
A Security Model and Fully Verified Implementation
for the IETF QUIC Record Layer

Antoine Delignat-Lavaud∗, Cédric Fournet∗, Bryan Parno†, Jonathan Protzenko∗, Tahina Ramananandro∗,
Jay Bosamiya†, Joseph Lallemand‡, Itsaka Rakotonirina‡, Yi Zhou†

∗Microsoft Research †Carnegie Mellon University ‡INRIA Nancy Grand-Est, LORIA

Abstract—Drawing on earlier protocol-verification work, we
investigate the security of the QUIC record layer, as standardized
by the IETF in draft version 30. This version features major
differences compared to Google’s original protocol and early
IETF drafts. It serves as a useful test case for our verification
methodology and toolchain, while also, hopefully, drawing atten-
tion to a little studied yet crucially important emerging standard.

We model QUIC packet and header encryption, which uses
a custom construction for privacy. To capture its goals, we
propose a security definition for authenticated encryption with
semi-implicit nonces. We show that QUIC uses an instance of a
generic construction parameterized by a standard AEAD-secure
scheme and a PRF-secure cipher. We formalize and verify the
security of this construction in F?. The proof uncovers interesting
limitations of nonce confidentiality, due to the malleability of short
headers and the ability to choose the number of least significant
bits included in the packet counter. We propose improvements
that simplify the proof and increase robustness against strong
attacker models. In addition to the verified security model, we
also give a concrete functional specification for the record layer,
and prove that it satisfies important functionality properties
(such as the correct successful decryption of encrypted packets)
after fixing more errors in the draft. We then provide a high-
performance implementation of the record layer that we prove to
be memory safe, correct with respect to our concrete specification
(inheriting its functional correctness properties), and secure with
respect to our verified model. To evaluate this component, we
develop a provably-safe implementation of the rest of the QUIC
protocol. Our record layer achieves nearly 2 GB/s throughput,
and our QUIC implementation’s performance is within 21% of
an unverified baseline.

I. INTRODUCTION

The majority of the Web today relies on the network stack
consisting of IP, TCP, TLS and HTTP. This stack is modular
but inefficient: TLS starts only when the TCP handshake is
complete, and HTTP must wait for completion of the TLS
handshake. There have been recent efforts to cut this latency
overhead (using, e.g., TCP fast open and TLS 1.3 0-RTT),
but further gains require breaking the classic OSI model.
QUIC was introduced by Google in 2012 [38] to increase
performance by breaking layer abstractions, combining fea-
tures that are part of TCP (fragmentation, re-transmission,
reliable delivery, flow control), TLS (key exchange, encryption
and authentication), and application protocols (parallel data
streams) into a more integrated protocol, as shown in Figure 1.
For example, consider two independent features that require
an extra round-trip: source address validation (when a server
wants to check that the source IP of an initial packet is not
spoofed, currently part of the TCP handshake), and a TLS
hello-retry request (when a server asks the client to send its
key share over a different Diffie-Hellman group). Using QUIC,

Application

HTTP/2

TLS

TCP

IP

Application

HTTP/3

QUIC

UDP

IP

Fig. 1: Modularity of current networking stack vs. QUIC

it is possible to combine both features in a single message,
saving a full network round-trip.

From a security standpoint, a fully-integrated secure trans-
port protocol offers the potential for a single, clean security
theorem, which avoids the pitfalls that arise when composing
adversary models from different layers. Mismatched assump-
tions have caused several surprising cross-layer attacks against
HTTPS. For instance, the CRIME [47] and BREACH [43]
attacks illustrate the risk of composing application-layer com-
pression with transport-layer encryption against adversaries
that can both control the application plaintext and observe
encrypted TLS traffic. Interestingly, transport compression
exists in Google’s version of QUIC, but was removed entirely
by the IETF. Another example is cross-layer truncation attacks,
such as the Cookie Cutter attack [15], where applications may
perform dangerous side-effects based on incomplete received
data due to a TCP error. With QUIC, it becomes possible
to consider a single adversarial model for the application’s
transport and, in principle, to show that an application is secure
against the UDP/IP message interface, which is very hard to
achieve with TLS or IPSec.

Although QUIC was originally designed and implemented
by Google for its own products, it is currently undergoing
standardization by the IETF [36]. An explicit goal of the
QUIC working group has been to ensure that QUIC inherits all
the security properties of TLS 1.3, thus avoiding the lengthy
formal protocol analysis effort that stretched out the TLS 1.3
standardization process for 4 years.

Unfortunately, as we highlight in this paper (§II), the
working group has failed to achieve that goal; the latest
IETF drafts have progressively opened up many internal TLS
abstractions, and thus, increasingly diverged from the context
under which TLS 1.3 is proved secure. Entire features of TLS
(including the record layer [52], version negotiation, the end-
of-early-data message, hello retry, re-keying, and some key
derivations) have been replaced in QUIC, often under different
assumptions; furthermore, new cryptographic constructions,
which have received little academic scrutiny, have been added.

St
re

am 0 …

St
re

am n

QUIC Protocol Logic

QUIC Record Layer

Handshake Alert App Data

St
re

am

1 …

St
re

am

n

TLS Record Layer (stream 0)

QUIC Protocol Logic

QUIC Record Layer

Messages Keys

TLS Handshake

Handshake
Messages

Traffic
Secrets

Q

U

I

C

Records

Exporter
Secrets

Packets Packets

Frames Frames

Fig. 2: Internal modularity between TLS 1.3 and QUIC before (left) and after (right) draft 12. In the latter, the QUIC Protocol
Logic is responsible for deriving keys from the TLS Handshake’s traffic secrets.

The standard has also drifted significantly away from Google’s
original version of QUIC, to the point that little of the early
security analysis work on Google’s QUIC ([40], [37], [30]) is
relevant to the IETF version. Careful new analysis is required
to capture the security properties of QUIC data streams.

Hence, the primary goal of this paper is to analyze and
address weaknesses in a protocol that is practically as im-
portant as TLS but that has received little academic attention
(despite imminent standardization and deployment). We do
so by applying and extending methodologies and verification
toolchains developed in the context of TLS to this new setting,
thereby also validating their applicability to challenging non-
TLS constructions.

Concretely, we model and mechanically verify the security
of the new features of the IETF’s QUIC, focusing on what
we refer to as the QUIC “record layer”, i.e., the portion that
handles packet formatting and encryption. This is an important
step towards full end-to-end verification of the soon-to-be-
standardized protocol (we discuss remaining steps below). Our
contributions consist of:

C1 Security Model. We give a new security definition (build-
ing on prior work [11], [41]) that captures the record
layer’s security and privacy goals (§III-B). We found
that early drafts of QUIC failed to satisfy this definition;
our feedback [42] resulted in updates to the construction
(draft 17) and the explicit authentication of connection
identifiers [53] (draft 27) despite initial pushback (§III-D).

C2 Formal Spec and Functional Properties. We use F? [50],
a functional language with a dependent type system for
program verification, to develop a mechanized version of
our security definition (C1) as well as a detailed functional
specification for QUIC’s new record layer construction
(§IV-B). We also prove (§IV-C) correctness of the speci-
fication, e.g., non-malleability of the encoding of headers
and that decryption inverts encryption. These proofs identi-
fied two flaws in the IETF reference implementation, and
they uncovered interesting limitations of the IETF secu-
rity goal, as well as brittleness in the construction (e.g.,
places where easy-to-make implementation mistakes may
undermine security). Hence, we propose improvements
that simplify the proof and increase robustness against
strong attacker models (§III-D).

C3 Security Reduction. We mechanically prove (§IV-E) that
the new construction (C2) is cryptographically secure
relative to C1, assuming the underlying primitives are.

C4 Fast, Correct and Secure Record Layer. We develop a
high-performance low-level implementation (§IV-D) of the
record layer that offers cryptographic security (w.r.t. C1),
functional correctness (w.r.t. C2), and runtime safety.

C5 Fast, Provably Safe QUIC Implementation. Finally, we
develop a proof-of-concept implementation (§V) of the
QUIC protocol logic verified for memory safety, which
we use to evaluate (§VI) our verified implementation
of the record layer (C4), leveraging previously verified
artifacts for the TLS handshake [17] and cryptographic
primitives [44], to produce a verified implementation of
the full IETF QUIC protocol.

While our work provides a better understanding of QUIC’s
goals and the extent to which the current draft protocol
meets them, this is not yet an end-to-end verification of the
protocol, as the proofs for the protocol logic would have to
be significantly expanded and strengthened to connect the
guarantees from the TLS handshake with those of the record
layer and hence produce a single application-facing theorem
for the entire implementation.

While we prove strong correctness and security properties
for QUIC, like any verification result, our guarantees rely on
the correctness of our formalized cryptographic definitions
and of our verification tools. As we show in §VI, while
the performance of our record layer implementation is quite
strong (2 GB/s), our protocol logic limits the performance of
our overall QUIC reference implementation, leaving us 21%
slower than our unverified baseline.

All of our specifications, implementations, and proofs are
open source and available on GitHub at:

https://github.com/project-everest/everquic-crypto
https://github.com/secure-foundations/everquic-dafny

II. QUIC BACKGROUND

Because of its integrated nature, it is hard to summarize
QUIC. We introduce the aspects relevant to our security anal-
ysis, focusing on confidentiality, integrity and authentication
goals, but refer to the IETF drafts [36], [52] for details. We
also highlight deviations from QUIC’s original goal of treating
TLS as a black box.

