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Abstract. Let KA be a Kummer variety defined as the quotient of an Abelian variety A by the
automorphism (−1) of A. Let T ∗

0 (A) be the co-tangent space at the point 0 of A. Let End(A) be
the additive group of endomorphisms of A. There is a well defined map ρ : End(A) → Aut(T ∗

0 (A)),
f 7→ (df)∗

0, where (df)∗
0 is the differential of f in 0 acting on T ∗

0 (A). The data of f ∈ End(KA) which
comes from f ∈ End(A), determines ρ(f) up to a sign. The aim of this paper is to describe an efficient
algorithm to recover ρ(f) up to a sign from the knowledge of f . Our algorithm is based on a study of
the tangent cone of a Kummer variety in its singular 0 point. We give an application to Mestre’s point
counting algorithm.

1. Introduction

1.1. Characteristic polynomial of the Frobenius. One of the motivations of this paper is to improve
point counting on abelian varieties based on canonical lifts. A point counting algorithm takes as input
an Abelian variety A defined over a finite field Fq where q = pr and outputs the cardinality of A(Fq),
and even the full characteristic polynomial of the Frobenius morphism.

These family of point counting algorithms using canonical lifts were pioneered by Satoh [Sat00] for
elliptic curves, and Mestre’s algorithm [Mes01; Rit03] (and its generalisations) extend this to abelian
varieties.

An algorithm of this family proceeds in two steps and works under the generic hypothesis that A is
ordinary. First, it uses p-modular equations (for suitable modular invariants) to compute a canonical
lift A of A over Qq the degree r unramified extension of Qp. Satoh uses modular polynomials in terms
of the j-invariant of elliptic curves. This has been extended to abelian surfaces in [MR20; MR21]
by using modular polynomials in terms of the Igusa invariants. Mestre uses the duplication formula
between theta constants, which is given by a generalization of the Arithmetic–Geometric Mean (AGM)
sequence in higher dimension (so works when p = 2), and extensions [CL07; CKL06; CL09; FLR11] use
p-multiplication formula between theta constants.

The second step is to compute the action of the qth-Frobenius morphism (or its dual the qth-
Verschiebung) on T ∗0 (A) the co-tangent space in 0 of A. Modular invariants cannot recover this action,
so this step needs an explicit p-modular correspondance (parametrizing normalised isogenies) between
modular forms of some weight ρ. We will call this an affine modular correspondance. By definition of a
modular form, this allows to recover the determinant of the action of the Verschiebung to the power ρ.
This determinant is exactly the product of the invertible eigenvalues of the Frobenius.

Satoh computes this affine modular correspondance directly by lifting the kernel of the Verschiebung,
using Vélu’s formulae [Vél71] to compute the equation E′ : y2 = x3 +a′x+ b′ of the normalised isogenous
elliptic curve, and then using the fact that the coefficients a′ and b′ of E′ are modular forms of weight 4
and 6 respectively to recover the action of the Frobenius to the square. This gives the value t2 of the trace,
from which it is easy to recover t by using Hasse’s formula. Mestre’s algorithm using duplication formulas
and its extensions using p-multiplication formulas relate the theta constants directly hence already give
an affine modular correspondance (of weight 1/2 from which it is easy to construct modular relations
between modular forms of weight 1). Of course it is easy from this affine modular correspondance
to give relations between quotients θi/θ0 of theta constants, i.e. relations between modular functions,
which is what was used in the lifting step. For abelian surfaces, in [MR20] the authors use the same
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approach as Satoh’s, namely they lift the kernel and then use [CR15] to compute the theta constants of
the normalised isogeny.

A problem of this approach using modular forms of weight ρ is that it only allows to recover
∏g
i=1 λ

ρ
i

where λi are the invertible eigenvalues of the Frobenius. When g = 1 this is not a problem: given λρ,
then as mentioned above Hasse’s formula allows to take the correct root λ, from which the trace is
recovered as t = λ + q/λ. In higher dimension, Mestre explains in [Mes02a] how to recover in most
cases the characteristic polynomial of the Frobenius morphism. But his method is painful from an
algorithmic point of view: it involves raising the level of p-adic precision needed for the computation of
a canonical lift above the level prescribed by Weil bounds and then to use a LLL algorithm on a lattice
of dimension 2g − 1. Moreover, Mestre gives examples of Abelian varieties of dimension g > 4 for which
the determinant of the Verschiebung does not characterises its isogeny class: as a consequence it is not
even possible to recover the characteristic polynomial of the Frobenius morphism from this data only.

In this article, we make the trivial but crucial remark that this ambiguity can be avoided if instead of
modular forms we compute the equation of the isogeny induced by the Verschiebung directly so that
we can compute its action on the differentials (or by duality its action on the tangent space at 0), to
recover not only the determinant, but the full matrix M of the Verschiebung (up to conjugation). It
is then straightforward to recover the characteristic polynomial of the Frobenius as the characteristic
polynomial of the matrix M + qM−1. Strangely it seems that this obvious idea was not considered in
the literature, although it raises no difficulty: Satoh already lifts the kernel, and Vélu’s formula give the
equations of the isogeny along with the equations of the normalised isogenous elliptic curve. Mestre
uses the duplication formula between theta constants θi(0, τ), but it is well known that this duplication
formula extends to a duplication formula between theta functions θi(z, τ) which give an explicit equation
for the 2-isogeny. The extensions of Mestre algorithm [CKL06; CL09; FLR11] to characteristic p > 2
uses a p-multiplication formula between theta constants of level 2p (or 4p), which readily extends to a
p-multiplication formula between theta functions. The isogeny algorithm [CR15] used by [MR20] also
gives the equations for the isogeny, not only the theta constants of the normalised isogenous abelian
variety.

We refer to section 4 for more details, and give examples in dimension g = 1, 2 in Section 5.

1.2. The tangent cone of the Kummer variety. A technical difficulty that arises when implementing
the strategy above, is that using level 2 theta functions as in Mestre’s original algorithm only give an
embedding of the Kummer variety KA = A/± 1 rather than of A itself (if the polarisation is absolutely
simple). A solution would be to switch to theta functions of level n > 2, but this would increase the
complexity of finding a canonical lift (which would be described using ng − 1 coordinates rather than
2g − 1).

So a natural question that we tackle in this article is the following: given an isogeny f : A→ B which
is expressed in terms of the Kummer varieties f : KA → KB. Can we recover the action of df on the
tangent space of A and B at 0 from the action of f on the tangent cone of KA and KB at 0?

Before describing our main results, we explain why this question is interesting for its own sake. In
many algorithmic applications Kummer varieties are more amenable to computation than Abelian
varieties. For instance, using theta functions, one can embed Kummer varieties inside the projective
space of dimension 2g − 1 whereas Abelian varieties need at least 3g − 1 parameters (generically).
Moreover, 4g − 1 parameters are required in order to have Riemann equations and all that arise from
them such as efficient representation and arithmetic [LR16]. This is why there is a series of papers
dealing with all sorts of computations with Kummer varieties: arithmetic, pairings, isogenies [LR15b;
LR15a; CR15]. Computing ρ(f) from the knowledge of an isogeny f ∈ End(KA) can be viewed as a
continuation of this approach by enlarging our computational toolbox. Of course, in doing so, we want
to do it significantly more efficiently than recovering f ∈ End(A) (which in the case of theta coordinates,
involves manipulating an ambient space of at least 3g − 1 parameters) and then computing (df)∗0. Our
algorithm works at the conditions that we have a description of a Zariski neighbourhood of 0 ∈ KA(k)
as a closed sub-variety of an affine space Am given by explicit polynomial equations. Such models are
known for Kummer varieties of dimension less than 3 [CF+96]. In general, the Kummer variety can be
defined by equations of degree 3 and 4 [Kem92].
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A first idea, if we are given a rational point1 P on A which is not of 2-torsion, since KA is smooth at
P , then the action of df : TP (A)→ Tf(P )B can be recovered directly on the Kummer variety. But, unlike
0A which is always rational, such a point may not exist, and we would like not to take an extension
of the base field to find such a point. Since the Kummer variety is singular at 0, we need to replace
tangent spaces by tangent cones.

We now fix the notations we are going to use for the rest of the paper. We let A be a dimension g
abelian variety over a field k of characteristic char(k), and denote by KA its associated Kummer variety
(by which we mean the quotient of A by the automorphism −1 acting on it). We denote by 0 the neutral
point of A. Let End(A) be the additive group of endomorphisms of A. For x any point of a variety X,
we denote by T ∗x (X) its co-tangent space in x. The map ρ : End(A)→ Aut(T ∗0 (A)), f 7→ (df)∗0, where
(df)0 is the differential in 0 map of f . Apart from point counting, this differential has many theoretical
and algorithmic applications [Shi98; Sat00]. It is clear that any f ∈ End(A) induces on the quotient
a map f : KA → KA. Any such f is called an endomorphism of KA and we denote by End(KA) the
monoid of endomorphism of KA.

An endomorphism f ∈ End(KA) determines up to a sign an endomorphism ±f : A→ A and then up
to a sign a linear automorphism ±(df)∗0 : T ∗0 (A)→ T ∗0 (A). In this paper, we describe how to compute
efficiently ±(df)∗0 from the knowledge of f . In fact our algorithm easily generalizes to isogenies f : A→ B
rather than only endomorphisms.

As explained above, the problem we face in recovering the linear representation of End(KA) is that
the 0-point of KA is singular. As a consequence, the co-tangent space in 0 of KA, T ∗0 (KA), has dimension
higher than that of g and it is not evident how to recover a g-dimensional linear action from an higher
dimensional action on T ∗0 (KA).

Let Rg = k[x1, . . . , xg], recall that Sym2(Rg) is nothing but k[uij |i,j∈{1,...,g},i6j]
(uijukl−uikujl) where (uijukl−uikujl)

is the ideal generated by the elements uijukl − uikujl. Let Qg = Spec(Sym2(Rg)). The variety Qg is
easily seen to be the quotient of Ag = Spec(Rg) by the action of ±1 on it. Considering this, the following
proposition should not be surprising:

Proposition 1.1. Let A be a dimension g variety over a field k of characteristic different from 2, and
let KA be its Kummer variety. Let T c0 (KA) be its tangent cone at the point 0 ∈ KA(k). Then T c0 (KA) is
isomorphic as an algebraic variety to

Qg = Spec(Sym2(k[x1, . . . , xg])).

The proposition is a general structure theorem for the tangent cone at the point 0 of a Kummer
variety. It implies in particular that the dimension of the cotangent space in 0 of KA is g(g + 1)/2. Its
interest for the purpose of this paper is that it describes a coordinate system where one can read the
linear action of an isogeny.

To explain this, denote by Aut(Ag) (resp. by Aut(Qg)) the group of automorphisms of Ag (resp.
of Qg) preserving the origin. Every automorphism f of Ag preserving the origin is linear, so that f
commutes with the action of −1 and induces an automorphism f of Qg. Denote by τ the map given by
f 7→ f .

The following theorem tells that an element of Aut(Qg) determines an elements of Aut(Ag) up to a
sign.

Theorem 1.2. There is an exact sequence:

0 Z/2Z Aut(Ag) Aut(Qg) 0ε τ

where ε : Z/2Z→ {−1, 1}, is given by x 7→ (−1)x. Moreover, the computation of the inverse image of τ
in the canonical coordinate system of Qg can be done via one square root computation in k and O(1)
field operations.

1In the cryptographic setting, such a point will of course be given as part of the public key cryptosystem.
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Now let f ∈ End(KA) be an isogeny that we suppose given explicitly. By differentiating the expression
of f we easily deduce (df)∗0 : T ∗0 (KA) → T ∗0 (KA) from which we deduce a map of algebraic varieties
(df)0 : T c0 (KA)→ T c0 (KA). In the following commutative diagram:

T c0 (KA) T c0 (KA)

Qg Qg

(df)0

λ

δ

λ

we know, by Theorem 1.2 that from the knowledge of δ, we can efficiently recover the linear action
(df)∗0 : T ∗0 (A)→ T ∗0 (A) up to a sign where f is a lift of f to A. In order to compute δ, as (df)0 is known,
the preceding diagram shows that it is sufficient to be able to compute quickly:

• the tangent cones T c0 (KA);
• the isomorphism λ.

These two algorithms are explained in Section 3.
One last algorithmic difficulty lies in that the isomorphism from Proposition 1.1 is defined over the

field of definition k of our model of the Abelian variety A. But we are algorithmically given a model
of KA, which may have a smaller field of definition k0. Since we really want to work over the field k0
rather than k, we twist the isomorphism of Proposition 1.1 by g quadratic characters (see Example 3.2).

