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Abstract. We present a generalization to genus 2 of the probabilistic algorithm
in Sutherland for computing Hilbert class polynomials. The improvement over
the algorithm presented in [5] for the genus 2 case, is that we do not need to
find a curve in the isogeny class with endomorphism ring which is the maximal
order: rather we present a probabilistic algorithm for “going up” to a maximal
curve (a curve with maximal endomorphism ring), once we find any curve in the
right isogeny class. Then we use the structure of the Shimura class group and
the computation of (`, `)-isogenies to compute all isogenous maximal curves
from an initial one.

1. Introduction

Cryptographic solutions to provide privacy and security for sensitive transactions
depend on using a mathematical group where the discrete logarithm problem is
hard. For example, digital signature schemes or a Diffie-Hellman key exchange may
be based on the difficulty of solving the discrete logarithm problem in the group
of points on the Jacobian of a genus 2 curve. For this problem to be hard we must
ensure that we can choose genus 2 curves over finite fields with an almost prime
number of points on the Jacobian of the curve.

One approach to this problem is to construct curves with Jacobian of a given
order using the (CM) method of Complex Multiplication. The CM method works
by computing invariants of the curve and then reconstructing the curve using the
Mestre-Cardona-Quer [24] algorithm. Invariants are computed by constructing their
minimal polynomials, called Igusa class polynomials. Computing the invariants is
computationally intensive, and there are three known methods for constructing
Igusa class polynomials:

(1) the complex analytic method [27, 30, 31, 28];
(2) the Chinese Remainder Theorem method (CRT) [12, 14, 5]; and
(3) the p-adic lifting method [15, 7, 8].

Although the CRT method in genus 2 is currently still by far the slowest of these three
methods as measured on small examples which have been computed to date, there is
some hope that it may be asymptotically competitive with the other methods based
on the history of the evolution of these three methods in genus 1. Asymptotically, and
also for space constraint reasons, the (Explicit) CRT method now holds the record
in genus 1 for the size of the largest examples computed via that method [29, 13]. In
this paper, we propose numerous improvements to the CRT method for computing
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genus 2 curves, paralleling improvements made by Sutherland [29] to the CRT
method in genus 1.

The CRT method works by computing class polynomials modulo many small
primes, and then reconstructing the polynomial with rational coefficients (or modulo
a much larger prime number) via the Chinese Remainder Theorem (resp. the Explicit
CRT). The CRT method for computing class polynomials in genus 2 was proposed
by [12], with sufficient conditions on the CRT primes to ensure correctness and
including an algorithm for computing endomorphism rings for ordinary Jacobians
of genus 2 curves which generalized Kohel’s algorithm for genus 1 curves. For each
small CRT prime p, the algorithm loops through all p3 possible triples of Igusa
invariants of curves, reconstructing the curve and testing for each curve whether
it is in the desired isogeny class and whether its endomorphism ring is maximal.
The algorithm for computing endomorphism rings from [12] was replaced by a much
more efficient probabilistic algorithm in [14], where a number of examples were given
for running times of the computations modulo small CRT primes. [5] introduced
the idea of using computable (3, 3)-isogenies to find other curves in the isogeny
class once an initial curve was found, but still searched until finding a curve with
maximal endomorphism ring. Another improvement described in [5] was a method
to construct other maximal curves using (3, 3) isogenies once a first maximal curve
is found.

In this paper we present a generalization to genus 2 of the probabilistic Algorithm
1 in Sutherland [29]. The improvement over the algorithm presented in [5] for the
genus 2 case, is that, here we do not need to find a curve in the isogeny class with
endomorphism ring which is the maximal order: rather we present a probabilistic
algorithm for “going up” to a maximal curve (a curve with maximal endomorphism
ring), once we find any curve in the right isogeny class. Then we use the structure
of the Shimura class group and the computation of (`, `)-isogenies to compute all
isogenous maximal curves from an initial one. Although we cannot prove that the
“going up” algorithm succeeds with any fixed probability, it works well in practice,
and heuristically it improves the running time of the genus 2 CRT method from p3

per prime p to p 3
2 per prime p.

Let K denote a primitive quartic CM field, and Φ a CM type. Let KΦ denote
the reflex CM field, and K+ the totally real subfield of K. For a field K, let OK
be the ring of integers of K. Let TNΦ the typenorm associated to the CM-type Φ.
Informally, the algorithm is as follows, and individual steps will be explained in
subsequent sections:

Algorithm 1.
Input: A primitive quartic cyclic CM field K with a CM type Φ, a collection of CRT
primes PK for K.
Output: Igusa Class Polynomials Hi(x), i = 1, 2, 3 in Q[x] or modulo a prime q.

• Loop through CRT primes p ∈ PK :
(1) Enumerate hyperelliptic curves C of genus 2 over Fp until a curve in

the right Fp-isogeny class (up to a quadratic twist) is found.
(2) Try to go up to a maximal curve from C, if it fails go back to Step 1.
(3) From a maximal curve C, compute all other maximal curves.
(4) Reconstruct the class polynomials Hi(x) modulo p from the Igusa in-

variants of the set of maximal curves.
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• Recover Hi(x), i = 1, 2, 3 in Q[x] or modulo q using the (Explicit) CRT
method once we have Hi(x) modulo p for enough primes p.

For the dihedral case, one new aspect of our algorithm is that we extend to
the CRT setting the idea of computing the class polynomials associated to only
one fixed CM type Φ for K [28, Section III.3]. When K is cyclic, this makes no
difference, since all isomorphism classes of abelian surfaces with CM by K arise
from one CM type; but when K is dihedral, two CM types are needed to find all
isomorphism classes of CM abelian surfaces. All three previous versions of the CRT
algorithm [12, 14, 5] compute the class polynomials classifying all abelian varieties
with CM by OK (with either of the two possible CM types in the dihedral case).
The advantage of our approach is that it computes only a factor of half the degree
of the whole class polynomial. The drawback of this approach is that in the dihedral
case, each factor of the class polynomials is defined over OK+

Φ
rather than over Z.

So once we compute the class polynomials modulo p as polynomials in OK+
Φ
/p, the

CRT step must be performed in OK+
Φ
.

