ladder, it was easy to keep track of the corrective factor (4𝑥𝑃)𝑛(2𝑏−𝑛) above, because the
formulas are quite close to the “correct” cubical formulas. In general, it is plausible that there
is still a corrective factor that can still be expressed in the exponent as some polynomial in 𝑛.
This then would give a more complicated polynomial equation than Equation (16).

The main difficulty would be to handle the addition: the cubical arithmetic really needs
to use some differential additions (or alternatively would write (2𝑛 + 1)𝑃 as a three way
addition (2𝑛 + 1)𝑃, 𝑃, 𝑛𝑃, 𝑛𝑃; 0, 2𝑛𝑃, (𝑛 + 1)𝑃, (𝑛 + 1)𝑃), which Kummer lines arithmetic



REFERENCES 23

also uses (maybe with a different constant than the cubical one) but not standard elliptic
curve arithmetic.

Anyway, going further into wild speculations, it would not be surprising if the NSA was
aware of these kind of “monodromy attacks” or variants. Continuing our wild speculations,
we remark that the NIST curves are from 1999, and at that time a 512 bits DLP in 𝔽∗

𝑝 was
probably quite expensive even for the NSA: even in 2005 the public record for a DLP was
for 430 bits. But selecting 𝑝 such that 𝑝 − 1 is smooth would render the DLP in 𝔽∗

𝑝 trivial,
and at that time [NSS04] was not yet published, so probably not all implementations were
protected against projective coordinates leaks…

References

[AGB20] A. C. Aldaya, C. P. García, and B. B. Brumley. “From A to Z: Projective
coordinates leakage in the wild”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems (2020), pp. 428–453 (cit. on p. 4).

[BRS23] R. Barbulescu, D. Robert, and N. Sarkis. “Models of Kummer lines and Galois
representations”. June 2023. In preparation. (Cit. on pp. 2, 6, 9).

[BELL10] J. Boxall, N. El Mrabet, F. Laguillaumie, and D.-P. Le. “A variant of miller’s
formula and algorithm”. In: Pairing-Based Cryptography-Pairing 2010: 4th
International Conference, Yamanaka Hot Spring, Japan, December 2010. Pro-
ceedings 4. Springer. 2010, pp. 417–434 (cit. on pp. 3, 19).

[Bre83] L. Breen. Fonctions thêta et théoreme du cube. Vol. 980. Springer, 1983 (cit. on
p. 19).

[CH17] C. Costello and H. Hisil. “A simple and compact algorithm for SIDH with
arbitrary degree isogenies”. In: Advances in Cryptology–ASIACRYPT 2017:
23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part II 23. Springer. 2017, pp. 303–329 (cit. on pp. 13, 14).

[CLN16] C. Costello, P. Longa, and M. Naehrig. “Efficient algorithms for supersingular
isogeny Diffie-Hellman”. In: Advances in Cryptology–CRYPTO 2016: 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part I 36. Springer. 2016, pp. 572–601 (cit. on pp. 3,
13).

[DJP14] L. De Feo, D. Jao, and J. Plût. “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies”. In: Journal of Mathematical Cryptology
8.3 (2014), pp. 209–247 (cit. on p. 11).

[Gro72] A. Grothendieck. Groupes de Monodromie en Géométrie Algébrique: SGA 7.
Springer-Verlag, 1972 (cit. on p. 18).

[HR19] H. Hisil and J. Renes. “On kummer lines with full rational 2-torsion and
their usage in cryptography”. In: ACM Transactions on Mathematical Software
(TOMS) 45.4 (2019), pp. 1–17 (cit. on p. 6).

[LS08] K. E. Lauter and K. E. Stange. “The elliptic curve discrete logarithm problem
and equivalent hard problems for elliptic divisibility sequences”. In: Interna-
tional Workshop on Selected Areas in Cryptography. Springer. 2008, pp. 309–
327 (cit. on p. 21).

