
Arithmetic on Abelian and Kummer varieties

Notes of a talk given for the Number Theory Seminar — Caen.
Based on an earlier talk given on April 2014 in Grenoble.

Abstract. In this talk we give an outline of the results obtained in [LR14]. The first part is a review of the algebraic
theory of theta functions, and on the multiplication map. The much more elementary second part use the geometric
results from the first one to improve the arithmetic on Abelian and Kummer varieties.Warning:These notes are in a
very rough state, and probably contain a lot of errors, refer to the article for more details!
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1. Complex abelian varieties

A = (V /Λ,H)where V is aC-ev of dimension g,Λ is a lattice of rank 2g andE = IH is symplectic,E(ix, iy) =
E(x, y) and E(Λ,Λ) ⊂ Z. If Λ = Zg +ΩZg where Ω ∈ Hg (ie Ω symmetric, IΩ > 0), Ω determines a principal
polarisationH0 = (IΩ)−1.

Definition 1.1 (Theta functions with characteristics a, b ∈ Qg).

ϑ [ ab ] (z,Ω) = ∑
n∈Zg

eπi
t(n+a)⋅Ω⋅(n+a)+2πi t(n+a)⋅(z+b).

To get coordinates, we need a projective embedding, which corresponds to an (ample) line bundle L. The
sections of L correspond to functions f such that

f(z + λ) = aL(z, λ)f(z)

where aL is the automorphic factor associated to L, satisfying the cocycle condition

aL(z, λ1 + λ2) = aL(z, λ1)aL(z + λ1, λ2).
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2 ARITHMETIC ON ABELIAN AND KUMMER VARIETIES

Theorem 1.2 (Appell-Humbert).
aL(z, λ) = χ(λ)e

πH(z,λ)+π
2H(λ,λ)

where χ(λ) = ±1 (when L is symmetric).

If L = Ln0 ie if the polarisationH is nH0, the sections are called theta functions of level n. If n = n1n2 a basis is
given by ϑ [ a/n1

b/n2
] (n1z,

n1
n2

Ω). A choice of basis is uniquely determined (up to a constant) by a representation of
the action by translation by points of n-torsions.

Proposition 1.3 (Lefschetz).
● If n ⩾ 3 we get an embedding of A into projective space;
● If n = 2 and L0 is indecomposable, we get an embedding of the Kummer variety A/ ± 1;

2. Heisenberg group

(A,L)/k polarised abelian variety over an algebraically closed field k. Assume for simplicity that L is ample,
and L=Ln0 where L0 is principal and n is prime to the characteristic of k.

We note ΦL ∶ A→ Âk, x↦ τ∗xL⊗L
−1 the corresponding polarisation. The kernelK(L) of ΦL is then A[n].

Theta group:
● G(L) ∶= {(x,ϕ) ∣ x ∈K(L), ϕ ∶ L

∼
→ τ∗xL}.

● Group law: (y,ψ).(x,ϕ) = (x + y, τ∗xψ ○ ϕ):

L
ϕ
ÐÐ→ τ∗xL

τ∗xψ
ÐÐÐ→ τ∗y τ

∗
xL.

● The theta group fits into the exact sequence

0 k∗ G(L) K(L) 0 .

● The commutator pairing eL(x, y) = x̃ỹx̃−1ỹ ∈ k∗ is non degenerate (Weil pairing), so G(L) is an
Heisenberg group. If ψ ∶K(L)2 → k∗ is the 2-cocycle corresponding to the central extensionG(L), then
eL(x, y) =

ψ(x,y)
ψ(y,x) .

● Action ofG(L) on Γ(L):
(x,ϕ).f = τ∗−x(ϕ(f)).

Standard Heisenberg group:K(n) ∶= (Z/nZ)g ⊕ (Ẑ/nZ)g . The Heisenberg groupG(n) is the central exten-
sion

0 k∗ G(n) K(n) 0

given by the 2-cocycle ψ(x, y) = x2(y1). Concretely (α,x1, x2).(β, y1, y2) = (αβx2(y1), x1 + y1, x2 + y2).
The symplectic isomorphism (K(n), en) ≃ (K(L), eL) extends (not uniquely in general) to an isomorphism
ΘL ∶ G(n)

∼
→ G(L) (Theta structure of level n).

Theorem 2.1 (Mackey). G(n) has a unique irreducible representation V (n) of weight 1 (ie k∗ acts by the natural
character). If V is a representation of weight 1, then V = V (n)r where r = dimk V

K̃ andK is a maximal isotropic
subgroup ofK(n). Moreover the action of K̃ on V (n) is the standard adjoint representation, so V (n) has dimension
ng .