Before going further, we describe the organisation of the paper. In Section 1.3, we give some notations
and basic facts which will be used in the rest of the paper. Section 2 is devoted to the study of the
tangent cone at 0 of Kummer varieties. In section 3, we describe the algorithms to compute the linear
representation of the group of endomorphisms of a Kummer variety. As mentioned above, we give an
application of our algorithms to improve Mestre’s point counting algorithm in section 4.

1.3. Notations and basic facts. Let k be a perfect field, we denote by k its algebraic closure. If A
is a k-algebra, we denote by Spec(A ) the associated algebraic variety over k. In this paper, we only
consider integral algebraic varieties. If X is an integral algebraic variety over k, we denote by OX its
structural sheaf. If x is a point of X, the stalk OX,x of OX in x is a local ring. Let M be the maximal
ideal of OX,x and let k′ = OX,x/M be the residue field in x. We denote by T ∗x (X) the co-tangent space
of X in x that is the k′ vector space M/M2. The point x is regular if dimk′ T

∗
x (X) = g and singular

otherwise, in which case, dimk′ T
∗
x (X) > g. We denote by Tx(X)) the affine algebraic variety over k′:

Spec(Sym(M/M2)), where Sym(M/M2) is the symmetric algebra of M/M2. Concretely, let M (resp.
k’) be the maximal ideal (resp. the residual field) of OX,x, then Sym(M/M2) = k′[x1, . . . , xg] where
x1, . . . xg are a k′ basis of M/M2 (i.e. are uniformisers).

If f : X → Y is a map of algebraic varieties and x a point of X then (df)∗x : T ∗f(x)(Y )→ T ∗x (X) is the
derivative of f in x. It induces a map of algebraic varieties (df)x : Tx(X))→ Tf(x)(Y ) that we also call
the derivative of f in x.

If X is an Abelian variety over k, we denote by KX , or by K when no confusion is possible, its
associated Kummer variety that is the quotient of X by the automorphism −1. We denote by 0 the
origin point of X as well as its projection on KX .

If R is a local ring over k with maximal ideal M, we denote by

GrMR = ⊕i∈NMi/Mi+1,

its associated graduated ring, where by convention M0 = R. For all i ∈ N, let GriMR = Mi/Mi+1.
When no confusion is possible we will often replace GrM by Gr.

Example 1.3. If R is regular of dimension g then GrMR = k′[x1, . . . , xg] is the polynomial ring over
k′ = R/M in the g variables x1, . . . , xg.

Definition 1.4. Let X be an integral variety over k and x a point of X. Let OX,x be the local
ring of X in x and denote by M the maximal ideal of OX,x. The tangent cone of X in x that we
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denote by T cx(X) is by definition Spec(GrM(OX,x)). It is naturally embedded in Tx(X), via the map
Sym(M/M2)→ GrM(OX,x).

We recall the basic properties of tangent cones that we use in the following and refer the reader to
[CLO92] for a more in-depth coverage of the subject. First, if X is an algebraic variety of pure dimension
dimX then dimX = dimT cx(X) for all x point of X. If x is a regular point then T cx(X) = Tx(X).

Moreover, if f : A→ B is a map of algebraic varieties and x a point of A then (df)x : Tx(A)→ Tx(B)
induces a map (df)x : T cx(A)→ T cf(x)(B) which is functorial.

2. Tangent cone at 0 of Kummer varieties

This section is devoted to the study of tangent cone of Kummer varieties KA in 0 the 0-point of
KA. We prove that the tangent cone is isomorphic to a certain simple model. We use this isomorphism
to deduce interesting algorithmic consequences for the computation of the tangent cone of a Kummer
variety.

Let X be an Abelian variety over k. As the set of 2-torsion points of X are left invariant by −1, these
points project to double points on KX . In particular, 0 ∈ KX(k) is singular and dimT ∗0 (KX) > g. We
would like to have a structure theorem for T c0 (KX). First, we prove:

Lemma 2.1. Let k be a field of characteristic different from 2. Let R be a regular local ring of dimension
g which is a k-algebra. Denote by M its unique maximal ideal. Let σ be an automorphism of R. As
σ(M) ⊂M, σ acts on GrMR. We also denote by σ this action. We suppose that σ :

• acts as the identity on k′ = R/M;
• acts like −1 on the co-tangent k′-vector space M/M2.

Then Rσ is a local ring with maximal ideal Mσ and there is an isomorphism of graduated rings
(1) GrMσ (Rσ) ' (GrMR)σ,
where Rσ (resp. (GrMR)σ) is the sub-ring of invariants of R (resp. GrMR) for the action of σ.

Proof. Let x ∈ Rσ\Mσ. As M is a maximal ideal of R, there exists m ∈ M and u ∈ R such that
m+ ux = 1 so that 1/2(m+mσ) + 1/2(u+ uσ)x = 1. This shows that Rσ/Mσ is a field so that Mσ is
a maximal ideal of Rσ. If M0 is a maximal ideal of Rσ then M0R is a proper ideal of R. Thus M0 ⊂M
since R is local so that M0 ⊂Mσ. So Rσ is a local ring with maximal ideal Mσ.

Note that, as σ acts by −1 on M/M2, we have that (GrnMR)σ = GrnMR for n even and (GrnMR)σ = 0
for n odd. Since Mσ ⊂M and Mσ/M2 ⊂ (M/M2)σ = {0}, Mσ ⊂M2. Moreover M2 ∩Rσ is a strict
ideal of Rσ which contains Mσ. Thus Mσ = M2 ∩Rσ. From this, we deduce that
(2) (Mσ)n ⊂M2n ∩Rσ,
for all n ∈ N.

For all n ∈ N, the inclusion (Mσ)n → (M)2n induces a map (Mσ)n/(Mσ)n+1 →M2n/M2n+1 and so
a map GrMσ (Rσ)→ GrMR. This last map factors through µ∗ : GrMσ (Rσ)→ (GrMR)σ. We are going
to prove that µ∗ is an isomorphism that we seek.

We prove that µ∗ is surjective. It suffices to prove that y ∈ (Gr2d
MR)σ, represented by y ∈M2d, has a

pre-image. Write y = y1 . . . yd for yi ∈M2, let y′i = 1/2(yi + yσi ) for i = 1, . . . , d and y′ = y′1 . . . y
′
d. We

note that y′i = yi mod M3 so that y′ ∈ (Mσ)d and y = y′ mod M2d+1. Thus y′ is a representative of
the pre-image of y.

Next, we prove that µ∗ is injective. Let x ∈ GrMσ(Rσ) such that µ∗(x) = 0. We can suppose
that x ∈ GrdMσ(Rσ). Let x ∈ (Mσ)d be a representative of x. As µ∗(x) = 0, x ∈ M2d+1 and we
have to prove that x = 0 that is M2d+1 ∩ (Mσ)d ⊂ (Mσ)d+1. But as (Gr2d+1

M R)σ = 0, we have
M2d+1 ∩ (Mσ)d = M2d+2 ∩ (Mσ)d. So to prove that µ∗ is injective, it is enough to prove that for all
n > 0 integer,
(3) M2n ∩Rσ ⊂ (Mσ)n.
If we can prove that for all n > 0
(4) M2n ∩Rσ ⊂ (Mσ)n + (M2(n+1) ∩Rσ).
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then for m > n, we have:
M2m ∩Rσ ⊂ (Mσ)n + (M2(m+1) ∩Rσ),

and by an easy induction, we obtain that for all m > n:
M2n ∩Rσ ⊂ (Mσ)n + (M2(m+1) ∩Rσ).

As ∩i∈NMi = {0}, we have proved (3). So in order to finish the proof, it is enough to obtain (4).
For this, let x ∈M2n∩Rσ, there exists a1, . . . , an ∈M2 such that x = a1 . . . an. Using the surjectivity

of µ∗, we know that there exists aσ,i ∈Mσ for i = 1, . . . , n such that ai = aσ,i + εi with εi ∈M3. Let
θ = a1 . . . an − aσ,1 . . . aσ,n. Clearly, θ ∈ M2n+1 ∩ Rσ. Using the fact that (Gr2n+1

M R)σ = 0, we have
that actually θ ∈M2n+2 and we are done. �

The following easy lemma complement the preceding lemma.

Lemma 2.2. Keeping the hypothesis of the preceding lemma, we have an isomorphism:
(5) GrM(R)σ ' Sym2(k′[x1, . . . , xg]).

Proof. As R is a regular local ring of dimension g, GrM(R) ' k′[x1, . . . , xg]. By hypothesis, σ acts
by on GrM(R) by leaving k′ fixed and σ(xi) = −xi for i = 1, . . . , g. As a consequence, GrM(R)σ =
k′[xixj |i, j ∈ {1, . . . , g}]. �

Definition 2.3. Let (R,M) and (R′,M′) be local rings. We say that a morphism λ : Spec(GrM′(R′))→
Spec(GrM(R)) is homogeneous if λ∗ : GrM(R)→ GrM′(R′) is a morphism of graduated rings.

Proposition 2.4. Let K be a dimension g Kummer variety over k and let T c0 (KA) be its tangent cone
at the point 0 ∈ KA(k). Then there is a homogeneous isomorphism of algebraic varieties:

λ : Qg = Spec(Sym2(k[x1, . . . , xg]))→ T c0 (KA).
.

Remark 2.5. In the notation, we omit the field of definition of Qg since it will be always clear by the
context.

Proof. By definition KA is the quotient of an Abelian variety A by the automorphism (−1) of A. The
local ring OA,0 in 0 of A with maximal ideal M is regular. The action of the automorphism (−1)∗ on
OA,0 verifies the hypothesis of lemma 2.1 and O

(−1)
A,0 = OKA,0 is the local ring in 0 of KA. We thus have

an isomorphism λ∗ : GrM(−1)(OKA,0)→ (GrMOA,0)(−1) and GrM(OA,0))(−1) ' Sym2(k[x1, . . . , xg]) by
Lemma 2.2. Whence the existence of λ. �

Remark 2.6. We deduce from Proposition 2.4 that the co-tangent space in 0 of a Kummer variety has
dimension g(g + 1)/2. An immediate consequence is that a Kummer variety of dimension g can not be
embedded as a closed sub-variety in an ambient space of dimension less than g(g + 1)/2.

Remark 2.7. Using the standard theory of quotients by a finite group, we can recover Proposition 2.4
as follow. Let G = Z/2Z acts on A. Then since A is projective, the quotient KA = A/G exists, and
furthermore the quotient commutes with flat base change. This is a special case of the Keel-Mori
theorem [KM97] (see also [Ryd13] for a nice overview). In fact, the existence of a quotient for a finite
locally free group acting on a projective scheme is already given in [Gro57, III. Théorème 5.3] (in the
greater generality of an action by a groupoid, see also [GD+70, V. Théorème 4.1] for the proofs), and the
construction clearly shows that the quotient is uniform (that is stable by flat base change). Furthermore
the quotient is geometric in the sense of [MFK94, Theorem 1.1]. See also [GM07, Theorem 4.16] for
another proof (in the case of an action by a group).

Now let P be a point of KA. Its completion ÔKA,P is flat and quasi compact over OKA,P . Since
π : A→ KA is finite, the pullback of Spec K̂A,P is given by

∐
Q∈A,π(Q)=P Spec ÂQ. By uniformity, we

then have that ÔKA,P =
∏
Q∈A,π(Q)=P Ô

G
AQ

.
So if P ∈ KA is not a point of 2-torsion, there are two points Q1 and Q2 above it. The action of

G permutes Q1 and Q2, so ÔKA,P = ÔAQ1
ÔAQ2

' k[[x1, . . . , xg]. If P ∈ KA is a point of two torsion,
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Q above P , then since the action of G on the tangent space at Q is given by x 7→ −x, we get that
ÔGAQ ' k[[x, y]]/± 1 ' Sym2 k[[x1, . . . , xg] ' k[[xixj ]].

Since the tangent cone is also the graduate ring of the completion, we deduce immediately Proposi-
tion 2.4. In our case the action is sufficiently simple that we preferred to give an elementary proof of
this Proposition.

Proposition 2.8. The variety Qg = Spec(Sym2(k[x1, . . . , xg])) is birationally equivalent to Ag. By
Proposition 2.4 so is T c0 (A).

