
A generalisation of Miller’s algorithm and
applications to pairing computations on abelian

varieties

David Lubicz1,2, Damien Robert3

1 DGA-MI, BP 7419, F-35174 Bruz
2 IRMAR, Universté de Rennes 1, Campus de Beaulieu, F-35042 Rennes

3 Centre de Recherche Inria Bordeaux - Sud-Ouest
200, avenue de la Vieille Tour

33405 Talence cedex

Abstract. In this paper, we use the theory of theta functions to gen-
eralize to all abelian varieties the usual Miller’s algorithm to compute
a function associated to a principal divisor. We also explain how to use
the Frobenius morphism on abelian varieties defined over a finite field in
order to shorten the loop of the Weil and Tate pairings algorithms. This
extend preceding results about ate and twisted ate pairings to all abelian
varieties. Then building upon the two preceding ingredients, we obtain a
variant of optimal pairings on abelian varieties. Finally, by introducing
new addition formulas, we explain how to compute optimal pairings on
Kummer varieties. We compare in term of performance the resulting
algorithms to the algorithms already known in the genus one and two
case.

1 Introduction

The computation of Weil and Tate pairings has important applications in arith-
metic and cryptography. Almost all the known algorithms to compute these
pairings on elliptic curves rely on Miller’s algorithm [22] to evaluate at a certain
point a function associated to a principal divisor.

The improvements over the initial version of Miller’s algorithm have followed
two main approaches:

– making the basic loop of Miller’s algorithm quicker with efficient arithmetic;
– reducing the number of loops of the algorithm by using endomorphisms of

the curve.

For a curve defined over a finite field, using the absolute Frobenius endomorphism,
this last line of ideas has led to the definition of eta-pairings [2], ate-pairings
[15,13] and optimal pairings [14,29].

The paper [21] describes a new algorithm based on the theory of theta
functions to compute Weil and Tate pairings which apply to all abelian varieties.

It is a natural question to ask whether the known optimizations of the classical
Miller’s algorithm on elliptic curves can be adapted to the algorithms presented
in [21]. In this paper, we focus on the optimisations which consist in reducing
the number of loops in pairing computation algorithms by using non trivial
endomorphisms of the abelian varieties. We won’t deal here with the conversion
between Weierstrass coordinates of an elliptic curve or Mumford coordinates of a
Jacobian of an hyperelliptic curve and theta functions. These conversion formulas
come from the well known Thomae’s formula, and are described in more detail
in [12,11,30,5].

Classical pairing computation algorithms rely on Miller’s algorithm to compute
the function f of a genus g curve C defined up to a constant factor by a divisor
D ∈ Pic0(C) linearly equivalent to 0. For Da, Db ∈ Pic0(C), denote by fDa,Db the
function given (up to a constant factor) by the divisor Da+Db−(Da⊕Db) where
Da⊕Db is the reduced divisor associated to Da +Db. Miller’s algorithm is based
on a double and add loop that iterates a formula which gives the function fDa,Db .
We note that such a formula is specific to a model of a curve. Although in the case
of the Weierstrass model of an elliptic curve it is immediately provided by the
definition of the group law, for other models it may require some computations to
obtain it (see for instance [1,9]). Using the classical Riemann relations for theta
functions, we generalize Miller’s algorithm to all abelian varieties. In our context,
we compute the function defined up to a constant factor by a divisor D on an
abelian variety with Chern class 0 linearly equivalent to 0. Our method relies on
the projective embedding of a principally polarized abelian variety provided by a
power of its theta divisor and therefore is not restricted to Jacobians of curves.

Once we know how to compute the Miller’s functions, it is easy to apply the
optimisations of the ate and optimal ate pairings to our setting. However, the
formula that we obtain to compute the Weil and Tate pairings using the classical
Miller’s algorithm with theta functions is slower than the algorithms presented in
[21], which use a different (and faster) subset of the Riemann relations that we call
differential additions. Our second contribution is to extend the improvements of
the ate and optimal ate pairings to this modified Miller’s loop based on differential
additions by studying the action of the absolute Frobenius endomorphism on
points given by the theta coordinates.

To get even faster formulas, one can compute with a Kummer variety, which
is the quotient of an abelian variety by the (−1) automorphism acting on it, by
using theta functions of level 2 which are invariants by the action of (−1). There
is no addition law on a Kummer variety, since we can not distinguish a point
from its opposite. Still, there is an action of N on the points of a Kummer variety
that one can compute with the differential additions. By carrying the pairing
to this structure, we were led to introduce symmetric pairings in [21] by using
differential additions on level 2 theta functions. Our third contribution is then to
extend all the results previously discussed to this setting; this can be seen as a
generalization of [10] to higher dimension. For this, we introduce new addition
laws deduced from Riemann relations that can be used in the case of level 2

theta functions. Finally, we give an overview of the theoretical complexity of our
algorithms.

In order to avoid too much formalism, we have chosen to present all the
formulas of this paper using the classical analytic theory of theta functions.
Nonetheless, it should be understood that most of our algorithms apply in
general to abelian varieties defined over any field of characteristic not equal to 2.
To see this one can invoke the Lefschetz’s principle or use Mumford’s theory of
algebraic theta functions. There are parts of the paper which are more specific to
abelian varieties over finite field because we use the Frobenius endormophism in
order to speed up the computations. In this case, we clearly state this hypothesis
at the beginning of the section.

The paper is organised as follows: in Section 2, we recall some notations
and well known results about theta functions. In Section 3, we describe different
operations which can be computed on any abelian variety using Riemann relations.
Section 4 is devoted to a generalisation of Miller’s algorithm. In Section 5, we
recall the standard definition of the Weil and Tate pairings on abelian varieties,
and explain how to compute them using the results from the previous section. We
give two ways of computing these pairings: the usual Miller’s algorithm applied to
theta functions and the utilisation of differential additions as in [21]. In Section 6,
we explain how to extend this to compute the ate pairing on an abelian variety
defined over a finite field, while in Section 7, the case of the optimal ate pairing
is treated. Finally in Section 8, we give an overview of the complexity.

2 Some notations and basic facts

In this section, in order to fix the notations, we recall some well known facts about
analytic theta functions (see for instance [26,16]). Let Hg be the g dimensional
Siegel upper-half space which is the set of g × g symmetric matrices Ω whose
imaginary part is positive definite. For Ω ∈ Hg, we denote by ΛΩ = ΩZg + Zg
the lattice of Cg defined by Ω. Any abelian variety A of dimension g over C with
a principal polarisation is analytically isomorphic to Cg/ΛΩ for a certain Ω ∈ Hg.
In the rest of this paper, we denote by π : Cg → Cg/ΛΩ = A the canonical
projection. The classical theory of theta functions gives a lot of functions on Cg
that are pseudo-periodic with respect to ΛΩ and can be used as a projective
coordinate system for A . More precisely, for a, b ∈ Qg, the theta function with
rational characteristics (a, b) is an analytic function on Cg ×Hg given by:

θ [ab] (z,Ω) =
∑
ν∈Zg

exp
[
πit(ν + a)Ω(ν + a) + 2πit(ν + a)(z + b)

]
. (1)

For all m,n ∈ Zg, we have:

θ [ab] (z+Ωm+n,Ω) = exp(2πi(tan−tbm)−πitmΩm−2πitmz)θ [ab] (z,Ω). (2)

We say that a function f on Cg is ΛΩ-quasi-periodic of level n ∈ N if for all
z ∈ Cg and m ∈ Zg, we have:f(z +m) = f(z), f(z +Ωm) = exp(−πintmΩm−

2πintzm)f(z). For any n ∈ N∗, the set HΩ,n of ΛΩ-quasi-periodic functions of
level n is a finite dimensional C-vector space whose basis can be given by the
theta functions with characteristics: (θ

[
0
b/n

]
(z, n−1.Ω))b∈[0,...,n−1]g . If n = k2,

then an alternative basis of HΩ,n is (θ
[
a/k
b/k

]
(kz,Ω))a,b∈[0,...,k−1]g . A theorem of

Lefschetz tells that if n ≥ 3, the functions in HΩ,n give a projective embedding
of A in Png−1, the projective space over C of dimension ng − 1. For n = 2, the
functions in HΩ,2 do not give a projective embedding of A . Indeed, it is easy
to check that for all f ∈ HΩ,2, we have f(−z) = f(z). Under some well known
general conditions [17, Corollary 4.5.2], the image of the embedding defined by
HΩ,2 in P2g−1 is the Kummer variety associated to A , which is the quotient of
A by the automorphism −1.

Once we have chosen a level n ∈ N and a period matrix Ω, for the rest of
this paper, we adopt the following conventions: we let Z(n) = (Z/nZ)g and for
a point zP ∈ Cg and i ∈ Z(n) we put θi(zP) = θ

[
0
i/n

]
(zP , Ω/n). For `, n ∈ N,

such that ` divides n we will implicitly consider Z(`) as a subgroup of Z(n) via
the morphism x 7→ (n/`).x.

We denote by Θn the theta divisor of level n on A which is the divisor of
zero of θ [00] (z, n−1.Ω). There is an isogeny ϕn : A → Â = Pic0A , defined by
x 7→ τ∗x Θn−Θn where τx is the morphism of translation by x on A and τ∗x is
the pullback by τx operator on divisors. The kernel of ϕn is A [n]. For n = 1 we
let Θ1 = Θ. If Ln is the line bundle corresponding to the polarization ϕn (or the
divisor Θn), we have Ln = L n

1 . We denote by K(A) the function field of A
and if f ∈ K(A), we denote by (f) the divisor of the function f . Let Z0(A) be
the group of 0-cycles of A that is the free commutative group over the set of
closed points of A . If D =

∑
i∈I ni(Pi) is an element of Z0(A), we let Supp(D)

be the reduced zero dimensional variety ∪i∈IPi. If f ∈ K(A) has no poles nor
zeroes on Supp(D), we put f(D) =

∏
i∈I f(Pi)

ni .
We recall the following theorem from [21, Theorem 1] which is a version of

the usual Riemann addition formula for theta functions:

Theorem 1. Let i, j, k, l ∈ Z(2n). We suppose that i+ j, i+ k and i+ l ∈ Z(n).
Let Ẑ(2) be the dual group of Z(2). For all χ ∈ Ẑ(2) and z1, z2, z3, z4 ∈ Cg, let

L1 =
∑

η∈Z(2)

χ(η)θi+j+η(z1 + z2)θi−j+η(z1 − z2),

L2 =
∑

η∈Z(2)

χ(η)θk+l+η(z3 + z4)θk−l+η(z3 − z4),

L3 =
∑

η∈Z(2)

χ(η)θi+k+η(z1 + z4)θi−k+η(z1 − z4),

L4 =
∑

η∈Z(2)

χ(η)θj+l+η(z3 + z2)θj−l+η(z3 − z2),

then we have
L1L2 = L3L4. (3)

3 Addition laws deduced from Riemann relations

In this section, we explain how to compute certain operations on the set of
geometric points of A using Riemann equations. These operations will be used
in the algorithms of the next sections, but they may be interesting for other
applications, for instance for the purpose of computing on Kummer varieties.

3.1 Normal additions

Let A be an abelian variety over C with period matrix Ω. For n a positive
integer, we represent A as a closed subvariety of PZ(n) by the way of level n
theta functions and we suppose that 2 divides n. Such an embedding is uniquely
determined once we have chosen a numbering of a basis of HΩ,n: by default we
take {θi, i ∈ Z(n)}. With this convention, by a theorem of Mumford, if 4|n, the
resulting embedding of A in Png−1 is defined by the equations of Theorem 1 by
taking z2 = z3 = z4 = 0.