Proof. See [Mum66; Mum91]. �

Descent: IfK ⊂K(L) is isotropic, f ∶ A→ B = A/K then
level subgroup K̃ ⊂ G(L) (ie a section ofK)⇔ descent data of L⇔M ample bundle onB such that f∗M = L.

Theorem 2.2. The action ofG(L) on Γ(L) is irreducible.

Proof. If K̃ is maximal, by descent theory L descends to a principal line bundleM on A/K . Γ(L)K̃ = Γ(M) is
then of dimension 1. �
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In particular Γ(L)↶ G(L) is isomorphic to V (n)↶ G(n) (whereG(n) acts by the standard action) via ΘL.
Explicitly if we note Z(n) = (Z/nZ)g , V (n) = Hom(Z(n), k), (α,x1, x2).f = y ↦ αx2(y)f(x1 + y). So

there exists a unique basis (ϑi)i∈K1(L) of Γ(L) such that the action ofG(L) is given by

(α,x1, x2).ϑi = αx2(i)ϑi−x1 .

(Abuse of notation: we see G(L) = k∗ × K1(L) × K2(L) as a set, where K(L) = K1(L) ⊕ K2(L) is the
decomposition into maximal isotropic subgroups coming from ΘL, and x2(i) is the action coming from the
2-cocycle.)

Concretely, ϑ0 is a non trivial section in Γ(L)K̃2(L) and if i ∈ K1(L), ϑi = s(i).ϑ0 where s is the canonical
section coming from the theta structure and K̃2 = s(K2) is the level subgroup aboveK2.

3. Riemann relations

3.1. The Isogeny theorem.
Theorem 3.1 (IsogenyTheorem). Let f ∶ (A,L)→ (B,M) be an isogeny between polarised abelian varieties,M
corresponds to a section K̃ ⊂ G(L) of the kernel K = Ker f . G(M) = K̃⊥/K̃ and the decomposition K(L) =
K1(L)⊕K2(L) induces via f a decompositionK(M) =K1(M)⊕K2(M) (if we assume thatK =K1⋂K ⊕
K2⋂K). Likewise the theta structure onG(L) induces a compatible theta structure onG(M). We then have for
i ∈K1(L)⋂K

⊥ (up to a constant)

ϑMf(i) = ∑
j−i∈K ⋂K1(L)

ϑLj = ∑
j∈K1(L),f(j)=i

ϑLj = Trace of ϑ
L
i under the action of K̃.

3.2. Riemann relations. Let ξ ∶ A ×A→ A ×A, (x, y)↦ (x + y, x − y) be the isogeny coming from the group
law, with kernel diagA[2]. We now assume that L is totally symmetric, ie L = Ln0 with L0 symmetric and 2 ∣ n.
We have ξ∗(L ⋆L) = L2 ⋆L2 where L ⋆M ∶= p∗1L⊗ p∗2M.
Proposition 3.2. For the natural product theta structure, the isogeny theorem applied to ξ yields

ϑLi+j(x + y)ϑ
L
i−j(x − y) = ∑

t∈K1(L)[2]
ϑL

2

i+tϑ
L2

j+t.

This formula is easily inversible if we do a Fourier transform: forχ ∈ Ẑ(2) and i ∈ Z(2n), letULχ,i = ∑t∈Z(2) χ(t)ϑL
2

i+t.
Then we obtain the duplication formulae

ϑLi+j(x + y)ϑ
L
i−j(x − y) =

1
2g ∑

χ∈Ẑ(2)
UL

2

χ,i(x)U
L2

χ,j(y)

UL
2

χ,i(x)U
L2

χ,j(y) = ∑
t∈Z(2)

χ(t)ϑLi+j+t(x + y)ϑ
L
i−j+t(x − y)

Remark 3.3. In term of analytic theta functions, we have ϑLi (z) = ϑ [
0
i/l ] (z,

Ω
`
), ϑL

2

i (z) = ϑ [
0
i/2l ] (z,

Ω
2`),

UL
2

χ,i(z) = ϑ [
χ/2
i/l ] (2z,

2Ω
`
).