Proof. It suffices to prove that the function field K(Qg) of Qg is isomorphic to k(y1, . . . , yg). Fix
an isomorphism Sym2(k[x1, . . . , xg]) ' k[uij |i,j∈{1,...,g},i6j]

(uijukl−uikujl) . Then K(Q) is the field of fractions of
k[uij |i,j∈{1,...,g},i6j]

(uijukl−uikujl) . The elements u1i for i = 1, . . . , g of K(Q) are algebraically independent since from
any non trivial algebraic relations between u1i we deduce a non trivial algebraic relation between the yi
of k[y1, . . . , yg] via the morphism of k-algebra k[uij |i,j∈{1,...,g},i6j]

(uijukl−uikujl) → k[y1, . . . , yg], uij 7→ yiyj . . Thus we
can define a morphism of function fields ζ∗ : K → k(y1, . . . , yg) by u1i 7→ yi for i = 1, . . . , g. It is clear
that ζ∗ is onto. Since for all 1 6 k 6 l 6 g, ukl = u1ku1l/u11, ζ∗ has an inverse and we are done. �

In general the description of an isomorphism between algebraic varieties can involve high degree
polynomials and computing it may be difficult. It turns out that the isomorphism of Proposition 2.4 is
linear. This is the content of the following proposition and corollary:

Lemma 2.9. Let R and R′ be regular local rings of dimension g with respective maximal ideals M and
M′. We suppose that GrMR and GrM′R′ are isomorphic graded rings and let λ∗ : GrMR → GrM′R′
be an isomorphism of graded rings. Then λ∗ induces a linear morphism λ∗1 : M/M2 → M′/M′

2. If
moreover, R′ is generated as a ring by M′/M′

2 then λ∗ is uniquely determined by λ∗1.

Proof. This is immediate. �

Corollary 2.10. Every homogeneous isomorphism λ : Qg → T c0 (KA) is linear which means that there
exists a linear morphism µ : A(T ∗0 (KA))→ Ag(g+1)/2 such that we have the diagram:

Qg T c0 (KA)

Ag(g+1)/2 A(T ∗0 (KA))

λ

µ

where the vertical arrows are the canonical immersions.

Proof. This is an immediate consequence of the preceding Lemma. �

Denote by Aut(Ag) the group of automorphisms of Ag preserving the origin. Let Aut(Qg) be the
group of homogeneous (see Definition 2.3) automorphisms of Qg. In order to compute an isomorphism
between T c0 (KA) and Qg, it will be useful to have a description of Aut(Qg) since this group acts on the
right on the set of isomorphisms between T c0 (KA) and Qg. First, we remark that

Lemma 2.11. The variety Qg is the quotient of Ag by the action of ±1 on it.

Proof. Let π : Qg → Ag be the map given on coordinate ring by the injection π∗ : Sym2(k[x1, . . . , xg]) '
k[uij |i,j∈{1,...,g},i6j]

(uijukl−uikujl) → k[xi|i ∈ {1, . . . , g}], ui 7→ x2
i , vij 7→ xixj . It is clear that the image of π∗ is the

sub-ring of invariants of k[xi|i ∈ {1, . . . , g}] by the action of −1 whence the lemma. �

We denote by π : Ag → Qg the canonical projection. Every automorphism f of Ag preserving the
origin is linear, so that f commutes with the action of −1 and induces an automorphism f of Qg such
that the following diagram commutes:
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Ag Ag

Qg Qg

f

π

f

π

Denote by τ the map given by f 7→ f .

Theorem 2.12. There is an exact sequence:

(6) 0→ Z/2Z→ Aut(Ag) τ→ Aut(Qg)→ 0,

where Z/2Z is sent to the ±1 subgroup of Aut(Ag).

Proof. Let f ∈ Aut(Ag) be such that f = τ(f) = 1. Let R = k[uij |i,j∈{1,...,g},i6j]
(uijukl−uikujl) , we fix the isomorphism

R ' Sym2(k[x1, . . . , xg]), uij 7→ xixj . As f∗(uii) = uii, f∗(xi) = ±xi. Suppose, for instance, that
f∗(x1) = x1, then for j ∈ {2, . . . , g}, as f∗(u1j) = u1j , f∗(xj) = xj . The case f∗(x1) = −x1 is similar
so that we have proved that ker(τ) ' Z/2Z.

It only remains to prove that τ is onto. For this let f ∈ Aut(Qg) and consider the followings dual
diagrams:

Ag ×f A
g

Ag Ag

Qg Qg

π

f

π

p1 p2

k[xi]⊗f∗ k[xi]

k[xi] k[xi]

Sym2(k[xi]) Sym2(k[xi])

π∗

f
∗

π∗

p∗1 p∗2

In these diagrams, Ag ×f Ag is the fiber product of Ag by Ag over f . We condider k[x1, . . . , xg]
as a R-module via the inclusion π∗ : R → k[x1, . . . , xg], uij 7→ xixj . As f∗ is an automorphism of
Sym2(k[x1, . . . , xg]), the tensor product k[xi]⊗f∗ k[xi] is the coordinate ring of Ag ×f A

g. We consider
k[xi]×R k[xi] as a skew-right-module in the following sense: for all x ∈ k|xi]×R k[xi] and λ ∈ R, we
put λx = xf

∗(λ). It is then clear that the map k[xi] ⊗R k[xi] → k[xi] ⊗f k[xi], x ⊗ y 7→ x ⊗ y is an
isomorphism so that Ag ×f A

g is isomorphic to Ag ×Qg Ag. But as π : Ag → Qg is a degree two étale
covering, Ag ×Qq Ag ' ti=1,2Ag. By considering the restriction of p1 on one of the two components of
ti=1,2Ag

p1→ Ag, p1 admits a section that we denote by p−1
1 . Let f = p2 ◦ p−1

1 , it clear by construction
that τ(f) = f . �

We can give a useful matrix interpretation of the preceding theorem. For this, we fix coordinate
systems with the isomorphisms Ag ' Spec(k[xi]) and Qg ' Spec(k[uij |i,j∈{1,...,g},i6j]

(uijukl−uikujl) ) and π∗(uij) = xixj
for i, j ∈ {1, . . . , g}, i 6 j. Then to f ∈ Aut(Ag), we can associate the matrix Mf∗ = (αij) ∈ GL(g, k)
such that f∗(xi) =

∑g
j=1 αijxj . In the same way, by choosing a bijection ν : {1, . . . , g(g + 1)/2} →

{(i, j), 1 6 i 6 j 6 g}, to f ∈ Aut(Qg), we can associate the matrix Mf
∗ = (γij) ∈ GL(g(g + 1)/2, k)

such that f∗(uν(i)) =
∑g(g+1)/2
j=1 αijuν(j).

We have Mf
∗ = Sym2(Mf∗) because

f
∗(uij) = f∗(xixj) = (

g∑
k=1

αikxk)(
g∑
l=1

αjlxl) =
g∑

k,l=1,...,g,k6l
(αikαjl + αjkαil)ukl.
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In order to describe the image of the map Mf∗ 7→ Sym2(Mf∗), consider the quadratic forms:
Qijkl = uijukl − uikujl,

for i, j, k, l = 1, . . . , g, i < j < k < l. We have an action of GL(g(g+1)/2, k) on k[uij |i, j ∈ {1, . . . , g}, i 6
j] by setting for (αkl) ∈ GL(g(g + 1)/2, k), (αkl)(uij) =

∑g(g+1)/2
m=1 αν−1((i,j)),muν(m). We denote by

SO(Qg) (resp. O(Qg)) the subgroup of SL(g(g + 1)/2, k) (resp. of GL(g(g + 1)/2, k) which leaves
invariant the vector space generated by the quadratic forms Qijkl.

We have isomorphisms d0 : GL(g, k) ' SL(g, k)ok∗ and d1 : O(Qg) ' SO(Qg)ok∗ and the following
commutative diagram:

GL(g, k) O(Qg)

SL(g, k) o k∗ SO(Qg) o k∗

ϕ

ϕ′
d0 d1

where ϕ and ϕ′ are defined by:
(7) ϕ : M 7→ Sym2(M), ϕ′ : (M,λ) 7→ (Sym2(M), λ2).
Then Theorem (2.12) tells that ϕ is surjective and that ϕ′ restricted to SL(g, k) is surjective onto
SO(Qg).

Example 2.13. In the case g = 2, there is one quadratic form Q1122 = u11u22 − u2
12. Its associated

matrix in the basis (u11, u22, u12) is:

M(Q1122) = 1
2

0 1 0
1 0 0
0 0 −2

 .

If (
x′1
x′2

)
=
(
a b
c d

)(
x′1
x′2

)
is a change of coordinates then:

Sym2(
(
a b
c d

)
) =

a2 b2 2ab
c2 d2 2cd
ac bd ad+ bc

 .

And Theorem (2.12) tells that the map:
SL(2, k)/± 1→ SO(Q2)

±M 7→ Sym2(M)
(8)

is a bijection.

Remark 2.14. It is clear that from the knowledge of Sym2(M) ∈ SO(Qg), one can recover ±M at the
expense of a square root and g2 − 1 divisions in k.

We consider the computation of the tangent cone of a Kummer variety. We suppose that a Zariski
neighbourhood U of 0 ∈ KA(k) is given as a closed sub-variety of Am, the affine space of dimension m,
by an ideal I(U) generated by (hi)i=1,...,` with hi ∈ k[x1, . . . , xm]. We suppose that via this embedding,
the point 0 ∈ KA(k) is sent to the point 0 ∈ Am(k). We would like to compute a model of the tangent
cone. By that we mean computing a coordinate system of T0(KA) and a embedding of T c0 (KA) inside
T0(KA) by a set of algebraic equations.

For any h ∈ k[x1, . . . , xm] we denote by min(h) the homogeneous component of smallest degree of h.
Then we know [CLO92, Definition 2, p. 527] that the ideal I(T c0 (KA)) of T c0 (KA) is generated by the
set {min(h)|h ∈ I(U)}. As for α, β ∈ k[x1, . . . , xm], we do not have in general that min(α) + min(β) =
min(α + β), it is not true that I(T c0 (KA)) is generated by (min(hi))i=1,...,`. It is shown in [CLO92,
Proposition 4] that a set of generators of I(T c0 (KA)) can be recovered by computing a homogeneous
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Groebner basis for a well chosen monomial order of the homogenized ideal of I. Such a computation
may be very time consuming and the complexity of a Groebner basis computation is sometimes difficult
to assess. In the case of the tangent cone of a Kummer variety, the following proposition, the proof of
which relies on Proposition 2.4 shows that it can be obtained with a well controlled and limited amount
of computations.
Proposition 2.15. Let KA be a Kummer variety. We suppose given a closed embedding ζ : U →
Am = Spec(k[x1, . . . , xm]) where U is a Zariski neighbourhood of 0 ∈ KA(k). Let I(U) = {z ∈
k[x1, . . . , xm]|ζ∗(z) = 0}, we suppose that the ideal I is generated by (hi)i=1,...,` and that ζ(0) = 0 ∈
Am(k). Let I1 be the ideal generated by the set {min(hi)|deg(min(hi)) = 1, i = 1, . . . , `}. Let I2 be the
ideal generated by the set {min(h), h ∈ I(U),deg(min(h)) = 2}. Then:

• the image of (dζ)0 : T0(KA))→ Am (where (dζ)0 is the derivative of ζ in 0, see Section 1) is
the linear sub-space of Am such that (dζ)∗0(I1) = 0;
• Spec(k[x1,...,xm]

(I1,I2) ) is T c0 (KA) embedded in T ∗0 (KA).

Remark 2.16. The first claim of the proposition which describes T0(KA) is general and makes no use
of any particular property of the singular point of a Kummer variety.
Proof. For the first claim of the proposition, let Sε = Spec(k[ε]/ε2]) then T0(KA)(k) is by definition the
set of morphisms Sε → KA such that Spec(k)→ Sε → KA is the 0-point morphism (here Spec(k)→ Sε
comes from the map k[ε]/ε2 → k defined by 1 7→ 1, ε 7→ 0). This is in bijection with the set of k-algebra
morphisms κ : k[x1,...,xm]

(h1,...,h`) → k[ε]/ε2 such that κ(xi) = 0 mod ε. Such a k-algebra morphism κ is given
by (λi) ∈ k

m such that κ(xi) = λiε. By writing that κ(hi) = 0, it is clear that the point (λi) ∈ k
m is in

T ∗0 (KA)(k) if and only if it satisfies the relations of I1.
For the second claim of the proposition, we know from Corollary 2.10 that the isomorphism µ :

T c0 (KA)→ Qg is linear so that µ∗ preserves the degree of rational functions. As a consequence, if we
make the identification Qg = Spec(k[uij |i,j∈{1,...,g},i6j]

(uijukl−uikujl) ), the µ∗(uijukl − uikujl) are contained in I2. We
know moreover that the uijukl − uikujl is a complete set of relations for Qg. Since µ∗ is an isomorphism
the µ∗(uijukl − uikujl) generate the ideal of the tangent cone T c0 (KA) embedded in T0(KA). �

Remark 2.17. In the preceding proposition, up to a linear transformation of Am, we can sup-
pose that I1 is generated by (xg(g+1)/2+1, . . . , xm). In this case, the embedding (dζ)0 : T ∗0 (KA) =
Spec(k[x1, . . . , xg(g+1)/2]) → Am = Spec(k[x1, . . . , xm]) is defined by (dζ)∗0(xi) = 0 if i > g(g + 1)/2
and (dζ)∗0(xi) = xi otherwise. The tangent cone of T c0 (KA) considered as a closed subset of T0(KA) =
Spec(k[x1, . . . , xg(g+1)/2]) is then just defined by the ideal (dζ)∗0(I2).