[LR10] D. Lubicz and D. Robert. “Efficient pairing computation with theta functions”.
In: ed. by G. Hanrot, F. Morain, and E. Thomé. Vol. 6197. Lecture Notes in
Comput. Sci. 9th International Symposium, Nancy, France, ANTS-IX, July
19-23, 2010, Proceedings. Springer–Verlag, July 2010. doi: 10.1007/978-

https://doi.org/10.1007/978-3-642-14518-6_21
https://doi.org/10.1007/978-3-642-14518-6_21


24 REFERENCES

3-642-14518-6_21. url: http://www.normalesup.org/~robert/pro/
publications/articles/pairings.pdf. Slides: 2010-07-ANTS-Nancy.pdf
(30min, International Algorithmic Number Theory Symposium (ANTS-IX),
July 2010, Nancy), HAL: hal-00528944. (Cit. on p. 19).

[LR15] D. Lubicz and D. Robert. “A generalisation of Miller’s algorithm and applica-
tions to pairing computations on abelian varieties”. In: Journal of Symbolic
Computation 67 (Mar. 2015), pp. 68–92. doi: 10.1016/j.jsc.2014.08.
001. url: http://www.normalesup.org/~robert/pro/publications/
articles/optimal.pdf. HAL: hal-00806923, eprint: 2013/192. (Cit. on
pp. 19, 20).

[LR16] D. Lubicz and D. Robert. “Arithmetic on Abelian and Kummer Varieties”. In:
Finite Fields andTheir Applications 39 (May 2016), pp. 130–158. doi: 10.1016/
j.ffa.2016.01.009. url: http://www.normalesup.org/~robert/pro/
publications/articles/arithmetic.pdf. HAL: hal-01057467, eprint:
2014/493. (Cit. on p. 20).

[Mor85] L. Moret-Bailly. Pinceaux de variétés abéliennes. Société mathématique de
France, 1985 (cit. on p. 19).

[NSS04] D. Naccache, N. P. Smart, and J. Stern. “Projective coordinates leak”. In:
Advances in Cryptology-EUROCRYPT 2004: International Conference on the
Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland,
May 2-6, 2004. Proceedings 23. Springer. 2004, pp. 257–267 (cit. on pp. 2, 4,
22, 23).

[OLHFR18] T. Oliveira, J. López, H. Hışıl, A. Faz-Hernández, and F. Rodríguez-Henríquez.
“How to (pre-) compute a ladder: Improving the performance of X25519
and X448”. In: Selected Areas in Cryptography–SAC 2017: 24th International
Conference, Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers
24. Springer. 2018, pp. 172–191 (cit. on pp. 14–16).

[Rei23] K. Reijnders. “Effective Pairings in Isogeny-based Cryptography”. In: Cryptol-
ogy ePrint Archive (2023) (cit. on p. 3).

[Ren18] J. Renes. “Computing isogenies between Montgomery curves using the ac-
tion of (0, 0)”. In: Post-Quantum Cryptography: 9th International Confer-
ence, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings.
Springer. 2018, pp. 229–247 (cit. on pp. 9, 13).

[Rob22] D. Robert. “Arithmetic on Kummer lines”. Oct. 2022. In preparation. (Cit. on
p. 2).

[Rob23a] D. Robert. “A note on optimising 2ⁿ-isogenies in higher dimension”. June
2023. url: http://www.normalesup.org/~robert/pro/publications/
notes/2023-06-optimising_isogenies.pdf (cit. on pp. 5, 6, 8, 9, 16).

[Rob23b] D. Robert. “Arithmetic and pairings on Kummer lines”. Leuven isogeny days
4, Leuven. Oct. 2023. url: http://www.normalesup.org/~robert/pro/
publications/slides/2023-10-Leuven.pdf (cit. on pp. 18, 19).

[Rob23c] D. Robert. “Biextensions and Pairings on Kummer lines”. Aug. 2023. In
preparation. (Cit. on p. 2).

[Rob23d] D. Robert. “Canonical liftings to biextensions and theta groups”. Aug. 2023.
In preparation. (Cit. on p. 21).