TLS Handshake Interface Early IETF drafts of QUIC (up
to draft 12) used TLS 1.3 opaquely: packets contained full
TLS records (Figure 2). The TLS record layer [14] has its
own header format and supports fragmentation, encryption,
padding, and content-type multiplexing. To reduce redundancy
between TLS and QUIC (e.g., double encryption and frag-
mentation of handshake messages), in newer drafts, the QUIC
protocol logic directly interacts with the TLS handshake and
carries its messages in special frames separate from data
streams. The TLS 1.3 handshake negotiates the connection
ciphersuite and parameters, authenticates the peer, and es-
tablishes fresh traffic secrets (used to derive record keys).

2

https://github.com/project-everest/everquic-crypto
https://github.com/secure-foundations/everquic-dafny

It expects a duplex bytestream for reading and writing its
messages, and a control interface for returning secrets and
signaling key changes:

• A first, optional early traffic secret is available imme-
diately after handling a client hello message that offers
to use a pre-shared key (PSK). This enables the client
to send application data in its very first message (no
round-trip, "0-RTT"), but at a cost: 0-RTT messages
are not forward secure and can be replayed.

• The (client and server) handshake traffic secrets are
available after both hello messages are exchanged. A
man-in-the-middle may corrupt the handshake traffic
secret, so TLS messages are only secret against a
passive attacker.

• The application ("1-RTT") traffic secrets are available
once the server completes the handshake.

The record layer must be careful not to use traffic secrets until
the handshake indicates that it is safe to do so. For instance,
the application traffic secret is typically available on the server
before the client’s finished message is received, but the server
must not try to decrypt 1-RTT packets before checking this
message.

Connection Establishment QUIC connections exchange se-
quences of encrypted packets over UDP. There are four main
types of packets: initial packets (INIT) carry the plaintext TLS
messages: client hello, server hello, and hello-retry request.
Like all QUIC packets, they are encrypted, but their traffic
secret is derived from public values, so the encryption is mostly
for error detection. 0-RTT packets are encrypted using a key
derived from the TLS early traffic secret, and similarly, hand-
shake packets (HS) and 1-RTT packets are encrypted using
keys derived from handshake traffic secrets and application
data traffic secrets, respectively.

Packet Headers QUIC packets consist of a header and a
payload. The type of a packet is indicated in the header.
Initial, 0-RTT and handshake packets use long headers while 1-
RTT packets use short headers, as depicted in Figure 3. Long
headers include an explicit payload length to allow multiple
packets to be grouped into a single UDP datagram. In contrast,
the length of packets with short headers must be derived from
the encapsulating UDP length. Hence, UDP datagrams contain
at most one such packet, at the end.

Connection Identifiers Multiple QUIC connections can share
the same IP address and UDP port by using separate con-
nection IDs. This is particularly useful for servers, e.g., to
route connections behind a load balancer. Clients may also
use this feature to work around port restrictions and NAT
congestion. Long headers include both a source and destination
connection ID (of variable length). In its initial packet, the
client picks its own source ID and the initial ID of the server
as destination. Servers are expected to overwrite this initial
choice by picking a new source ID in their response. Once the
connection is established, the connection IDs are presumed to
be authentic and of known length (either fixed, or encoded in
the ID itself). Hence, short headers omit the source ID and the
length of the destination ID. Connection IDs are a clear risk for
privacy, since they correlate individual packets with sessions.
QUIC encourages long-lived connections that can be migrated
from one network path to another. For instance, if a mobile

+-+-+-+-+-+-+-+-+
|1|1| T |R R|P P| T: Type R: Reserved P: PN length
+-+
| Version (32) |
+-+
| DCID Len (8) | Dest. connection ID length
+-+
| Destination Connection ID (0..160) ...
+-+
| SCID Len (8) | Source connection ID length
+-+
| Source Connection ID (0..160) ...
+-+
| Payload Length (varint) ...
+-+
| Packet Number (8/16/24/32) ...
+-+
| Payload ...
+-+

+-+-+-+-+-+-+-+-+
|0|1|S|R|R|K|P P| S: Spin bit K: Key phase bit
+-+
| Destination Connection ID (0..160) ...
+-+
| Packet Number (8/16/24/32) ...
+-+
| Protected Payload ...
+-+

Fig. 3: QUIC long (top) and short (bottom) packet headers.
Initial, retry, handshake and 0-RTT packets use long headers,
whereas 1-RTT packets use short headers.

device switches from cellular to Wi-Fi, it is possible to migrate
the connection on the new network while maintaining the
current connection state, thus preventing the overhead of a re-
establishing the connection. To manage this privacy risk, peers
can declare and retire connection IDs, and privacy-conscious
clients may change their ID in every packet.

Packet Numbers and Stream Encryption TLS over TCP
relies on the in-order delivery of message fragments, and thus
encrypts these fragments using a nonce computed from their
implicit fragment sequence number. In contrast, QUIC packets
are sent over UDP and may be dropped or delivered out of
order. Therefore, encryption nonces cannot be implicit, which
causes both communication overhead (full nonces are usually
12 bytes) and privacy concerns: if full nonces are sent on the
wire, they can be used to map packets to connections and their
users. QUIC connections can be very long-lived, and the most
significant bits of the nonce become increasingly precise at
identifying users. To address these concerns, QUIC’s record
layer introduces a new semi-implicit nonce construction that
combines two ideas: only the least significant (and least privacy
sensitive) bits of the nonce are sent on the wire; and those bits
are further encrypted under a special header-protection key.
This construction is detailed in §III-A.

In TLS over TCP, traffic secrets protect separate, successive
authenticated encryption streams, with explicit termination
messages to transition between keys and prevent truncation
(end of early data message for 0-RTT, finished messages for
the handshake, and the re-keying messages and closure alerts
for 1-RTT). In QUIC, multiple keys may be active at the same
time, which makes the logic for selecting and discarding keys
much more involved. This adds new dangerous pitfalls that
must be actively prevented: for instance, servers may receive
1-RTT data before the handshake is complete (this data is not
yet safe to process), or clients may reply to 1-RTT messages
with 0-RTT ones (the specification forbids this, but it is up
to implementations to enforce). Normally, each direction of

3

each traffic secret maintains its own packet counter; however,
since only the client may send 0-RTT packets, they are
acknowledged in 1-RTT packets, which means packet numbers
are shared between 0-RTT and 1-RTT.

Transport Parameter Negotiation QUIC uses a special TLS
extension to negotiate an extensible list of transport parameters
(set or negotiated by the client and server). TLS guarantees
that if the handshake completes, both parties agree on the
parameters.

Version Negotiation QUIC defines a mechanism for the
server to indicate that it wishes to use a different version
than the one proposed by the client. This mechanism uses
a special version negotiation packet type, which is specified
in a version-independent document [51] and contains the list
of versions that the server is willing to use. Surprisingly,
while previous drafts attempted to authenticate the version
negotiation using the transport parameter negotiation through
the TLS handshake, this feature has been removed in current
drafts. Instead the specification states: "Version Negotiation
packets do not contain any mechanism to prevent version
downgrade attacks. Future versions of QUIC that use Version
Negotiation packets MUST define a mechanism that is robust
against version downgrade attacks". It is unclear how future
versions of QUIC will prevent version downgrade attacks.
Regardless of which version the client supports, an attacker
may always inject a version negotiation packet that only
indicates version 1 support.

III. QUIC RECORD LAYER SECURITY

This section focuses on QUIC’s new record layer. We first
describe the cryptographic construction used to encrypt both
packet payloads and selected parts of packet headers (§III-A).
We then present our cryptographic definition of security for
packet encryption with implicit nonces (§III-B), capturing
QUIC’s packet-number-privacy goal, and we outline its proof
(§III-C). Finally, we discuss vulnerabilities that we discovered
in earlier QUIC drafts, how the construction changed as a
result, frailties that persist in the most recent draft, and our
suggested improvements (§III-D).

A. Background: QUIC Packet Encryption (QPE)
As explained in §II, QUIC packets consist of a header

and a payload. The payload is encrypted using a standard
algorithm for authenticated encryption with additional data
(AEAD, abbreviated AE below), negotiated by TLS as part
of its record ciphersuite. AEAD also takes the header (shown
in Figure 3) in plaintext as additional authenticated data (AAD)
and thus protects its integrity.

QUIC also applies a new and rather convoluted header
protection scheme before sending the packet on the network.
As discussed in §II, because QUIC uses UDP, it must include
a packet number in each packet to cope with packet drops and
reorderings. These packet numbers, however, pose a privacy
risk, as a passive network observer can correlate packets and
sessions, facilitating traffic analysis, particularly given QUIC’s
support for very long-lived, migratable sessions. Employing
random nonces would waste too much space (because of the
risk of birthday collisions, which cause catastrophic integrity
failure, at least 128 bits would be required instead of the
8 to 32 bits of packet number that QUIC advocates). The

Flags Headers Nlsb

M N

AE.EncH K1

SIV

C

PRF K2

LN Trunc

Sample

HP Mask

H’

Protected Packet

Fmask 0 Nmask 0

Fig. 4: Overview of the QUIC packet encryption (QPE)
construction with header protection (HP), parameterized by the
AEAD scheme AE and keyed pseudo-random function PRF

situation is further complicated by QUIC’s decision to use
variable-length packet numbers, which means the length must
also be hidden. Instead, QUIC settled on the more optimized
(but somewhat exotic) construction shown in Figure 4 and
detailed in Figure 5. In the discussion below, we refer to this
construction as QPE[AE,PRF], since it is parameterized by
the particular authenticated encryption (A) and pseudo-random
function (PRF) algorithms selected during TLS ciphersuite
negotiation.

The main inputs to the construction are the packet number
N , the plaintext message M , the flags and QUIC-specific
headers H , and the number LN of least-significant bytes of N
to send on the wire (between 1 and 4). The key materials
consist of three cryptographic secrets: K1 for the AEAD
scheme, K2 for the PRF, and SIV , a 12-byte static IV which
is combined with the full 62-bit packet number N to form
the AEAD nonce. The construction first performs a normal
AEAD encryption, using the message M as the plaintext, and
the header H as the additional data.