Let K be a number field. In the rest of this paper, we suppose that this
embedding is defined over K or, say in another way, that the projective point
0 = (θi(0))i∈Z(n) corresponding to the neutral element of A is defined over K.

Now if 4|n, from the knowledge of P = (Pi)i∈Z(n) and Q = (Qi)i∈Z(n), one
can compute the (projective) point P +Q = ((P +Q)i)i∈Z(n) using Theorem 1
with z3 = z4 = 0. We just have to check that the L2 factor of equation (1) does
not vanish too often so that one can actually carry out the computations, which
is a consequence of [21, Proposition 3]. We write P +Q = NormalAdd(P,Q).

We illustrate this with n = 4 and g = 1 in Algorithm 1. Let E be an elliptic
curve defined by Ω ∈ H1; a point z ∈ E will be represented by the projective
coordinates (θi(z))i∈Z(4) = (ϑ

[
0
i/4

]
(z,Ω/4))i∈Z(4). Let (θi(0))i∈Z(4) = (a, b, c, d).

(In all the examples that we give, we assume that we are in a generic setting so
that the formulas are well defined. Otherwise we can always choose a different
subset of Riemann relations, at least in level 4).

3.2 Differential additions

Denote by Ã the pullback of A via the natural projection κ : Ang → Png−1. In
the following, we adopt the following convention: if P = (Pi)i∈Z(n) is a point

of A , we denote by P̃ = (P̃i)i∈Z(n) an affine lift of P that is a point P̃ of Ang

such that κ(P̃) = P . We introduce the tilde notation in the formulas where we
compute with affine points: it means that we want to distinguish two points lying
on the same line cutting the origin of Ang . We also choose once and for all an
affine lift of the theta null point 0̃ = (θi(0))i∈Z(n) defined over K.

Next, for all n such that 2|n, from the knowledge of P̃ = (P̃i)i∈Z(n), Q̃ =

(Q̃i)i∈Z(n) and (P̃ −Q) = ((P̃ −Q)i)i∈Z(n), the formula of Theorem 1, defines a

unique P̃ +Q = ((P̃ +Q)i)i∈Z(n) which is an affine lift of P +Q. Following [21],

we write P̃ +Q = DiffAdd(P̃ , Q̃, P̃ −Q).

Algorithm 1: Normal addition algorithm in genus 1 level 4

input : The points x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3) on E.
output : The projective coordinates (θi(x+ y)) of the point t = x+ y.

1 return

t0 =
(x20 + x22)(y20 + y22)

(a2 + c2)
+

(x20 − x22)(y20 − y22)

(a2 − c2)

t1 =
(x0x1 + x2x3)(y0y1 + y2y3)

(ab+ cd)
+

(x0x1 − x2x3)(y0y1 − y2y3)

(ab− cd)

t2 =
(x21 + x23)(y21 + y23)

(a2 + c2)
+

(x21 − x23)(y21 − y23)

(a2 − c2)

t3 =
(x0x3 + x2x1)(y0y3 + y2y1)

(ac+ bc)
+

(x0x3 − x2x1)(y0y3 − y2y1)

(ac− bc)

Chaining the algorithm DiffAdd in a classical Montgomery ladder [4, Al-

gorithm 9.5 p. 148] yields an algorithm that takes as inputs Q̃ = (Q̃i)i∈Z(n),

P̃ +Q = ((P̃ +Q)i)i∈Z(n), P̃ = (P̃i)i∈Z(n), 0̃ = (0̃i)i∈Z(n) and an integer ` and

outputs Q̃+ `P . We write Q̃+ `P = ScalarMult(`, P̃ +Q, P̃ , Q̃, 0̃). It is proved
in [21] that the output of ScalarMult does not depend of the addition chain
used to compute it. In practise, one can use a Montgomery ladder algorithm to

compute ScalarMult(`, P̃ +Q, P̃ , Q̃, 0̃) which provides a quasi-optimal addition
chain the length of which is in the order of O(log(`)).

There is a natural action by multiplication of K
∗

on the coordinates of a
point in Ang that we denote by λ ∗ P for λ ∈ K∗ and P ∈ Ang (K).

Lemma 1. Let P,Q ∈ A (K) and let P̃ , Q̃, P̃ +Q be affine lifts of P , Q and

P +Q. Let R̃ = ScalarMult(`, P̃ +Q, P̃ , Q̃, 0̃). Let α, β, γ, δ ∈ K − {0}, we have
[21, Remark 3]

ScalarMult(`, α ∗ P̃ +Q, β ∗ P̃ , γ ∗ Q̃, δ ∗ 0̃) = (α`β`(`−1)/γ`−1δ`(`−1)) ∗ R̃, (4)

ScalarMult(`, α ∗ P̃ , α ∗ P̃ , δ ∗ 0̃, δ ∗ 0̃) =
α`

2

δ`2−1
∗ ScalarMult(`, P̃ , P̃ , 0̃, 0̃). (5)

We illustrate differential additions with our previous g = 1, n = 4 example in
Algorithm 2.

3.3 Normal additions in level 2

We consider the case n = 2 and we make the hypothesis that level 2 theta
functions give a projectively normal embedding of the Kummer variety K A into

Algorithm 2: Differential addition algorithm in genus 1 level 4

input : The points P̃ = (x0, x1, x2, x3), Q̃ = (y0, y1, y2, y3) and

(P̃ −Q) = (z0, z1, z2, z3) on Ẽ.

output : The affines coordinates P̃ +Q = (t0, t1, t2, t3).

1 return

t0 =
(x20 + x22)(y20 + y22)

z0(a2 + c2)
+

(x20 − x22)(y20 − y22)

z0(a2 − c2)

t1 =
(x21 + x23)(y20 + y22)

z1(a2 + c2)
+

(x21 − x23)(y20 − y22)

z1(a2 − c2)

t2 =
(x20 + x22)(y20 + y22)

z2(a2 + c2)
− (x20 − x22)(y20 − y22)

z2(a2 − c2)

t3 =
(x21 + x23)(y20 + y22)

z3(a2 + c2)
− (x21 − x23)(y20 − y22)

z3(a2 − c2)

PZ(2). This condition is equivalent following [17, Corollary 4.5.2 and Remark (2)]
to the fact that for all k, l ∈ Z(2) such that tk.l = 0, θk,l(0) 6= 0. As for n = 2, we
can not distinguish a point Q from its opposite −Q, we can not expect to have a
NormalAdd(P,Q) algorithm which returns a point since the result P ±Q is not
determined from the input data. Nonetheless, there exists a NormalAdd2(P,Q)
algorithm whose output uniquely determines the set of points {P +Q,P −Q}.

From the knowledge of P = (θi(zP))i∈Z(2) and Q = (θi(zQ))i∈Z(2), it is

explained in [21, Section 5.2] that using Riemann’s equations (3) with z3 = z4 = 0,
we can recover for all i, j ∈ Z(2)

κij = θi(zP + zQ)θj(zP − zQ) + θj(zP + zQ)θi(zP − zQ), (6)

with the formula

κij =∑
χ∈Ẑ(2)

(∑
η∈Z(2)

χ(η)θi+j+η(0)θi−j+η(0)
)−1(∑

η∈Z(2)

χ(η)θi+k+η(zP)θi−k+η(zP)
)

(∑
η∈Z(2)

χ(η)θj+l+η(zQ)θj−l+η(zQ)
) . (7)

We can suppose that θ0(zP + zQ)θ0(zP − zQ) 6= 0, if necessary by replacing
the index 0 by another one. For i ∈ Z(2), if we let Pi(X) = X2 − 2 κi0κ00

X + κii
κ00

,

then the roots of Pi(X) are
θi(zP+zQ)
θ0(zP+zQ) ,

θi(zP−zQ)
θ0(zP−zQ) ∈ K. If P,Q ∈ K A (K) are

2-torsion points, P + Q = P − Q ∈ K A (K) so each Pi(X) has a double
root. Otherwise, we can suppose that there exists α ∈ Z(2), α 6= 0 such that

the matrix M =

(
θ0(zP + zQ) θ0(zP − zQ)
θα(zP + zQ) θα(zP − zQ)

)
is invertible. Consider the algebra

A = K[X]/(Pα(X)) = K[x] and where x is the image of X in A via the canonical
projection. Then we can represent the set {θα(zP + zQ), θα(zP − zQ)} by the set
{x, 2κα0

κ00
− x}. Note that it implies the choice of a normalisation for θ0(zP + zQ):

in fact, in the case that x = θα(zP + zQ) we have chosen θ0(zP + zQ) = 1 and in
the case that x = θα(zP − zQ), we have chosen θ0(zP − zQ) = 1. These choices
are made possible by the hypothesis θ0(zP + zQ)θ0(zP − zQ) 6= 0.

We can then compute the pair {γix+ δi, 2
κi0
κ00
− γix− δi} in A representing

the set {θi(zP + zQ), θi(zP − zQ)} by solving the linear system with coefficients
in A: (

1 κ00

καα
x κα0

κ00
− x

)(
θi(zP − zQ)
θi(zP + zQ)

)
=

(
κi0
κiα

)
. (8)

The algorithm NormalAdd2 is then defined as follows: it takes as input
0̃ = (θi(0))i∈Z(2), P = (θi(zP))i∈Z(2) and Q = (θi(zQ))i∈Z(2) and outputs the

polynomial defining the algebra A and the γix + δi for i ∈ Z(2); defining the
set {(θi(zP + zQ))i∈Z(2), (θi(zP − zQ))i∈Z(2)}. It is clear that the output of

NormalAdd2 determines the set {P + Q,P − Q} and that this algorithm only
requires to compute a fixed number of operations in the base field.

We illustrate (the generic version of) this algorithm with g = 1 and n = 2
in Algorithm 3. Let E be an elliptic curve defined by Ω ∈ H1; a point z
of the Kummer line associated to E is represented by the projective coordi-
nates (θi(z))i∈Z(2) = (ϑ

[
0
i/2

]
(z,Ω/2))i∈Z(2). We let (a, b) = (θ0(0), θ1(0)) =

(ϑ [00] (0, Ω/2), ϑ
[

0
1/2

]
(0, Ω/2). We define A = 2(a2 + b2) and B = 2(a2 − b2).

If (a′, b′) = (ϑ [00] (0, Ω), ϑ
[
1/2
0

]
(0, Ω)) is the coordinate of the dual theta null

point, by the duplication formula we have that A = 4(a′)2 and B = 4(b′)2.

Algorithm 3: Normal addition algorithm in genus 1 level 2

input : The points P = (x0, x1), Q = (y0, y1) on E
output : The set {P +Q,P −Q}.

1 κ00 = (x20 + x21)(y20 + y21)/A+ (x20 − x21)(y20 − y21)/B;
2 κ11 = (x20 + x21)(y20 + y21)/A− (x20 − x21)(y20 − y21)/B;
3 κ01 = x0x1y0y1/ab;
4 return {(κ00, X), (κ00, κ10 −X)} where X is a root of X2 − κ10X + κ00κ11.

3.4 Differential additions in level 2

Differential additions are easier to handle: the algorithm outlined in Section 3.2
also works in level 2 with general points.

We illustrate this algorithm with our previous g = 1 and n = 2 example in
Algorithm 4. Since this is the addition formula that will be used the most in
the pairings algorithm, we give a factored form which may be more convenient
for the computations. Note that when using a differential addition to compute
ScalarMult, we can always choose affine lifts so that a = x0 = y0 = 1 in the
notations of Algorithm 4. For the pairing algorithms that we will use, it is easy
to see that we can also always multiply the formulas by the same (rational) value.
This means that we can replace the values (A,B) by (1, B/A).

Algorithm 4: Differential Addition Algorithm in genus 1 level 2

input : The points P̃ = (x0, x1), Q̃ = (y0, y1) on Ẽ, and P̃ −Q = (z0, z1) with
z0z1 6= 0.

output : The point P̃ +Q = (t0, t1).