A CRT prime p ⊂ OK+
Φ

is a prime such that all abelian varieties over C with
CM by (OK ,Φ) have good reduction modulo p. By [26, Section III.13], p is a CRT
prime for the CM type Φ if and only if there exists an unramified prime q in OKΦ of
degree 1 above p of principal type norm (π) with ππ = NK/Q(q) (in particular this
implies that q is totally split in the class field corresponding to the abelian varieties
with CM by (OK ,Φ)). Moreover, by a theorem of Tate, the isogeny class of these
abelian varieties reduced modulo p (by [16, Section 3] they have good reduction) is
determined by the characteristic polynomial of ±π (here we assume that O∗K = ±1).
For efficiency reasons, we will work with CRT primes p that are unramified of degree
one over p = p∩Z. By [16], the reduction to Fp of the abelian varieties with CM by
(OK ,Φ) will then be ordinary. We then make the slight abuse of notation of calling
p a CRT prime when there is a CRT prime p above it. Note another advantage of
restricting to one CM type: to use p for both CM types, p needs to split completely
into p = p1p2 such that both p1 and p2 are CRT primes, and there are fewer p which
satisfy this stronger requirement.

In addition to the two main contributions of the paper, the “going up” algorithm
to find maximal curves, and an improvement to the algorithm to compute maximal
curves from maximal curves, we also give improvements to every step of the CRT
algorithm. Here we give a brief outline of the paper and a summary of those
improvements.

Step 2 (the “going-up” part) of the algorithm is explained in Section 3. We first
explain in Section 2 how to compute if a curve is maximal, since this is used in the
going-up algorithm. We present some significant improvements over the algorithm
from [14]. Step 3 (finding all other maximal curves from one maximal curve) is
explained in Section 4.

As for Step 4, once all maximal abelian varieties with CM by K are found for a
given prime p, it is easy to compute the associated class polynomials modulo p. The
class polynomials depend on the choice of Igusa invariants, and we use the invariants
recommended in [28, Appendix 3] which give smaller coefficients than those used
in [30, 31, 16]. For the dihedral case the class polynomials must be reconstructed
over OK+

Φ
, and we give more details about this step in Section 5.
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Section 6 gives a complexity analysis, and explains how each improvement affects
the final complexity. The final complexity bound, while still not quasilinear, is a sig-
nificant improvement compared to [5]. Finally, examples demonstrating significantly
improved running times are given in Section 7.

The interested reader will find an extended version of this paper in [19].

2. Checking if the endomorphism ring is maximal

We recall the algorithm described in [12], and describe some improvements. The
ideas for computing the endomorphism ring will be used in the going up phase.

2.1. The algorithm of Eisenträger, Freeman and Lauter. Let A/Fp be an
ordinary abelian variety of dimension 2 with CM by K. Let O = End(A). We know
that Z[π] ⊂ Z[π, π] ⊂ O ⊂ OK . We want to check if O = OK . First, the Chinese
Remainder Theorem gives us the following proposition:

Proposition 2. Let O be an order in OK . Let {1, α1, α2, α3} be a basis of OK as
a Z-module. Write [OK : Z[π, π]] =

∏
`
e`i
i . If [OK :Z[π,π]]

`
e`i
i

αj ∈ O for j = 1, 2, 3, and
all `i dividing the index, then O = OK .

We are then reduced to the following problem: for γ ∈ OK such that `eγ ∈ Z[π, π],
check if γ ∈ O. To simplify the notation,we will often drop the subscript on e` when
it is obvious to which ` we are referring to. We have ([14]):

Proposition 3. Let O = End(A) and γ ∈ OK . There exists an integer polynomial
Pγ such that `epγ = Pγ(π). Then γ is in O if and only if Pγ(π) = 0 on A[`e].

Proof. First note that [Z[π, π] : Z[π]] = p, (see [14]), so that `epγ ∈ Z[π], which
means we can write: `epγ = Pγ(π). Second, since we are dealing with ordinary
abelian varieties over Fp, we have p 6 | [OK : Z[π, π]] [14, Proposition 3.7], so that
γ ∈ O ⇔ pγ ∈ O. Lastly, by the universal property of isogenies, we have that
Pγ(π) = 0 on A[`e] if and only if pγ ∈ O (see [12]). Summing up, we only need to
check that Pγ(π) = 0 on A[`e] to check that γ ∈ O. �

Remark 4. Since most of the curves in the isogeny class are not maximal, it is
more efficient to check Pγ on A[`], A[`2], . . . , rather than directly on A[`e].

2.2. Computing the `e-torsion. The main cost of the preceding algorithm is to
compute a basis of the `e-torsion groups. The cost of such a computation depends
on the degree of the extension where the `e-torsion points are defined. We have:

Lemma 5. Let d be the degree such that the `-torsion points of A are defined
over Fpd . Then d ≤ `4 − 1. Furthermore, the `e-torsion is all defined over Fq with
q = pd`

e−1 .

Proof. Let χπ be the characteristic polynomial of Frobenius, π. Then d is the
(multiplicative) order of X in the ring F`[X]/χπ(X), so d ≤ `4 − 1. The second
assertion follows from [14, Section 6]. �

Remark 6. [14, Proposition 6.2] gives a better bound for maximal abelian surfaces:
in that case we have d ≤ `3, and if ` is completely split in OK , we have d | `− 1.

We will use the following algorithm to compute points uniformly in an `-primary
group containing A[`e]:
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Algorithm 7. Precomputation:
a) Let d be the (multiplicative) order of X in the ring F`[X]/χπ(X) and set

de = d`e−1.
b) Compute χπde as the resultant in X of χπ(Y ) and Y de − X, and write

#A(Fdep ) = χπde (1) = `eγ with γ prime to `.
Compute uniform random points in the `-primary component A(Fpde )[`∞]:

(1) Take a random point P (uniformly) in A(Fpde );
(2) return γP .

Algorithm 4.3 of [14] takes random (uniform) points P in A(Fpde )[`∞] to get
random points in A(Fpde )[`e] by looking at the smallest k such that `k.P is an
`e-torsion point, then generates enough such random points so that the probability
that they generate the full `e-torsion is sufficiently high and then tests Pγ on these
points of `e-torsion. The algorithm computes how many points are needed so that
the probability of generating the full `e-torsion is greater than 1− ε for some ε > 0,
so the result is not guaranteed (i.e. it is a “Monte-Carlo” algorithm), which is very
inconvenient in our setting since we need to test a lot of curves across different CRT
primes p.

To ensure correctness we can check that the subgroup generated by the points
obtained is of cardinality `2ge, but this is costly. A more efficient way is as follows:
{P1, . . . , P2g} is a basis of the `e-torsion if and only if {`e−1P1, . . . , `

e−1P2g} is a
basis of the `-torsion. But that can be easily checked by computing the g(2g − 1)
Weil pairings e`(`e−1Pi, `

e−1Pj) for i < j and testing if we get an invertible matrix.
Since Weil pairings can be computed in O(log(`)), this is much faster. This is our
first improvement, yielding a “Las-Vegas” algorithm.