QUIC then computes a header protection (HP) mask which
it uses to hide the truncated packet number Nlsb and some
bits of the flags—including those encoding the length LN .
The mask is computed by applying the PRF to a fixed-size
fragment (called the sample) of the ciphertext C. The mask is
split in two parts: the first byte is used to encrypt LN , and the
next 4 bytes are truncated to LN and applied at the offset of the
encrypted packet number. Because LN is hidden, it is difficult
for the packet’s recipient to know the boundary between the
protected headers H ′ and the ciphertext C (and thus where
the sample starts). This could be mitigated by choosing the
last bytes of C for the sample, but QUIC solves this problem
differently: the position of the sample is computed by assuming
that LN = 4, hence skipping the first 4−LN bytes of C. This
requires all ciphertexts to be at least 20 bytes long, instead of
16 if the end of C was used. Since most AEAD tags are only
16 bytes, QUIC effectively requires a minimum of 4 bytes of
plaintext in every packet (which can be achieved by adding
padding frames). Since LN is confidential, header decryption
is also difficult to implement in constant time (we revisit this
issue in §IV-D).

4

Keygen()
Ns ←$ {0, 1}AE.nlen
K1 ←$AE.keygen()
K2 ←$PNE.keygen()
return (Ns,K1,K1)

Encode(N,LN)

return N&(28LN − 1)

csample(C)
return C[4..20]

PNdec(K2, P)
H,C ← split(P, 1 + `H(P))
S ← csample(C)
B ← F.compute(K2, S)
F ← C[0]⊕ (B[0]&15)
LN ← 1 + F&3
C′′, C′ ← split(C,LN)
Ne ← C′′ ⊕B[1..1 + LN]
H′ ← H‖LN‖Ne

return LN , Ne, H′, C′

Dec(K,Ni, P)
Ns,K1,K2 ← K
LN , Ne, H′, C′ ← PNdec(K2, P)
N ← Decode(Ni, Ne, LN)⊕Ns

M ← AE.dec(K1, N,H′, C′)
return M

Decode(Ne, Ni, LN)

W ← 28LN ; X ← Ni + 1
N ← Ne+ (X&(W − 1))
if N ≤ X −W/2
∧N < 262 −W
return N +W

if N > X +W/2 ∧N ≥W
return N −W

return N

PNenc(K2, LN , N ′, S)
B ← F.compute(K2, S)
C′ ← N ′ ⊕B[1..1 + LN]
C′′ ← LN ⊕ (B[0]&15)
return C′′‖C′

psample(C,LN)
return C[(4− LN)..(20− LN)]

Enc(K,N,H,M)
Ns,K1,K2 ← K
LN ← 1 +H[0]&3
Ne ← Encode(N,LN)
N0 ← N ⊕Ns

H′ ← H‖LN‖Ne

C ← AE.enc(K1, N0, H′,M)
S ← psample(C,LN)
C′ ← PNenc(K2, LN , N ′, S)
return H‖C′‖C

Fig. 5: Detailed definition of the QPE[AE,F] construction, with
a few simplifications. In the real construction, the encrypted
headers (flags and packet number) are interleaved with the
plaintext headers; our verified implementation uses this header
format for interoperability. In the figure, we move the en-
crypted flags next to the encrypted packet number.

B. QUIC-Packet-Encryption Security
Although QPE[AE,PRF] is a new construction, it is similar

to other constructions that have been proposed for nonce-
hiding encryption, that is, constructions where the nonce is not
an input of the decryption function but is instead embedded
into the ciphertext. For instance, QPE is comparable to the
HN1 construction of Bellare et al. [11], which comes with a se-
curity definition, AE2, that captures the fact that the embedded
nonce is indistinguishable from random, and with a reduction
to standard assumptions. (§A recalls their definitions.)

In line with their work, we define a security notion for
partially nonce-hiding encryption that aims to capture the
security goal of QUIC’s approach to packet encryption. For
simplicity, however, it does not reflect the fact that header
protection also applies to other parts of the header, such as
reserved flags and the key-phase bit.

Notation Following the well-established approach of Bellare
and Rogaway [12], we define the security of a functionality F
as the probability (called the advantage) εG(A) that an ad-
versary A, interacting with a game Gb(F) (whose oracles are
parameterized by a random bit b), guesses the value of b with
better than random chance, i.e. εG(A) = |2Pr[Gb(A) = b]−1|.
By convention, when b = 0, the oracles of G behave exactly
like the functions in the functionality F ; we also refer to G0 as
the real functionality. In contrast, the oracles of G1 capture the
perfect intended behavior, or the ideal functionality, which is

typically expressed using shared state. The reason we insist on
real-or-ideal indistinguishability games will be more apparent
in §IV, as we formalize type-based security verification using
idealized interfaces. We refer the reader to Brzuska et al. [21]
for a detailed introduction to the methodology.

Definitions To illustrate our notation, consider the standard
security definition for a keyed pseudo-random functionality F ,
which offers a single function, namely compute : {0, 1}`K ×
{0, 1}` → {0, 1}`. The real functionality (b = 0) just evaluates
the function. The ideal functionality (b = 1) is a random
function, implemented using a private table T to memoize
randomly sampled values of length `.

Game PRFb(F)
T ← ∅
k

$← {0, 1}F.`K

Oracle Compute(X)
if b = 1 then

if T [X] = ⊥ then T [X]
$← {0, 1}F.`

return T [X]
return F.compute(k,X)

Our security definition for packet encryption is a refinement
of the standard notion of authenticated encryption security,
AE1, shown below, for a symmetric encryption scheme SE1.
In the definition, ideal encryption is implemented by sampling
a random ciphertext (`tag bits longer than the plaintext), and
ideal decryption by a lookup in a global table indexed by the
nonce, ciphertext, and header.

Game AE1b(SE1)

T ← ∅; k
$← SE1.gen()

Oracle Decrypt(N,C,H)
if b = 1 then

M ← T [N,C,H]
else

M ← SE1.dec(k,N,C,H)
return M

Oracle Encrypt(N,M,H)
assert T [N, _, _] = ⊥
if b = 1 then

C
$← {0, 1}|M|+SE1.`tag

T [N,C,H]←M
else

C ← SE1.enc(k,N,M,H)
return C

In AE1, the correct nonce must be known by the recipient
of the message in order to decrypt. In TLS, the nonce is
obtained by counting the packets that have been received, but
this does not work in QUIC where packets are delivered out of
order. Instead, the recipient only knows an approximate range
(which depends on LN), while the fine-grained position in that
range (the encrypted packet number in the packet headers) is
embedded in the ciphertext.

To move towards nonce-hiding encryption, we introduce
the definition AE5 for encryption with variable-sized, semi-
implicit nonces. The idea behind this definition is informally
described in an unpublished note by Namprempre, Rogaway
and Shrimpton [41] where it is referred to as AE5 in reference
to the 5 inputs of the encryption function; however, to our
knowledge, the definition has never been formalized, and no
construction has been proposed or proved secure with respect
to this definition.

Game AE5b(E)

T ← ∅; k
$← E.gen()

Oracle Decrypt(Ni, C,H)
if b = 1 then

LN ,M ← T [N,C,H]
for N s.t. E.valid(N,Ni, LN)

else
N,LN ,M ← E.dec(k,Ni, C,H)

return N,LN ,M

Oracle Encrypt(N,LN ,M,H)
assert T [N, _, _] = ⊥
if b = 1 then

C
$←{0, 1}LN+E.`LN

+|M|+E.`tag

T [N,C,H]← LN ,M
else

C ← E.enc(k,N,LN ,M,H)
return C

5

In its encryption scheme E, the function E.enc takes in
the full nonce N and its encoding length LN , and produces
a random ciphertext whose length accounts for the tag of
length E.`tag, the explicit nonce of length LN , and E.`LN

,
the encoded size of LN . E.dec only needs the implicit nonce
Ni, which must contain enough information to reconstruct the
full nonce N for the selected LN . Hence the definition is para-
metric over a validity predicate E.valid to ensure the ideal and
real versions succeed or fail consistently. If there is no N such
that valid(N,Ni, LN), ideal decryption fails. For instance, one
could use valid(N,Ni, LN) := msb(N, |N | − LN) = Ni, but
QUIC’s exact predicate (in_window) is formalized in the next
section. AE5 generalizes both standard AE1 (when LN = 0)
and nonce-hiding encryption (AE2) when LN = |N |.

Nonce-Hiding Stream Encryption We now introduce a no-
tion of nonce-hiding stream encryption security, for a stateful
encryption scheme SE that encrypts message M and protects
header H . The idea is to use a sliding window of packets: the
receiver moves the window each time it successfully decrypts
a packet. Packets in the window may be decrypted out of order.
The same packet may or may not decrypt depending on the
receiver state, which is accounted for by the validity predicate.

Game NHSEb(SE)

ce ← 0; cd ← 0;S
$← SE.gen()

Oracle Decrypt(C,H)
if b = 1 then

N,LN ,M ← AE5.Decrypt(cd, C,H)
if M 6= ⊥ then

cd ← max(cd, N)
else

N,LN ,M, S′ ← SE.dec(S,C,H)
S ← S′

return LN ,M

Oracle Encrypt(LN ,M,H)
if b = 1 then

C
$← AE5.Encrypt

(ce, LN ,M,H)
ce ← ce + 1

else
C, S′ ← SE.enc

(S,LN ,M,H)
S ← S′

return C

The actual QUIC stream encryption (QSE) construction is
similar to the ideal functionality of NHSE: a counter ce is used
to send packets with QPE, and a counter cd stores the highest
decrypted packet number received. In our verified implemen-
tation, we prove constructively that, given an adversary A for
NHSEb[QSE], we can program an adversary A′ for AE5b[QPE]
with the same advantage.