1 t′0 = (x20 + x21)(y20 + y22)/A;
2 t′1 = (x20 − x21)(y20 − y21)/B;
3 t0 = (t′0 + t′1)/z0;
4 t1 = (t′0 − t′1)/z1;
5 return (t0, t1)

In genus 2, the corresponding formulas are described in [11]. To handle the
non generic case, one can use NormalAdd2 to compute {P + Q,P −Q}; since

we know P̃ −Q, it is easy to recover P̃ +Q.

3.5 Compatible additions in level 2

Using the NormalAdd2 algorithm, it is also possible to recover P + R from
the knowledge of P,Q,R, P + Q,Q + R on a Kummer variety when Q is not
a point of two torsion. We call this operation compatible addition and we
note P + R = CompatAdd(P,Q,R, P + Q,Q + R). The idea is the following:
NormalAdd2(P,R) gives the set {P + R,P − R} and we want to be able to
identify P + R in this set. We can suppose that 2P 6= 0 and 2R 6= 0 because
if this is not the case we have P + R = P − R in the Kummer variety. We
remark that NormalAdd2(P +R,P +Q) determines {2P +Q+R,Q−R} and
NormalAdd2(P − R,P + Q) gives the set {2P + Q − R,Q + R}. As we know
Q+R and as 2P 6= 0 and 2Q 6= 0 by hypothesis, we have a way to distinguish
P +R from P −R.

We now describe an algorithm to compute the compatible addition. Let Pα

be the defining polynomial of the algebra A = K[X]/(Pα) = K[x] given by
NormalAdd2(P,R). We want to find a root of Pα from the knowledge of P +Q
and Q + R without computing a square root in K. We use for all i ∈ Z(2),
θi(zP±R) = γix + δi as a convenient notation. Then we define κ(x)ij as the
elements of the algebra A given by equation (7) where we have replaced zP by
zP+Q and zQ by zP±R. We can suppose that κ(x)00 6= 0 if necessary by changing

this index and we consider the polynomials Qi(Y) = Y 2 − 2 κ(x)i0κ(x)00
Y + κ(x)ii

κ(x)00
for

i ∈ Z(2). By representing an element of A as a pair of elements ofK via the natural
evaluation morphism at the roots of Pα(X), the roots of the Qi(Y) are given

by the pairs { θi(z2P+Q+R)
θ0(z2P+Q+R) ,

θi(zQ−R)
θ0(zQ−R)} ,{ θi(z2P+Q−R)

θ0(z2P+Q+R) ,
θi(zQ+R)
θ0(zQ+R)}. As consequence, if

we evaluate Qi(Y) at
θi(zQ+R)
θ0(zQ+R) , we obtain a non invertible element of A which is

nonzero since 2P 6= 0. As
θi(zQ+R)
θ0(zQ+R) is a coordinate of P +Q, we are done. In the

following, we use the notation P +R = CompatAdd(P,Q,R, P +Q,Q+R) for
the preceding algorithm. It is clear from our discussion that this algorithm only
requires a fixed number of operations in the base field.

We illustrate Compatible additions once more with our g = 1 and n = 2
example in Algorithm 5.

Algorithm 5: Compatible additions in genus 1 level 2

input : x, y, Y = x+ z, X = y + z.
output :Z = x+ y.

1 Computing x± y;
2 α = (x20 + x21)(y20 + y21)/A;
3 β = (x20 − x21)(y20 − y21)/B;
4 κ00 = (α+ β), κ11 = (α− β);
5 κ10 := x0x1y0y1/ab;

6 Computing (x+ z)± (y + z);
7 α′ = (Y 2

0 + Y 2
1)(X2

0 +X2
1)/A;

8 β′ = (Y 2
0 − Y 2

1)(X2
0 −X2

1)/B;
9 κ′

00 = α′ + β′, κ′
11 = α′ − β′;

10 κ′
10 = Y1Y2X1X2/ab;

11 return
x+ y = [κ00(κ10κ

′
00 − κ′

10κ00), κ10(κ10κ
′
00 − κ′

10κ00) + κ00(κ11κ
′
00 − κ′

11κ00)]

3.6 Three way additions (in level 2 or more)

The three way addition ThreeAdd is an important ingredient to compute the
Miller functions fλ,µ,n,P of Lemma 4 below. From P , Q, R, P +Q, P +R, Q+R
on a Kummer variety given in the coordinate system provided by level 2 theta
functions, it allows to compute P +Q+R. It is also useful when the level n is

greater than two: given any affine lifts P̃ , Q̃, R̃, P̃ +Q, P̃ +R, Q̃+R in Ã , it

allows to compute a “compatible lift” ˜P +Q+R ∈ Ã .

In the following, we say that a property is true for R ∈ A (C) (resp. z ∈ Cg)
a general point of A (resp. of Cg) if it is verified for all R (resp. z) taken in a
Zariski dense subset of A (resp. in π−1(U) where U is a Zariski dense subset of
A). For instance, if f ∈ K(A), we say that we can evaluate f at a general point

of A , if we have an algorithm to compute f(R) for all R ∈ U , U a Zariski dense
subset of A . Then we can state the proposition:

Proposition 1. Suppose that 2 | n and let z1, z2 ∈ Cg. For a general point
z ∈ Cg, suppose that we are given the (affine) theta coordinates of level n of
z1, z2, z, z1 + z2, z1 + z, z2 + z. Then one can recover the affine coordinates
(θi(z1 + z2 + z)i∈Z(n)) of z1 + z2 + z. Furthermore, if 4 | n, then the Proposition
holds for any z ∈ Cg.

Proof. For i, j, k, l ∈ Z(2n) such that i+ j, i+ k and i+ l ∈ Z(n), χ ∈ Ẑ(2), let:

L1(z, i, j, χ) =
∑

η∈Z(2)

χ(η)θi+j+η(z + z1 + z2)θi−j+η(z1),

L2(z, k, l, χ) =
∑

η∈Z(2)

χ(η)θk+l+η(z2)θk−l+η(z),

L3(z, i, k, χ) =
∑

η∈Z(2)

χ(η)θi+k+η(0)θi−k+η(z2 + z),

L4(z, j, l, χ) =
∑

η∈Z(2)

χ(η)θj+l+η(z1 + z)θj−l+η(z1 + z2)

Then, by Theorem 1, we have

L1(z, i, j, χ)L2(z, k, l, χ) = L3(z, i, k, χ)L4(z, j, l, χ). (9)

As 2 | n, we know that the linear system associated to Θn has no base point.
Thus, if we fix i,j with i + j ∈ Z(n), we can choose k, l such that i + k and
i + l ∈ Z(n) and θk+l(z2) 6= 0. Suppose that L2(z, k, l, χ) = 0 for z a general
point of Cg. Then, L2(z, k, l, χ) is a non trivial degree 1 relation between theta
functions. But such a relation does not exist since it is known that (θi(z))i∈Z(n)

form a basis of the vector space of LΩ-quasi-periodic functions of weight n [26,
Proposition 1.3 p. 122]. So we can assume (for a general point z of Cg) that for
all χ, L2(z, k, l, χ) 6= 0.

We can then compute L1(z, i, j, χ) for a general z ∈ Cg and for all χ ∈ Ẑ(2).
By summing over the characters, we can thus compute for all i, j ∈ Z(2n) such
that i + j ∈ Z(n) the products θi+j(z + z1 + z2)θi−j(z1). Using again the fact
that the linear system associated to Θn has no base point, we obtain that we
can compute (θi(z + z1 + z2))i∈Z(n) for z a general point of Cg.

If 4 | n, to show that we can compute L1(z, i, j, χ) for any z ∈ Cg, we have to
show that L2(z, k, l, χ) 6= 0 for some k, l ∈ Z(n) such that i+ j + k + l ∈ 2Z(n).
By the duplication formula [16, Theorem 2, p. 139–141], with a slight abuse of

notations, we get that L2(z, k, l, χ) = 2gθ
[χ

2
k+l
2n

]
(z2 + z, 2Ωn)θ

[χ
2
k−l
2n

]
(z2− z, 2Ωn).

But by [23, Result a) p. 340], for any a, b ∈ Z and z ∈ Cg, there exists c ∈ Z such

that θ
[a

2
b
2n+ c

4

]
(z, 2Ωn) 6= 0. As for any k, l ∈ Z(n), we can find k′, l′ ∈ Z(4) such

that L2(z, k + k′ + l′, l + k′ − l′, χ) 6= 0 and we are done.

Definition 1. Let P̃ , Q̃, R̃, P̃ +Q, P̃ +R, Q̃+R in Ã be given by their theta

functions of level n. Let ˜P +Q+R ∈ Ã be the point computed using the relations
of the proof of Proposition 1.

We note ˜P +Q+R = ThreeAdd(P̃ , Q̃, R̃, Q̃+R, P̃ +R, P̃ +Q).

From the way the three addition is computed, we immediately get the multi-
plicative action of Section 3.2.

Lemma 2. Let T̃ = ThreeAdd(P̃ , Q̃, R̃, Q̃+R, P̃ +R, P̃ +Q). Then

ThreeAdd(α ∗ P̃ , β ∗ Q̃, γ ∗ R̃, A ∗ Q̃+R,B ∗ P̃ +R,C ∗ P̃ +Q) =
ABC

αβγ
∗ T̃ .

We illustrate Three way additions with our g = 1, n = 2 example in Algo-
rithm 6.

Algorithm 6: Three way addition in genus 1 level 2

input : The points x, y, z,X = y + z, Y = x+ z, Z = x+ y on E.
output : T = x+ y + z.

1 return

T0 =
(aX0 + bX1)(Y0Z0 + Y1Z1)

x0(y0z0 + y1z1)
+

(aX0 − bX1)(Y0Z0 − Y1Z1)

x0(y0z0 − y1z1)

T1 =
(aX0 + bX1)(Y0Z0 + Y1Z1)

x1(y0z0 + y1z1)
− (aX0 − bX1)(Y0Z0 − Y1Z1)

x1(y0z0 − y1z1)

4 A generalisation of Miller’s algorithm

In this section, we first recall the classical Miller’s algorithm to compute the
function of an elliptic curve defined up to a constant factor by a principal divisor,
then we explain how to generalize this algorithm to all abelian varieties.

Let E be an elliptic curve and denote by 0 the zero element of the group law
of E . Let P be a point of E of order `. Then by [28, Corollary 3.5 p. 67] the
divisor `(P)− `(0) is principal and we denote by f an element of K(E) defined
up to a constant factor by (f) = `(P)− `(0). More generally, let fλ,P ∈ K(E) be
defined up to a constant factor by

(fλ,P) = λ(P)− ([λ]P)− (λ− 1)(0).

Miller’s algorithm [22] to compute f is based on the following remark. For λ > 0
an integer, we have:

fλ+µ,P = fλ,P fµ,P fλ,µ,P ,

where fλ,µ,P is a function associated to the divisor

−([λ+ µ]P) + ([λ]P) + ([µ]P)− (0),

assuming a suitable normalisation of the functions. If E is given by a Weierstrass
equation, fλ,µ,P can be computed easily from the usual cord and tangent definition
of the group law on E . As f1,P is a constant function, we obtain an efficient
square and multiply algorithm to compute f`,P .

Now, let A be a principally polarised abelian variety defined by a period
matrix Ω. We recall that we denote by Θ the theta divisor of A defined by Ω
which is the zero divisor of the associated Riemann theta function and by Θn
the theta divisor of level n (as in Section 2). Denote by 0 the zero element of A
and let P be a point of order `. For λ > 0 an integer, by an easy induction using
the theorem of the square [25, Corollary 4, p. 67], we see that the divisor

λτ∗PΘn − τ∗λPΘn − (λ− 1)Θn (10)

is principal. We denote by fλ,n,P or more simply by fλ,P if n = 1 the function
defined up to a constant factor by this divisor. In the following, we will use the
same notation to denote fλ,n,P or its pullback by the projection π : Cg → A .