From the Proposition 2.15 and Remark 2.17, we deduce the Algorithm 3 which computes equations for
the tangent cone at 0 of a dimension g Kummer variety KA over the field k. More precisely, Algorithm
3, takes as input a closed embedding U → Am where U is an open neighbourhood of 0 ∈ KA(k) and
outputs:

• A linear automorphism σ : Am → Am such that the image of the embedding σ ◦ (dζ)0 :
A(T ∗0 (KA)) → Am = Spec(k[x1, . . . , xm]) is the closed sub-variety given by xi = 0 for i >
g(g + 1)/2 so that we can identify T ∗0 (KA) with Spec(k[x1, . . . , xg(g+1)/2]);
• GI2 a set of generators of the ideal I2 such that T c0 (KA) is the closed sub-variety of A(T ∗0 (KA))
given as Spec(k[x1, . . . , xg(g+1)/2]/I2)

In general, to compute degree m relations of the tangent cone, one need to compute the Macauley matrix
of degree m induced by generators of the defining ideal I(U) and compute the row echelon form. In
our case, from the structure theorem, we know that once we have done the linear change of variable to
work in a linear space of dimension g(g + 1)/2, we can recover the degree 2 relations directly from the
generators.

If the closed embedding is given by ` polynomials in (hi)i=1,...,`, hi ∈ k[x1, . . . , xm] then Algorithm 1
for the computation of the equation of the tangent cone needs to compute the Gaussian elimination of a
matrix with O(`) lines and O(m) columns, (line 2 of Algorithm 1). This costs O(`2m) operations in
the base field. We remark that heuristically, in practice we may take ` = m + O(1). Afterwards, for
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the substitution of x′i, we may precompute all xixj in terms of the x′i for a total cost of O(m2g4), and
then the substitution of hi costs O(m2) additions of a polynomials with O(g4) monomials (since we may
truncate everything in degree 2). The total cost is O(`m2g4).

We may also compute an echelon form of the monomial coefficients of the elements in GI2 in order
to remove the linear relations between the equations. This involve the reduction of a matrix with `
lines and g(g + 1)/2 columns, hence costs O(`2g2). We may then assume that GI2 is given by O(g4)
equations.

Proposition 2.18. Suppose that hi = 0, where hi ∈ k[x1, . . . , xm], for i = 1, . . . , ` are equations for
KA, a dimension g Kummer variety over k, in a neighbourhood of 0 ∈ KA(k) in the ambient space Am.
The complexity of Algorithm 1 to compute equations of T c0 (KA) is O(`m2g4) operations in the base field.

Algorithm 1: Algorithm to compute equations for the tangent cone at 0 of a Kummer variety.
input :The polynomials:

(hi)i=1,...,`, hi ∈ k[x1, . . . , xm],
where hi = 0 for i = 1, . . . , ` are equations for KA, a dimension g Kummer variety over
k, in a neighbourhood of 0 ∈ KA(k) in the ambient space Am.

output :
• An invertible matrix Σ such that if (x′1, . . . , x′m) = (x1, . . . , xm)Σ the ideal I1 is generated by x′i
for i > g(g + 1)/2;

• GI2 a set of generators of the ideal I2 such that T c0 (KA) ' Spec(k[x′1,...,x
′
g(g+1)/2]
I2

).

1 Set GI1 = {min(hi)|deg(min(hi)) = 1, i = 1, . . . , `};
2 Using a Gaussian elimination compute an invertible matrix Σ such that if

(x′1, . . . , x′m) = (x1, . . . , xm)Σ, Span(x′g(g+1)/2+1, . . . , x
′
m) = Span(GI1);

3 for i← 1 to ` do
4 Compute h′i such that h′i(x′1, . . . , x′m) = hi(x1, . . . , xm);
5 wi ← h′i(x′1, . . . , x′g(g+1)/2, 0, . . . , 0) // wi ∈ k[x′1, . . . , x′g(g+1)/2]
6 end
7 for i← 1 to ` do
8 if deg(min(wi)) = 2 then
9 Add min(wi) to GI2 ;

10 end
11 end
12 return Σ, GI2 ;

Example 2.19. Let k be a field of characteristic different from 2 and let KA be a Kummer surface
over k. Using level 2 theta coordinates, one can embed KA into P3. This embedding is defined by a
degree 4 homogeneous equation f [CF+96]. The 0 point of KA inside P3 is given by homogeneous
coordinates (θi(0A)i=0,...,3). If θ0(0A) 6= 0, an affine neighborhood of 0A is given by the coordinates
(θi/θ0 − θi(0A)/θ0(0A))i=1,...,3. Plugging these coordinates into the equation f and taking the degree 2
part gives the equation of the tangent cone at 0A. It lives inside the cotangent space which in this case
is P3, so does not require any linear equation.

3. Linear representation of endomorphisms of Kummer varieties

Let KA = A/± 1 be a Kummer variety over k. We say that f : KA → KA is an endomorphism of
KA if there exists f ∈ End(A) such that the diagram:



12 DAVID LUBICZ AND DAMIEN ROBERT

A A

KA KA

f

π

f

π

is commutative. We denote by End(KA) the group of endomorphisms of KA. Let f ∈ End(A), it induces
an automorphism (df)∗0 : T ∗0 (A)→ T ∗0 (A) so that we have a map ρ : End(A)→ Aut(T0(A)). If moreover
we chose a basis of T ∗0 (A), we obtain:

(9) ρ0 : End(A)→ GL(g, k).

Starting from f ∈ End(KA) we can lift it to {f,−f} ⊂ End(A) so that we have a map:

(10) ρ0 : End(KA)→ GL(g, k)/(±1)

The aim of this section is to present an efficient method to compute ρ0. More precisely, for each
f ∈ End(KA) we want to compute a matrix Mf which is in the same conjugacy class as ρ0(f). By this,
we mean that there exists T ∈ GL(g, k) such that:

(11) Mf = ±Tρ(f)T−1.

In particular, we obtain all the similarity invariants of ρ0(f) up to a sign.
Let f ∈ End(KA), the idea of how to compute ρ0(f) up to a sign is explained in Diagram (12).

(12)

T0(A) T ∗0 (A)

T c0 (KA) T c0 (KA)

Qg Qg

Ag Ag

(df)0

λ0

Sym2(δ)
λ0

π0 π0

(df)0

π1 π1

δ

γ γ

In this diagram π0 : T0(A) → T c0 (KA) and π1 : Ag → Qg are the canonical projections. From the
knowledge of f , one can compute (df)0 and we would like to recover ±(df)0 up to conjugation. For
this we chose an isomorphism γ : T0(A) → Ag. Then δ = γ ◦ (df)0 ◦ γ−1 and we want to recover δ.
Proposition 2.4 ensure that there exists an isomorphism λ : Qg → T c0 (K). We are going to show that
once we have chosen γ, there exists a unique isomorphism λ0 : Qg → T c0 (KA) which makes Diagram (12)
commutative. As we know (df)0 we can recover Sym2(δ) as λ−1

0 ◦ (df)0 ◦ λ0. From Sym2(δ) we recover
easily ±δ and we are done. We want to prove that there exists a (unique) λ0 which makes Diagram (12)
commutative and at the same time have an effective way to compute λ0. For this, it is convenient look
more in detail at the arithmetic of a group quotiented by (−1).

Let G be a general Abelian group and denote by K the quotient of G by the automorphism (−1).
Let π : G→ K be the canonical projection. In the following if x ∈ G, we denote by x ∈ K the element
π(x). In general, K is not anymore a group but still enjoys some arithmetic properties inherited from
G. For instance, for all λ ∈ N and x ∈ K, λx ∈ K is well defined. In fact, x lift via π to {+x,−x} and
{λx,−λx} is going via π to the same element in K that we denote by λx. In the same way, we have the
following arithmetic operations in K [LR16]:
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• Normal addition: from the knowledge of x, y ∈ K, compute the pair {x− y, x+ y}. We denote
it by NormAdd(x, y).

• Differential addition: from the knowledge of x, y, x− y ∈ K compute x+ y. We denote it by
DiffAdd(x, y, x− y).

• Three-way addition: from the knowledge of x, y, z, x+ y, y + z, compute y + z. We denote it by
ThreeWayAdd(x, y, z, x+ y, x+ y).

All this apply to KA(k) which is the quotient of A(k) by the automorphism −1 acting on it, and to
T c0 (KA)(k) = T0(A)(k)/± 1.

Definition 3.1. We denote by π1 : Ag → Qg = Ag/(±1) the canonical projection. Let x1, . . . , xg ∈
Qg(k). We say that x1, . . . , xg ∈ Qg(k) are in general position if there exists x1, . . . , xg ∈ Ag(k) such
that

• π1(xi) = xi for i = 1, . . . , g;
• x1, . . . , xg span the k-vector space Ag(k).

Let x1, . . . , xg ∈ Qg(k) be points in general position. We define (xij)16i6j6g ∈ Qg(k) in the following
manner:

• for j = 1, . . . , g, xjj = xj ;
• for j = 2, . . . , g, x1j is an element in NormAdd(x1, xj) (recall that NormAdd returns of pair);
• for 1 6 i 6 j 6 g, i > 2, xij is defined as: ThreeWayAdd(x1, xi, xj , x1i, x1j).

We say that (xij)16i6j6g is a compatible basis of Qg(k) associated to x1, . . . , xg ∈ Qg(k).
We extend these definitions for any x1, . . . , xg ∈ T c0 (KA)(k) using an isomorphism λ : Qg → T c0 (KA)

given by Proposition 2.4.

Example 3.2. Let Qg = Spec(k[uij |i,j∈{1,...,g},i6j]
(uijukl−uikujl) ) so that we have the coordinate system (uij) on Qg.

Let Λ = (λ1, . . . , λg) ∈ k
g. For 1 6 k 6 l 6 g, we define the points Pkl(Λ) ∈ Qg(k) as:

(13) uij(Pkl) =

 λ2
i if i = j = k or if i = j = l,
λiλj if i = k and j = l,
0 otherwise,

for 1 6 i 6 j 6 g. Let Ag = Spec(k[x1, . . . , xg]), for 1 6 i 6 g, we define the points Pi(Λ) ∈ Ag(k) such
that

xj(Pi) = λi if i = j and 0 otherwise.
Then it is easily seen that for 1 6 i 6 g, π1(Pi) = Pii and for 1 6 i 6 j 6 g, π1(Pi + Pj) = Pij . From
this, we deduce that (Pkl(Λ)) form a compatible basis of Qg(k) that we call the Λ-standard compatible
basis. If Λ = (1, . . . , 1), we denote it by (Pkl) and call it the standard compatible basis of Qg(k).

Proposition 3.3. Let (xi)i=1,...,g ∈ Ag(k). Define the (xij)16i6j6g a family of points of Qg by:
π1(xi) = xii, for i = 1, . . . , g

π1(xi + xj) = xij , for 1 6 i 6 j 6 g.
(14)

Then (xij)16i6j6g is a compatible basis of Qg if and only if (xi)=1,...,g is a basis of Ag(k). Moreover
(xi)i=1,...,g and (−xi)i=1,...,g are the only two basis of Ag(k) satisfying the relations (14).

Proof. The first claim is an immediate consequence of Definition 3.1.
Let x′i ∈ Ag(k) be such that π1(x′i) = xi. We chose x1 ∈ {x′1,−x′1}. For j > 2, we have

NormAdd(x1, xi) ∈ {x1 + x′i, x1 − x′i} so the knowledge of x1i corresponds to a choice of xi in {x′i,−x′i}.
Hence the signs of xi is completely determined from the choice of sign of x1, and it is clear that replacing
x1 by −x1 replaces all the xi by −xi. Once we have chosen the base (xi)i=1,...,g, it is clear from the
definition of a compatible basis that it is a basis of Ag(k) and it satisfies all the relations (14). �

We have the following easy lemma:

Lemma 3.4. Let x1, . . . , xg ∈ Qg(k) be points in general position. Let (xij)16i6j6g be the associated
compatible basis following Definition 3.1. Denote by k[xij ] the field of definition of xij. Then :
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(1) k[xij ] is either k or a degree 2 extension of k;
(2) the field of definition of all the points in (xij) is the compositum of the fields k[x1j ] for j = 1, . . . , g;
(3) suppose that for a j = 2, . . . , g, k[x1j ] is a degree 2 extension of k, let {x1j , x

′
1j} = NormAdd(x1, xj)

then x1j , x
′
1j are conjugates by the Galois action of the extension k[x1j ] over k.