The second drawback of the approach of [14] is that, although the random points
in A(Fpde )[`∞] are uniform, this is not always the case for the random points in
A(Fpde )[`e]. To have a high probability of generating the full `-torsion then requires
taking many random points in A(Fpde )[`∞]: if A(Fpde )[`∞] = `s, the algorithm
requires `s−4e(− log(ε))1/2 random points to succeed with probability greater than
1 − ε. Since generating these points is the most costly part of the algorithm it is
best to minimize the number of random points required. Our second improvement
is to use an algorithm, implemented in AVIsogenies, due to Couveignes [10] to get
uniform random points in A(Fpde )[`e]. Since the full algorithm is described in more
detail in [3], we only give an example to illustrate it here.

Suppose that G is an `-primary group generated by a point P of order `2 and a
point Q of order `. Assume that the first random point chosen is P = R1, which
gives an `-torsion point T1 = `P . The second random point R2 chosen will be of
the form αP + βQ. In most cases, α 6= 0, so the corresponding new `-torsion point
is T2 = α`P , a multiple of T1. However we can correct R2 by the corresponding
multiple: compute R′2 = R2 − αR1 = βQ. Thus R′2 gives the rest of the `-torsion
except if β = 0. In our setting we can use the Weil pairing to express a new `-torsion
point in terms of the generating set already constructed (except when we have an
isotropic group, in this case we have to compute the `2 multiples), and we only need
O(1) random points to find a basis. The cost of finding a basis of the `e-torsion is
then O(de log p+ `2) operations if Fpde .

2.3. Reducing the degree. The complexity of finding the basis is closely related
to the degree of the extension de. Let d0 be the minimal integer such that (πd0−1) ∈



6 DAMIEN ROBERT AND KRISTIN E. LAUTER

`OK . Then d0 | d, and as remarked in [14], since we only need to check if O = OK ,
we can first check that πd0−1

` lies in O. In other words, we can check that the
`-torsion points of A are defined over Fpd0 rather than over Fpd . If this is the case,
the `e-torsion points are then defined over an extension of degree d0`

e−1 of Fp, which
allows working with smaller extensions.

Another improvement we implemented to reduce the degree is to use twists.
Let d′0 be the minimal integer such that ((−π)d

′
0 − 1) ∈ `OK . Then we have three

possibilities d′0 = d0, d′0 = 2d0, d0 = 2d′0. In the latter case, it is better to replace
A by its twist, since the Frobenius of the twist is represented by −π, and we can
compute the points of `e-torsion by working over extensions of half the degree.

Example 8. Let H : y2 = 80x6 + 51x5 + 49x4 + 3x3 + 34x2 + 40x + 12 be a
hyperelliptic curve of genus 2 defined over F139 and J the Jacobian of H. We have
End(J) ⊗ Q ∼= Q(i

√
13 + 2

√
29) and we want to check if End(J) is maximal. In

this example, we compute [OK : Z[π, π]] = 35, so we need to compute J [35], which
lives over an extension of degree 81. If we had checked the endomorphism ring of
the Jacobian of the twist of H, we would have needed to work over an extension of
degree 162.

2.4. Reducing the number of endomorphisms to test. One last improvement
to the algorithm of [14] is to use the fact that End(A) is an order. So if we know
that γ ∈ O, then we know that the ring Z[π, π, γ] ⊂ O. As an example, if in terms of
our basis we have α3 = α2α1 mod O∗K , then we only have to check that α2 and α1
are in O (and since our algorithm works locally at `, we only need that this relation
is true locally for that ` ). We use this idea as follows: suppose that we have checked
that {γi, i = {1, . . . , k}} are endomorphisms lying in O, and we want to check if
γ ∈ O. Let N1 be the order of γ in OK/Z[π, π, γi : i = 1, . . . , k], and N2 be the order
of γ in OK/Z[π, π]. If we write N2 =

∏
`
e`i
i , we only have to check that N2/`

e`γ ∈ O
for ` | N1. In fact, if the valuation of N1 at ` is e′`, then we would only need to check
that N1/`

e′`γ ∈ O, which means testing if N1γ = 0 on the `e′` -torsion, where N1γ is
a polynomial in π, π, and the γi (i = 1, . . . , k). We write this polynomial as N1

pN2
times a polynomial in π, so that we still need to compute the `e` -torsion.

Example 9. Let H : y2 = 10x6 + 57x5 + 18x4 + 11x3 + 38x2 + 12x + 31 be a
genus 2 curve defined over F59 and J the Jacobian of H. We have End(J)⊗Q =
Q(i

√
29 + 2

√
29) and we want to check if End(J) = OK . OK is generated as a

Z-module by 1, α, β, γ, where α is of index 2 in OK/Z[π, π], β of index 4 and γ
of index 40. The algorithm from [14] would check J [23] and J [5]. But (OK)2 =
Z2[π, π, α], so we only need to check J [2] and J [5].

2.5. The algorithm. Incorporating all these improvements yields the following
algorithm:

Algorithm 10. Checking that EndA is maximal.
Input: An ordinary abelian surface A/Fp with CM by K.
Output: The boolean statement: EndA = OK .

(1) Choose a basis {1, α1, α2, α3} of OK and a basis {1, β1, β2, β3} of Z[π] such
that β1 = c1α1, β2 = c2α2, β3 = c3α3 and c1, c2, c3 ∈ Z with c1 | c2 | c3.

(2) (Checking where the `-torsion lives.) For each ` | [OK : Z[π, π]] do
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(a) Let d` be the smallest integer such that πd` − 1 ∈ `OK , and d′` be the
smallest integer such that (−π)d′` − 1 ∈ `OK . If d′` < d`, switch to the
quadratic twist.

(b) Compute a basis of A[`](Fpd` ) using the algorithm from [3].
(c) If this basis if of cardinality (strictly) less than four, return false.
(d) (Checking the generators of OK .) For i = 1, 2, 3 do

(i) Let N1 be the order of αi in OK/Z[π, π, αj : j < i] and N2 the
order of αi in OK/Z[π, π].

(ii) If ` | N1, let ei be the `-valuation of N2 and write pN2αi as a
polynomial Pi(π).

(iii) Compute a basis of A(F
pd``

ei−1 )[`ei ].
(iv) If Pi(π) 6= 0 on this basis, return false.