As noted, fλ,n,P is defined only up to a constant factor. This will not present a
problem since we will only evaluate this function on degree zero cycles. In practice,
one usually takes a unique representative in the class of functions defined up to a
constant factor by imposing a normalizing condition at a point (for instance at 0).
Also the definition of fλ,n,P depends on the divisor Θn. The divisor of any theta
function of level n is linearly equivalent to Θn, but the corresponding function
fλ,n,P may be different. However, we will see in Section 5 that the definition of
the Weil and Tate pairings depends only on the equivalence class of Θn.

Lemma 3. Let zP ∈ Cg be such that P = π(zP). For all i ∈ Z(n), we have up
to a constant factor:

fλ,n,P (z) =
θi(z)

θi(z + λzP)

(
θi(z + zP)

θi(z)

)λ
, (11)

where for i ∈ Z(n), θi(z) = θ
[

0
i/n

]
(z,Ω/n) are the theta functions of level n.

Proof. Denote by gλ,n,P the function with domain Cg given by the right hand
side of (11). First, using the quasi-periodicity properties of theta functions with
characteristics (2), we obtain that for all µ, ν ∈ Zg and for all z ∈ Cg we have

gλ,n,P (z + µ+ νΩ) = gλ,n,P (z).

As a consequence, gλ,n,P descends to a well defined function of A . As for all
i ∈ Z(n), the zero divisor of θi(z) is linearly equivalent to Θn, it is clear that the
zero divisor of gλ,n,P is (10) (up to replacing Θn by an equivalent divisor).

Keeping the notations of Lemma 3, we deduce by an immediate computation
using formula (11) that:

Lemma 4. For all λ, µ positive integers, we have up to a constant factor

fλ.µ,n,P = fλµ,n,P fλ,n,µ.P . (12)

We also have the following relation

fλ+µ,n,P = fλ,n,P fµ,n,P fλ,µ,n,P , (13)

where fλ,µ,n,P is a function associated to the divisor−τ∗(λ+µ)P Θn +τ∗λP Θn +τ∗µP Θn−Θn.
The function fλ,µ,n,P is uniquely defined if we impose that it is normalized on a
point. From the definition, we have by using Lemma 3

Lemma 5. Let zP ∈ Cg be such that P = π(zP). Let i ∈ Z(n). For all λ, µ
positive integers, we have up to a constant factor

fλ,µ,n,P (z) =
θi(z + λzP)θi(z + µzP)

θi(z + (λ+ µ)zP)θi(z)
(14)

(for all z where fλ,µ,n,P is defined).

We can now explain how the various addition algorithms presented in Section 3
allow us to compute a normalized version of the function fλ,µ,n,P (z) on a general
point.

Proposition 2. Suppose that 4 | n and let λ, µ ∈ N. Suppose that we are given
θi(λzP), θi(µzP) and θi(0) for i ∈ Z(n). Suppose that we can evaluate the
functions θi(z), θi(z + λzP) and θi(z + µzP) for all i ∈ Z(n) at a point z ∈ Cg.
Then we can evaluate the projective coordinates (θi(z + (λ+ µ)zP))i∈Z(n).

If 2 | n, the Proposition also holds for a general point z ∈ Cg.

Proof. If we had the affine coordinates (θi((λ+µ)zP))i∈Z(n) then by Proposition 1
one could recover the affine coordinates (θi(z + (λ + µ)zP))i∈Z(n) using the
three way additions. But by Lemma 2, if we can only compute the projective
coordinates (θi((λ + µ)zP))i∈Z(n), then the three way addition gives us the
projective coordinates of (θi(z + (λ+ µ)zP))i∈Z(n).

If 4|n, one can then use NormalAdd to compute (θi(λ + µ)zP)i∈Z(n) from
(θi(λzP))i∈Z(n) and (θi(µzP))i∈Z(n). In the case that n = 2, one needs to use the
CompatAdd algorithm instead to recover (θi(λ+µ)zP)i∈Z(n) from the knowledge
of (θi(λzP))i∈Z(n), (θi(µzP))i∈Z(n), (θi(z))i∈Z(n), (θi(z + λzP))i∈Z(n), (θi(z +
µzP))i∈Z(n) for z a general point of Cg.

When the level n is divisible by 4, we can use this proposition to evaluate a
normalized function fλ,µ,n,P .

Corollary 1. Let 4 | n, Q ∈ A , and let R ∈ A be a point such that neither R
nor Q+R is a pole or zero of the divisor of fλ,µ,n,P . Then from the knowledge
of λP and µP , we can evaluate fλ,µ,n,P (Q+R)/fλ,µ,n,P (R).

Proof. We fix affine lifts λ̃P and µ̃P of λP and µP . We compute (λ + µ)P

using NormalAdd algorithm and chose an affine lift ˜(λ+ µ)P . For a point X ∈
{Q + R,R}, we compute X + λP , X + µP using NormalAdd and choose any

affine lifts X̃, X̃ + λP and X̃ + µP . Using the three way add, we get an affine

lift ˜X + λP + µP of X + λP + µP .
For T ∈ {λP, µP,X, (λ+µ)P, λP +X,µP +X,X+(λ+µ)P}, let zT ∈ Cg be

such that T = π(zT) and let αT ∈ K be such that for all i ∈ Z(n), θi(zT) = αT ∗Ti
(where ∗ is the multiplicative action described in Section 3.1).

By Lemma 2, we have

αX+(λ+µ)P =
αX+λPαX+µP

αX

α(λ+µ)P

αλPαµP
.

In particular, for i ∈ Z(n), the quotient (X̃+λP)i(X̃+µP)i

(˜X+(λ+µ)P)i(X̃)i
(if defined) does not

depend on the choice of an affine lift for X, X + λP and X + µP , but only on

the choices of λ̃P , µ̃P and ˜(λ+ µ)P . By applying that with X = Q + R and
X = R we obtain that the function fλ,µ,n,P evaluated at the cycle (Q+R)− (R)
is given by

(˜Q+R+ λP)i(˜Q+R+ µP)i

(˜Q+R+ (λ+ µ)P)i(Q̃+R)i

(˜R+ (λ+ µ)P)i(R̃)i

(R̃+ λP)i(R̃+ µP)i
,

for i ∈ Z(n) such that this fraction is defined.

If we go back to the definition of fλ,n,P given by Lemma 3, the method of [21]
provides us with another way to compute it without going through the fλ,µ,n,P
functions. We assume in the Proposition that fλ,n,P is well defined on the cycle
(Q) − (0) (as we will see in Section 5 this is usually the case), we leave to the
reader the easy adaptation of this to evaluate it on the cycle (Q+R)− (R).

Proposition 3. Let P̃ , Q̃ and 0̃ be affine lifts of P ,Q and 0. Let P̃ +Q be a lift

of P +Q (if 4 | n, we can compute it with a normal addition). Note Q̃+ λP =

ScalarMult(λ, P̃ +Q, P̃ , Q̃, 0̃) and λ̃P = ScalarMult(λ, P̃ , P̃ , 0̃, 0̃). We have

fλ,n,P (zQ)

fλ,n,P (0)
=

Q̃i.λ̃P i

(Q̃+ λP)i.0̃i

(
(P̃ +Q)i.0̃i

Q̃i.P̃i

)λ
(15)

Proof. Let α, β, γ, δ ∈ K∗ be such that α ∗ (P̃ +Q) = (θi(zP + zQ)), β ∗ P̃ =

(θi(zP)), γ ∗ Q̃ = (θi(zq)) and δ ∗ 0̃ = (θi(0)).
By definition, we have

fλ,n,P (zQ)

fλ,n,P (0)
=

θi(zQ)θi(λzP)

θi(zQ + λzP)θi(0)

(
θi(zQ + zP)θi(0)

θi(zQ)θi(zP)

)λ
(16)

Now using (4) and (5), we see that the right hand side of (15) is equal to the
right hand side of (16) up to the factor

γβλ
2

δλ(λ−1)

αλβλ(λ−1)

γλ−1 δλ2−1δ

(
αδ

βγ

)λ
= 1.

Since almost all known variations of pairing computation algorithms use the
Miller’s functions fλ,n,P and fλ,µ,n,P , we see that we can extend them to all
abelian varieties with Corollary 1, at least if the level is divisible by 4. In the
following, we explain how to compute the Weil, Tate, ate and optimal ate pairings
over an abelian variety, explain some optimizations and work out the case of level
two.

5 The Weil and Tate pairings

In this section, we recall the definition of the Weil and Tate pairings in the general
context of abelian varieties. There are several definitions of the Weil pairing
leading to different formulas with their own interest in regard to algorithmic
applications. Most of the proofs of the equivalence between these definitions rely
on Weil’s reciprocity theorem. We explain that a generalisation due to Lang of
the Weil’s reciprocity allows to adapt the usual proofs with minor modifications.

5.1 The Weil pairing

Let f : A → B be a separable isogeny with kernel L between two abelian
varieties defined over k. Then we have the following diagram:

0 L A B 0

0 Â B̂ L̂ 0

f

f̂

The Kernel L̂ is the Cartier dual of L (see [25, Section III.14] for the Cartier
dual which is a duality theory for finite commutative group schemes), so that we

have a non degenerate pairing ef : L× L̂→ K
∗
.

We can give an explicit description of this pairing. If Q ∈ L̂(K), Q defines

a divisor DQ on B modulo linear equivalence. Then f̂(Q) = 0 corresponds to
f∗DQ so there is a function gQ on A such that f∗DQ =

∑
P∈L(K) τ

∗
PDQ = (gQ).

Then for all P ∈ L(K), as (gQ) is invariant by translation by P , gQ(x)/gQ(x+P)
is a constant function. Its definition does not depend on the choice of DQ and
gQ and we have ef (P,Q) = gQ(x)/gQ(x+ P).

Applying this to the isogeny [`] : A → A , we recover the Weil pairing eW :

A [`]× Â [`]→ µ` where µ` is the set of `th-roots of unity in K. We suppose that

A has a principal polarisation Θ. Composing with the polarization ϕ : A → Â
associated to the divisor Θ, we get the Weil pairing as eW : A [`]×A [`]→ µ`.

When A is an elliptic curve, it is well known that the Weil pairing can be
computed as

eW (P,Q) =
f`,P ((Q)− (0))

f`,Q((P)− (0))
. (17)

This result can be proved with Weil’s reciprocity theorem. It can be generalized
to the case where A is the Jacobian of a curve (see for instance [4]), which is
the usual setting in cryptography, because the points and the group law on A
have a convenient representation in term of divisors on the curve.

By using Lang’s reciprocity theorem [18, Theorem 4], it is possible to obtain
similar results in the general context of an abelian variety A with a principal
polarisation ϕ : A → Â with minor adaptations of the proofs. To explain this,
we denote by S : Z0(A)→ A (K), the morphism given by

∑
ni(Pi) 7→

∑
niPi.

If Z =
∑
ni(Pi) ∈ Z0(A), we let ϕ(Z) =

∑
ni(ϕ(Pi)) ∈ Z0(Â). The cycle ϕ(Z)

defines a line bundle on A associated to the divisor DZ =
∑
ni(τ

∗
Pi
Θ − Θ). If

S(Z) = 0, this line bundle is linearly equivalent to 0 by the theorem of the square.
This means that DZ is the divisor of a function, defined up to a constant factor,
that we denote by fZ (the constant factor will play no role in the following since
we only consider evaluations of fZ on degree zero cycles). With these notations,
we have

Proposition 4 (Lang reciprocity). Let Z1, Z2 ∈ Z0(A) be such that S(Zi) =
0 for i = 1, 2. Suppose that Supp(Z1) ∩ (fZ2) = Supp(Z2) ∩ (fZ1) = ∅, then we
have fZ1(Z2) = fZ2(Z1).