Proof. The first claim follows from the fact that π1 has degree 2. The second is a consequence that (xij)
can be computed from the knowledge of xjj for j = 1, . . . , g and x1j for j = 2, . . . , g using ThreeWayAdd
which is defined over k. The last claim is clear. �

Proposition 3.5. Let xij ∈ Qg(k) for 1 6 i 6 j 6 g be a compatible basis of Qg. Then (xij) is a basis
of the vector space of geometric points of Ag(g+1)/2 in which Qg is embedded. Moreover there exists a
unique automorphism µ of Qg which extends to the linear morphism µ′ : Ag(g+1)/2 → Ag(g+1)/2 defined
by µ′(Pij(Λ)) = xij for 1 6 i 6 j 6 g and Λ ∈ kg.
Proof. The first claim follows immediately from the second and the fact that the standard compatible
basis of Qg defined in Example 3.2 is basis of the vector space Ag(g+1)/2(k).

By Proposition 3.3, (xij) (resp. (Pij(Λ))) lifts to a unique, basis (xi)i=1,...,g (resp. (Qi)i=1,...,g) up to
a sign of Ag(k). There exists a unique linear automorphism µ0 ∈ Aut(Ag)) such that µ0(Qi) = xi for
i = 1, . . . , g. This µ0 is defined up to a sign by the choice of the basis (xi)i=1,...,g and (Qi)i=1,...,g. So
that µ0 defines via π1 a unique µ which makes the diagram commutative:

Ag Ag

Qg Qg

µ0

π1

µ

π1

By construction µ extends to the linear morphism µ′ : Ag(g+1)/2 → Ag(g+1)/2 defined by µ′(Pij(Λ)) = xij
for 1 6 i 6 j 6 g. �

Corollary 3.6. Let (xij)16i6j6g ∈ T c0 (KA)(k) be a compatible basis of T c0 (KA). Then (xij) is a basis
of the vector space T0(KA)(k). Moreover there exists a unique isomorphism λ : Qg → T c0 (KA) which
extends to the linear morphism λ′ : Ag(g+1)/2 → T0(KA) such that λ′(Pij(Λ)) = xij for 1 6 i 6 j 6 g

and Λ ∈ kg.
Proof. This is an immediate consequence of Proposition 3.5 and Proposition 2.4. �

Corollary 3.7. Once we have chosen γ in Diagram (12), there is a unique λ0 : Qg → T c0 (KA) which
makes the diagram commutative.
Proof. Let (xi)i=1,...,g be a basis of T0(A)(k). Then (γ(xi))i=1,...,g is a basis of Ag(k). Using Propo-
sition 3.3, we define a compatible basis (xij)16i6j6g ∈ T c0 (KA)(k) (resp. (P̃ij)16i6j6g ∈ Qg(k)) from
(xi)i=1,...,g (resp. from (γ(xi))i=1,...,g). By Corollary 3.6 there is a unique λ0 : Qg → T c0 (KA) such that
λ0(P̃ij) = xij for 1 6 i 6 j 6 g. It is clear that this λ0 makes the Diagram (12) commutative. �

We can use the notion of compatible basis to efficiently compute an isomorphism λ : Qg → T c0 (KA)
given by Proposition 2.4. We remark that from the knowledge of an isomorphism λ : Qg → T c0 (KA), one
can easily recover g points of T c0 (KA). Actually, fix an isomorphism Qg = Spec(k[uij |i,j∈{1,...,g},i6j]

(uijukl−uikujl) ), the
family of points (Pi)i=1,...,g such that ujj(Pi) = δij and ujl(Pi) = 0 for j 6= l are obviously in Qg. We
are going to show that, under some general computational hypothesis about KA, reciprocally, if one is
given g points of T c0 (KA) in general position, there is an efficient algorithm to compute an isomorphism
λ : Qg → T c0 (KA).

We make the following algorithmic hypothesis:
Hypothesis 3.8. There exists efficient algorithms to perform differential additions, normal additions
and three-way additions with the representation of KA(k). By efficient algorithm, we mean algorithm
with a running time at most quadratic in the size of the representation of an element of KA(k).



LINEAR REPRESENTATION OF ENDOMORPHISMS 15

This hypothesis is verified in the case that KA is represented by level 2 theta functions [LR16].
But it should apply in general with any efficient representation of Kummer varieties. We explain that
the arithmetic of KA(k) compatible with the projection πA : A → KA extends to an arithmetic of
T c0 (KA)(k) compatible with the projection π0 : T0(A)→ T c0 (KA). Recall from proof of Proposition 2.15
that if Sε = Spec(k[ε]/ε2]) then T0(KA)(k) is by definition the set of morphisms Sε → KA such that
Spec(k) → Sε → KA is the 0-point morphism. The arithmetic of KA (normal addition, differential
addition, three-way addition) acts on KA(Sε) and thus on T0(KA)(k) and it is clear that it respects
the tangent cone inside A(T ∗0 (KA)). For instance, if x, y, x− y ∈ T c0 (KA)(k) then DiffAdd(x, y, x− y) ∈
T c0 (KA)(k). The functoriality of Sε-points shows that everything is compatible with πA : A → KA.
From this discussion, we conclude that under Hypothesis 3.8, we have efficient algorithms to compute
the arithmetic laws of T c0 (KA).

We thus have a reduction of the computation of λ to the problem of finding g general points of
T c0 (KA). We keep the hypothesis of Proposition 2.15 then Algorithm 1 gives a coordinate system
(x′1, . . . , x′g(g+1)/2) for T ∗0 (KA) as well as a set of degree 2 generators GI2 for an ideal I2 such that
T c0 (KA) is the closed sub-variety of T0(KA) = Spec(k[x′1, . . . , x′g(g+1)/2]) defined by the ideal I2.

By Proposition 2.8, T c0 (A) is birationally equivalent to Ag. Up to a random linear change of coordinate,
we can suppose that x′1, . . . , x′g are algebraically independent and we have a birational isomorphism
T c0 (A) ' Spec(k[x′1, . . . , x′g]). We can choose a k-point P of T c0 (A) by setting x′i(P ) = Pi ∈ k. We
specialize each element w ∈ GI2 by setting xi = xi(P ) for i = 1, . . . , g. Then, as presented in Algorithm
2, we can recover the x′i(P ) for i > g at the expense of a Gaussian elimination in a matrix with g(g+1)/2
columns and O(g4) lines. This can be done in O(g8) operations.

Proposition 3.9. The Algorithm 2 computes g general elements of T c0 (KA)(k) in time O(g9) operations
on the base field.

Heuristically, taking a submatrix with g(g + 1)/2 +O(1) lines will have the same rank, so in practice
the computation will be in O(g7).

Algorithm 2: Algorithm to chose a random elements in T c0 (KA)(k).
input : GI2 generators for the ideals I2 defining T c0 (KA) as a closed sub-variety of

Ag(g+1)/2 = Spec(k[x′1, . . . , x′g(g+1)/2]).
output : x ∈ T c0 (KA)(k) a random element;

1 Choose at random x′i(x) in k for i = 1, . . . , g;
2 for w ∈ GI2 do
3 w′ ← w(x′1(x), . . . , x′g(x), . . . , x′g(g+1)/2);/* we specialize the variables x′1, . . . , x′g in x */
4 Write w′ =

∑
µiMi where Mi are monomials ordered following a monomial order ;

5 Add the row vector [µi] is the matrix M whose columns are indexed by the Mi and µi is in
the column corresponding to Mi ;

6 end
7 Let M0 be the row-echelon form of M ;
8 The rows of M0 corresponding to degree 1 monomials gives us x′i(x) for i > g;
9 return x

We suppose that A is defined over k so that there exists an isomorphism γ : T0(A)) → Ag defined
over k and the associated λ0 via Diagramm (12) is also defined over k. We would like to be able to
find efficiently a λ : Qg → T c0 (KA) such as λ0 which is defined over k. With Algorithm 2, we know how
to find general elements x1, . . . , xg ∈ T c0 (KA)(k). Let (xij)16i6j6g be a compatible basis associated to
x1, . . . , xg following Definition 3.1. If the (xij) are points defined over k then it is clear that the morphism
λ : Qg → T c0 (KA) given by Corollary 3.6 (with Λ = (1, . . . , 1)) is also defined over k. Unfortunately, in
general (xij) are not defined over k because each element of NormAdd(x1, xj) for j = 2, . . . , g is not in
general defined over k but over a degree 2 extension of it. Still the following Proposition shows that it is
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possible to ensure, by choosing carefully Λ ∈ kg that λ : Qg → T c0 (KA) associated by Corollary 3.6 to
the compatible basis (xij) and the Λ-standard compatible basis (Pij(Λ)) (see Definition 3.1) is defined
over k.

Proposition 3.10. Let x0
1, . . . , x

0
g be g elements of T c0 (KA)(k) is general position (see Definition 3.1),

let (x0
ij)16i6j6g be an associated compatible basis following Definition 3.1. For 1 6 i 6 j 6 g, denote

by k[x0
ij ] the field of definition of x0

ij which is either k or a degree 2 extension of it by Lemma 3.4.
For j = 2, . . . , g, let λj ∈ k[x0

1j ] be 1 if k[x0
1j ] = k or such that k[λj ] = k[x0

1j ] if k[x0
1j ] 6= k. Let

Λ = (1, λ2, . . . , λg), then the morphism λ : Qg → T c0 (KA) associated by Corollary 3.6 to the Λ-standard
compatible basis (Pij(Λ)) and the compatible basis (x0

ij) is defined over k.

Proof. Let λ′ be the unique linear morphism λ′ : Ag(g+1)/2 → T0(KA) such that λ′(Pij(Λ)) = x0
ij for

1 6 i 6 j 6 g as in Corollary 3.6. Note that for 2 6 j 6 g there exists P 1
1j(Λ) ∈ Ag(g+1)/2(k) such that

{P 0
1j(Λ), P 1

1j(Λ)} = NormAdd(P11(Λ), Pjj(Λ)) where we have set P 0
ij(Λ) = Pij(Λ) for all 1 6 i 6 j 6 g.

In the same manner, there exists x1
1j ∈ A(T ∗0 (KA))(k) such that {x0

1j , x
1
1j} = NormAdd(x11, xjj).

As λ′ respects the quotient structure of Qg and T c0 (KA) respectively, λ′(P 1
1j(Λ)) ∈ NormAdd(x11, xjj)

and because λ′ is injective we deduce that

(15) λ′(P 1
1j(Λ)) = x1

1j

Let k′ be the field of definition of all the points in (x0
ij)16i6j6g. Then by Lemma 3.4, k′ = k(λ2, . . . , λg)

is the compositum of the fields k[x0
1j ] for 2 6 j 6 g. More precisely, there exists a smallest integer r and

a map ξ : {1, . . . , r} → {1, . . . , g} such that k′ = k(λξ(1), . . . , λξ(r)). Then k′ a finite Galois extension
of k and Gal(k′/k) is isomorphic to (Z/2Z)r. Via this isomorphism, we can describe the action of
g ∈ (Z/2Z)r on k′. For this we denote by g[j] ∈ Z/2Z the jth-component of g and we have:

(16) g(λξ(j)) = (−1)g[j]λξ(j).

Then it is clear that for g ∈ Gal(k′/k) = (Z/2Z)r, g is uniquely determined by its action on P 0
1ξ(j) (resp.

x0
1ξ(j)) for j = 1, . . . , r and we have:

(17) g(P 0
1ξ(j)) = P

g[j]
1ξ(j) and g(x0

1ξ(j)) = x
g[j]
1ξ(j).

From this and Equation (15), we deduce that for all g ∈ Gal(k′/k) and 2 6 j 6 g, λ′(g(P 0
1j(Λ)) = g(x0

1j).
Using the fact that (x0

ij) can be computed from the knowledge of x0
jj for j = 1, . . . , g and x0

1j for
j = 2, . . . , g using ThreeWayAdd which is defined over k, we obtain that for all 1 6 i 6 j 6 g:

(18) λ′(g(Pij(Λ)) = g(x0
ij).

so that λ′ is defined over k. �

From Corollary 3.6, we deduce Algorithm 3 to compute an isomorphism λ : Qg → T c0 (KA) from the
knowledge of g points of T c0 (KA)(k). Moreover, Proposition 3.10 tells that if A is defined over k the
matrix M returned by Algorithm 3 has coefficients in k. From our algorithmic hypothesis, the arithmetic
operations require in O(g2) elementary operations in k, so the complexity is dominated by the linear
algebra and is in O(g6).

Proposition 3.11. The complexity of Algorithm 3 to comptute the linear isomorphism λ : Qg → T c0 (KA)
is in O(g6).