Theorem 3.4 (Riemann relations). Let x1, x2, x3, x4, z ∈ Cg , such that 2z = x1 + x2 + x3 + x4 and let y1 = z − x1,
y2 = z − x2, y3 = z − x3, y4 = z − y4. Then for all characters χ ∈ Ẑ(2) and all i1, i2, i3, i4,m ∈ Z(n) such that
i1 + i2 + i3 + i4 = 2m, if j1 =m − i1, j2 =m − j2, j3 =m − i3, j4 =m − i4 then

(1) ( ∑
t∈Z(2)

χ(t)ϑi1+t(x1)ϑi2+t(x2)).( ∑
t∈Z(2)

χ(t)ϑi3+t(x3)ϑi4+t(x4)) =

( ∑
t∈Z(2)

χ(t)ϑj1+t(y1)ϑj2+t(y2)).( ∑
t∈Z(2)

χ(t)ϑj3+t(y3)ϑj4+t(y4)).

In particular, we have the addition formulae for z1, z2 ∈ Cg (with χ, i1, i2, i3, i4 like before):

(2) ( ∑
t∈Z(2)

χ(t)ϑi1+t(z1 + z2)ϑi2+t(z1 − z2)).( ∑
t∈Z(2)

χ(t)ϑi3+t(0)ϑi4+t(0)) =

( ∑
t∈Z(2)

χ(t)ϑj1+t(z2)ϑj2+t(z2)).( ∑
t∈Z(2)

χ(t)ϑj3+t(z1)ϑj4+t(z1)).
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Proof. Using the duplication formulae the left termof eq. (1) is equal toUχ,m1(z1)Uχ,m2(z2)Uχ,m3(z3)Uχ,m4(z4)
while the right term is equal to Uχ,m1(z1)Uχ,m4(z4)Uχ,m3(z3)Uχ,m2(z2) where z1 =

x1+x2
2 , z2 =

x1−x2
2 , z3 =

x3+x4
2 , z4 =

x3−x4
2 andm1 =

i1+i2
2 ,m2 =

i1−i2
2 ,m3 =

i3+i4
2 ,m4 =

i3−i4
2 .

The differential addition comes by plugging
z1 + z2, z1 − z2,0,0 ∣ −z2, z2, z1, z1

another useful application is the three way affine addition with
z1 + z2 + z3, z1, z2, z3 ∣ 0, z2 + z3, z1 + z3, z1 + z2.

�

Question: For χ, i1 and i2, we need to find i3, j4 such that

∑χ(t)ϑLi3+t(0)ϑ
L
i4+t(0) = U

L2

χ,
i3+i4

2
(0)UL

2

χ,
i3−i4

2
(0)

is not null. Then by eq. (2) we can recover all∑t∈Z(2) χ(t)ϑ
L
i1+t(z1 + z2)ϑ

L
i2+t(z1 − z2) and by doing appropriate

sums of characters we recover all products ϑLi1(z1 + z2)ϑ
L
i2
(z1 − z2). This is needed for projective addition or affine

differential additions. Remark: we can translatem3 =
i3+i4

2 andm4 =
i3−i4

2 by t1, t2 in 2Z(2n).

3.3. Multiplication map. Letm ∶ A→ A ×A,x↦ (x,x) which induces the multiplication mapm∗ ∶ Γ(A,L)⊗
Γ(A,L)→ Γ(A,L2).

The following diagram show thatm∗ = S∗ξ∗.

(X,L2)

(X ×X,L2 ⋆L2) (X ×X,L ⋆L).
ξ

S
m

By the duplication formulae,m∗ is then given by ϑLi ⊗ ϑLj ↦ ∑χ∈Ẑ(2)U
L2

χ,uU
L2

χ,v(0) for any u, v ∈ Z(2n) such
that i = u + v, j = u − v, or via a change of variable ∑t χ(t)ϑLu+v+t(x) ⊗ ϑLu−v+t(x) ↦ UL

2

χ,i(x)U
L2

χ,j(0). So the
rank of the multiplication map is closely linked to the non annulation of the theta null points.

Remark 3.5 (Even and odd theta null points). If n = 2, Uχ,i(−x) = χ(2i)Uχ,i(x) for i ∈ Z(4), equivalently
ϑ [

a/2
b/2 ] (−2z,Ω) = (−1)

ta⋅bϑ(2z,Ω). There is 2g−1(2g + 1) even theta null points vs 2g−1(2g − 1) odd theta null
points. Ex: g = 1, 3 vs 1; g = 2, 10 vs 6; g = 3, 36 vs 28.
Theorem 3.6 (Mumford-Koizumi-Kempf). L0 is principal symmetric.