Proof. Let Z ′1 = ϕ(Z1) ∈ Z0(Â). Via the canonical isomorphism A → ˆ̂
A ,

Z2 ∈ Z0(A) defines as above a divisor on Â and because S(Z2) = 0 this

divisor D′Z2
is linearly equivalent to 0. Denote by f ′Z2

∈ K(Â) a function
defined up to a constant factor by D′Z2

. Let DP be a divisor associated to a

Poincaré line bundle of Â ×A . Then by [18, Theorem 4] applied to the divisorial
correspondance given by DP , we have fZ1

(Z2) = f ′Z2
(Z ′1). In fact it is clear that

fZ1
is nothing but DP(Z ′1) with the notations of [18] and because a Poincaré

bundle parametrising line bundles of A via the first projection over Â is a
Poincaré bundle parametrising line bundles of Â via the second projection over

A =
ˆ̂

A , we have f ′Z2
=t DP(Z2) where tDP is the divisor of A × Â defined as

the pullback of DP by the application A × Â → Â × A given on geometric
points by (P1, P2) 7→ (P2, P1).

To finish the proof, it remains to show that f ′Z2
(Z ′1) = fZ2

(Z1) but this is an
immediate consequence of the fact that ϕ∗(f ′Z2

) = fZ2
.

In order to show the usefulness of the proposition, we prove the following theorem
by adapting the proof of the same result in the case of elliptic curves given in [7].

Theorem 2. Let P,Q ∈ A [`]. Let DP and DQ be two cycles equivalent to
(P)− (0) and (Q)− (0). The Weil pairing is given by

eW (P,Q) =
f`DP (DQ)

f`DQ(DP)
. (18)

Proof. Let P0 (resp. Q0) be a point such that P = `P0 (resp. `Q0 = Q). For X =
P,Q, we have [`]∗DX =

∑
R∈A [`](X0 +R)− (R) and S(`DX) = S([`]∗DX) = 0.

Thus, we can set gX = f[`]∗DX . For X = P,Q, it is clear by comparing the

divisors that, up to a constant factor, we have g`X = [`]∗fDX .
Let ZP = (` − 1)(P0) + (P0 − P) − `(0) ∈ Z0(A) and let hP = fZP as

S(ZP) = 0. Let HP =
∏
R∈A [`] hP (x + R), then by comparing the divisors of

the functions we obtain that (up to constant factor) HP = g`P . By applying
Proposition 4, we have hP ([`]∗DQ) = gQ(ZP). This gives :∏

R∈A [`] hP (Q0 +R)∏
R∈A [`] hP (R)

=
g`Q(P0)

g`Q(0)

gQ(P0 − P)

gQ(P0)
. (19)

As eW (P,Q) = gQ(P0 − P)/gQ(P0) and taking into account that HP = g`P , we
finally obtain:

eW (P,Q) =
g`P ((Q0)− (0))

g`Q((P0)− (0))
=
f`DP (DQ)

f`DQ(DP)
,

where, for the second equality, we use the fact that g`X = [`]∗fDX for X = P,Q.
It is also straightforward to show that the above formula for the Weil pairing

depends only on the class of the cycles (P)−(0) and (Q)−(0) modulo equivalence
and on the Chern class of the theta divisor Θ. For more details, see [18, Section 6].
It is also easy to prove the bilinearity and non degeneracy as in [7].

Remark 1. In the elliptic curve case, one usually takes the principal polarization
coming from the neutral point (that is the point at infinity). Hence, one cannot
evaluate f`,P at the cycle (Q) − (0) since f`,P has a pole there. However, in
our case we are taking a polarization coming from the theta divisor, which
usually does not contain 0. For the Jacobian of an hyperelliptic curve, the theta
divisor corresponds to degenerate divisors translated by a theta characteristic
corresponding of a choice of odd roots of the Weierstrass function (see [27]), so it
contains a point of two torsion that is usually different from 0.

In our case, we don’t compute the Weil pairing using the principal polarization
coming from the theta divisor Θ, but we use the polarization coming from Θn.
This means that we will compute the n-th power of the standard Weil pairing,
so we will assume that ` is prime to n in order to have a non degenerate pairing
in the rest of the paper. To compute this pairing, we simply replace the function
f`((P)−(0)) used in the definition of the Weil pairing by the function f`,n,P defined
in Section 4.

5.2 The Tate pairing

In this section, we suppose for simplicity that µ` ⊂ K and that A [`] is rational
over K, the reader can consult [4, Section II-6] for the general case.

Let K be the algebraic closure of K and let G = Gal(K/K) be the absolute
Galois group ofK. By taking the group cohomology long exact sequence associated
to the Kummer exact sequence:

0→ µ` → K
∗ → K

∗ → 0,

and using the fact that H1(G,K
∗
) = 0 by Hilbert 90, we obtain an isomorphism

δ1 : K∗/K∗` → H1(G,µ`) = Hom(G,µ`).

In the same way, from the exact sequence

0→ A [`]→ A (K)→ A (K)→ 0,

we get a morphism

δ2 : A (K)/[`]A (K)→ Hom(G,A [`]).

There exists a bilinear application often referred to as the Tate pairing eT :
A [`]×A (K)/[`]A (K)→ K∗/K∗` such that for (P,Q) ∈ A [`]×A (K)/[`]A (K),
eW (P, δ2(Q)) = δ1(eT (P,Q)).

It is well known in the case that A is an elliptic curve that one can compute
the Tate pairing by taking any divisor D linearly equivalent to (Q) − (0) and
computing eT (P,Q) = f`,P (D). This fact generalizes to any abelian variety with
a principal polarisation.

Theorem 3. Let P,Q ∈ A (Fqk) such that P is a point of `-torsion. Let DP and
DQ be two cycles equivalent to (P)−(0) and (Q)−(0). Then we have S(`DP) = 0
and let f`DP be the corresponding function on A . The (non reduced) Tate pairing
is given by

eT (P,Q) = f`DP (DQ). (20)

Proof. Let Q0 ∈ A (K) such that `Q0 = Q. Following the definition of the
connection morphism δ2, we have δ2(Q) = f where f : G→ A [`], σ 7→ Qσ0 −Q0

is a co-cycle (in fact a morphism since A [`] is rational over K) representing an
element of H1(G,A[`]).

By definition of the Weil pairing, we have

eW (Qσ0 −Q0, P) =
gP (Q0)

gP (Qσ0)
. (21)

On the other side, as [`]∗(fP) = c.(gP)` where c ∈ K is a constant, we have(
gP (Q0)
gP (0)

)`
= fP (Q)

fP (0) . But then δ1(fP ((Q) − (0))) is represented by the co-cycle

g : G→ µ`, σ 7→ gP (Q0)
gP (Qσ0)

. Comparing this with the preceding equation concludes

the proof.

5.3 The Weil and Tate pairing over a finite field

Let A be an abelian variety over Fq a finite field of characteristic p.
The previous definition of the Weil and Tate pairing work also over a finite

field, but since we want to do computations with theta functions and we have
chosen to only use the classical theory of theta functions, we need to ”lift”
the abelian variety A over a field of characteristic 0. For this, we denote by
R = W (Fq) the ring of Witt vectors with coefficients in Fq and by K the quotient
field of R. Denote by Fq an algebraic closure of Fq and let π be the relative
Frobenius morphism.

An abelian scheme Ã over R, the special fiber of which is A is said to be
a lift of A over R. Of course such a lift is not unique in general. For the rest
of the section, we fix an embedding κ : R→ C so that we can consider R as a

subfield of C and we suppose that Ã becomes an abelian variety defined over a
number field K.

Let ` be a prime number different from p. We denote by χ` the characteristic
polynomial of the Frobenius morphism acting on the `-adic Tate module of A .
We recall (see [25, Theorem 4 p. 206]) that χ` is a degree 2g polynomial and if
αi are the roots of χ` then there is a permutation σ of {1, . . . , 2g} such that for
i = 1, . . . , g,

ασ(i) = q/ασ(2i). (22)

Denote by G1 = A [`] ∩ ker(π − 1) the eigenspace of the Frobenius morphism
acting on A [`]. If ` divides the cardinality #A (Fq), then G1 is non trivial. In
the same way, we let G2 = A [`] ∩ ker(π − [q]) be the eigenspace associated to
the eigenvalue q, if G1 is non trivial, then by (22), G2 is also non trivial. Denote
by k the embedding degree of `, that is the smallest integer such that `|qk − 1
(so that Fqk is the smallest extension of Fq containing µ`). We remark that G2 is

defined over Fqk . By Hensel, we can lift A (Fq) and G2 to Ã , as a set of points
defined over R and W (Fqk) respectively.

Reducing the Tate pairing on Ã modulo p we get the Tate pairing as a non
degenerate pairing [8]

eT : G2 ×A (Fq)/`A (Fq)→ F∗qk/F
∗`
qk . (23)

If A (Fq) has no point of `2-torsion, we can identify A (Fq)/`A (Fq) with G1, so
that in particular we have that G2 has the same rank as G1.

Finally, if we assume that A (Fqk) also has no points of `2-torsion, then by
looking at the Tate pairing over Fqk , we get a non degenerate bilinear pairing

eT,r : A [`](Fqk)×A [`](Fqk)→ µ` ⊂ F∗qk (24)

by computing the reduced Tate pairing as eT (P,Q)
qk−1
` .

Likewise, we can reduce the Weil pairing modulo p. If we go back to the
definition of the Tate pairing; using the fact that the Galois group of a finite
field is cyclic, we have that if P and Q are points in A [`](Fqk), then the reduced

Tate pairing is given by eW (P, π(Q′)−Q′) where Q′ is any geometric point with
[`]Q′ = Q.

In practice, we compute the Tate pairing by using the formula of Theorem 3.
We set DQ = (Q)−(0) so that fn`DP = f`,n,P and compute eT (P,Q) = f`,n,P (DQ)
if well defined. Otherwise, we replace DQ by the equivalent cycle (Q+R)− (R)
where R is any point in A (Fqk), such that this cycle is not in the support of the
divisor associated to f`,DP . Then we have

eT (P,Q) =
f`,n,P (Q+R)

f`,n,P (R)
.

In order to check this directly, consider the cycle (Q+R)− (Q)− (R) + (0).
This cycle corresponds to a divisor linearly equivalent to 0; let g be a function
associated to it. Lang’s reciprocity yields f`,P ((Q + R) − (Q) − (R) + (0)) =
g(`(P)− `(0)) = (g(P)/g(0))` ∈ F∗`qk . Hence eT (P,Q) = f`,P ((Q+R)− (R)).

We remark as in Section 5.1 that since we use a non principal polarisation
given by Θn, the Tate pairing that we compute is also equal to the usual Tate
pairing to the power of n.

Remark 2. If A is the Jacobian of a curve C, then the points P and Q can
be seen as divisors DP and DQ on C. Lichtenbaum showed in [20] that the
Tate pairing can be computed directly by evaluating f ′`DP (DQ) where f ′`DP is a
function in the function field of C.

This has the advantage that the Lichtenbaum pairing only uses functions
defined over the curve rather than the Jacobian. However, working directly on
the curve has the drawback that twists of curves are not easy to relate explicitly
to twists of the Jacobian, hence it is hard to generalize the twisted ate pairing
in higher genus [13]. Since our point of view is to consider pairing on abelian
varieties, it is easy for us to extend all results of [15] to higher dimension.