Security Theorem Our main security result reduces the secu-
rity of QUIC’s packet encryption construction, QPE[AE,PRF],
to the AE1 security of AE and the security of the PRF.

Theorem 1 (QPE Security). Given an adversary A against
the NHSEb(QPE[AE,PRF]) game, we construct adversaries
A′ against AE1b(AE) and A′′ against PRFb(PRF) such that:

εQPE
NHSE(A) ≤ ε

AE
AE1(A′) + εPRFPRF(A′′) +

q(q − 1)

2PRF.`+1

where q is the number of encryptions and failed decryptions
performed, and where PRF.` is the output length of the PRF.

Except for the initial steps carried out on paper and
explained in §III-C, the proof of Theorem 1 is mechanically
verified in F? against the gnarly details of the concrete QUIC
construction. Informally, the idea of the proof is to modularize
the AE5 definition to separate the encryption of the explicit
nonce from the AEAD encryption of the payload. This is done
by stealing a part of the AEAD ciphertext called the sample

to use as a fresh random IV for nonce encryption (also called
header protection in QUIC). The proof has two main steps,
first applying AE1, so that ciphertexts and samples become
fresh random bytestrings, then applying PRF. The probability
of sample collisions when modelling header encryption with
a PRF that produces one-time pads is bounded by a quadratic
term, much as in the classic PRP/PRF switching lemma.

For simplicity, this section presents single-instance versions
of the AE5 and PRF games. In our mechanization of the proof,
which aims at verifying cryptographic libraries, all games are
multi-instance, but the state of each instance is independent;
hence the bound of Theorem 1 generalizes to the multi-instance
setting by multiplying the collision term by the number of
honest instances.

Nonce Confidentiality Careful readers will notice that the
AE5 definition, as written, does not directly yield confidential-
ity of the explicit packet number Ne, because the decryption
oracle returns LN and N , from which it is possible to derive
Ne. We have two reasons for writing the definition in this
way: first, this ensures modularity of the security definitions for
header encryption (Ne) and stream encryption (Ni) in the state-
separation game-playing framework [21], which also translates
to the modularity of the F? implementation of our model;
and second, we observe that many QUIC implementations
break nonce confidentiality by performing actions based on the
packet number of the decrypted packet, for instance by using a
Bloom filter to detect packets that have been already processed.
Such operations may lead to concrete implementation attacks
(e.g., introducing timing side channels based on whether the
Bloom filter rejects the packet). In our implemented model,
we deal with this problem by returning N (even in NHSE)
at an abstract type that can conditionally be revealed, thus
allowing our record implementation to be used both with QUIC
implementations that preserve nonce confidentiality and with
those that break it. For the paper model, it is possible to
avoid the difficulty either by not returning N in Decrypt, or to
model nonce confidentiality as a composed IND-CCA2 game
on top of NHSE where the adversary must decide which of
two nonces is associated with a challenge encrypted packet,
but without the ability to ask for its decryption.

Generalizing AE5 and NHSE Because of the constraints of
our verification methodology (which aims to apply our game-
based definitions to the exact formal specification of the pro-
tocols, avoiding gaps between the model and implementation),
our security definitions are somewhat tailored for QUIC, and
can be generalized to a broader class of encryption schemes.

In parallel to this work, Bellare, Günther and Tackmann [9]
have presented (at the QUIC Privacy and Security workshop)
a two-tier authenticated encryption scheme, which generalizes
AE5 to cover other parts of the header H used as additional
authenticated data. Fischlin, Günther and Janson [31] also
present a new security definition for channel robustness, which
is parametric over a support predicate that specifies, given the
sequences of packets that have been sent and accepted, whether
a given packet is considered valid to receive. This generalizes
our AE5 and NHSE definitions to different sliding window
and replay protection schemes (e.g. DTLS 1.3), but only offers
pen-and-paper models and proofs.

6

C. From Theorem 1 to Code Verified in F?

We describe the first steps of the proof of Theorem 1,
from its statement above to the code actually verified in F?.
To simplify our presentation, we count packet numbers from
zero (instead of NS) and pretend the flags (F) in the QPE
construction consist only of LN : the number of explicit least
significant bits of the packet number. Our verified implemen-
tation, in contrast, makes no such simplifications. Recall that
LN appears in plain in the additional data of QUIC payload
encryption but is part of the indistinguishable-from-random
packet ciphertext.
(1) We start by inlining the QPE construction into the AE5
definition, using the auxiliary functions defined in Figure 5
for the real case (b = 0).

Game AE5b(QPE[AE,F])

T, T ′ ← ∅; k1, k2
$← Keygen()

Oracle Decrypt(Ni, C,H)
if b = 1 then

LN ,M ← T [N,C,H] for N
s.t. in_win(N,Ni, LN)

else
LN , Ne, H′, C′

← PNdec(k2, H‖C)
N ← decode(Ni, Ne, LN)
M ← AE.dec(k1, N,C′, H′)

return N,LN ,M

Oracle Encrypt(N,LN ,M,H)
assert T [N, _, _] = ⊥
if b = 1 then

C
$← {0, 1}LN+E.`LN

+|M|+E.`tag

T [N,C,H]← LN ,M
else

Ne ← encode(N,LN)
H′ ← H‖LN‖Ne

C′ ← AE.enc(k1, N,M,H′)
S ← psample(C′, LN)
C′′ ← PNenc(k2, LN‖Ne, S)

return C′′‖C′

(2) We separate the encryption of LN and Ne from the
encryption of the payload in the ideal case.

Game AE5b(QPE)

T, T ′ ← ∅; k1, k2
$← E.gen()

Oracle Decrypt(Ni, C,H)
if b = 1 then
S ← csample(C)
if T ′[S] = ⊥ then

T ′[S]
$← {0, 1}`max

LN‖Ne‖C′ ← T ′[S]⊕ C
M ← T [N,C′, H] for N

s.t. valid(N,Ni, LN)
else

LN , Ne, H′, C′

← PNdec(k2, H‖C)
N ← decode(Ni, Ne, LN)
M ← AE.dec(k1, N,C,H′)

return N,LN ,M

Oracle Encrypt(N,LN ,M,H)
assert T [N, _, _] = ⊥
Ne ← encode(N,LN)
H′ ← H‖LN‖Ne

if b = 1 then

C′
$← {0, 1}|M|+E.`tag

T [N,C′, H′]←M
S ← psample(C′)
if T ′[S] 6= ⊥ then throw
CS

$← {0, 1}`max

T ′[S]← CS

C′′ ← lsb`LN
+LN

(CS ⊕ LN‖Ne)

else
C′ ← AE.enc(k1, N,M,H′)
S ← psample(C′)
C′′ ← PNenc(k2, LN‖Ne, S)

return C′′‖C′

where we denote by C ′ the ciphertext from the payload
encryption and by C ′′ the ciphertext for the nonce encryption.
We introduce an auxiliary encryption table T ′ that maps
samples S (stolen from C ′) to one-time pads CS .

Note that there is no integrity protection over header
encryption, which determines the number of bits to encrypt,
so CS must be of the maximum size `max. QUIC supports 32
bits of explicit nonce and 8 other bits, of which 2 are used for
LN , hence `max = 40.
(3) We introduce intermediate idealization flags: b1 for the ide-
alization of payload encryption; and b2 for header encryption,
such that b2 ⇒ b1. This yields the following modular game:

Game AE5b1,b2 (QPE)

k1, k2
$← E.gen()

Oracle Decrypt(Ni, C,H)
if b2 = 1 then
S ← csample(C)
CS ← PRFb2 .Compute(S)
LN‖Ne‖C′ ← CS ⊕ C
N ← decode(Ni, Ne, LN)
H′ ← H‖LN‖Ne

M ← AE1b1 .Dec(N,C′, H′)
else

LN , Ne, H′, C′

← PNdec(k2, H‖C)
N ← decode(Ni, Ne, LN)
M ← AE.dec(k1, N,C′, H′)

return N,LN ,M

Oracle Encrypt(N,LN ,M,H)
assert AEAD.T [N, _, _] = ⊥
Ne ← encode(N,LN)
H′ ← H‖LN‖Ne

if b1 = 1 then
C′ ← AE1b1 .Enc(N,M,H′)
T [N,C′, H]←M
S ← psample(C′)
if PRF.T [S] 6= ⊥ then throw
CS ← PRFb2 .Compute(S)
C′′ ← lsb`LN

+LN
(CS ⊕ LN‖Ne)

else
C′ ← AE.enc(k1, N,M,H′)
S ← psample(C′)
C′′ ← PNenc(k2, LN , Ne, S)

return C′′‖C′

(4) We rewrite it more simply as

Game AE5b1,b2 (QPE)

k1 ← AE1b1 (AEAD)
k2 ← PNEb2 ()

Oracle Decrypt(Ni, C,H)

LN , Ne, C′ ← PNEb2 .Dec(H,C)
N ← decode(Ni, Ne, LN)
H′ ← LN‖Ne‖H
M ← AE1b1 .Dec(N,C′, H′)
return N,LN ,M

Oracle Encrypt(N,LN ,M,H)
Ne ← encode(N,LN)
H′ ← LN‖Ne‖H
C′ ← AE1b1 .Enc(N,M,H′)
S ← psample(C′)
C′′ ← PNEb2 .Enc(LN , Ne, S)
return C′′‖C′

by factoring out the oracles of game AE1 and those of an
intermediate PNE game for header encryption, defined below
as a wrapper around the PRF functionality.