● Γ(A,Ln0 )⊗ Γ(A,Lm0 )→ Γ(A,Ln+m0 ) is surjective when n ⩾ 2 andm ⩾ 3.
● Γ(A,L2n

0 )
+ ⊗ Γ(A,L2

0) → Γ(A,L2(n+1)
0 )+ is surjective when n ⩾ 2. Here Γ(A,L2n

0 )
+ denotes the even

sections of Γ(A,L2n
0 ). Equivalently, since L2n

0 is totally symmetric, it descends to an ample line bundleM+

on the Kummer variety KA = A/ ± 1, and Γ(A,L2n
0 )
+ = Γ(KA,M+).

● The rank of Γ(A,L2
0)⊗ Γ(A,L2

0)→ Γ(A,L4
0)
+ is equal to the number of non null even theta null points.

3.4. Normal projectivity. A line bundle L on a variety X is projectively normal if Γ(X,Ln) ⊗ Γ(X,L) →
Γ(X,Ln+1) is surjective for all n or equivalently if S(Γ(X,L)) ↠ ⊕Γ(X,Ln). (And so if X is normal, its
projective homogeneous ring in the embedding given by L is normal). Remark: L is very ample iff the map above
is surjective for n≫ 0.
Corollary 3.7.

● If n ⩾ 3, (A,L) is projectively normal, and we have a projective embedding of A;
● If n = 2, the projective embedding of KA is projectively normal iff the even theta null points are not null.We
now assume that this is the case whenever n = 2.

Example 3.8. The product of the even theta null points is null whenever A is not absolutely simple or when it is
the Jacobian of an hyperelliptic curve of genus g ⩾ 3.
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3.5. Addition, Differential addition. Given ϑi(x), ϑi(y) we can recover (n even)
● ϑi(x + y)ϑj(x − y) when n > 2 (⇒ projective addition, affine differential addition)
● κij ∶= ϑi(x + y)ϑj(x − y) + ϑj(x + y)ϑi(x − y) if n = 2, the “symmetric sum” (⇒ differential projective
or affine addition).

4. Arithmetic on Kummer varieties

We assume here that n = 2 and that the even theta null points are non zero.
The polynomial Piα ∶=X2 − 2 κiα

καα
X + κii

καα
has for roots { ϑi(x+y)

ϑα(x+y) ,
ϑi(x−y)
ϑα(x−y)}. Once a root is chosen, some two

by two linear equations involving the κij and the roots allows to recover the theta coordinates of x + y. This gives
equations for the degree two scheme {x + y, x − y}.

Lemma 4.1 (Compatible additions). Given x, y, z, t ∈ A(k) such that x + y = z + t but x − y ≠ ±z − t then one can
compute x + y (= z + t) on the Kummer (from the points on the Kummer).

Proof. This is just the intersection of the two schemes of degree two defining {x± y} and {z ± t}; in practice this is
just a gcd of two degree two polynomials. �

Proposition 4.2 (Multiway additions). Let ±P0 ∈ KA(k) be a point not of 2-torsion. Then from ±P1, . . . ,±Pn ∈

KA(k) and ±(P0 +P1), . . . ,±(P0 +Pn) ∈ KA(k), one can compute ±(P1 + ⋅ ⋅ ⋅ +Pn) and ±(P0 +P1 + ⋅ ⋅ ⋅ +Pn).

Remark 4.3. A reformulation of the proposition is that the data of P0 +Pi ∈ KA(k) “fixes” the sign of Pi relatively
to the one of P0, and so we can compute the additions since we have “compatible” signs.

Proof. This reduces to the case n = 2, which uses (in the generic case) (P1) + (P2) = (P1 − P0) + (P2 + P0) and
(P0 + P1) + P2 = P1 + (P0 + P2). And a verification shows that in the non generic case a direct computation is
possible. �

4.1. Multi Scalar multiplication. To speed up the scalar multiplication P ↦ nP , the GLV trick [GLV01] is to
use an endomorphism α and reduces the scalar multiplication to a multi scalar multiplicationm1P1 +m2P2 (for
instance if αP = tP , fix P1 = P , P2 = α(P ), and n =m1 + tm2). The doubling and add method works again, with
the addition being either P1, P2 or P1 + P2 according to the bits of (m1,m2).