5.4 Computing the Weil and Tate pairings

Let P ∈ A [`], we are going to present two methods to evaluate the normalized
functions f`,n,P /f`,n,P (0) in a geometric point Q. More precisely, suppose that
we are given P = (Pi)i∈Z(n) and let Q = (Qi)i∈Z(n) two geometric points in A

embedded in PZ(n) via the theta coordinates of level n. Let zP , zQ ∈ Cg be such
that P = (θi(zP)) and Q = (θi(zQ)), we want to compute f`,n,P (zQ)/f`,n,P (0)
from the knowledge of the homogeneous coordinates of the points P , Q and 0.
By Section 5.1, this is sufficient to compute the Weil and Tate pairings (for the
Weil pairing one has to repeat the procedure swapping P and Q).

Lemma 4, Lemma 5 and Corollary 1 give a first method to compute Weil and
Tate pairings in a similar way to Miller’s algorithm when the level n is divisible
by 4. Take a random point R ∈ A (K). Let Q ∈ A [`]; starting from the function
f1,n,P = 1, we can use relation (13) and Corollary 1 to compute by a square
and multiply algorithm f`,n,P (Q+R) and f`,n,P (R). The algorithm terminates
when Q+R and R do not belong to the poles of the functions fλ,µ,n,P used in

the computation. The Weil pairing can be computed in a similar manner. As
explained in the introduction, all these results are valid when K is a finite field
of characteristic different from 2 and give a probabilistic algorithm with expected
probability arbitrarily close to 1 to output the result as the size of the K grows
to infinity.

A second method is to use Proposition 3 directly. We will see in Propositions 5
and 6 that in fact we can always compute the Weil or Tate pairing.

Proposition 5. Let P̃ +Q, P̃ , Q̃ and 0̃ be affine lifts of P+Q, P , Q and 0, where

P is a point of `-torsion. Let λ1P , λ
0
P be such that ScalarMult(`, P̃ +Q, P̃ , Q̃, 0̃) =

λ1P ∗ Q̃ and ScalarMult(`, P̃ , P̃ , 0̃, 0̃) = λ0P ∗ 0̃. We have

eT (P,Q) =
λ0P
λ1P

. (25)

If Q is also a point of `-torsion, then we can define λ1Q, λ
0
Q in a similar

manner, and we have

eW (P,Q) =
λ0P
λ1P

λ1Q
λ0Q

. (26)

Proof. Immediate by Proposition 3. See also [21].

Remark 3. Since P is a point of `-torsion, the cycle `(P)− (`P)− (`− 1)(0) is
equal to the cycle (`+1)(P)−([`+1]P)−`(0). In particular, we can also compute
the Tate (and Weil) pairing by using f`+1,n,P rather than f`,n,P . In the context

of Proposition 5, this means that we have ScalarMult(` + 1, P̃ +Q, P̃ , Q̃, 0̃) =

λ1P ∗ P̃ +Q, ScalarMult(`+ 1, P̃ , P̃ , 0̃, 0̃) = λ0P ∗ P̃ and eT (P,Q) = λ0P /λ
1
P .

The fact that we can always compute the Weil and Tate pairings in Proposi-
tion 5 can be explained as follows. For P ∈ A [`] and i ∈ Z(n), let f`,n,P,i be the
function whose divisor is `τ∗PΘn,i − τ∗`PΘn,i + (`− 1)Θn,i where we make explicit
the dependency with respect to the divisor Θn,i corresponding to the coordinate
θi. (As we have seen, Θn,i is equivalent to Θn = Θn,0 and is explicitly described
as a translation of Θn by the point of n-torsion corresponding to i via the action
of the Theta group).

Then the Tate pairing can be given following Lemma 3 by:

eT (P,Q) = f`,n,P,i((Q)− (0)) =
θi(zQ)

θi(`zP + zQ)

θi(`zP)

θi(0)

if this equation is well defined. If not, we could always replace the cycle (Q)− (0)
by an equivalent cycle, but we can also replace Θn,i by the equivalent divisor
Θn,j , that is compute the Tate pairing as

eT (P,Q) = f`,n,P,j((Q)− (0)) =
θj(zQ)

θj(`zP + zQ)

θj(`zP)

θj(0)

if this is well defined.
But the first term corresponds to the projective factor 1/λ1P and the second

to λ0P in the notations of Proposition 5. This means that we can also compute
the Tate pairing as

eT (P,Q) =
θi(zQ)

θi(`zP + zQ)

θj(`zP)

θj(0)
(27)

and we can always find i, j ∈ Z(n) such that this expression is well defined.
It is well known (see for instance [13]) that in the case that (0) is in the pole

of the function f`,n,P then the Tate pairing can be defined as f`,n,P (Q)/c where
c corresponds to the leading coefficient of f`,n,P in the completion of Θn along
A . Equation (27) can be seen as a version of this since the leading coefficient of

f`,n,P,i is the same as f`,n,P,j and the latter can be obtained as
θj(`zP)
θj(0)

(up to a

`th-power) when (0) is not in the pole of Θn,j .
But the fact that we can always compute the Tate pairing can be seen as defect

in term of complexity. It means that computing ScalarMult(`, P̃ +Q, P̃ , Q̃, 0̃) =

λ1P Q̃ amount to computing the ng Miller’s functions f`,n,P,j((Q)−(0)). It would be
interesting to know if we could compute only one such function f`,n,P,0((Q)− (0))

from ScalarMult(`, P̃ , P̃ , 0̃, 0̃) and the coordinates of Q (and eventually P +Q).
We can always use Proposition 5 when 4 | n to compute the Weil and Tate

pairings. In level n = 2, we need the point P +Q. For instance, we can work at
first in level 4 and then switch to level 2 (using the duplication or the isogeny
formula) to compute the pairing once we have P +Q.

In general, if we start from P and Q in level 2, we can only compute the
symmetric Weil (or Tate) pairing eW (P,Q) + eW (−P,Q) as defined in [21, Sec-
tion 5.2]. To do this, we compute P +Q in the algebra A from Section 3, and do
all the computations in this algebra of dimension 2. In practice, it seems faster
to take a square root to fix a choice of P +Q in the field of definition K and do
all the remaining computations in K rather than in A.

In a sense, the second method, by computing differential additions on affine
lifts, can be thought of as using the definition of the Weil pairing as the commu-
tator pairing of the theta group [23] (or in the analytic version, as the symplectic
pairing induced by the Riemann form [26]). But if we unravel the first version
using the classical Miller algorithm with theta functions, by looking at Lemma 3,
we see that Proposition 2 actually is just another way to compute an affine scalar
multiplication.

Proposition 6. Let P̃ +Q, P̃ , Q̃ and 0̃ be affine lifts of P + Q, P ,Q and 0,

where P is a point of `-torsion. Use the following algorithm to compute lifts ˜̀P
and Q̃+ `P by a double and add method:

Input: Affine lifts λ̃P and Q̃+ λP .

Double: (at each step.) Compute 2̃λP and ˜Q+ 2λP with two differential addi-
tions.
Add: (only if the current bit of ` is one.) From the points 2λP , P , Q+ P and

Q+ 2λP use a compatible addition to compute the projective point (2λ+ 1)P (if
4 | n one can of course use a normal addition directly); and take an arbitrary lift.

From the affine lifts 2̃λP , Q̃, P̃ , Q̃+ P , ˜(2λ+ 1)P and ˜Q+ 2λP , do a three way

addition to compute an affine lift ˜Q+ (2λ+ 1)P .

Let λ1P , λ
0
P be such that Q̃+ `P = λ1P Q̃ and ˜̀P = λ0P 0̃, then we have

eT (P,Q) =
λ0P
λ1P

. (28)

And a similar result holds for the Weil pairing. In particular, we can always
compute the Tate and Weil pairing when 4 | n.

Proof. This is a direct application of Proposition 2 and Lemma 5. Indeed, by
Corollary 1, the result does not depend on the choice of lift of (2λ+ 1)P done
after each addition step.

Compared to the method of Proposition 5, which uses three differential addi-
tions at each step (whatever the current bit of ` is), the method of Proposition 6
only uses two differential additions at each “doubling” step. However, it requires
a compatible addition and a three way addition at each “addition” step. Still,
it may be worthwhile to use when the hamming weight of ` is small, especially
combining with a NAF method.

6 Ate pairings and variants

In this section, we give a generalisation of ate pairings to all abelian varieties
and discuss some variants. We keep the notations of Section 5.2.

6.1 Ate pairing

For the Tate pairing, one usually takes P ∈ G1 and Q ∈ G2 for efficiency reasons.
However, if P ∈ G2(Fqk), then

π(f`,n,P) = f`,n,qP . (29)

(See [15, Lemma 3]). The idea of the ate pairing is to switch the role of P and Q
(that is take P ∈ G2 and Q ∈ G1) and use this relation in order to decrease the
number of iterations in the computation of the Tate pairing.

For this we take µ ≡ q mod `. We remark that as `|qk − 1, we have `|µk − 1

and we put m = µk−1
` . Let n be the level of our theta functions. We compute:

eT (P,Q)m = fm`,n,P ((Q)− (0)) = fµk−1,n,P ((Q)− (0)) = fµk,n,P ((Q)− (0))
(30)

The first equality is a consequence of Lemma 4 and the third one comes from
the definition of fµk−1,n,P .

Then by a repeated use of Lemma 4 and (29) we get

fµk,n,P ((Q)− (0)) =
∏k−1
i=1 f

µi

µ,n,µk−1−iP
((Q)− (0))

=
∏k−1
i=1 π

k−1−i(fµ
i

µ,n,P ((Q)− (0))).

We can define the (n-power of the usual) ate paring eA : G2 ×G1 → F∗qk/F
∗`
qk

by
eA(P,Q) = fµ,n,P ((Q)− (0)).

By the equations above we have,

eA(P,Q)c = eT (P,Q)m (31)

where c =
∑k−1
i=0 µ

iqk−1−i.
The cth-power of the reduced ate pairing is then equal to the reduced Tate

pairing to the power of m, so this pairing is non degenerate if ` does not divide

m qk−1
` . A trick to reduce m is to divide it by gcd(qk − 1, µk − 1). Indeed, the

(reduced) h` Tate pairing computed on a point of `-torsion is equal to its (reduced)
`-Tate pairing.

Remark 4. As remarked in [14], if A is an elliptic curve, let t be the trace of the
Frobenius morphism. If ` = q + 1− t is a prime number, we can take µ = 1− t
which by the Weil bound is of the size O(

√
q). In this case, the expected number

of iterations needed to compute the ate pairing is less than half of those required
for the computation of the Tate pairing so that we can expect a speed up.

If A is an abelian variety of dimension greater or equal to 2, we have µ 6 q
while #A (Fq) = O(qg), so usually ` is greater than q. In this case we gain a
g-fold speedup in the number of iteration to compute the Miller function.

Note that in the case µ = q (for instance when g > 2), then fµ,n,P ((Q)− (0))
is already reduced so there is no need for the final exponentiation, and we can
replace the cycle (Q)− (0) by any equivalent cycle [13].

An algorithm to compute eA is provided by Proposition 3. Before the final expo-

nentiation, we need to compute ScalarMult(µ, P̃ +Q, P̃ , Q̃, 0̃), ScalarMult(µ, P̃ , P̃ , 0̃, 0̃)

and

(
(P̃+Q)i.(0̃)i

(P̃)i.(Q̃)i

)µ
. As a consequence, these calculations can be done at the

cost of O(logµ) iterations using a fixed number of operations in the field Fqk .
Explicitly:

Proposition 7. Let P̃ +Q, P̃ , Q̃ and 0̃ be affine lifts of P+Q, P ,Q and 0, where

P ∈ G2 and Q ∈ G1. Let λ1P , λ
0
P be such that ScalarMult(µ, P̃ +Q, P̃ , Q̃, 0̃) =

λ1Pπ
µ(P̃ +Q) and ScalarMult(µ, P̃ , P̃ , 0̃, 0̃) = λPQπ

µ(P̃). We have

eA(P,Q) =
λ0P
λ1P

. (32)

Remark 5. By looking at the differential additions, we can recover the power in
which the (non reduced) Tate pairing and ate pairing correspond.