[Rob23e] D. Robert. “Kummer Line”. Toolbox for computing on Kummer lines. Oct.
2023. url: https://gitlab.inria.fr/roberdam/kummer-line (cit. on
pp. 2, 17, 19, 20, 22).

https://doi.org/10.1007/978-3-642-14518-6_21
https://doi.org/10.1007/978-3-642-14518-6_21
https://doi.org/10.1007/978-3-642-14518-6_21
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2010-07-ANTS-Nancy.pdf
http://ants9.org/
http://hal.archives-ouvertes.fr/hal-00528944
https://doi.org/10.1016/j.jsc.2014.08.001
https://doi.org/10.1016/j.jsc.2014.08.001
http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf
http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf
http://hal.archives-ouvertes.fr/hal-00806923
http://eprint.iacr.org/2013/192
https://doi.org/10.1016/j.ffa.2016.01.009
https://doi.org/10.1016/j.ffa.2016.01.009
http://www.normalesup.org/~robert/pro/publications/articles/arithmetic.pdf
http://www.normalesup.org/~robert/pro/publications/articles/arithmetic.pdf
http://hal.archives-ouvertes.fr/hal-01057467
http://eprint.iacr.org/2014/493
http://www.normalesup.org/~robert/pro/publications/notes/2023-06-optimising_isogenies.pdf
http://www.normalesup.org/~robert/pro/publications/notes/2023-06-optimising_isogenies.pdf
https://www.esat.kuleuven.be/cosic/projects/isocrypt/lid4/
https://www.esat.kuleuven.be/cosic/projects/isocrypt/lid4/
http://www.normalesup.org/~robert/pro/publications/slides/2023-10-Leuven.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2023-10-Leuven.pdf
https://gitlab.inria.fr/roberdam/kummer-line


REFERENCES 25

[Rob23f] D. Robert. “Projective coordinate leaks revisited”. Oct. 2023. In preparation.
(Cit. on p. 2).

[Rob23g] D. Robert. “The geometric interpretation of the Tate pairing and its ap-
plications”. Feb. 2023. url: http://www.normalesup.org/~robert/pro/
publications/articles/geometric_tate_pairing.pdf. eprint: 2023/177,
HAL: hal-04295743v1. (Cit. on p. 21).

[RS24] D. Robert andN. Sarkis. “Computing 2-isogenies between Kummer lines”. Jan.
2024. url: http://www.normalesup.org/~robert/pro/publications/
articles/kummer_isogenies.pdf. eprint: 2024/037. (Cit. on p. 2).

[Sta08] K. Stange. “Elliptic nets and elliptic curves”. PhD thesis. Brown University,
2008. url: https://repository.library.brown.edu/studio/item/bdr:
309/PDF/ (cit. on pp. 18, 19).

INRIA Bordeaux–Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence Cedex FRANCE
Email address: damien.robert@inria.fr
URL: http://www.normalesup.org/~robert/

Institut de Mathématiques de Bordeaux, 351 cours de la liberation, 33405 Talence cedex
FRANCE

http://www.normalesup.org/~robert/pro/publications/articles/geometric_tate_pairing.pdf
http://www.normalesup.org/~robert/pro/publications/articles/geometric_tate_pairing.pdf
http://eprint.iacr.org/2023/177
http://hal.archives-ouvertes.fr/hal-04295743v1
http://www.normalesup.org/~robert/pro/publications/articles/kummer_isogenies.pdf
http://www.normalesup.org/~robert/pro/publications/articles/kummer_isogenies.pdf
http://eprint.iacr.org/2024/037
https://repository.library.brown.edu/studio/item/bdr:309/PDF/
https://repository.library.brown.edu/studio/item/bdr:309/PDF/

	1. Introduction
	2. Summary
	2.1. Hybrid arithmetic
	2.2. A time/memory trade off for scalar multiplication on Kummer lines
	2.3. Pairings on Kummer lines
	2.4. Monodromy leak: Projective coordinates leak revisited

	3. Models
	3.1. The Montgomery model
	3.2. Twisted theta models
	3.3. Montgomery and theta models
	3.4. Conversion formula between the theta model and the Montgomery model in dimension 1

	4. Scalar multiplication on Kummer lines
	4.1. Standard arithmetic in the Montgomery and theta models
	4.2. Hybrid arithmetic

	5. 2-isogenies between Kummer lines
	5.1. Standard isogeny formulas
	5.2. A general framework to derive 2-isogenies between Kummer lines
	5.3. Translated isogenies
	5.4. Theta versus Montgomery

	6. Time-Memory trade off for the arithmetic
	6.1. Overview
	6.2. Explicit formula
	6.3. A general framework to find differential additions

	7. Pairings
	7.1. The Tate pairing for pairing based cryptogrpahy
	7.2. Monodromy leak

	References