(3) Return true.
2.6. Complexity. The complexity is measured in terms of operations in the base
field, Fp, neglecting logarithmic factors log(p). Since the index [OK : Z[π, π]] is
bounded by a polynomial in p by [14, Proposition 6.2], evaluating the polynomials
Pi(π) (of degrees at most 3) is done in logarithmic time. The most expensive part of
the algorithm is then the computation of A[`e], for the various ` dividing the index
[OK : Z[π, π]] where e is at most the `-valuation of the index. According to Lemma 5
and Remark 6, the `e-torsion points live in an extension of degree at most d = `e+3.
Since #A(Fpd) = p2d(1+ε), computing a random point in A(Fpd)[`e] takes Õ(d2)
operations in Fp. Correcting this random point requires some pairing computations,
and costs at most O(`2) (in case the first points give an isotropic group). Since we
need O(1) such random points, the global cost is given by the following proposition
(we will only need a very rough bound for the complexity analysis in Section 6):
Proposition 11. Let [OK : Z[π, π]] =

∏
`eii be the decomposition of the index into

prime factors. Then checking if an abelian surface in the isogeny class is maximal
can be done in time

∑
Õ(`2ei+6

i ).
Remark 12. One can compare to [14, Proposition 4.6] to see the speedup we gain
in the endomorphism ring computation. We note that our method is exponential in
the discriminant, while in [4] one can find a subexponential algorithm to compute
the endomorphism ring of an ordinary abelian surface. In ongoing work with Gaetan
Bisson, we have developed a method that combines the going up algorithm of the next
section with his endomorphism ring algorithm. Since we still need to take `-isogenies
for ` | [OK : Z[π, π]] in the going up step, this approach is mainly interesting when
the index is divisible by a power of a prime.

3. Going up

“Going up” is the process of finding genus 2 curves with maximal endomorphism
ring by moving from any curve in the isogeny class via isogenies to a maximal one.
This is not always possible and we will explain some obstructions. One difficulty was
already illustrated in [5, Example 8.3], where it was shown that there can be cycles
in the isogeny graph involving some non-maximal curves. Clearly, when trying to
“go up”, the algorithm should avoid making cycles in the graph, and we propose
one method to avoid that. Further difficulties arise from the fact that the graph of
rational (`, `) isogenies can be disconnected and there can be some nodes with no
rational (`, `)-isogenies. This is an important caveat, as this means that our method
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for “going-up” will not always succeed, so we only have a probabilistic algorithm,
and we cannot currently estimate the probability of failure.

As noted in [14], for the type of fields we can deal with via the CRT method,
the cost of going through p3 Jacobians is dominant compared to checking if the
endomorphism ring is maximal (this imbalance is magnified in our case due to
our faster algorithm to compute the `e-torsion). In our algorithm, we try to find a
random curve in the isogeny class, and we try to select p so that the probability of
finding a curve in the right isogeny class is of magnitude p3/2. In practice, finding
one such curve is still the dominant aspect, which explains why we can afford to
spend a lot of effort on “going up” from this curve.

The algorithm we propose for “going up” is made possible by the techniques
developed in [23, 9, 25] for computing rational (`, `)-isogenies between abelian
varieties over finite fields. If A is an ordinary abelian variety with CM by K, then
for each ` dividing the index [OK : Z[π, π]], we try to find an (`, `)-isogeny path
starting from A and going to A′ such that (OK)` = End(A′)`. If this is possible, we
let A = A′ in the next step (going to the next `). A rather inefficient method for
finding A′ would be to use the algorithm for computing endomorphism rings which
was detailed in the preceding section (modified to handle the case of non maximal
orders), compute the endomorphism ring of End(A) and the (`, `)-isogenous varieties
A′, and keep A′ if its endomorphism ring is bigger than the one of A. In this section
we will describe a more efficient algorithm, that combines the endomorphism ring
checks of the preceding section with a going up phase. Since we are working locally
in `, we may as well suppose that we are working over Z`.

3.1. Going up for one endomorphism. In this section, we suppose that we have
an element α′ ∈ OK such that γ`eα′ ∈ Z[π] with γ prime to `. Starting from an
abelian variety A in the isogeny class, we want to find an abelian variety A′ such
that α

`e ∈ End(A′) (or equivalently that α′ ∈ End(A′) locally at `).
We saw in Section 2 that α

`e is in the endomorphism ring of A iff α(A[`e]) = 0, and
we know how to compute this subgroup. More generally, we let N = #α(A[`e]). We
think of N as a way to measure the “obstruction” to “ α`e ∈ End(A)”. Our algorithm
is as follows: for each (`, `)-isogenous A′, if N ′ = #α(A′[`e]), then we replace A by
A′ if N ′ < N . We iterate this process until N = 1, in which case we have succeeded,
or until we are stuck, in which case we try to find a new random abelian variety in
the right isogeny class.

Rather than computing directly the obstruction N = #α(A[`e]), we can compute
the partial obstructions N ε = #α(A[`ε]) for ε ≤ e. Starting from ε = 1, we
take isogenies until we find an abelian variety A with N ε = 1, which means that
α
`ε ∈ End(A). We will now try to take isogenies to reduce the obstruction of higher
degree N ε+1. Let k = α(A[`ε+1]) ⊂ A[`]. The following lemma helps us select the
isogeny we are looking for:

Lemma 13. Let A′ be an abelian variety isogenous to A, such that #α(A′[`ε+1]) <
#α(A[`ε+1]). Then the kernel of the isogeny A→ A′ intersects non trivially with
k = α(A[`ε+1]).

Proof. Let f : A → A′ be a rational isogeny between A and A′. Then since α
is a polynomial in the Frobenius, we have α ◦ f = f ◦ α. In particular, f maps
α(A[`ε+1]) to α(A′[`ε+1]). If #α(A′[`ε+1]) < #α(A[`ε+1]) then there exists x ∈
Ker f ∩ α(A[`ε+1]). �
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This gives the following algorithm:

Algorithm 14. Going up for one endomorphism α
`ε .

Input: An ordinary abelian variety A/Fp with CM by K.
Output: An abelian variety A′/Fp such that α

`ε ∈ EndA or fail.
(1) Set ε = 1.
(2) Compute N ε = #α(A[`ε]).
(3) If N = 1, then if ε = e return A. Otherwise (ε < e) set ε := ε+ 1, and go

back to Step 2.
(4) Else (N > 1) let L be the list of all rational maximal isotropic subgroups of

A[`] which intersect non trivially with α(A[`ε]). For k ∈ L do
(a) Compute A′ = A/k. Let N ′ = #α(A′[`ε]). If N ′ < N , set A = A′ and

go back to Step 2.
(5) (We are stuck) Return fail.

Remark 15. As in Section 2 we let d0 be the minimal integer such that (πd0 − 1) ∈
`OK and d the minimal integer such that (πd−1) ∈ `Z[π]. Then the `ε-torsion points
of A are defined over an extension of degree d`ε−1. If moreover πd0−1

` ∈ End(A)
they are actually defined over an extension of degree d0`

ε−1.
Therefore when we try to go up globally for all endomorphisms α, the first step is

to try to go up for the endomorphism πd0−1
` . During the algorithm, the obstruction

N is given by the size of the kernel of πd0−1, whose rank is 2g minus the rank of the
`-torsion points defined over Fpd0 . So we compute the size of a basis of A[`](Fpd0 )
and take isogenies, where this size increases until we find the full rank.