Game PNEb2 (F)
k ← F.keygen()

Oracle Enc(LN , Ne, S)
if PRF.T [S] 6= ⊥ then throw
CS ← PRFb2 (F).Compute(S)
C ← lsb`LN

+LN
(CS ⊕ LN‖Ne)

return C

Oracle Dec(H,C)
S ← csample(C)
CS ← PRFb2 (F).Compute(S)
LN ← CS [0]⊕ (C[0]&15)
H′, C′ ← split(C, `LN

+ LN)
LN‖Ne ← CS [0..`LN

+ LN]⊕H′

return LN , Ne, C′

The games AE1b1 and PNEb2 correspond exactly to
the idealized interfaces in our verified implementation:
Model.AEAD.fsti for AE1 and Model.PNE.fsti for
PNE. We used these code-based assumptions to implement
the NHSEb1,b2(QPE) interface (inlining AE5 and adding the
management of the stream state).

We require a final step “on paper” to reduce PNEb2

security to PRFb2 security. Critically, we must satisfy the
freshness condition for PN encryption (PRF.T [S] = ⊥) for
all S extracted from the AEAD ciphertext. We bound these
collisions by applying the PRP/PRF switching lemma, and then
exclude these collisions in the code (using the proof assump-
tion PNE.is_safe (dsnd k) ⇒ PNE.fresh_sample sample w.pne h1).

D. History and Improvements to QPE

Implicit-Nonce Length Malleability While the table T in
AE5 is not indexed by LN , the definition still implies that
decryption must authenticate the implicit nonce length LN

chosen by the sender. To illustrate this point, we consider the
construction QPE’[AE,PRF] used in draft 16 of IETF’s QUIC,
where LN is encoded in the most-significant 2 bits of the
packet number field of the QUIC headers (instead of in the 2

7

least-significant bits of the flags as done in QPE[AE,PRF] in
more recent drafts).

Recall that in short headers, the destination connection
ID (CID) is concatenated with the packet number, and that
the length of the CID is implicit. Since LN is variable, an
adversary may try to cause the sender and recipient of a packet
to disagree on the position where the CID ends and the packet
number begins, as depicted below:

=
F CID C PN LN

F CID’ C PN’LN‘

Conveniently for the attacker, the XOR between the mask and
the packet number is easily malleable: by flipping the first two
encrypted bits, the attacker can force the receiver to interpret
the length differently. This yields an easy way to win the
AE5 game: the attacker first calls Enc(N, 2,M, F ||CID) then
Dec(N ′, C ′, F ||CID||X) for each of the 256 possible values
of the byte X , where N ′ = N [0..11] and C ′ = C[1..|C|]. One
of the values of X will result in the correct AAD; hence A
can return 0 if any of the decryptions succeeds (because of the
mismatched N’ length, the nonce of the decryption can work
in the ideal variant).

Although this attack may be hard to exploit in practice,
it raises the question of whether QUIC expects the peer
connection ID to be authenticated by the TLS handshake. The
specification does not state it as an explicit goal; however,
some working group members argue that the authenticity of
the connection IDs follows from their inclusion in headers
authenticated through AAD. This claim is disputable: the CIDs
are negotiated in the initial messages, whose keys are derived
from public values. In draft 16, an active adversary can inject a
retry message to force a client to change its destination CID. If
the attacker tampers with one byte of CID, the attack succeeds
with 2−8 probability, which is practical on every packet.

We submitted these observations to the IETF, and proposed
to concatenate the 2 bits of LN with the 62-bit packet number
when constructing the AEAD nonce. The goal of the change
was to ensure that LN is authenticated regardless of potential
malleability issues in the formatting of the AAD headers.
However, in draft 17, the implemented change was to move
LN to the least significant bits of the flags, which is sufficient
to prove the security of the construction but requires the
processing of the mask to depend on LN .

The other weakness exploited by the attack is the ability for
active adversaries to alter connection IDs. We argued [42] that
the TLS handshake should guarantee agreement over the peer’s
connection IDs. In draft 14, a transport parameter was added
to authenticate the client’s initial destination CID. However,
this fails to enforce agreement, as CIDs can change after a
retry. After much pushback (related to the ability of network
middleboxes to perform a retry on behalf of servers), the IETF
eventually agreed [53] to authenticate all CIDs through TLS
from draft 27, citing a previous draft of this paper.

Improving the QUIC Construction Although Theorem 1
provides useful guarantees, we are still concerned about weak-
nesses in the QPE construction:

Flags Headers Nlsb

M N

AE.Enc K1

SIV

C

PRPK2

LN Trunc

Protected Packet

C’ C’’ Flags Headers

H

Fig. 6: Our proposed HN2-based construction for QPE

• The authentication of LN depends on the AAD se-
curity of the payload, which in turns depends on the
non-malleability of the formatting of QUIC headers.
This is brittle in short headers, especially as some
implementations may use unsafe representations of
their CIDs, such as null-terminated strings.

• The construction collapses if the receiver uses the
decrypted packet number before the successful de-
cryption of the whole payload. While the QUIC speci-
fication explicitly forbids this behavior, we observe in
practice that many implementations do not bother de-
crypting the payload if they know in advance that the
decryption will fail. This shortcut provides a timing
oracle to abuse the malleability of the XOR encryption
of the packet number—allowing an attacker to do
efficient range checks by flipping the last 2 bits of
the flags.

• The construction is difficult to implement in constant
time. Naive implementations first decrypt LN , then
truncate the rest of the mask to LN .

Interestingly, Bellare et al. [11] propose another construction
called HN2 (shown in Figure 13 in §A) that uses a block cipher
(or pseudo-random permutation) instead of a PRF and an XOR.
The idea of this construction is to encrypt with the block cipher
the concatenation of the packet number and AEAD ciphertext.

We propose a variant of QPE based on HN2 in Figure 6.
This variant makes it much more difficult for an adversary to
selectively flip bits in the packet number. The security proof
is also simpler, as the collision term is accounted for by the
idealization of the PRP.

IV. VERIFIED CORRECTNESS AND SECURITY

We contribute a reference implementation of the QUIC
record layer and support it with machine-checked proofs of
its intended functional and security properties, as described
in §III. Our verified specification, code, and proofs are done
within the F? proof assistant.

A. F? (review) and Initial QUIC Definitions
F? is a language in the tradition of ML, equipped with

dependent types and an effect system, which allows program-
mers to prove properties of their code. A popular flavor is
proofs by refinement, wherein a complex implementation is
shown to be functionally equivalent to a more concise, crisper

8

specification. F? relies on a weakest precondition calculus to
construct proof obligations that can then be discharged using
a mixture of automated (via Z3 [26], an SMT solver), semi-
automated (via user tactics), and manual proofs.

To execute an F? program it must be extracted to OCaml
or F#. If the run-time portions of a program fit within Low?, a
low-level subset of F?, then the program can also be compiled
to portable C code via a dedicated compiler, KreMLin [45].
This allows programmers to rely on the full power of F?

for proofs and specifications, knowing that they are erased
at extraction-time: only executable chunks of code need to
be in Low?. The Low? methodology has been successfully
used by the HACL? cryptographic library [55], the EverCrypt
cryptographic provider [44], the EverParse verified parser
library [46] and several others. We illustrate below some
basic F? concepts, using truncation and recovery of packet
numbers as an example of how to author specifications in F?. A
subsequent section (§IV-D) dwells on Low? implementations.

Truncated packet numbers occupy 1 to 4 bytes, depending
on the user’s choice. Packet numbers, once decoded and
recovered, are in the range [0; 262). The truncated-number
length is included in the header as a two-bit integer, while
packet numbers mandate a 62-bit integer. Both are defined as
refinements of natural integers that capture their range:

type nat2 = n:nat{n < 4} type nat62 = n:nat{n < pow2 62}

One can define the upper bound on the value of a truncated
packet number (named below “npn” for “network packet
number”) given the length of its encoding in bytes. To this end,
we define bound_npn, a function of a single argument pn_len,
using a let-binding.

let bound_npn (pn_len: nat2) = pow2 (8 ∗ (pn_len + 1))

Using these definitions, we define truncation as a function of
the target length (in bytes) and the full packet number:

let truncate_pn (pn_len: nat2) (pn: nat62):
npn:nat{ npn < bound_npn pn_len } = pn % bound_npn pn_len

Undoing the truncation for incoming headers is more in-
volved, since it is clearly not injective. Hence, QUIC uses
an expansion operation whose correctness is guaranteed when
the packet number to recover is within a window of width
bound_npn pn_len centered on the maximal packet number re-
ceived so far. We express it in F? via the following predicate:

let in_window (pn_len:nat2) (max_pn:nat62) (pn:nat62) =
let h = bound_npn pn_len in
(max_pn+1 < h/2 ∧ pn < h) ∨
(max_pn+1 ≥ pow2 62 − h/2 ∧ pn ≥ pow2 62 − h) ∨
(max_pn+1 − h/2 < pn ∧ pn ≤ max_pn+1 + h/2)

The first and second clauses of the disjunction shift the window
when it under- or overflows the interval [0, 262). Proving the
correctness of packet number expansion revealed two errors in
the IETF reference implementation [36, Appendix A]: an off-
by-one in the third case, and an overflow in the second case.
Both are fixed in draft 24 following our report. Below, we
give the types of the patched function and its verified inverse
property, which ensures it returns the full packet number if it
is within the window.

val expand_pn : pn_len:nat2 →
max_pn:nat{max_pn+1 < pow2 62} →

npn:nat{npn < bound_npn pn_len} →
pn:nat62{in_window pn_len max_pn pn}

val lemma_parse_pn_correct : pn_len:nat2 →
max_pn:nat{max_pn+1 < pow2 62} → pn:nat62 →
Lemma (requires in_window pn_len max_pn pn)

(ensures expand_pn pn_len max_pn (truncate_pn pn_len pn) = pn)