Recall that µk − 1 = m`. Suppose that ˜`P +Q = αQ̃ and ˜̀P = β0̃, so that

α/β gives the Tate pairing. Then ˜m`P +Q = βmQ̃ and ˜µkP +Q = βmP̃ +Q,

and µ̃kP = αmP̃ .

For 1 6 i 6 k, let ˜µiP +Q = γiπ
i(P̃ +Q) and µ̃iP = δiπ

i(P̃), so that
eA(P,Q) = γ1/δ1 and eT (P,Q)m = γm/δm.

If we write ˜µiP +Q = γ′iπ(˜µi−1P +Q) and µ̃iP = δ′iπ(µ̃i−1P), then since π
commutes with differential additions we get by Lemma 1

˜µi+1P +Q = (δ′i)
µ(µ−1)(γ′i)

µπ(˜µiP +Q)

µ̃i+1P = (δ′i)
µ2

π(µ̃iP).

By a trivial recursion, we have

γi+1

δi+1
=

(
γ1
δ1

)µi (
γi
δi

)q
,

which give back eT (P,Q)m = eA(P,Q)c, with c =
∑k−1
i=0 µ

iqk−1−i.

Finally, we can apply the same trick to the symmetric Tate pairing of [21] to
obtain in the same way a symmetric ate pairing on Kummer varieties.

6.2 Twisted ate pairing

We have remarked that in the ate pairing, the length of the Miller loop is less
than in a regular Tate pairing. This comes at a cost however. In the ate pairing,
we need to compute fµ,n,P , where P ∈ G2 lives in the “big field” Fqk . When
doing the Tate pairing, one can instead compute f`,n,P , where P ∈ G1 lives in
the “small field” Fq; in this case only the evaluation f`,n,P (Q) is done in Fqk .

In the supersingular case, since the action of the Verschiebung π̂ is inseparable
and acts by multiplication by q on G1 and 1 on G2, we can define in a similar
manner the eta pairing as fµ,n,P (Q) where P ∈ G1 and Q ∈ G2 like the Tate
pairing [15].

In the ordinary case, to alleviate this problem, one usually combines twists
with the ate pairing. Suppose that there exists a twist of degree d | k, and let
e = k/d. Then this twist correspond to a dth-root of unity ζ in the endomorphism

ring. We have πk − 1 = (−1)d−1
∏d−1
i=0 ζ

iπe − 1. Now since ζ is of order d, and
that d is prime to ` (since k < `), we have that A [`](Fqk) =

⊕
Ker(ζiπe − 1)[`].

If G1 is of rank 1, then G2 ⊂ A [`](Fqk) is also, so there is a unique twist A ′ of

A over Fqe , corresponding to ζi, such that G2
∼→ A ′[`](Fqe).

Mapping a point of G2 via this twist, we get a point rational over Fqe (while
the points in G1 are defined over Fqk on the twist). So one can use the twist map
to compute fµ,n,P in the twist and come back to evaluate at Q. This has the

advantage that in the twist, P only lives in the extension Fqe . However, to apply
this idea to our setting, we need a rational theta structure on both the abelian
variety A and its twist, which is impossible since the theta structure rigidifies
the moduli stack of abelian varieties by [24] (at least in level 4).

One can instead compute everything in the twist, as explained in [6]. In this
case, we only need a rational theta structure on the twist, and P is defined
over Fqe while Q is defined over Fqk . (If P ′ and Q′ are the twisted points, then
eA(P ′, Q′)d = eA(P,Q)d. In [6], they have a finer result for elliptic curves by
analysing the updates of Miller functions).

Another method is to compute the twisted ate pairing eA′(P,Q) = fµe,n,P ((Q)−
(0)) [15], where P ∈ G1 and Q ∈ G2 so that the computation of fµe,n,P can be
done in the smaller field, but at the cost of a larger loop than the ate pairing.
The idea behind the twisted ate pairing is that pulling back the action of the
Frobenius of Fqe of the twist A ′ to A , we get that ζiπe acts as an inseparable
endomorphism ψ of degree qe on A , with ψ(P) = [qe]P and ψ(Q) = Q when
P ∈ G1, Q ∈ G2.

7 Optimal and symmetric optimal pairings

We recall the following proposition from [29, Theorem 1], stated for elliptic curves
but which adapts easily to abelian varieties, as in Section 6 (from where we take
the notations G1 and G2).

Proposition 8. Let λ = m` =
∑
ciq

i be a multiple of ` (and such that ` - m).
The pairing

aλ : G1 ×G2 −→ µ`

(P,Q) 7−→

(∏
i

fci,n,Q(P)q
i∏
i

f∑
j>i cjq

j ,ciqi,n,Q(P)

)(qk−1)/`

is non degenerate when

mdqd−1 6≡ qk − 1

r

∑
i

iciq
i−1 mod `.

The idea is then to find a multiple λ such that the coefficients ci are small.
More precisely, let Φk be the kth cyclotomic polynomial and denote by ϕ(k) be
its degree. Since Φk(q) = 0 mod `, one can use LLL to find a small relation
among the powers q, q2, . . . , qϕ(k)−1. The discussion in [29, Section 3.3] shows
that we can expect to find λ such that ci ≈ `1/ϕ(k).

We can easily compute such a pairing by using the results of Section 4. In
Algorithm 7 we give the corresponding algorithm when 4 | n. When n = 2, as in

Section 5 we either compute P̃ +Q by working in A all the time, or by taking a
square root to get back in K. All the steps of the algorithm are then the same,
except for Step 5 where we use CompatAdd on ciq

iQ̃,
∑
j>i cjq

jQ̃ , P + ciq
iQ̃,

P +
∑
j>i cjq

jQ̃ to compute ciq
iQ̃+

∑
j>i cjq

jQ̃.
The extension to pairing lattices [14] is also straightforward.

Algorithm 7: Optimal ate

input : P ∈ G1, Q ∈ G2, λ = m` =
∑
i<k ciq

i.
output : aλ(P,Q)

1 Take affine lifts P̃ , Q̃ and P̃ +Q;
2 for i = k − 1, . . . , i = 0 do

3 Compute P̃ + ciQ̃ and ciQ̃ using ScalarMult;

4 Apply the Frobenius endomorphism to obtain P̃ + ciq
iQ̃ and ciq

iQ̃ ;

5 Compute ciq
iQ̃+

∑
j>i cjq

jQ̃ (up to a constant, using NormalAdd) and then
use the extended Riemann relations from Proposition 2 to compute
P̃ + ciq

iQ̃+
∑
j>i cjq

jQ̃ (up to the same constant);

6 Find the constants C0 and C1 such that we have λQ̃ = C0 ∗ Q̃ and

P̃ + λQ̃ = C1 ∗ P̃ ;

Return : (C1/C0)
qk−1
`

8 Performance comparisons

Our goal in this article was to generalize the standard pairings on Jacobians to
abelian varieties, and explain how to compute them. However it appears that
the resulting algorithms using theta functions is somewhat competitive with the
usual Miller’s approach. To do a precise comparison, one would need to fix the
security parameters, the finite field arithmetic and so on. Such a comparison is
out of scope of the current paper, so we only do a somewhat abstract “asymptotic”
analysis.

For the performance analysis, we only consider the case of level n = 2 since it
gives the fastest representation and arithmetic. To compute the pairing between
P and Q, we have first to compute the coordinates of the point P + Q. This
can be done in two ways: either we work with a system of coordinates where
we can perform group law addition, like theta functions of level 4 or Mumford
coordinates if A is the Jacobian of an hyperelliptic curve. After computing P +Q
in this system of coordinates, we can convert P , Q and P +Q to theta coordinates
of level 2 (if working with theta functions of level four, we can convert to level 2
by using the duplication formula, or by using the isogeny formula, which is
essentially free since the level two coordinates of the isogenous points are a subset
of the level four coordinates of the original points). If we only have the points P
and Q in theta coordinates of level 2, then we can use the results of Section 3.3
to compute P ±Q either by computing with an algebra of degree 2 over the field
of definition of the points or taking a square root (if q is congruent to 3 modulo
4 this can be done by an exponentiation). In this case, we can only compute
the symmetric pairing. In all cases, to be able to work with theta coordinates of
level 2, we need the theta null point of level 2 to be rational.

Most of the running time of the different algorithms is spent in the loop of
the ScalarMult calls needed to compute the functions fλ,n,P . Each step of the
loop will then consists of a doubling, and two differential additions with the

same point Q as difference. In the optimal ate pairings, there are some additional
computations required to obtain the functions fλ,µ,n,P , but there are at most k−1
such functions to compute, while the length of the loop is of order log(r1/ϕ(k)),
so we can safely ignore their contribution to the running time.

This justifies that we focus on the complexity of one step in the evaluation
of the Miller function fλ,µ,n,P (Q), according to whether P and Q are defined
over the “big field” Fqk or the base field Fq. We denote by M a multiplication
in Fqk , S a square in Fqk , m a multiplication by a “constant” in Fqk coming
from the coordinate of P , Q or P +Q. The corresponding operations over Fq are
denoted by M , S and m respectively, and we denote by m0 a multiplication by a
constant depending only on the abelian variety (that comes from the theta null
point). Lastly, we let M, m and m0 be the multiplication between an element of
Fqk and an element of Fq (respectively a constant in Fq depending only on the
coordinates of P , Q or P +Q, and a constant in Fq depending only on the theta
null point).

We first focus on the case where P and Q are defined over the big field. This
is not the case in cryptography where we take a point in Fq to speed up the
computations, but this is unavoidable in the situation where one has to compute
the Weil pairing between points of `-torsion (for instance, to get a symplectic
basis of the `-torsion).

Algorithm 8: One step of the differential addition Miller loop

1 Input nP = (xn, zn); (n+ 1)P = (xn+1, zn+1), (n+ 1)P +Q = (x′n+1, z
′
n+1).

2 Output 2nP = (x2n, z2n); (2n+ 1)P = (x2n+1, z2n+1);
(2n+ 1)P +Q = (x′2n+1, z

′
2n+1).

1. α = (x2n + z2n); β = A
B

(x2n − z2n).

2. Xn = α2; Xn+1 = α(x2n+1 + z2n+1); X ′
n+1 = α(x′

2
n+1 + z′

2
n+1);

3. Zn = β(x2n − z2n); Zn+1 = β(x2n+1 − z2n+1); Z′
n+1 = β(x′

2
n+1 + z′

2
n+1);

4. x2n = Xn + Zn; x2n+1 = (Xn+1 + Zn+1)/xP ; x′2n+1 = (X ′
n+1 + Z′

n+1)/xQ;
5. z2n = a

b
(Xn − Zn); z2n+1 = (Xn+1 − Zn+1)/zp; z

′
2n+1 = (X ′

n+1 − Z′
n+1)/zQ;

6. Output (x2n, z2n); (x2n+1, z2n+1); (x′2n+1, z
′
2n+1).

In dimension 1, one step of the “Miller loop” using ScalarMult as in Propo-
sition 5 is given in Algorithm 8 (for the Weil pairing, we will need two such

loops). We first note that we can always choose the lifts P̃ , Q̃ and P̃ +Q so that
xP = 1, xQ = 1, xP+Q = 1. We see that a step takes 5M + 2m + 7S + 2m0 in
dimension 1. We note that we can get a 1S + 1m0 − 1M trade-off by computing
Zn = β(x2n − z2n) as Zn = A

B (x2n − z2n)2. In dimension 2, as in [21] we obtain that
the cost of one step is 11M + 6m + 13S + 6m0. Similar to the dimension one
case, there is a possible trade-off of 3S + 3m0 − 3M.