3.2. Going up globally. Let {1, αi`ei } (i = 1, 2, 3) be generators for the maximal
order (OK)` over the subring Z`[π, π], where αi ∈ Z`[π, π]. Starting from an abelian
variety A in the isogeny class, we want to find an abelian variety which is maximal
at `.

We could apply Algorithm 14 for each αi
`ei , but it does not guarantee that the

endomorphisms already defined on A stay defined during the process, so we would
observe loops on non maximal abelian varieties with this method. Moreover we want
to reuse the computations of A[`ε] which are the expensive part of the process.

If Ni = #αi(A[`di ]) for i = 1, 2, 3 is the obstruction corresponding to αi, we
define N to be the global obstruction N =

∑
Ni. We can then adapt the same

method: for each (`, `)-isogenous A′, if N ′i = #αi(A′[`di ]), then we replace A by A′
if

∑
N ′i <

∑
Ni. We iterate this process until all the Ni = 1, in which case we go to

the next `, or until we are stuck, in which case we try to find a new random abelian
variety in the right isogeny class.

As before, if e = max(e1, e2, e3) we first compute A[`ε] and the partial obstructions
N ε
i = #A[`min(ε,ei)] (i = 1, 2, 3). We do the same for the (`, `)-isogenous abelian

varieties, and switch to the new one if
∑
N ε
i decreases (strictly). This allows working

with smaller torsion in the beginning steps.
The level, ε, of the individual obstruction we are working on depends on the

endomorphism considered, so if we get stuck on level ε, we may have to look at level
ε+ 1 even if not all endomorphisms αi

`ε are defined yet. For instance (in this example
we suppose we only deal with two generators) there are cases where N ε

1 = 1, N ε
2 6= 1

and N ′ε1 = 1, N ′ε2 = N ε
2 for all (`, `)-isogenous abelian varieties A′, so we are stuck

on level ε. However we can still find an isogenous A′ such that N ′ε+1
1 < N ε+1

1 .
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Finally, as in Remark 15, we first try to go up in a way that increases the size of
A(Fpd0 )[`]. If we are unlucky and get stuck, we switch to the computation of the
full `-torsion over Fp. This method allows working over the smallest extension to
compute A[`e] as soon as possible.

A summary of the algorithm with the notation from above is given below:
Algorithm 16. Going up.

Input: An ordinary abelian surface A/Fp with CM by K.
Output: An abelian variety A′/Fp with EndA = OK (locally at `) or fail.

(1) (Special case for the endomorphism πd0−1
` ) Compute a basis B of A(Fpd0 )[`].

If #B < 2g, compute a basis B′ of A′(Fpd0 )[`] for each (`, `)-isogenous
abelian variety A′. If #B′ > #B, restart the algorithm with A′ = A. If
#B = 4 or we get stuck, go to the next step.

(2) Set ε = 1.
(3) Compute1 N ε

i = #αi(A[`min(ε,ei)]) for i = 1, 2, 3.
(4) If {Ni : i = 1, 2, 3} = {1} then if ε = max(ei : i = 1, 2, 3) return A. Else set

ε := ε+ 1 and go back to Step 3.
(5) Else let L be the list of all rational maximal isotropic kernels of A[`] which

intersect non trivially with one of the αi(A[`min(ε,ei)]). For k ∈ L do
(a) Compute A′ = A/k. Let N ′i = #αi(A′[`min(ε,ei)]). If

∑
N ′i <

∑
Ni,

restart the algorithm with A = A′ (but do not reinitialise ε in Step 2).
(6) If we get stuck and ε < max(ei : i = 1, 2, 3), set ε := ε+ 1 and go back to

Step 3. Otherwise return fail.
3.3. Cost of the “going-up” step. We will see in the examples that the “going-
up” step is a very important part in speeding up the CRT algorithm in practical
computations. However, since it is doomed to fail in some cases (see Remark 18), we
need to check that it will not dominate the complexity of the rest of the algorithm,
(so that in theory there is no drawback in using it), and thus we need to estimate
the cost of the “going-up” step.

The going up phase is a mix of endomorphism testing and isogeny computations.
We already analysed the cost of the endomorphism testing in the preceeding section.
For the isogeny computation, the points in the kernel of rational (`, `)-isogenies live
in an extension of degree at most `2 − 1. Transposing the analysis of Section 2.6 to
this case shows that the computation of all points in these kernels takes at most
Õ(`4). There are at most O(`3) such kernels, and each isogeny computation takes at
most Õ(`4) operations in the extension. The final cost is at most Õ(`9) for computing
all isogenies. For each of the O(`3) isogenous abelian varieties we do (part of) the
endomorphism ring computation, which is `2e+6 according to Section 2.6. Since the
global obstruction computed is of size O(`e), we do at most O(e) steps. The global
complexity is then:
Proposition 17. Let [OK : Z[π, π]] =

∏
`eii be the decomposition of the index into

prime factors. Then the going up phase either fails or is done in at most Õ(
∑
`2ei+9
i )

operations in the base field.
Remark 18. It is important to note that the going up phase does not always succeed.
We will give some examples of that in Section 7. First, as noted in the introduction

1The degree of the extension where the full `ε-torsion is defined depends on whether Step 1
succeeded.
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of the section, the (`, `)-isogeny graph is not always connected, so if we start with a
curve not in the same component of a maximal curve, there is no way to find the
maximal curves using only (`, `)-isogenies. Second, even if the curve is in the same
component, finding a maximal curve may involve going through isogenous curves
that increment the global obstruction, so the going up algorithm would not find it.

In practical computations we observed the following behavior: in the very large
majority of the cases where we were not able to go up, there actually did not exist any
rational (`, `)-isogenies for any curve in the isogeny class. If χπ is the characteristic
polynomial, this can be detected by the fact that χπ does not factor modulo ` as
χπ = PP (mod `) (where P is the conjugate of P under the action π → p/π, which
sends the Frobenius to the Verschiebung). In this situation, there is no way to go up
even locally at `. This gives a criterion to estimate whether one can go up for this `.

4. Computing maximal curves from maximal curves

Once a maximal curve in the isogeny class has been found via the random search
and “going up” steps, we use isogenies to find the other maximal curves. The set
of maximal curves in the isogeny class corresponding to a fixed CM type Φ is a
principal homogeneous space under the action of the Shimura class group
C = {(I, ρ) | I a fractional OK-ideal with II = ρ, ρ ∈ K+ totally positive}/K∗,

associated to the primitive quartic CM field K, which acts by isogenies (see for
instance [5, Section 3]).