There is a still a missing piece in the description of our approach. It is due to the fact that we don’t
want to lift our computation to A since it would be too expansive from a computational point of view.
Thus the morphism γ of Diagram (12), although we know it exists, is not given to us explicitly nor
is the isomorphism λ0 : Qg → T c0 (KA) associated to γ via Diagram (12) and Corollary 3.7. The only
thing that we are going to be able to compute is an isomorphism λ : Qg → T c0 (KA) that we cannot
explicitly relate to γ. Denote by µ : Qg → Qg an automorphism such that λ = λ0 ◦ µ. The situation is
summarised in Diagram (20).
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Algorithm 3: Algorithm to compute an isomorphism λ : Qg → T c0 (KA).
input : The elements x11, . . . , xgg ∈ T c0 (KA)(k) with A an Abelian variety defined over the field

k;
output : A matrix M representing the linear isomorphism λ : Qg → T c0 (KA).

1 for j ← 2 to g do
2 {α0, α1} ← NormAdd(x11, xjj);
3 x1j ← α0;
4 Let λi ∈ k[α0] the field of definition of α0 be such that k[λi] = k[α0];
5 end
6 for i, j ← 2 to g, i 6 j do
7 xij ← ThreeWayAdd(x11, xii, xjj , x1i, x1j);
8 end
9 Let Λ = (λ1, . . . , λg);

10 Let (Pij(Λ)) be the Λ-standard compatible basis of Qg (see Example 3.2);
11 Compute the unique matrix M ∈ GL(k, g(g + 1)/2) such that MPij(Λ) = xij in T0(KA)(k);
12 return M .

We suppose that we know how to compute (df)0 and we want to obtain the conjugacy class of ±δ0.
By looking at Diagram (20), we see that

(19) λ−1 ◦ (df)0 ◦ λ = µ−1 ◦ Sym2(δ0) ◦ µ.

But, by the surjectivity of τ in Theorem 2.12, there exists δ ∈ Aut(Ag) such that µ = Sym2(δ). So
µ−1 ◦Sym2(δ0)◦µ = Sym2(δ−1 ◦δ0 ◦δ) from which we obtain ±δ−1 ◦δ0 ◦δ which is exactly the conjugacy
class of δ0 up to a sign.

(20)

T c0 (KA) T c0 (KA)

Qg Qg Qg Qg

Ag Ag Ag Ag

(df)0

λ0

Sym2(δ0)

λ0

π1 π1π1 π1

δ0

λ λ

µ µ−1

δ δ−1

Putting all together the results of this section, we obtain Algorithm 4 to compute a matrix representing
the conjugate class of ρ(f) up to a sign from the knowledge of f ∈ End(KA).

We just have to explain how to compute (df)0 in this algorithm. If we identify Am = Spec(k[x1, . . . , xm]),
up to a linear change of coordinates, we can suppose that (x1, . . . , xg(g+1)/2) is a coordinate system of
KA in 0 (that is the class of functions xi − xi(0) ∈ OKA,0 generate T ∗0 (KA)). For j = 1, . . . , g(g + 1)/2,
we define the points Pεj ∈ KA(k[ε]/ε2) by setting xi(Pεj ) = xi(0) + ε if i = j and xi(0) otherwise. These
points form a basis of T0(KA)(k) as a k-vector space.

Suppose that f ∈ End(KA) is given by functions (fi)i=1,...,m defined in a neighbourhood of 0 ∈ KA(k)
such that for all P ∈ KA(k),

xi(P ) = fi(x1(P ), . . . , xm(P )).

Definition 3.12. For i = 1, . . . ,m, we call the computation size of fi and denote it by S(fi) the
minimal number operation in a k-algebra A to evaluate fi(x1, . . . , xm) for x1, . . . , xm ∈ A . The size of
(fi)i=1,...,m that we denote by S((fi)) is

∑
i S(fi).
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We write:

(21) λi + µijε = fi(x1(Pεj ), . . . , xm(Pεj )),

for λi ∈ k. Then the matrix (µij) ∈ GL(k, g(g + 1)/2) is the matrix of (df)0 in the coordinate system of
T ∗0 (KA) given by the (Pεj ).

Proposition 3.13. Let f ∈ End(KA) be given by functions (fi)i=1,...,m defined in a neighbourhood of
0 ∈ KA(k) such that for all P ∈ KA(k),

xi(P ) = fi(x1(P ), . . . , xm(P )).

There exists an algorithm the complixity of which is O(S((fi))) to compute a matrix (µij) ∈ GL(k, g(g +
1)/2) representing (df)0.

We now can use Algorithm 4 to recover the similitude class of ±df0. Gathering the complexity analysis
of Proposition 2.18, Proposition 3.9, Proposition 3.11 and Proposition 3.13, we deduce:

Proposition 3.14. The complexity of Algorithm 4 to compute the linear representation of End(KA)
is O(max(g9, `m2g4, S((fi)))) base field operations (heuristically O(max(g7, `m2g4, S((fi)))) base field
operations).

Algorithm 4: Algorithm to compute the linear representation of End(KA).
input :

• Let KA be a dimension g Kummer variety given by:
(hi)i=1,...,`, hi ∈ k[x1, . . . , xm]

equations for KA in a neighbourhood of 0 ∈ KA(k);
• f ∈ End(KA), given by functions (fi)i=1,...,m such that for all P ∈ KA(k),

xi(P ) = fi(x1(P ), . . . , xm(P )).
output : A matrix M ∈ GL(k, g) a matrix representing the conjugation class of ρ(f).

1 Call Algorithm 1 to compute a coordinate system (x′1, . . . , x′g(g+1)/2) for T ∗0 (KA) as well as GI2
generators for the ideal I2 such that T c0 (KA) is isomorphic to Spec(k[x′1, . . . , x′g(g+1)/2]/I2);

2 Call g times Algorithm 2 to obtain g elements x1, . . . , xg ∈ T c0 (KA)(k);
3 Call Algorithm 3 to compute a Matrix Mλ ∈ GL(k, g(g + 1)/2) representing λ : Qg → T c0 (KA);
4 Compute the matrix M(df)0

= (µij) where µij is defined by Equation 21;
5 MSym ←M−1

λ .M(df)0
.Mλ;

6 Compute M ∈ GL(k, g) such that MSym = Sym(M);
7 return M ;

4. Applications to point counting algorithms in small characteristic

Strictly speaking, a point counting algorithm is an algorithm that takes as input a genus g curve X
(resp. a dimension g Abelian variety A) defined over a finite field Fq and outputs the cardinality of
X(Fq) (resp. A(Fq)). Most of the time, one expects that a point counting algorithm returns a slightly
more general information which is L(X, t), the L-function of X that encodes the cardinality of X(k) for
any k finite extension of Fq.

The efficiency of a point counting algorithm is measured by its worst case running time as a function
of the size of the input. Designing efficient point counting algorithms has applications in cryptography
[CFA+06]. All known efficient point counting algorithms can be interpreted as the computation of the
action of the Frobenius morphism on some Weil cohomology group H∗W (X). Actually, let χp(X, t) be
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the characteristic polynomial of the Frobenius morphism acting on H1
W (X) then the L-function of X is

given by :

L(X, t) = tgχp(X, 1/t)
(1− t)(1− qt) .

Note that if A is the jacobian of X then the cardinality of A(Fq) is given by the residue in 1 of L(X, t)
that is χp(1).

One can distinguish several families of point counting algorithms with different algorithmic behavior
according to what cohomological theory they are based on. Mestre’s point counting algorithm belongs
to the p-adic point counting algorithm family which has been introduced by a paper of Satoh [Sat00].

4.1. Limitations of canonical lifts algorithms. We briefly recall the principles of Mestre’s algorithm
which is a variation of Satoh’s algorithm [Mes01; Mes02b] to explain our improvement. Let X be a
genus g ordinary curve over Fq with q = pm and let A = J(X) be its jacobian variety which is a
dimension g Abelian variety. Let Zq be the degree m unramified extension of Zp. A lift of A over
Zq is an Abelian scheme over Zq which reduces to A over Fq. Among all the possible lifts of A,
there is only one up to isomorphism, that we denote by A, such that the reduction morphism induces
an isomorphism End(A) ' End(A). In particular, the qth-Frobenius endomorphism of A lifts to an
endomorphism of A that we denote by Σ. Its contragredient morphism is the qth-Verschiebung V .
Let χ1(X, t) be the characteristic polynomial of the qth-Verschiebung acting on the space H0(A,Ω) of
global differential forms of A. As X is ordinary, there are g Eigenvalues π1, . . . , πg of the qth-Frobenius
morphism acting on H1

W (X) which are units modulo p [Del69]. Then the roots of χ1(X, t) are π1, . . . , πg
so that χp(X, t) = tgχ1(X, q/t)χ1(X, t). The computation of the action of V on H0(A,Ω) is difficult
because, when q is big, V is a high degree isogeny. Using a classical trick [Ked01], we can replace it by
the computation of the action of the of the pth-Verschiebung and then take the norm of the resulting
matrix. The p-adic precision of the computations is chosen big enough according to Weil conjectures to
be able to recover χp(X, t). To sum up, Mestre and Satoh’s algorithms can be decomposed in two main
steps:

• The computation of the canonical lift A of the jacobian of X;
• The computation of the action of the pth-Verschiebung morphism acting on the global differential

forms of A.
We detail this second step, because this is where our improvement lies. In order to fix the notations,

we need a more precise description of canonical lift algorithms. They take as input an ordinary projective
algebraic curve X of genus g (resp. the theta null point of a dimension g Abelian variety A) over Fq
where q = pm and returns χp(X, t) the characteristic polynomial of the Frobenius morphism. Denote by
σ : Fq → Fq, x 7→ xp the pth-Frobenius morphism. Let A = A0 be the jacobian of X.

For i = 0, . . . ,m, let Ai = A ×Fq σ
i(Fq). Note that A = A0 = Am. Denote by σi : Ai → Ai+1 the

pth-Frobenius morphism and by V i : Ai+1 → Ai the pth-Verschiebung morphism: by definition V i is the
contragredient morphism of σi that is we have V i ◦ σi = p. We let Σ = σm−1 ◦ . . . ◦ σ0 ∈ End(A0) be
the qth-Frobenius endomorphism of A0 and V ∈ End(A0) be the contragredient endomorphism of σ. Let
A be a canonical lift of A. For i = 0, . . . ,m, let Ai = A×Zq σ

i(Zq), we remark that Ai is a canonical lift
of Ai. For i = 0, . . . ,m, denote by σi : Ai → Ai+1 (resp. Vi : Ai+1 → Ai) a lift of σi (resp. of V i) and
let Σ = σm−1 ◦ . . . ◦ σ0 ∈ End(A0) be a lift of Σ. Denote by V ∈ End(A0) the contragredient morphism
of Σ, so that we have V ◦Σ = q. We also let σ : Zq → Zq be the Frobenius morphism of Zq which is the
unique automorphism of Zq which reduces to σ modulo p. We have the following diagram where the
vertical arrows are reduction mod p:

A0 A1 . . . Ai Ai+1 . . . Am−1 Am = A0

A0 A1 . . . Ai Ai+1 . . . Am−1 Am = A0

σ0

V0

σ0

V 0

σi

Vi
σi

V i

σm−1

Vm−1
σm−1

V m−1
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Let wA0 = (w0
1, . . . , w

0
g) be a basis of T ∗0 (A0) as a Qq vector space. Let σ be the unique automorphism

of Qq which reduce to σ modulo p, we can transport wA0 by acting on its field of definition by σ.
For this, for i = 1, . . . , r − 1, let wσiA0

= wA0 ×σi Qq be a basis of T ∗0 (A0 ×σi Qq). Remark that
A0 ×σi Qq is isomorphic to Ai so that wσiA0

defines a basis wAi of T ∗0 (Ai). Denote by Mi the matrix
of (dVi+1)∗0 : T ∗0 (Ai+1) → T ∗0 (Ai) expressed in the basis wAi+1 and wAi . It is easy to see that for
i = 1, . . . , r − 1, Mi = Mσi

0 and that NQq/Qp(M0) is the matrix of the Frobenius morphism acting on
T ∗0 (A0).