We note that the pairing algorithm relying on theta functions, despite being
a very generic algorithm available for all abelian varieties is actually pretty fast
in small dimension. As a comparison, just doubling a point using the fastest

known arithmetic for Mumford projective coordinates on a Jacobian of a curve
of genus 2 (which is a necessary step for the Miller algorithm) already takes
33M + 7S + 1m0 [19]! For elliptic curves, just the Doubling step in the Miller
loop of a point on an Edwards curve takes 9M + 7S + 2m0 (since there is no
denominator elimination to compute the Weil pairing). Also, as already noted, if
the Hamming weight of ` is small, the algorithm from Proposition 6 could be
faster than the one from Proposition 5.

Now for pairings used in cryptography, one can usually choose which type
of points to compute with. For the Tate pairing, this means that P is defined
over Fq while Q will is defined over Fqk . Moreover, when the embedding degree
k is even one can do denominator elimination, and in genus 2 one can take for
Q a degenerate divisor. Table 1 shows the comparison between the algorithm
from Proposition 5 with the usual Miller algorithm, with or without denominator
elimination. More precisely, in genus 1 the cost for one step of the Miller loop using
theta coordinates is 1m + 2S + 2M + 3M + 1m+ 5S + 2m0 (one can also use the
1S+1m0−1M trade-off). In genus 2, the cost is 3m+4S+4M+7M+3m+9S+6m0

(or with the 3S+ 3m0− 3M trade-off). Here, the algorithm from Proposition 6 is
not interesting because it only reduces operations in the smaller field for Doubling,
while adding operations in the bigger field for each Addition. As a comparison,
a pairing step with Edwards coordinates using denominator elimination costs
1M+1S+1M+6M+5S+2m0 for each Doubling, and 1M+1S+1M+12M+1m0

for each Addition. We see that for the Tate pairing, our algorithm performs
poorly because while we do less operations in the small field, we compute more
in the big field. In genus 1, Table 1 shows that this is because we do not have
denominator elimination.

For the ate (and optimal ate) pairing, the Miller loop is shortened, but P
lives in Fqk while Q lives in Fq. Since most operations take place in the big
field, we expect our algorithm to be competitive, since it does less computations
overall when all points are in the big field. Indeed in dimension 1, one step costs
5M + 1m + 7S + 1m + 2m0, and in dimension 2 11M + 3m + 13S + 3m + 6m0

(with the possible 1S + 1m0 − 1M and 3S + 3m0 − 3M trade-offs respectively).
In general, the cost of doing more computations in the bigger field offsets the
reduced loop, so one usually uses ate pairings in presence of twists. If there is
a twist of degree d | k, then there is a twist that will send P to a point in Fqe
(where e = k/d) and Q in Fqk . Computing the pairing entirely on the twist then
costs about the same as the Tate pairing, but with operations in Fq replaced by
operations in Fqe (see [6]), but with still the same loop length gain as the ate
pairing. Depending on the size of e and k, our algorithm may be competitive in
this case (and it could extend the range where the ate pairing is faster than the
Tate pairing).

In dimension 2, according to [13] the ate pairing using affine Mumford coordi-
nates costs 1I + 29M + 5S + 7M for an addition, and 1I + 29M + 9S + 7M for
a doubling, where I denotes the cost of an affine inversion in Fqk . Even when
using degenerate divisors, the cost is still of 1I + 27M + 3S + 4M for an addition
and 1I + 27M + 7S + 4M for a doubling, so our formulas are much faster. In

dimension 3, our formula for the ate pairing (without any optimization as setting
some projective coordinates to one) will be in 32M + 24S + 8M + 8m + 16m0,
which is faster than only a doubling step using degenerates divisors in affine
Mumford coordinates.

In genus 1, following [29], we expect the optimal ate pairing to gain a factor
of ϕ(k) in the loop length where k is the embedding degree. We would prefer k to
be odd, since this will increase the size of ϕ(k). But the denominator elimination
trick only works in the even case (even if there are some adaptations available in
the odd case). In dimension g > 1, we expect to have ` > q, so the reduction µ
mod ` in Section 6 is equal to q. In this case the ate pairing is already reduced
[13] so there is no need for the final exponentiation. This means that one can’t use
a denominator elimination. But since in our algorithm we don’t use denominator
elimination anyway, these cases are actually favorable for the algorithms presented
in this paper.

Miller Theta coordinates

Doubling Addition One step

g = 1
k even 1M + 1S + 1M 1M + 1M

1m + 2S + 2M
k odd 2M + 2S + 1M 2M + 1M

g = 2
Q degenerate +
denominator elimination

1M + 1S + 3M 1M + 3M
3m + 4S + 4M

General case 2M + 2S + 18M 2M + 18M

Table 1. Comparison for one step of the Tate pairing, with P ∈ A[`](Fq),
Q ∈ A[`](Fqk). The Miller column shows the complexity of the usual Miller
algorithm on a Jacobian. The second column is for the Miller loop using differential
additions, as in Algorithm 8. For simplicity we only show operations in Fqk) since
they are asymptotically more expensive.

9 Conclusion

The main purpose of the paper is to give an algorithm to compute all known
pairings (in particular the optimal ate pairing) on any abelian variety represented
by theta functions (of even level). For efficiency reasons, a particular focus was
given to the level 2 case, which correspond to Kummer varieties rather than
abelian varieties which lead to some difficulties. As seen in Section 8, while generic,
the algorithm is surprisingly fast in lower dimensions. To be truly competitive
with the best pairing algorithms used in cryptography, it would be interesting to
know if a denominator elimination is possible. It would also be worthwhile to
investigate the case of degenerate divisors to speed up the pairing computation.

According to a recent paper [3], the arithmetic in dimension 2 can be faster
than in dimension 1 (for a 128-bit security level). To achieve this speed, they

use the representation given by level 2 theta functions. The ability to compute
optimal pairings with such functions as explained in this paper, definitively show
that the dimension 2 case is worth studying for pairing applications.

References

1. Christophe Arène, Tanja Lange, Michael Naehrig, and Christophe Ritzenthaler.
Faster computation of the Tate pairing. J. Number Theory, 131(5):842–857, 2011.
With supplementary material available online.

2. Paulo S. L. M. Barreto, Steven D. Galbraith, Colm Ó’ hÉigeartaigh, and Michael
Scott. Efficient pairing computation on supersingular abelian varieties. Des. Codes
Cryptogr., 42(3):239–271, 2007.

3. Joppe W Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter. Two is greater
than one. Technical report, Cryptology ePrint Archive, Report 2012/670, 2012.
Available at: http://eprint. iacr. org/2012/670.

4. Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim
Nguyen, and Frederik Vercauteren, editors. Handbook of elliptic and hyperelliptic
curve cryptography. Discrete Mathematics and its Applications (Boca Raton).
Chapman & Hall/CRC, Boca Raton, FL, 2006.

5. Romain Cosset and Damien Robert. An algorithm for computing (`, `)-isogenies in
polynomial time on jacobians of hyperelliptic curves of genus 2. HAL: hal-00578991,
eprint: 2011/143, 03 2011.

6. Craig Costello, Tanja Lange, and Michael Naehrig. Faster pairing computations on
curves with high-degree twists. Public Key Cryptography–PKC 2010, pages 224–242,
2010.

7. Andreas Enge. Bilinear pairings on elliptic curves. HAL: , 2012.
8. Gerhard Frey and Hans-Georg Rück. A remark concerning -divisibility and the

discrete logarithm in the divisor class group of curves. Mathematics of computation,
62(206):865–874, 1994.

9. Steven D. Galbraith, Florian Hess, and Frederik Vercauteren. Hyperelliptic pairings.
In Pairing-based cryptography—Pairing 2007, volume 4575 of Lecture Notes in
Comput. Sci., pages 108–131. Springer, Berlin, 2007.

10. Steven D Galbraith and Xibin Lin. Computing pairings using x-coordinates only.
Designs, Codes and Cryptography, 50(3):305–324, 2009.

11. P. Gaudry. Fast genus 2 arithmetic based on Theta functions. J. of Mathematical
Cryptology, 1:243–265, 2007.

12. Pierrick Gaudry and David Lubicz. The arithmetic of characteristic 2 Kummer
surfaces and of elliptic Kummer lines. Finite Fields Appl., 15(2):246–260, 2009.

13. R. Granger, F. Hess, R. Oyono, N. Thériault, and F. Vercauteren. Ate pairing on
hyperelliptic curves. In Advances in cryptology—EUROCRYPT 2007, volume 4515
of Lecture Notes in Comput. Sci., pages 430–447. Springer, Berlin, 2007.

14. Florian Hess. Pairing lattices. In Pairing-based cryptography—Pairing 2008, volume
5209 of Lecture Notes in Comput. Sci., pages 18–38. Springer, Berlin, 2008.

15. Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The eta pairing revisited.
IEEE Trans. Inform. Theory, 52(10):4595–4602, 2006.

16. Jun-ichi Igusa. Theta functions. Springer-Verlag, New York, 1972. Die Grundlehren
der mathematischen Wissenschaften, Band 194.

17. Shoji Koizumi. Theta relations and projective normality of Abelian varieties. Amer.
J. Math., 98(4):865–889, 1976.

http://hal.archives-ouvertes.fr/hal-00578991
http://eprint.iacr.org/2011/143
http://hal.archives-ouvertes.fr/hal-00767404/

18. Serge Lang. Reciprocity and correspondences. Amer. J. Math., 80:431–440, 1958.
19. Tanja Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Applicable

Algebra in Engineering, Communication and Computing, 15(5):295–328, 2005.
20. Stephen Lichtenbaum. Duality theorems for curves over p-adic fields. Invent. Math.,

7:120–136, 1969.
21. David Lubicz and Damien Robert. Efficient pairing computation with theta

functions. Algorithmic Number Theory, 6197, 07 2010. 9th International Symposium,
Nancy, France, ANTS-IX, July 19-23, 2010, Proceedings.

22. Victor S. Miller. The Weil pairing, and its efficient calculation. J. Cryptology,
17(4):235–261, 2004.

23. D. Mumford. On the equations defining abelian varieties. I. Invent. Math., 1:287–354,
1966.

24. D. Mumford. On the equations defining abelian varieties. II. Invent. Math., 3:75–135,
1967.

25. D. Mumford. Abelian varieties. Tata Institute of Fundamental Research Studies
in Mathematics, No. 5. Published for the Tata Institute of Fundamental Research,
Bombay, 1970.

26. David Mumford. Tata lectures on theta I, volume 28 of Progress in Mathematics.
Birkhäuser Boston Inc., Boston, MA, 1983. With the assistance of C. Musili, M.
Nori, E. Previato and M. Stillman.

27. David Mumford. Tata lectures on theta II, volume 43 of Progress in Mathematics.
Birkhäuser Boston Inc., Boston, MA, 1984. Jacobian theta functions and differential
equations, With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman
and H. Umemura.

28. Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1986. Corrected reprint of the
1986 original.

29. Frederik Vercauteren. Optimal pairings. IEEE Trans. Inform. Theory, 56(1):455–
461, 2010.

30. P. Wamelen. Equations for the Jacobian of a hyperelliptic curve. AMS, 350(8):3083–
3106, 08 1999.

	A generalisation of Miller's algorithm and applications to pairing computations on abelian varieties
	David Lubicz, Damien Robert