On the Kummer variety a Montgomery laddermP, (m + 1)P ↦ 2mP, (2m + 1)P or (2m + 1)P, (2m + 2)P
computes the scalar multiplication. The two dimensional scalar multiplication uses a square ±(mP +nQ), ±((m+
1)P +nQ), ±(mP + (n+ 1)Q), ±((m+ 1)P + (n+ 1)Q) and depending whether the current bits of (m1,m2) is
(0,0), (1,0), (0,1) or (1,1), adds±(mP +nQ),±((m+1)P +nQ),±(mP +(n+1)Q) or±((m+1)P +(n+1)Q)
to the four points. But this is not interesting, we expect to halve the length of the chain by two, but each steps is
twice as costly. A better approach from [Ber06] uses a triangle.

But via the compatible additions, we just need to keep two points!

Example 4.4. Givenm1P1 + (m2 + 1)P2, (m1 + 1)P1 +m2P2, we can compute (2m1 + 1)P1 + (2m2 + 1)P2 =
(m1P1 + (m2 + 1)P2) + (P1) = ((m1 + 1)P1 +m2P2) + (P2).

5. Changing level

For an elliptic curve y2 = f(x), the map (x, y) ↦ xmaps the elliptic curve to the Kummer line. Going back
to the elliptic curve involve a square root. For abelian variety, a similar map to the Kummer is (A,L2) level 4→
(KA,L

+) level 2 via the duplication formula. We want to go back from level 2 to level 4, using only one square
root. We would also like to be able to describe a point on A using just the point onKA and an extra coordinate to
encode the sign, like is possible on elliptic curve (going back to the full level 4 adds a lot of coordinates). This will
be described in section 6

The theta constants of level 4 on A gives the points of 4 torsion, so we have the coordinates UL
2

χ,i(T ) for T a
point of four torsion. The duplication formulae gives Uχ,i(x)Uχ,i(0) = ∑χ(t)ϑ2i+t(x)ϑt(x), but Uχ,i(0) = 0 for
odd coordinates, so we don’t recover all level 4 coordinates given the level 2 ones. But 0 ≠ Uχ,0(0) = Uχ,i(Ti) for
an (explicit) point of four torsion T . So we can use Uχ,i(x)Uχ,i(Ti) = ∑χ(t)ϑ2i+t(x + Ti)ϑt(x − Ti).

We thus need to compute x + Ti via a square roots, then we can recover all the other ones via x + Tj =
(x + Ti) + (Ti − Tj).
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5.1. Compressing coordinates. Another way to descend level is via the isogeny theorem:

π(ϑi(x))i∈Z(`n) → (ϑi(x))i∈Z(n)

is the isogeny of kernelK2(L)[`].

Proof. The isogeny sends Cg/(Zg +ΩZg) → Cg/(Zg + Ω
`
Zg). Looking at the level `n and n theta functions we

indeed have for b ∈ Z(n) ϑ [ 0
`b/`n ] (z,

Ω
`n
) = ϑ [ 0

b/n ] (z,
Ω/`
n
). �

Let e1, . . . , eg be a basis ofK1(L). Then from π̃(x +∑λiei), where λi ∈ {0, . . . , ` − 1} we can recover x (here
π̃ is the affine lift of π).

Example 5.1. g = 1, ` = 3, n = 2. π̃(x0, . . . , x5) = (x0, x3). x + e1 = (x1, . . . , x5, x0) so π̃(x + e1) = (x1, x4)
and π̃(x + 2e1) = (x2, x5).

But π̃(x +∑λiei) = π̃(x) +∑λiπ̃(ei) so we can recover everything using multiway affine additions (which
are just a composition of differential and three way affine additions).

Corollary 5.2.
● 0 is uniquely determined by π̃(0), π̃(ei) and π̃(ei + ej) ((1 + g + g(g + 1)/2)ng coordinates).
● x is uniquely determined by π̃(x), π̃(x + ei) ((1 + g)ng coordinates).

6. Arithmetic on abelian varieties

Level (2, 4): this gives an embedding of A (if A is absolutely simple), and the compression of coordinates from
above show that we can use the coordinates π̃(x), π̃(x + T ) = π̃(x) + π̃(T ) where T is of 4-torsion.

More generally, for T ∈ A(k) such that 2T ≠ 0, we represent x ∈ A(k) by x ∈ KA(x), x + T ∈ KA. Addition:
(x,x + T ) + (y, y + T ) = (x + y = (x + T ) + (y − T ), x + y + T ) (this is a three way addition and a compatible
addition on the Kummer so this is quite costly). Doubling is just a doubling and a differential addition on the
Kummer so this is a lot less costly.

The standard scalar multiplication costs too much because of the additions. One can instead do a Montgomery
scalar multiplication with (nx, (n + 1)x, (n + 1)x + T ) which uses a doubling and two differential additions on
the Kummer at each step.