If g is a scalar modular form of weight ρ, the algebraic interpretation of g (in the sense of Katz)
shows that g(Aσi , wσAi) = detρ(Mi)g(Ai+1, wAi+1). The quotient of these two modular forms allows us to
recover detρ(Mi) and then NQq/Qp(det(M0)) =

∏g
i=1 λ

ρ
i where λi are the invertible eigenvalues of the

Frobenius.
For instance, Mestre’s algorithmuse theta coordinates to represent Abelian varieties over Qq. In

particular, for the second step, it relies on the transformation formula of theta functions [BL04] to
build a scalar modular form of weight ρ = 1 and thus to recover the product π1 . . . πg. This is one of
the main limitations of the higher genus version of Mestre’s algorithm: it does not recover each of the
π1, . . . , πg. Mestre has proposed in [Mes02b] an algorithm to recover π1, . . . , πg from the knowledge of
the product π1 . . . πg. This algorithm consists in computing a degree 2g − 1 symmetric polynomial Psym
with coefficients in Z, a roots of which is π1 . . . πg using LLL algorithm. From the knowledge of this
polynomial it is then easy to recover π1, . . . , πg. The complexity of this algorithm is Õ(m4β) where
m = O(2g) is the dimension of the lattice and β the precision used by [NS16]. Indeed in order to use the
LLL algorithm, it is necessary to increase the p-adic precision of the computation far beyond what it
prescribed by the Weil conjectures [LL06, § 5.4]. Moreover starting from genus 4, Mestre has shown in
[Mes02b] that, in general, the product π1 . . . πg does not characterize the isogeny class of J(X) so that
there is no way to recover the individual π1, . . . , πg from it. The improvement that we propose is more
efficient and easier to implement. For instance it does not rely on an efficient implementation of the
LLL algorithm which is tricky and needs a quick floating point arithmetic. Moreover, it always allows to
recover the characteristic polynomial of the Frobenius morphism even if g > 4.

4.2. The improvement. As explained in the introduction, our improvement in the second step of
the algorithm is that whenever we have the equations of the isogeny induced by the lift of the small
Verschiebung V0, we can compute its action on the basis of differentials wA0 , σ−1wA0 to recover the
matrix Mm−1 (up to conjugation). Taking the norm then gives the action M of V on wA0 .

We detail this step for Mestre’s algorithm which uses theta function, but a similar method would work
for other models. The original version of Mestre’s algorithm is for curves defined over a characteristic 2
field. It has been generalized for field of any (small) characteristic [CKL06; CL08] and improved from
an algorithmic point of view in [LL06] to achieve a complexity of Õ(n) over the field Fpn . We detail our
improvement to this more general version of Mestre’s algorithm.

We recall briefly, and refer the reader to [Mum66] for a more in-depth presentation of the algebraic
theory of theta functions, that if (B,LB) is a dimension g Abelian variety together with a principal
polarization then for ` > 2 an integer, a level ` theta structure for (B,L `), that we denote by Θ`

B

in the following, determines a basis (θΘ`B
i )i∈(Z/`Z)g of H0(B,L `

B). For all ` positive integer, we let
Z(`) = (Z/`Z)g and in order to ease the notations we write (θi)i∈Z(`) instead of (θΘ`B

i )i∈Z(`) when no
confusion is possible. We will also have to evaluate these sections only in the case that the base field
of B is a characteristic 0 field k0. In this case, by embedding k0 into C, following [Mum83], we can
identify (θΘ`B

i )i∈Z(`) with the theta functions (θ
[ 0
i/`

]
(z,Ω/`))i∈Z(`). Here Ω is a representative of a class

of Hg/Γ(`, 2`) where Hg is the dimension g the Siegel upper half space and Γ(`, 2`) is a Igusa subgroup
of the symplectic group acting on Hg [Rit03]. This allows us to consider the sections θΘ`B

i as functions
on Cg by taking care of the fact that this imply that we have chosen an embedding of k0 into C and a
particular Ω in a conjugation class. Let ΛΩ = Zg + ΩZg and let AΛΩ = Cg/ΛΩ then A is an Abelian
variety analytically isomorphic to B over C.
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The projective point with homogeneous coordinates (θΘ`B
i (0))i∈(Z/`Z)g is the theta null point associated

to (B,L `
B ,Θ`

B). Its data is equivalent to the data of (B,L `
B ,Θ`

B): in particular they have the same
field of definition. With these settings, we can give a more thorough description of the improved version
of Mestre’s algorithm in 4 main steps:

(1) Using Thomae-Formulas (if X is a hyperelliptic curve) or a generalization for it, compute the
theta null point of (A0,L 2

A0
,Θ2

A0
) where A = A0 is the jacobian of X, LA0

a degree 1 symmetric
ample line bundle on A0 and Θ2

A0
is a level 2 theta structure for L 2

A0
.

(2) Using a Newton lift with a modular equation, compute (a p-adic approximation of) the theta
null point of (A0,L 2

A0
,Θ2

A0
) an Abelian scheme together with a level 2 theta structure which

reduces modulo p to (A0,L 2
A0
,Θ2

A0
). Here A0 = A is an Abelian scheme over Zq which is a

canonical lift of A.
(3) Compute Km−1 the kernel of V m−1. and lift it to Km−1 the kernel of Vm−1 as the only

unramified lift.
(4) Compute the isogeny Vm−1 from the kernel Km−1, the matrix Mm−1 of (dVm−1)∗ in the basis

σ−1wA0 , wA0 , and then via a norm a matrix of (dV )0 ∈ Aut(T0(A0)) where T0(A0) is the
co-tangent space in the 0 section of A0.

For a comparison with Mestre’s original version, where Steps (3) and (4) are replaced by the theta
transformation formula, we refer the reader to [LL06].

Remark 4.1. Some remarks about this brief description of Mestre’s algorithm:
• If the input of the algorithm is the theta null point of an Abelian variety with a theta structure

over Fq, (A,L 2
A
,Θ2

A
), we can skip step (1).

• In the papers [MR20; MR21] we use modular polynomials between theta constants of level 2,
and then lift the kernels as indicated in the algorithm above.

• In the paper [CL08], step (2) is instead replaced by the computation of (A0,L
2p
A0
,Θ2p

A0
) and

then lifting it to (A0,L 2p,Θ2p
A0

). This can be seen as lifting both A0 and the kernel Km−1
simultaneously. More precisely, using the algorithms of [FLR11; LR12; CR15], we can recover
(A0,L 2p,Θ2p

A0
) from (A1,L 2,Θ2

A1
) and K0 = KerV0 and conversely, in O((2p)g) base field

operations.
So from the theta null point of level 2p we can recover the kernel in level 2 and then apply

[CR15] to compute the isogeny. But in fact once we are in level 2p we can also directly use
Mumford’s isogeny formula to compute the isogeny Vm−1 : A0 → Am−1. To compare the action
on differentials we need to go from level 2p on A0 to level 2, which can be done either by using
the formula from [FLR11, § 3.2] (which descends to A1) hence encode a p2-isogeny, or using the
descent formula from [CR15, § 4] (which descends to A0).

A problem with step (4) is that for efficiency reason we want to work with theta functions of level 2.
As all level 2 theta functions are even, they form a coordinate system for a projective embedding of
the Kummer variety KA0 . Hence we work over the Kummer variety rather than over A0. In this case
we cannot directly compute the tangent space T0A0, let alone the action of V0 on it. We could use
[LR16], to compute a level 4 theta null point for A0 and then compute the action of V ∗ on T0(A0)
but we would end up with an algorithm less efficient than the original one since we would have to
compute with (4p)g coordinates instead of the (2p)g coordinates of a level 2 embedding. But we have
just explained in Section 3, how to recover (dV )0 : T0(A0)→ T0(A0) up to a sign from the knowledge of
(dV )0 : T0(KA0)→ T0(KA0). More precisely, we actually compute Vm−1 then d(Vm−1)0 and recover the
action of (dV )0 by a norm computation. In the following, we detail the computation of Vm−1 and how
to recover the action of (dV )0.

If p > 2, we can compute Vm−1 with the isogeny computation algorithm [CR15]. Actually, from the
preceding steps of the algorithm, we know (θΘ2

A0
i (0))i∈Z(2) and Km−1 the kernel of Vm−1 which are

exactly the inputs of algorithm [CR15].
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If p = 2, the expression of Vm−1 : A0 → Am−1 is given by the duplication formula. With the
convention taken for the numbering of ramification points in the computation of Thomae formula in
Step (1) of the algorithm, we know by [Rit03] that there exists Ω ∈ Hg, such that (θ

Θ2
Am−1

i (0))i∈Z(2) =

(θ
[ 0
i/2
]

(0,Ω/2))i∈Z(2) and (θΘ2
A0

i (0))i∈Z(2) = (θ
[ 0
i/2
]

(0,Ω))i∈Z(2). Said in a more informal way, we
have the analytic isomorphisms AΛΩ ' Am−1 and AΛ2Ω ' A0 and the isogeny AΛΩ → AΛ2Ω , z 7→ z
reduces modulo p to the Frobenius morphism σm−1.

By setting θi(z) = θ
[ 0
i/2
]

(z,Ω) and θ′i(z) = θ′
[ 0
i/2
]

(z,Ω/2) for i ∈ Z(2), the usual duplication
formula [Igu72, p. 139] gives for all i, j ∈ Z(2), z1, z2 ∈ Cg:

(22) θi+j(z1 + z2)θi−j(z1 − z2) = 1
2g

∑
η∈Z(2)

θ′i+η(z1)θ′j+η(z2).

By setting z1 = z2 = 0 in (22), for g = 1, we recover the usual arithmetic-geometric mean. For χ ∈ Ẑ(2),
the dual group of Z(2), using this formula, we compute

(23)
∑

η∈Z(2)

χ(η)θi+j+η(z1 + z2)θi−j+η(z1 − z2) = 1
2g

∑
η1,η2∈Z(2)

χ(η1 + η2)θ′i+η1
(z1)θ′j+η2

(z2)

= 1
2g

 ∑
η∈Z(2)

χ(η)θ′i+η(z1)

 ∑
η∈Z(2)

χ(η)θ′j+η(z2)

 .

By setting z2 = 0 and j = 0 in (23), we obtain an expression of Vm−1 : Am−1 → A0:

(24)
∑

χ∈Ẑ(2)

χ(i)
∑
η∈Z(2) χ(η)θi+η(z1)2(∑
η∈Z(2) χ(η)θ′η(0)

) = θ′i(z1).

In order to use this expression, we only have to know the theta null points (θ′i(0))i∈Z(2). But from Step

(2) of the algorithm, we know a theta null point of (A0,L 2
A0
,Θ2

A0
) which is (θΘ2

A0
i (0))i∈Z(2). This theta

null point is defined over Qq and we obtain a theta null point of (Aj ,L 2
Aj
,Θ2

Aj
) as (θΘ2

A0
i (0))σj

i∈Z(2).
We explain how to adapt Algorithm 4 for our purpose. By Proposition 2.4, there exists a morphism

λ0 : Qg → T c0 (KA0), as A0 is defined over Qq, by Proposition 3.10, we can compute such a λ0 defined
over Qq. The Algorithm 3 allows to compute such a λ0 defined over Qq. We let λi = λσ

i

0 : Qg →
T c0 (KA0)σi ' T c0 (KAi) be the twist of λ0 by σi.

We have the following diagram:
(25)

T c0 (KA0) T c0 (KA1) . . . T c0 (KAi) . . . T c0 (KAm−1) T c0 (KA0)

Qg Qg . . . Qg . . . Qg Qg

Ag Ag . . . Ag . . . Ag Ag

(dV0)0 (dVm−1)0

Sym2(δ0) Sym2(δm−1)

δ0 δm−1

λ0 λ1 λi λm−1 λ0

π1 π1 π1 π1 π1

where π1 : Ag → Qg are the canonical projections, Sym2(δi) : Qg → Qg are the unique map which make
the upper squares commutative. The fact that the maps Sym2(δi) are acutally of the form Sym2(δi) for
δi : Ag → Ag is a consequence of Theorem 1.2. Then the δi which makes the Diagram (25) commutative
are defined up to a sign. We chose δ0 and set δi = δσ

i

0 . Then Sym2(δi) = Sym2(δ0)σi .
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Algorithm 5: Algorithm to compute a representative up to a sign in the conjugacy class of the
action of V on T0(A).
input :

• (θΘ2
A0

i (0))i∈Z(2) the level 2 theta null point of KA0 a canonical lift over Zq of KA0
the Jacobian

of a curve X defined over Fq.
output : A matrix M ∈ GL(k, g) whose characteristic polynomial χ1 verifies:

χp(X, t) = tgχ1(q/t)χ1(t).