As expressed by the precondition of lemma_parse_pn_correct,
the sender must choose the value of pn_len carefully for the
predicate in_window pn_len max_pn pn to hold, which in turn en-
sures npn will expand to the intended packet number. However,
the sender cannot predict the exact value of max_pn, which is
the highest packet number received by the receiver. She can
only know a range for this number: it must be greater than
the last acknowledged packet number last_min, and lower than
the last sent packet number last_max. To be certain that the
chosen pn_len will always lead to the intended expanded packet
number pn, the sender must therefore ensure that for any value
max_pn∈[last_min,last_max], in_window pn_len max_pn pn holds.
This condition can be checked by the following function:
let in_all_windows (pn_len:nat2) (last_min last_max pn:nat62) : bool =

let h = bound_npn pn_len in
(pow2 62 − h ≤ pn || last_max+2 − h/2 ≤ pn) &&
(pn ≤ h−1 || pn ≤ last_min+1 + h/2)

We prove that this function has the intended behavior. The
sender then simply has to pick the shortest pn_len that passes
this check. Doing so yields a function with the following
signature
val decide_pn (last_min last_max pn:nat62)) : Pure (option nat2)

(requires last_min ≤ last_max)
(ensures (function None →
∀ (pn_len:nat2). ¬ (in_all_windows pn_len last_min last_max pn)

| Some pn_len →
in_all_windows pn_len last_min last_max pn ∧
(∀ (pn_len’:nat2{pn_len’ < pn_len}).
¬ (in_all_windows pn_len’ last_min last_max pn))))

whose post-condition expresses that it returns the optimal (i.e.
shortest) possible pn_len. Note that there might not always exist
a suitable one, for instance if the range [last_min, last_max] is
too wide, in which case the function returns None.

B. F? Specification of Packet Encryption
We outline the remainder of our specification in a bottom-

up fashion, starting with parsers and serializers and leading to
a high-level specification of packet encryption and decryption.

Parsing For parsing and serializing, we use and extend the
EverParse framework [46]. EverParse is an existing combina-
tor library for specifying, generating, and extracting verified
parsers and serializers, written in F?/Low?. EverParse focuses
on binary formats like those of QUIC, and extracts to zero-
copy validators and serializers in C.

For this work, we extended EverParse with a notion of bit
fields, which it previously lacked. This allowed us to express
the variable-length encoding used by the QUIC spec within
EverParse. We also expressed packet-number truncation and
recovery using EverParse, which yielded a more concise and
efficient proof of correctness.

We expressed the rest of packet-header parsing and se-
rializing using EverParse combinators, yielding an automatic
proof (i) of parser correctness, i.e., the parser and serializer
are inverses of each other, and (ii) of injectivity, ensuring
there is at most one possible binary representation of QUIC

9

headers, given the packet number window and the choice of
lengths of connection identifiers for short packets. To prove the
uniqueness of the binary representation, we needed to impose
a minimum-length restriction on the representation of variable-
length integers.

From Wire Formats to Abstract Headers Parsers and
serializers operate on sequences of bytes (using the F? type
bytes), as well as vlbytes min max, an EverParse refinement
of bytes of variable length ` such that min ≤ ` ≤ max,
used below to represent connection IDs. At the boundary of
EverParse-based specifications, we abstract over raw bytes and
switch to high-level, structured values, using an inductive type
with separate cases for long and short headers (reflecting the
header format of Figure 3):
type header =
| MLong: version: U32.t →

dcid: vlbytes 0 20 → scid: vlbytes 0 20 →
spec: long_header_specifics → header

| MShort:
spin: bool → key_phase: bool → dcid: vlbytes 0 20 →
packet_number_length: packet_number_length_t →
packet_number: uint62_t → header

The type long_header_specifics, elided here, contains the en-
coded packet-number length, the truncated packet number, and
the payload length, with a special case for retry packets. The
remainder of our QUIC specifications, including formatting,
parsing, as well as the correctness and injectivity lemmas rely
on the high-level header type. We discuss our proof of the
correctness of conversion between high-level and low-level
header representations in §IV-C.

Side-channel-Resistant Header Protection Leveraging the
header type above, we specify header protection, using a
custom-built F? library of specification helpers for manipulat-
ing byte sequences with binary operators. Further specification
refinements are needed. For packet-number masking, we refine
the initial specification into a more operational one that avoids
a common implementation pitfall that results in a side-channel
leak. We then verify the low-level implementation against the
side-channel-free specification.

More precisely, our low-level implementation hides the
packet number and the packet number length under abstract
types for secret values, meaning that code cannot branch or
access memory based on those values. Instead, for header
parsing and protection removal, we first parse the public part
of the header, without the packet number, with the protected
bits of the first byte uninterpreted, so that parsing does not
depend on the packet number or its length. Then, we hide those
bits so as to remove their protection through constant-time
masks. Then we both unprotect and read the packet number
in a constant-time way by masking the first 4 bytes next to
the public header (which start with the packet number) with a
mask value computed in a constant-time way, proving that we
only modify the packet number during protection removal. Fi-
nally, we expand the packet number using secret comparisons,
constant-size masks and multiplications. Appendix B gives a
flavor of such constant-time operations. The obtained expanded
packet number is still secret, and we respect data abstraction
throughout our implementation to ensure constant-time exe-
cution. Our initial specification does not reflect constant-time
aspects, which makes the functional correctness proof of our
implementation nontrivial.

Agile Cryptography The QUIC specification inherits a large
body of cryptographic primitives mandated by the TLS 1.3
standard: HKDF expansion and derivation, AEAD, and the
underlying block ciphers for the packet-number mask.

Rather than rewrite this very substantial amount of specifi-
cation, we reuse EverCrypt [44], an existing cryptographic li-
brary written in F?/Low?. EverCrypt specifies and implements
all major cipher suites and algorithms, including HKDF for
SHA2 and all major variants of AEAD (ChachaPoly, AES128-
GCM, AES256-GCM).

Importantly, EverCrypt offers agile, abstract specifications,
meaning that our QUIC specification is by construction para-
metric over the algorithms chosen by the TLS negotiation.
Lemmas such as lemma_encrypt_correct (§IV-C) are parameter-
ized over the encryption algorithm (“ea”), and so is our entire
proof. This means our results hold for any existing or future
AEAD algorithm in EverCrypt.

EverCrypt uses a simple model for side-channel resistance
where any data of type bytes is secret; our QUIC spec uses
information-flow labels instead to distinguish plain texts and
cipher texts. We omit these technicalities.

C. Functional Correctness Properties
We have proven F? lemmas showing that our specification

(and hence, our verified implementation described in §IV-D)
of the draft 30 specification has the expected properties,
including:

1) correctness of packet-number decoding (§IV-A);
2) correctness and injectivity of header parsing;
3) correctness of header and payload decryption for packets.

We elaborate on the latter two proofs below. In the process
of developing these proofs, we uncovered several issues with
the current IETF draft. For example, as described in §IV-A,
while specifying packet-number recovery, we discovered that
the QUIC draft omits an overflow condition on the window
size. We also demonstrated that the whole QUIC specification
is parameterized over destination connection ID lengths, mean-
ing that non-malleability depends on proper authentication
of connection IDs. We have proposed simple fixes, notably
embedding the length LN of the truncated packet number into
the AEAD nonce (§III-D).

Header Parsing Proofs First, header parsing is correct,
meaning that parse_header inverts format_header.
val lemma_header_parsing_correct: ... → Lemma

(parse_header cid_len last
(format_header (append h c)) = Success h c))

For safety reasons [46], parsers should also be injective (up
to failure). The parse_header function enjoys this property but
only for a given connection-ID length.
val lemma_header_parsing_safe: ... → Lemma (requires ... ∧

parse_header cid_len last b1 = parse_header cid_len last b2)
(ensures parse_header cid_len last b1 = Failure ∨ b1 = b2)

Encryption Correctness Based on our parsing correctness
lemma, we can prove the correctness of packet encryption.
Our proof is based on an intermediate lemma about header
encryption, and uses the idempotence property of XOR and
the functional correctness lemma of EverCrypt’s specification
of AEAD.

10

val lemma_encrypt_correct:
a:ea (∗ the AE algorithm negotiated by TLS ∗) →
k:lbytes (ae_keysize a) (∗ the main key for this AE algorithm ∗) →
siv: lbytes 12 (∗ a static IV for this AE algorithm ∗) →
hpk: lbytes (ae_keysize a) (∗ the header key for this AE algorithm ∗) →
h: header (∗ Note the condition on the CID length below ∗) →
cid_len: nat {cid_len ≤ 20 ∧ (MShort? h ⇒ cid_len = dcid_len h)} →
last: nat{last+1 < pow2 62 } →
p: pbytes’ (is_retry h) { has_payload_length h ⇒

U64.v (payload_length h) == length p + AEAD.tag_length a } →
Lemma (requires is_retry h ∨ in_window (pn_length h − 1) last (pn h))

(ensures decrypt a k siv hpk last cid_len
(encrypt a k siv hpk h p) = OK h p)

The final lemma is rather verbose due to the number of
parameters and conditions, but merely states that decrypt inverts
encrypt. It explicitly inherits all limitations of previously-
defined functions: the window condition for packet-number
decoding, and the need to provide the correct length of the
connection ID.

D. Low-Level Record-Layer Implementation
We now briefly describe the low-level implementation of

our QUIC record layer, leveraging both the EverCrypt and
EverParse libraries. We follow the proof by refinement method-
ology (§IV-A) and show that our Low? implementation is
functionally equivalent to the specification above (§IV-B). By
virtue of being written in Low?, the code is also memory-safe
and these guarantees carry over to the extracted C code [45].
§VI reports code statistics and performance.