However, using AVIsogenies we can only compute isogenies with a maximal
isotropic kernel. In terms of the Shimura class group, the lemma below shows that
this means that we can only compute the action corresponding to (equivalences
classes) of elements of the form (I, `) where I is an ideal in K and ` a prime number.

Lemma 19. Let (I, ρ) be an element of the Shimura class group C and ` a prime.
Then the action of (I, ρ) on a maximal abelian variety A corresponds to an isogeny
with maximal isotropic kernel in A[`] if and only if ρ = ` (so if and only if I has
relative norm `).

Proof. This follows from the construction of the action of C on the set of maximal
abelian varieties. The action is given by the isogeny f : C2/Λ→ C2/IΛ and moreover
the action of I corresponds to the dual isogeny f̂ (here we identify the abelian
variety A with its dual Â via the principal polarization induced from the CM data).
Since ` is prime, the isogeny corresponding to I is an (`, `) isogeny if and only if
II = ρ = `. �

Therefore to ensure that we can find all other maximal curves using this type of
isogeny we make the following heuristic assumption. Here ∆ is the discriminant of
K:

Assumption. The Shimura class group C is generated by elements of the form
(I, `) where ` is a polynomial in log ∆.

Justification: We have tested this assumption on numerous examples. The
assumption on the size of the isogenies will be used in the complexity analysis. At
worst, we know (under GRH) that the class group of the reflex field is generated by
prime ideals of degree one and of norm polynomial in log ∆ [1, Theorem 1]. (Note
that the discriminant of the reflex field is O(∆2)). But if I is such an ideal of OKΦ
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of norm prime to p, then the element (TN(I), N(I)) will give a horizontal isogeny.
So we will at least be able to compute all the maximal curves that are deduced
from the first one by an action coming from the type norm. As we will see in the
complexity analysis in Section 6, this is sufficient for most discriminants D.

Lemma 20. Let A be an ordinary abelian surface with End(A)⊗Q = K, and let
f : A→ B be an isogeny of degree prime to [OK : Z[π, π]]. Then End(A) = End(B).

Proof. Let d be the smallest integer that factorizes through f , so d = ff̃ . By
assumption d is prime to the index. If α ∈ End(A), then f ◦ α ◦ f̃ = dα is an
endomorphism of B. Since [OK : End(B)] is prime to d, we have that α ∈ End(B).
The same argument shows that End(B) ⊂ End(A), so End(A) = End(B). �

Note that we can precompute generators of the Shimura class group since this
data does not depend on the current prime p. We want to find generators of relative
norm a prime ` ∈ Z with ` as small as possible since this will directly influence the
time spent to find the other maximal curves.

Now for a CRT prime p, there may exist among the generators we have chosen
some that divide the index [OK : Z[π, π]]. We can either find other generators (whose
norm will be bigger), or still try to use the precomputed generators. In this case,
if such a generator has norm `, then not all new (`, `)-isogenous abelian varieties
will be maximal, so we have to use the algorithm of Section 2 to test which of them
is maximal. In that case, after the isogeny is applied, the `e-torsion must again be
computed (with the notation of Section 3), along with the action of the generators
of (OK)` over Z[π, π]`. The trade-off depends then on the degree of the extension
field required to compute the `e-torsion for small ` dividing the index versus the
degree of the field of definition for the points in the kernel of the `-isogeny for ` not
dividing the index.

Finally, we can also use the group structure of the Shimura class group as follows:
suppose that we have computed maximal curves corresponding to the action of
α1, . . . , αt ∈ C, and we want to find new maximal curves by computing (`, `)-isogeny
graphs starting from these curves. Then if C(`) is the set of elements of the form
(I, `) in C, then the number of maximal curves that we can find in this way is the
cardinality of the subgroup generated by the αi and C(`). In particular, as soon as
we reach this number, we can stop the computation since it will not yield any new
maximal curves. This is particularly useful when ` divides the index since it avoids
some endomorphism tests. In the isogeny graph computation done by AVIsogenies,
each node is computed twice since there are two edges between adjacent nodes
(corresponding to the isogeny and the dual). Here since we know the number of
nodes, we can abort the computation early.

We thus obtain the following algorithm:

Algorithm 21. Finding all maximal curves from one maximal curve.
Input: An ordinary abelian variety A/Fp with CM by (OK ,Φ).
Output: All abelian varieties over Fp with CM by (OK ,Φ).

Precompute a set of generators of the Shimura class group with relative norm ` as
small as possible (the set is not chosen to be minimal, on the contrary we want some
redundancy). For each of the generators, compute the extension degree of the field
of definition of the geometric points of the kernel corresponding to this generator.
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(1) For each generator of (relative) norm ` dividing the index, replace the
previous degree by the degree of the extension where the `e-torsion lives
(usually e is the `-valuation of the index, but the tricks from Section 2 can
sometimes reduce it).

(2) Sort the generators according to the corresponding degrees to get a list
(g1, . . . , gn).

(3) For each generator gi on the list, let `i be its norm and do
(a) Compute the varieties (`i, `i)-isogenous to the one already found. If `i

divides the index, then do an endomorphism ring computation from
Section 2 and keep only the maximal curves

(b) Repeat until the number of (maximal) abelian varieties is #〈C(`1), . . . ,C(`i)〉.

5. The CRT Step

Contrary to the elliptic curve case, the coefficients of the class polynomials in
genus 2 are rational numbers, not integers. We estimate the denominators using
the Bruinier-Yang conjectural formula [6] (proved only for special cases [32, 33]),
with minor adjustments from [17], and adapting it to the fact that we use invariants
from [28, Appendix 3], which alters the denominator formulas by small powers
of 2. A formula for the factorization of the denominators which holds for general
primitive quartic CM fields was recently given in [20] which produces a multiple of
the denominators when allowing for cancellation with the numerators and the case
where K+ does not have class number 1. As in [12, Theorem 3], we can multiply by
the denominators and then use the CRT to reconstruct the polynomials.

5.1. Sieving the CRT primes. To determine whether to use a CRT prime in
the CRT algorithm, we check if the corresponding isogeny class is large enough.
There are p3 isomorphism classes of genus 2 curves over Fp, and since the area of
Figure 10.1 in [22] is 32/3, there are approximately 32/3p3/2 isogeny classes. We
keep p if the size of the isogeny class is of size roughly p3/2. We estimate the size of
this isogeny class by using Lemma 6.3 in [22] for each order (stable by conjugation)
between Z[π, π] and OK .