1 Using (θΘ2
A0

i (0))i∈Z(2) compute a complete set of equations (hi)i=1,...,` verified by KA0 ;
2 Call Algorithm 1 to compute a coordinate systems (x′1, . . . , x′g(g+1)/2) for T ∗0 (KA) as well as GI2

generators for the ideal I2 such that T c0 (KA) is isomorphic to Spec(k[x′1, . . . , x′g(g+1)/2]/I2);
3 Call g times Algorithm 2 to obtain g elements x1, . . . , xg ∈ T c0 (KA)(k);
4 Call Algorithm 3 to compute a Matrix Mλ ∈ GL(k, g(g + 1)/2) representing λ : Qg → T c0 (KA);
5 Using Equation (24) compute an expression of Vm−1;
6 Compute the matrix M(dVm−1)0 = (µij) where µij is defined by Equation (21);
7 MSym,0 ←Mλ.M(dVm−1)0 .(M

−1
λ )σ;

8 Compute M0 ∈ GL(k, g) such that MSym,0 = Sym(M0);
9 Compute M = NZq/Zp(M0);

10 return M ;

Now, if we define δ and Sym2(δ) such that the following diagram is commutative:

(26)

T c0 (KA0) T c0 (KA1)

Qg Qg

Ag Ag

(dV )0

Sym2(δ)

δ

λ0 λ0

π1 π1

then it is clear that:

Sym2(δ) = Sym2(δ0) ◦ Sym2(δ0)σ ◦ . . . ◦ Sym2(δ0)σ
m−1

(27)

δ = δ0 ◦ δσ0 ◦ . . . ◦ δσ
m−1

0(28)

where

(29) Sym2(δ0) = λ−1
0 ◦ (dV0)0 ◦ λσ0 .

From these formulas, we deduce immediately the Algorithm 5 to compute the Eigenvalues of the
Verschiebung morphism V .

We recall that Algorithm 5 corresponds to the Step (4) of the description of Mestre’s algorithm to
compute the number of points of X a curve defined over Fq with q = pm. We remark that if p 6= 2,
Algorithm 5 involves no loss of p-adic precision. Actually, one can check easily that all the computations
makes sense modulo p as long as the used models have good reduction: T c0 (KA) and the morphism
λ : Qg → T c0 (KA) are well defined modulo p, so is the matrix M(dVm−1)0 . In the case of p = 2, in the
numerical example that we have treated (see next section), we found that the loss of precision was
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small. We leave a full analysis of the loss of precision in this case, using the results of [CRV14], for a
subsenquent work.

The level 2 theta functions provide with a embedding of a Kummer variety in the projective space of
dimension 2g − 1. Moreover the p-adic precision needed for the computation is m/2. As a consequence
the running time of an operation in Zq is O(m/2 log(p)). Using Proposition 3.14, we deduce that the
running time of Algorithm 5 is O(max(g9, 2g)m/2 log(p)).

5. Examples

In this section, we suppose given an ordinary genus g curve C defined over F2m . Let A0 be jacobian
of C which is an ordinary principally polarized Abelian variety of dimension g. Let A0 be a canonical
lift of A0 which is a Abelian scheme of Z2m . We give a step by step execution of our algorithm when
g = 1, 2.

5.1. Genus 1. A dimension 1 Kummer KA variety is obtained as the quotient of an elliptic curve A by
the automorphism (−1). It is easily seen that A is isomorphic to the projective line. The arithmetic in
the theta representation of Kummer lines has been studied in [GL09].

The level 2 theta functions (θA0
i )i∈Z(2) gives an isomorphism KA0 → P1

Z2m
so that:

xA0 = θA0
1
θA

0
0
,

is a local parameter of KA0 in 0 (for a general choice of A0). We note that for g = 1, KA is smooth in 0.
Keeping the notation of Diagram (25), we can define local parameters xAi in 0 for KAi by twisting xA0

by σi. The duplication formula gives an expression of Vm−1 : A0 → Am−1 at 0:

(30) xAm−1 =
(A+B)x2

A0
+B −A

(B −A)x2
A0

+A+B
,

where A = θ
Am−1
0 (0) + θ

Am−1
1 (0) and B = θ

Am−1
0 (0)− θAm−1

0 (0). Then, we have:

(31) dxAm−1 = dxA0

4xA0AB

((B −A)x2
A0

+A+B)2 .

In this case, as the tangent cone and the tangent space are equal, our method is trivial and we obtain
the trace of the Frobenius morphism as t+ 2m/t where:

(32) t =

√
NormQ2n/Q2

(
4xA0(0)AB

(B −A)xA0(0)2 +A+B)2

)
.

5.2. Genus 2. Let (A,L 2,Θ2
A) be a Abelian surface together with a level 2 theta structure over the field

k such that char(k) 6= 2. When A is not a product of elliptic curves (with their principal polarisations),
the embedding i : KA → PZ(2) such that i∗(OPZ(2)(1)) = L 2 is a closed immersion (see [BL04]). The
level 2 theta functions satisfy a degree 4 homogeneous equation parametrized by the theta null point
(θΘ2

A
i (0))i∈Z(2) that we denote by E((θΘ2

A
i (0))i∈Z(2)) ∈ k[Xi, i ∈ Z(2)]. This equation defines the image

of i as a closed surface inside PZ(2) [CF+96; GL09]. From the knowledge of (θΘ2
A

i (0)) one can easily
compute E((θΘ2

A
i (0))i∈Z(2)).

The tangent cone T c0 (KA) is a dimension 2 closed subvariety of the dimension 3 tangent space T0(KA).
If necessary by doing a linear transformation on the basis of theta functions, we can suppose that θΘ2

A
0

does not cancel in 0 ∈ KA(k). Then by doing the change of variables x0 = 1, xi = Xi/X0 + θi(0)/θ0(0)
in E((θΘ2

A
i (0))i∈Z(2)) we obtain a new equation E′((θΘ2

A
i (0))i∈Z(2)) ∈ k[xi, i ∈ Z(2)− 0]. An equation of

T c0 (KA) inside T0(KA) is given by the degree 2 homogeneous component of E′((θΘ2
A

i (0))i∈Z(2)) that we
denote by QKA . We have T cKA = Spec(k[x1, x2, x3]/QKA).
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Proposition 2.4 tells us that there exists a linear isomorphism:

(33) λ∗ : k[x1, x2, x3]
QA

→ k[u11, u22, u12]
u11u22 − u2

12
.

One can use Algorithm 3 to find λ∗ but in genus 2, we give another point of view. For this, we
consider QA as a quadratic form and we remark that it is the orthogonal sum of a hyperbolic plane and
a definite one dimensional quadratic form. We can compute λ∗ with the following steps:

(1) find an isotropic vector v for QKA ;
(2) take any w such that QsKA(v, w) 6= 0 where QsKA is the scalar product associated to QKA ;
(3) find λ ∈ k such that if we set w′ = w + λv, we have QKA(w′) = 0 and scale such that

QsKA(v, w′) = 1;
(4) compute an orthogonal vector z to the plane (v, w′);
(5) we put t = −1/2QKA(z) so that we have an isomorphism

λ1 : k[x1, x2, x3]
QKA

→ k[u, v, w]
uv − tw2 .

We remark that all the computations in step (1) to (4) can be done over the base field k. But, in step
(5), if t is not a square in k it is not possible to chose z such that QKA(z) = 1. We define

λ2 : k[u, v, w]
yv − tw2 →

k[u11, u22, u12]
u11u22 − u2

12
,

such as λ2(u) = tu11, λ2(v) = u22, λ2(w) = u12 then λ∗ = λ2 ◦ λ1.
All the preceding steps are trivial except finding an isotropic vector for QKA for which we give more

details. In order to find an isotropic vector of QKA(x1, x2, x3), we can specialize the variables x2 and
x3 by computing QKA(x1, t2, t3) with t2, t3 ∈ k. Then by Proposition 2.8, for a general choice of t2, t3,
QKA(x1, t2, t3) is a degree 2 equation with a solution in k.

5.3. Example. Let F8 ' F2[u]
x3+x+1 and denote by F8[x] the polynomial ring in the variable x over F8.

Let:

(34)
h = (x2 + x+ 1)a3 + (x+ 1)a2 + a+ x+ 1

k = xa3 + (x+ 1)a2 + a+ x2 + x+ 1
Let H be the ordinary genus 2 hyperelliptic curve over F16 given by its equation:
(35) y2 + hy = hk

Let Q8 by the unramified extension of Q2 defined by Q2[w]
w3+w+1 . Using Thomae formulas, we can

compute a level 2 theta null point for the jacobian of H :

θA = [θA00(0), θA01(0), θA10(0), θA11(0)] =
[1, 17 + 16w2 +O(25), 17 + 24w2 +O(25), 1 + 16w + 8w2 +O(25)]

By computing a sequence of generalized AGM steps starting from θA, we obtain the theta null
point of an Abelian variety which is an approximation to 2-adic precision 23 of the canonical lift of a
2k-isogeneous for a certain k to canonical lift of the Jacobian of H:

θA0 = [1, 1618241 + 2703936w + 1893624w2 +O(221), 3154537 + 1708228w + 260732w2 +O(221),
4465257 + 856260w + 981628w2 +O(221)]

With one more step of generalized AGM, we compute the theta null point of A1 which is 2-isogeneous
to A0:

θA1 = [1, 1377889 + 1471112w + 287912w2 +O(221), 306481 + 424180w + 1198760w2 +O(221),
2010417 + 686324w + 1329832w2 +O(221)]
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For i ∈ Z(2), let xA0
i = θA0

i /θA0
0 (resp. xA1

i = θA1
i /θA1

0 ) be a coordinate system in a neighbourhood
of 0 ∈ A0(k) (resp. 0 ∈ A1(k)). We use Equation (24) to express the isogeny V1 : A0 → A1 in the
coordinate systems (xAji ) for j = 0, 1 and compute the matrix of partial derivates in 0. We obtain:

∂V ∗1 (xA1
01 )

∂xA0
01

(0) = 11325 + 11501w + 12177w2 +O(214)

∂V ∗1 (xA1
01 )

∂xA0
10

(0) = 7980 + 2298w + 12300w2 +O(215)

∂V ∗1 (xA1
01 )

∂xA0
11

(0) = 24364 + 2298w + 12300w2 +O(215)

∂V ∗1 (xA1
10 )

∂xA0
01

(0) = 4178 + 2743/2w + 7815w2 +O(213)

∂V ∗1 (xA1
10 )

∂xA0
10

(0) = 6547 + 895/2w + 606w2 +O(213)

∂V ∗1 (xA1
10 )

∂xA0
11

(0) = 5842 + 11857/2w + 3933w2 +O(213)

∂V ∗1 (xA1
11 )

∂xA0
01

(0) = 4178 + 2743/2w + 7815w2 +O(213)

∂V ∗1 (xA1
11 )

∂xA0
10

(0) = 5842 + 11857/2w + 3933w2 +O(213)

∂V ∗1 (xA1
11 )

∂xA0
11

(0) = 6547 + 895/2w + 606w2 +O(213)

We denote by M((dV1)0) the matrix (∂V
∗
1 (xA1

i
)

∂x
A0
j

)ij .

We have seen that the tangent cone T c0 (KA0) is defined as a closed subvariety of T0(KA0) by a unique
quadratic form. In the basis (x0, x1, x2) this quadratic form is given by the matrix MQKA0

such that:

[[75389 + 9245w + 105194w2 +O(217), 82775 + 170179w + 39924w2 +O(218),

82775 + 137411w + 203764w2 +O(218)],
[82775 + 170179w + 39924w2 +O(218), 42077 + 112217w + 52286w2 +O(217),

23789 + 77601w + 69246w2 +O(218)],
[82775 + 137411w + 203764w2 +O(218), 23789 + 77601w + 69246w2 +O(218),

42077 + 46681w + 117822w2 +O(217)]]

Then using the algorithm described in Paragraph 5.2, one can find a matrix M for the linear morphism

λ1 : k[x1, x2, x3]
QA

→ Q2m [u, v, w]
uv − tw2 .

with
t = 2894 + 38321/2w + 35959/2w2 + 26927w3 +O(215).

The matrix M is:

[[1445/2+986w+892w2+O(210), 503/23+1081/24w+267/22w2+O(27), 15+29/2w+71/22w2+O(25)],
[83+845w+1289/2w2 +O(210), 1055/24 +1773/24w+123w2 +O(27), 57/2+85/22w+83/22w2 +O(25)],
[81/2 + 1513w+ 1821/2w2 +O(211), 877/24 + 199w+ 164w2 +O(28), 33/2 + 75/22w+ 10w2 +O(26)]]
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Denote by σ the 2th-Frobenius automorphism acting on Q8. Following Algorithm 5, by computing:
NQ8/Q2(M−1M((dV1)0)Mσ),

we obtain the action of the 8th-Frobenius automorphism on the standard tangent cone of KA0 . One
must take care a little bit here that if the matrix of the Frobenius morphism acting of T0(A0) is given
by in the basis (x0, x1):

(36)
(
a b
c d

)
as we are working with the basis (tx2

1, x
2
2, x1x2) of Sym2(k[x1, x2]) the matrix that we obtain is:

(37)

 a2 tb2 tab
c2/t d2 cd
ac/t db ad+ bc


which allows to recover the matrix (36) up to a sign. If ρ1 and ρ2 are the invertible root modulo 2 of the
Frobenius polynomial of the Jacobian of H we obtain that ρ1 + ρ2 = 0 mod 64 and ρ1ρ2 = 7 mod 64.
We deduce immediately that the Frobenius polynomial is:

x4 + 7x2 + 64.
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