Overview Verifying code in Low? differs greatly from au-
thoring specifications (§IV-B). First, all computations must be
performed on machine integers, meaning that computations
such as in_window must be rewritten to avoid overflowing
or underflowing intermediary sub-expressions — a common
source of pitfalls in unverified code. Second, all sequence-
manipulating code must be rewritten to use arrays allocated in
memory. This requires reasoning about liveness, disjointness
and spatial placement of allocations, to prevent runtime errors
(e.g. use-after-free, out-of-bounds access).

Parsers Our specification of message formats is expressed
using the EverParse library. Just like for specifications, we
have extended EverParse’s low-level parsers and serializers
with our new features (bounded integers; bitfields), and we
have written low-level, zero-copy parsers and serializers for
QUIC message formats directly using the EverParse library.
We unfortunately were unable to use the front-end language for
EverParse, dubbed QuackyDucky [46], resulting in substantial
manual effort; we hope future versions of the tool will capture
the QUIC format.

Internal State Our QUIC library follows an established
pattern [44] that revolves around an indexed type holding the
QUIC state. This state is kept abstract from verified clients
and, interestingly, from C clients as well, using an incomplete
struct type to enforce C abstraction. Clients do not know the
size of the C struct, meaning that they cannot allocate it and are
forced to go through the allocation function we provide. We go
to great lengths to offer idiomatic C-like APIs where functions
modify out-params and return error codes, which requires extra
memory reasoning owing to the double indirection of the out
parameters.

Encryption and Decryption When called, encrypt outputs the

encrypted data and the freshly-used packet number into two
caller-allocated out-params. The decrypt function fails if and
only if the spec fails, consumes exactly as much data as the
spec, and when it succeeds, fills a caller-allocated struct. To
maximize performance, our decryption implementation oper-
ates in-place and performs no allocation beyond temporaries
on the stack.

E. Type-Based Cryptographic Security Proofs
In this section, we review the methodology of type-

based cryptographic security proofs [16], [33], [14], which
underpins our formal F? proof of Theorem 1. Game-based
indistinguishability definitions can be captured by idealized
interfaces, which define the precise signature of each oracle
in the game, including all adversarial restrictions (such as
forbidding nonce reuse). Such interfaces are parameterized by
a Boolean b (called the idealization flag), which corresponds
to the secret bit that the adversary must guess in the game.
As an example, consider the AE1b game: as shown below,
we represent instances using an abstract type key, which is
implemented as a concrete key k if b is false, or a table T
that maps triples of nonce, ciphertext and additional data to
plaintexts when b is true. We index instances with an id
type, and we let the adversary select which instances are
honest and which are corrupt (at creation time) by conditioning
idealization on a safety predicate let safe (i:id) = honest i && b.

(∗ AE1: Idealized Interface ∗)
abstract type key (i:id)
val ideal: #i:id{safe i} → key i →

map (nonce × cipher × header) (plain i)
val real: #i:id{¬ (safe i)} → key i → lbytes klen
val keygen: i:id{fresh i} → ST (key i)

(ensures fun mem0 k mem1 → safe i ⇒ ideal k mem1 = ∅)
val encrypt: #i:id → k:key i →

n:nonce → h:header → p:plain i → ST cipher
(reauires fun mem0 → fresh_nonce k mem0 n)
(ensures fun mem0 c mem1 →

if safe i then ideal k mem1 == extend (ideal k mem0) (n,c,h) p
else c == Spec.AEAD.encrypt (real k) n h p)

val decrypt: #i:id → k:key →
n:nonce → h:header → c:cipher → ST (option plain)
(ensures fun mem0 r mem1 →

if safe i then r == lookup (ideal k mem0) (n,c,h)
else r == Spec.AEAD.decrypt (real k) n h c)

The interface declares keys as abstract, hiding both the real
key value and the ideal table. Non-ideal instances are speci-
fied using a pure functional specification of Spec.AEAD. The
security of ideal instances is specified based on the ideal state.
For instance, decryption only succeed if an entry was added in
the table for the given nonce, ciphertext and additional data,
which guarantees plaintext integrity.

To model confidentiality, the idea is to rely on type para-
metricity of idealized plaintexts. The intuition is to prove that
the ideal implementation of encryption and decryption never
access the actual representation of the plaintext, by making
the type of plaintext abstract (conditionally on safety). This
guarantees that ideal plaintexts are perfectly (i.e. information
theoretically) secure. In practice, we want to allow the same
functionality to be used for different types of plaintexts (for
instance, QUIC also uses AEAD to encrypt resumption tokens,
which have different contents than packet payloads). Hence,
we parameterize instances by a plaintext package, which is a
record that defines an abstract type of plaintexts plain i, with

11

Impl.QUIC.fstiSpec.QUIC.fsti

Spec.QUIC.fst Impl.QUIC.fst

EverCrypt Primitives

Spec.AEAD.fsti

Spec.Cipher.fsti

Model.AEAD.fsti

Model.PRF.fsti
Model.QUIC.fst

Security proof

Crypto Assumptions

QUIC.fsti

QUIC.fst

Formal Specification Verified Implementation

Application

“Implementation Switch”

Model.QUIC.fsti

Fig. 7: Integrated security model and verified implementation.
In F?, an ‘fsti’ file is an interface for the corresponding ‘fst’
file, similar to a ‘.h’ and ‘.c’ files in C.

functions that allow access to their concrete byte representation
at the specification level only (as_bytes, using the ghost effect
of F?), or concretely when ¬ (safe i) (repr for real encryption).

The main class of proofs that can be made in F? is perfect
reductions (or perfect indistinguishability steps), which show
that given a set of idealized interfaces (code assumptions), it is
possible to implement derived idealized functionalities, whose
advantage is bounded by the sum of the advantages of the
code assumptions. For the proof of Theorem 1, we use AE1
and the PNE functionality below as our code assumptions.
Appendix III-C shows the corresponding game and reduction
to PRF security.
(∗PNE: Idealized Interface ∗)
abstract type key (i:id)
val ideal: #i:id{safe i} → key i →

map sample (l:pn_len, pn i l, mask)
val real: #i:id{¬ (safe i)} → key i → lbytes klen
val keygen: i:id{fresh i} → ST (key i)

(ensures fun mem0 k mem1 → safe i ⇒ ideal k mem1 = ∅)

val encrypt: #i:id → k:key i → l:pn_len → n:pn i l → s:sample →
ST cipher
(requires fun mem0 → safe i ⇒ fresh_sample s st mem0)
(ensures fun mem0 c mem1 →

if safe i then ∃ (c’: mask).
ideal k mem1 == extend (ideal k mem0) s (l,s,c’) ∧
c == truncate (c’ xor (format ln n)) l

else c == pnenc (real k) l (repr pn) s)
val decrypt: #i:id → k:key i → c:cipher → s:sample → ST (pn i)

(ensures fun mem0 p mem1 →
if safe i then
∃ (l, n, c’). lookup (ideal k) s mem1 = Some (n, c) ∧
as_bytes p == truncate (c’ xor (header c)) l

else c == ‘pndec (real k) c s)

F. Verified Implementation Correctness and Security
As shown in Figure 7, our implementation of the idealized

interface for the QUIC record layer (Model.QUIC) uses our
high-level specification (Spec.QUIC) in the real case (when
b=0). However, we would like to extend the security guarantees
to the low-level implementation (Impl.QUIC). This is accom-
plished with a technique we call an implementation switch,
that replaces the call to the high-level security model with the
low-level implementation. This idealization step also appears
in related verification work [2], [3]. It is justified because we
verify (by typing) that both stateful implementations comply
with the same full functional specification (Spec.QUIC).

The adversary for this step is much more powerful than
in usual cryptographic games, because it can observe timing
and memory access patterns in addition to the input/output
behavior of the function. We assume that the execution of
specification code is not observable, while the timing and
memory access patterns of the low-level code are. EverCrypt

guarantees by typing that the low-level secret inputs are ab-
stract, which we inherit in our record implementation. Hence,
for instance for packet encryption, QUIC.fst implements
the switch to our specification-based model by calling low-
level packet encryption on dummy inputs instead of the secret
input parameters. Since (by typing) the low-level side effects
do not depend on those secrets, this produces the same effects
as calling low-level packet encryption with the real param-
eters. It then computes the ciphertext by calling the model
on the high-level representation of the low-level inputs (i.e.,
arrays and machine integers are replaced by sequences and
mathematical integers), and overwriting the low-level output
with the resulting value. Since both the model and low-level
implementation share the same full functional specification,
and since the observable side-effects are independent of secret
inputs, the switch is indistinguishable to the adversary.

We outline below the implementation of encrypt in
QUIC.fst. When idealization is off, this code implements
the same low-level interface as Impl.encrypt, irrespective of
the model flag. When idealization is on, it provides the same
security guarantees as the high-level model, since this code
can be included in the attacker against QPE in Theorem 1.
Notice that the private state for packet encryption has a type
that depends on model, so that it carries either the the high-level
model state or the low-level implementation state. In encrypt,
the else branch simply forwards the call to the implementation.
The model branch instead first calls the implementation on
stack-allocated dummies, then extracts high-level input values
from the low-level input buffers, calls the model, and finally
stores the resulting cipher in the output buffer.

private type state i =
if model then Model.state i else Impl.state i

let encrypt #i (s:state i) header plain_len plain cipher =
if model then (

let dummy_state: Impl.state i = alloca(...) in
let dummy_plain = Plain.zero plain_len in
Impl.encrypt #i dummy_state header plain_len dummy_plain cipher
let header’ = parse_header header in
let plain’ = Plain.buffer_to_bytes plain_len plain in
let cipher’ = Model.encrypt s header’ plain’ in
Buffer.store_bytes cipher’ cipher)

else
Impl.encrypt #i s header plain_len plain cipher

Summary of implementation security claims After extrac-
tion, our code enforces constant time decryption of the packet
headers regardless of the packet number encoding size LN

and whether the decryption succeeds or fails. This prevents an
active attacker from inferring the relative position of the packet
in the window by successively flipping the least significant bits
of the encrypted packet number, a weakness that we observe
in other implementations. We also enforce abstraction over
the contents of the packets, which guarantees constant time
decryption of all packets of a given length. By padding all
packets up to the MTU, the QUIC transport can enforce fully
constant time processing of all encrypted packets using our
record layer implementation.