Even better, just do a Montgomery scalar multiplication (nx, (n + 1)x) on the Kummer and at the last step
compute (n + 1)x + T = nx + (x + T ). This also works for multi-exponentiation.

Finally this representation is very compact, x + T is simply represented by a root of the polynomial Piα. So
we have a representation that only needs one extra coordinate compared to the Kummer one, and has a scalar
multiplication (almost) as efficient, but we can still compute additions.

Remark 6.1. Changing representation: (x,x + T1)↦ (x,x + T2) via x + T2 = (x + T1) + (T2 − T1). This needs a
choice of T1 + T2 in {±T1 ± T2}, but this choice is necessary since [−1] is an automorphism.

A

KA

A

[−1]

7. Formulae

Let (ai)i∈Z(2) be the level two theta null point representing a Kummer variety KA of dimension 2. Let x =
(xi)i∈Z(2) and y = (yi)i∈Z(2), we let X = x + y and Y = x − y. We will give formulae for the coordinates
2κij =XiYj +XjYi.
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Let i ∈ Z(2), χ ∈ Ẑ(2) and let

zχi = ( ∑
t∈Z(2)

χ(t)xi+txt)( ∑
t∈Z(2)

χ(t)yi+tyt)/( ∑
t∈Z(2)

χ(t)ai+tat).

∑t χ(t)ai+tat is simply the classical theta null point ϑ [χ/2i/2 ] (0,Ω)
2. Then theorem 3.4 gives

4X00Y00 = z
00
00 + z

01
00 + z

10
00 + z

11
00 ;

4X01Y01 = z
00
00 − z

01
00 + z

10
00 + z

11
00 ;

4X10Y10 = z
00
00 + z

01
00 − z

10
00 − z

11
00 ;

4X11Y11 = z
00
00 − z

01
00 − z

10
00 + z

11
00 ;

2(X10Y00 +X00Y10) = z
00
10 + z

01
10 ;

2(X11Y01 +X01Y11) = z
00
10 − z

01
10 ;

2(X01Y00 +X00Y01) = z
00
01 + z

10
01 ;

2(X11Y10 +X10Y11) = z
00
01 − z

10
01 ;

2(X11Y00 +X00Y11) = z
00
11 + z

11
11 ;

2(X01Y10 +X10Y01) = z
00
11 − z

11
11 ;

We describe the degree two scheme {X,Y } by the polynomialPα(Z) = Z
2 − 2κα0

κ00
Z + καα

κ00
whose roots are

{Xα

X0
, Yα

Y0
} (where α is such thatXαY0 −X0Yα ≠ 0). To compute κ00 and καα we need 4M + 8S + 3M0, and to

compute κα0 we need 2M + 4S + 2M0; so in total to computePα, we need 6M + 12S + 5M0 + 2I .
Once we have a root Z , if we let Z ′ = 2κα0

κ00
−Z be the conjugate root (corresponding to Yα

Y0
), we can recover the

coordinatesXi, Yi by solving the equation

(
1 1
Z Z ′

)(
Yi/Y0
Xi/X0

) = (
2κ0i/κ00
2καi/κ00

) ;

We findXi =
2(Zκ0i−καi)
κ00(Z−Z′) =

Zκ0i−καi

Zκ00−κα0
for i ≠ 0, α (here we haveX0 = 1,Xα = Z). But usually we will express

Z = (X0 ∶Xα) ∈ P1 as a point in the projective line, and we find that

Xi =
Xακ0i −X0καi
Xακ00 −X0κα0

.

Recovering the projective coordinates of X then costs 8M (given the κij). To sum up, given Z = (X0 ∶ Xα)

recoveringX costs in total (10M + 20S + 9M0) + 8M = 18M + 20S + 9M0.
For a compatible addition, where x + y = z + t, we can find Z as the common root betweenPα and the similar

polynomialP′α(Z) = Z2 − 2κ
′

α0
κ′00

Z +
κ′αα

κ′00
coming from the symmetric coordinates zitj + tizj . Computing the

coefficients needed forP′α costs 6M + 12S + 5M0. The common root is

Z =

κ′αα

κ′00
− καα

κ00

−2κα0
κ00 + 2κ

′

α0
κ′00

=
κ′αακ00 − καακ

′
00

2(κ′α0κ00 − κα0κ′00)
.

Computing Z projectively costs 4M . In the end, a compatible addition costs (18M + 20S + 9M0)+ (6M + 12S +
5M0) + 4M = 28M + 32S + 14M0.
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