In practice, we are only interested in the number of curves from which we can
go up. This is harder to estimate, but numerous computations showed that the
main obstruction to going up occurs when there are no (`, `)-isogenies with rational
kernel at all. But this case is easy to detect (see [3]). So in the previous estimate,
we discount the orders whose index is divisible by such an `.

Finally, we use a dynamic approach for the prime selection: we use a prime if
the probability of finding a maximal curve with the going up algorithm is better
than a certain threshold (depending on the size of the prime), but we go back to
previously discarded (smaller) primes if they satisfy the threshold for the current
size of primes we are considering.

5.2. The CRT. In the cyclic case, we compute the class polynomials modulo small
integer primes, and we use the CRT to get the result modulo the product P (the
“precision”) of these small primes. Once the precision is enough, we can recover the
polynomials modulo Z, by lifting each coefficient to Z in the interval [−P/2, P/2].

In the dihedral case, the primes are in OK+
Φ
, and so is the precision ideal P . Here

we explain how to lift a coefficient x mod P to OK+
Φ
. Take the Minkowski embedding

of a lift of x, and find the closest vector cx in the lattice associated to P in the
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Minkowski embedding. Then cx corresponds to an element of the ideal P , and our
final lift is x− cx. We note that the lattice is of rank 2, so we can directly compute
the closest vector rather than doing an LLL approximation.

5.3. Lifting without denominators. We note that in the dihedral case, the
denominator from the formulas in [6, 17, 20] is too large, as it takes into account
both CM types. This increases the size of the coefficients we compute, so that
using those denominator formulas does not actually give better results than doing a
rational reconstruction directly.

With the notation from above, from x mod P we want to do a rational lift of x.
This time we embed the lattice associated to P into the lattice of rank 3 obtained
by adjoining the vector [Cx1, Cx2, C] where x1 and x2 are the two real embeddings
of (a lift of) x and C is a constant accounting for how skewed we expect the size
of the denominator to be compared to the numerators. A minimal vector in this
lattice will correspond to an element N = c+Dx where c ∈ p and D is an integer.
We then take N/D as our lift for x.

This solution requires the precision to be the sum of the bit sizes of the numerators
and denominator, so it can be even better than using the denominator formulas for
small denominators where there may be cancellation with the numerators.

6. Complexity

In this section, we analyze the effect of the going up algorithm of Section 3 (which
we will also call the vertical step since it deals with abelian varieties which have
endomorphism rings which are different orders in K) and the effect of finding all
other maximal curves from one maximal curve from Section 4 (the horizontal step)
to the asymptotic complexity. Most of the discussion is heuristic.

We begin with a quick reminder of the rough complexity analysis of the CRT
method in the elliptic curve case, where K is a quadratic imaginary field. There is
only one class polynomial H, whose degree is the class number of OK , and classical
bounds give that degH = O(

√
∆) where ∆ is the discriminant of OK . Likewise, the

coefficients of H have size Õ(
√

∆). So the whole class polynomial is of size Õ(∆).
Each CRT prime p gives log(p) bits of information, so neglecting logarithmic

factors, we need
√

∆ primes. CRT primes split completely in the Hilbert class field
of K, whose Galois group is Cl(OK), so by the Cebotarev theorem the density of
CRT primes is roughly 1/# Cl(OK) ' 1/∆. Neglecting logarithmic factors again,
the biggest prime p is of size Õ(∆).

Now there are O(p) isomorphism classes of elliptic curves, and Õ(
√

∆) maximal
curves, so one is found in time Õ(p/

√
∆) = Õ(√p). Once one maximal curve is

found, all others can be obtained using isogenies of degree logarithmic in ∆, so one
can recover all maximal elliptic curves over Fp in time Õ(√p) = Õ(

√
∆).

We need
√

∆ CRT primes, so the total cost is Õ(∆). The CRT reconstruction
can be done in quasi-linear time too, so in the end the algorithm is quasi-linear,
even without using a vertical step. Not using the horizontal step gives a complexity
of Õ(∆3/2).

In genus 2, let ∆0 = ∆K+/Q and ∆1 = NK+/Q(∆K/K+), so that ∆ = ∆K/Q =
∆1∆2

0. Then the degree of the class polynomials is Õ(∆1/2
0 ∆1/2

1 ) while the height of
their coefficients is bounded by Õ(∆5/2

0 ∆3/2
1 ) ([28, Section II.9], [16]). In practice,
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we observe [28, Appendix 3] that they are bounded by Õ(∆1/2
0 ∆1/2

1 ) and we will use
this bound in the following. According to [5, Section 6.4], the smallest prime is of
size Õ(∆0∆1). We need Õ(∆1/2

0 ∆1/2
1 ) CRT primes, and an analysis using [18] as in

[2, Lemma 5.3] shows that the largest prime is also Õ(∆0∆1). We remark that the
sieving phase does not affect the size of the largest prime (apart from the constant
in the big O) as long as we sieve a positive density of CRT primes.

For the horizontal step, the isogeny computation involves primes of size logarithmic
in ∆, so the cost of this step is quasi-linear in the number Õ(∆1/2

0 ∆1/2
1 ) of maximal

curves. This is under the assumption from Section 4. Without this assumption,
what we know is that for each ideal I in OKΦ of norm prime to p, the element
(TN(I), N(I)) is an element of the Shimura class group whose action is given by
a maximally isotropic kernel. In the horizontal step, we can then compute the
action of TN(Cl(OKΦ)) by isogenies of size logarithmic in ∆. By Lemma 6.5 of [5],
the cofactor is bounded by 26w(D)+1, where w(D) is the number of prime divisors
of D. This gives a bound on the number of horizontal isogeny steps we need to
take. As remarked in [5], outside a zero-density subset of very smooth integers,
w(n) < 2 log logn so the corresponding factor can be absorbed into the Õ-notation.

On the contrary, the complexity of the endomorphism ring computation and the
going up phase involves the largest prime power dividing the index [OK : Z[π, π]].
According to Proposition 6.1 of [14] we have that [OK : Z[π, π]] ≤ 16p2

√
∆
. For the

size of the CRT prime we are considering, we see that [OK : Z[π, π]] = Õ(∆0∆3/2
1 ).

We fix ε = 1/2. Assuming that the index is uniformly distributed, [11] showed that
there is a positive density of CRT primes where the largest prime power dividing
the index is O(∆ε/100

0 ∆ε/100
1 ). By the complexity analysis of Sections 2.6 and 3.3,

we see then that there is a positive density of primes where these algorithms take
time at most O(∆ε

0∆ε
1).

We then let p = Õ(∆0∆1) be a CRT prime. There are O(√p) maximal curves, so
we expect the isogeny class to be of size Θ(p3/2) (see Heuristic 6.6 in [5]), and there
are p3 isomorphism classes of curves. The original CRT algorithm of [12, 14] looped
through all p3 curves and tested if the endomorphism ring is maximal. This takes
Õ(∆3

0∆3
1 +O(∆3/2+ε

0 ∆3/2+ε
1 ) per CRT prime, for a total cost (since Õ(∆1/2

0 ∆1/2
1 )

CRT primes are needed) of Õ(∆7/2
0 ∆7/2

1 ) with our choice of ε.
The approach of [5] is to find only one of them and use horizontal isogenies to

find the others. With the improvements proposed in this paper (using all horizontal
isogenies and not only those coming from the type norm, and the improved endo-
morphism ring computation): we find a cost of Õ(∆5/2

0 ∆5/2
1 ) + O(∆3/2+ε

0 ∆3/2+ε
1 )

per CRT prime. The total cost is then Õ(∆3
0∆3

1).
With our method, we need to find a curve in the isogeny class where the going

up step yields a maximal curve. Finding a curve in the isogeny class takes time
O(p3/2). If X is the number of going up steps we need to try on average, the cost
per CRT prime is then Õ(X(∆3/2

0 ∆3/2
1 + ∆ε

0∆ε
1)). At best, X = O(1), and we have

a total cost of Õ(∆2
0∆2

1) from CRT primes. So at best we have a quasi-quadratic
complexity, while the CRT itself is quasi-linear, so is negligible. We see that we are
still far from quasi-linearity achieved by the analytic method. At worst, X = O(p)
(number of random tries in the isogeny class until we find a maximal one directly),
and we recover the quasi-cubic complexity of the previous method.
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To improve the complexity, there are two possibilities: the first is to increase the
probability of success of the going up method. This requires an algorithm to compute
isogenies with cyclic kernels. But even with that, we achieve at most quasi-quadratic
complexity because the size of the isogeny class is too small compared to the size
of the search space. This is the case because the algorithm computes the class
polynomials (a scheme of dimension 0) directly from the moduli space of dimension 3
of all abelian surfaces. In contrast, in the elliptic curve case, the algorithm searches a
space of dimension 1 for elements of a space of dimension 0. It would be interesting
to find convenient subspaces of the moduli space of smaller dimension, and to work
over them. One example would be to use Humbert surfaces, which are of dimension 2,
and Gundlach invariants, as proposed in [21].

7. Examples

7.1. Improvements due to the going up phase. We first look at improvements
due solely to the going up phase. The new timings for the caseK = Q(i

√
29 + 2

√
29),

C(OK) = {0}, are given in the next table, compared to old timings from [14, Section 9].
This is a cyclic Galois example with class number one, so there is only one maximal
curve and the algorithm from Section 4 is not used.

p ld αd # Curves Estimate Time (old) Time (new)

7 - - 1 1 0.3 0 + 0.1
23 13 84 15 2 (16) 9 + 70.7 0.4 + 24.6
53 7 3 7 7 105 + 0.5 7.7 + 0.5
59 2, 5 1, 12 322 48 (286) 164 + 6.4 1.4 + 0.6
83 3, 5 4, 24 77 108 431 + 9.8 2.4 + 1.1
103 67 1122 - - - -
107 7, 13 3, 21 105 8 (107) 963 + 69.3 -
139 52, 7 60, 2 259 9 (260) 2189 + 62.1 -
181 3 1 161 135 5040 + 3.6 4.5 + 0.2
197 5, 109 24, 5940 - - - -
199 52 60 37 2 (39) 10440 + 35.1 -
223 2, 23 1, 11 1058 39 (914) 10440 + 35.1 -
227 109 1485 - - - -
233 5, 7, 13 8, 3, 28 735 55 (770) 11580 + 141.6 88.3 + 29.4
239 7, 109 6, 297 - - - -
257 3, 7, 13 4, 6, 84 1155 109 (1521) 17160 + 382.8 -
313 3, 13 1, 14 ? 146 (2035) - 165 + 14.7
373 5, 7 6, 24 ? 312 - 183.4 + 3.8
541 2, 7, 13 1, 3, 14 ? 294 (4106) - 91 + 5.5
571 3, 5, 7 2, 6, 6 ? 1111 (6663) - 96.6 + 3.1

56585s 776s

The first column indicates the CRT prime used. The second one the `d-torsion
subgroups required to compute whether a curve is maximal; the ` is in bold if there
is not any rational (`, `)-isogeny, so we can’t go up for this ` (and it is in italic if
there exist (`, `)-isogenies, but they are too expensive to compute). The third column
gives the corresponding degree where the points of these subgroups live (this degree
is in italic when it is too high, computing the `d-torsion would be too expensive).
The fourth column indicates the total number of curves in the isogeny class (this
is found via the algorithm from [14] which goes though all the curves), while the
fifth gives an estimate of the number of curves from which we can go up (and the
number in parenthesis is our estimate of the total number of curves in the isogeny
class). The last two columns give the timings of the old and new algorithms, split
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into “Time exploring curves” + “Time spent computing endomorphism rings/Time
spent going up”.

Note that much less time is spent exploring curves with the new algorithm due
to the going up algorithm. Also note that, even though the going up phase is more
complicated, it is still less costly than the computation of the endomorphism rings
in the old algorithm, due to the improvements described in Section 2 and the fact
that the new version calls it less often.

The trade-offs in the going up step depend on the discriminant of the CM field
K. The more CRT primes we need, the bigger the isogenies and the bigger the
degrees in the endomorphism ring computations we allow. Note that computing
(`, `)-isogenies requires Õ(`2) operations in the field where the points of the kernel
are defined when ` is congruent to 1 (mod 4), but Õ(`4) when ` is congruent to 3
(mod 4). So in the above example, we computed the (109, 109)-isogenies faster than
the (23, 23)-isogenies.

7.2. Dihedral examples. Here we illustrate our new CRT algorithm for dihedral
fields, for K = Q(X)/(X4 + 13X2 + 41) with C(K) ' {0}.

We first compute the class polynomials over Z using Spallek’s invariants, and
obtain the following polynomials in 5956 seconds: H1 = 64X2 + 14761305216X −
11157710083200000, H2 = 16X2 + 72590904X − 8609344200000, H3 = 16X2 +
28820286X − 303718531500.

Next we compute them over the real subfield and use the invariants from [28,
Appendix 3]. We get H1 = 256X − 2030994 + 56133α, H2 = 128X + 12637944−
2224908α, H3 = 65536X − 11920680322632 + 1305660546324α where α is a root of
X2 − 3534X + 177505, so that OK+

0
= Z[α]. This computation took 1401 seconds,

so in this case, the speedup due to using better invariants and computing over the
real subfield is more than 4-fold.
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