V. OUR QUIC REFERENCE IMPLEMENTATION

To evaluate if our verified record layer (§IV) satisfies the
needs of the QUIC protocol, we have developed a provably-
safe reference implementation of QUIC (draft 24) on top of
the record layer. We have also developed an example server

12

engine

[connection]*

TLS handshake stream manager

[stream]*

[send segment]* [partial segment]* [receive segment]*

[ready stream]*

[control frame]* [packet space]*

QUIC record layer

lrcc manager

[sent packet]*

[sent segment]*

Fig. 8: (Simplified) Hierarchy of Structures in our QUIC
protocol logic, which utilizes the TLS handshake and QUIC
record layer. [X]* represents a repetition of structure X, via
a doubly-linked list, array, extendable vector, or sequence.

and client that utilize our implementation to perform secure
file transfers.

A. Implementation Overview
Our prototype consists of three modules – the TLS hand-

shake, the QUIC record layer, and the QUIC protocol logic.
The TLS handshake is based on prior verified TLS work [17]
but has been updated to perform the TLS 1.3 handshake; it
provides symmetric keys for bulk data transfer. These keys
are used by our QUIC record layer (§IV), which handles the
encryption and decryption of QUIC traffic, as well as packet-
level parsing/serialization. Using these two modules, the QUIC
protocol logic implements the rest of the protocol, including
for example, connection and stream management. This module
is verified for safety, laying the groundwork for functional
correctness in the future.

Our prototype’s API is compliant with draft 30 of IETF
QUIC. More specifically, it allows an application to interact
with connections and streams as follows: open a connection as
a client; listen for connection as a server; control and configure
various resources such as number of permitted streams; and
open/close a stream; write to/read from a stream.

B. The QUIC Protocol Logic Module
The QUIC protocol logic implements stream multiplexing,

connection management, frame decoding/encoding, loss recov-
ery, congestion control, and other functionality required by the
IETF QUIC standard. Our implementation is centered around
the various structures in Figure 8. The engine represents a
prototype instance that manages connection instances (a
client instance contains one connection; a server instance
contains zero or more, depending on the number of con-
nected clients). A connection contains multiple stream
instances. It manages stream multiplexing, loss recovery, and
the interactions with the TLS handshake and QUIC record
layer. Finally, the stream maintains the sending/receiving
states of a stream. Each structure contains many other sup-
porting structures.

Our QUIC protocol logic is verified for memory safety,
type safety, termination, and the absence of integer overflows.
This prevents, e.g., buffer overflows, type-safety flaws, use-
after-free, and null-pointer accesses. We also prove correctness
of some key data structures, e.g., a doubly-linked list and an
expandable array.

Although the other modules in our reference implementa-
tion are written and verified in F*, we write and verify our
QUIC protocol logic in Dafny [39], an imperative, objected-
oriented verification language. While F*’s higher-order, ML-
inspired design is convenient for reasoning about cryptographic
properties, the QUIC protocol logic primarily manages stateful
data structures in a classically imperative fashion, which better
matches Dafny’s design. Indeed, in an early phase of this
project, it required several person-months to implement and
verify a generic doubly-linked list library in F*, while it
required only three hours to do so in Dafny. Dafny was
better able to handle multiple heap updates and the complex
invariants needed to prove and maintain correctness.

To support the compilation of our QUIC protocol logic,
we have extended Dafny to add a C++ backend. C++ offers
multiple benefits. First, it simplifies integration with the C code
compiled from the F* code of the other two modules. Second,
it enables performance optimizations that are harder to realize
in Dafny’s higher-level backends for C#, Java, JavaScript, or
Go. Finally, C++ (as opposed to C) is a convenient compilation
target for Dafny, since it includes a standard collections library,
support for reference-counted smart pointers, and platform
agnostic threading.

Our development includes ∼500 lines of trusted Dafny
code modeling the effects of calls to the other two modules; the
pre- and post-conditions are carefully matched with their F?

implementations. We model calls to the underlying OS (e.g.,
for UDP) similarly.

C. Proof Challenges and Techniques
We briefly summarize our overall proof strategy, chal-

lenges we encountered, and techniques for coping with those
challenges. To prove the safety of our QUIC protocol logic,
we establish and maintain validity invariants throughout our
codebase. Specifically, for each structure used in the code,
we define a valid predicate, which ensures that structure’s
safety.

Structures lower in the hierarchy (Figure 8) mostly contain
only primitive types. Hence, we define validity directly through
type refinement. For example, to represent a frame of data in
a stream, we use a frame datatype, which stores a byte array,
a length, and an offset into the stream. A type refinement on
the datatype ensures the array is not null, that the length is
accurate, and that the length plus the offset will not cause an
integer overflow.

Structures higher in the hierarchy contain nested sub-
structures, which complicates our validity definitions. These
now need to ensure: (i) validity of all substructures, (ii) the
disjointness of substructures. For example, a stream manages
the receive/send buffers through multiple doubly-linked lists,
all of which must be valid. Further, these lists should not
be aliased, which also means the nodes of the lists must be
completely disjoint.

A standard technique used to handle such complex data
structure reasoning is to maintain, in parallel to the actual
data, a “ghost” representation (i.e., one used only for proof
purposes and that will not appear in the compiled code). The
ghost representation is typically a set of all substructures. This
facilitates a succinct invariant about the disjointness of each
member of the set, and it allows the parent data structure

13

Modules LoC Verif. C/C++ LoC
Verified Record Layer (§IV)

QUIC.Spec.* 5,463 5m12s -
QUIC.Impl.* 5,509 6m32s 4,640
QUIC.Model.* 1,751 3m12s -
LowParse.Bitfields.* 2,011 1m29s -
LowParse.Bitsum.* 2,502 2m05s -
Total 9,836 16m30s -

QUIC Reference Implementation (§V)
Connection mgmt 4,653 14m12s -
Data Structures 651 9s -
Frame mgmt 1,990 1m50s -
LR & CC 758 11s -
Stream mgmt 1,495 3m25s -
Misc 118 2s -
FFI 558 9s 1461
Server & Client - - 648
Total 10,223 19m46s 2,109

Fig. 9: Summary of our verified codebase

to define its ghost representation simply as the union of
its children’s ghost representations. Unfortunately, we found
that data structures containing four or more nested structures
(e.g., the connection object) quickly overwhelmed the Dafny
verifier. The underlying challenge appears to be the complex
set reasoning which arises from needing to repeatedly flatten
sets-of-sets-of-objects into sets-of-objects.

Ultimately, we take advantage of Dafny’s ability to do
type-based separation, i.e., to define types that are known
to be incomparable. Rather than homogenizing the distinct
sub-structures into a single object-based representation, we
maintain ghost representations of each distinct type. This
requires additional proof annotations, but it makes the verifier’s
reasoning about validity much simpler, since non-aliasing of
instances of different class is "free".

Even with the aforementioned discipline, any mutation of
subcomponents (however deep) requires reproving the validity
of all layers above it. Hence we carefully structure our code
in multiple layers: the innermost performs the actual mutation,
and the outer layers simply expose these changes at higher and
higher levels.

A final technique we employ is the careful use of im-
mutability. Immutable data structures simplify proof reasoning,
since any immutable value is independent of the state of the
heap, and thus will remain valid regardless of how the heap
changes. On the other hand, used indiscriminately, immutabil-
ity imposes a performance cost due to excessive data copies.

To balance these concerns, we typically use immutable
structures at lower levels and mutable types elsewhere. This
simplifies reasoning at the upper levels (which are already
quite complex) without unduly hurting performance, since the
upper levels can manipulate, say, linked lists of immutable
lower-level structures, avoiding unnecessary copies. Even at
the lower levels, we sometimes find it convenient to keep a
structure in a mutable form while constructing it (e.g., while
reading from a stream), and then “freeze” it in an immutable
form to simplify reasoning. Since these data structures are not
subsequently mutated, we lose little performance.

24 25 26 27 28 29 210
0

500

1,000

1,500

2,000

Application Data Fragment Size (bytes)

T
hr

ou
gh

pu
t(

M
B

/s
)

Fig. 10: Record-layer performance: throughput of encryp-
tion/decryption of packets with various fragment sizes.

VI. EVALUATION

We first evaluate the effort required to build and verify
our QUIC reference implementation. Next, we measure the
performance of our record layer, the main focus of our work.
Finally, while the main goal of our verified-safe protocol
logic is to demonstrate that our record layer suffices to im-
plement QUIC, we also, as a point of comparison, evaluate
the overall performance of our QUIC prototype. To ensure a
fair comparison with other implementations, we evaluate with
QUIC draft version 30, rather than our proposed improvement
(Figure 6), which would simplify the implementation and
proof. We perform all of these measurements on a Linux
desktop with an Intel i9-9900k processor with 128GB memory.
When measuring on the network, we connect to a Linux
desktop with the same configuration over a 1 Gigabit Ethernet
LAN.

A. Verification Effort
Table 9 summarizes the size and verification time for our

verified components. Overall, our record layer consists of about
10K lines of F? code, which extract to ∼6K lines of C. A
significant portion of this total consists of extensions to the
EverParse libraries to support the bit-level combinators that
describe header formats. Our verifiably-safe implementation
of the QUIC protocol logic consists of 10K lines of Dafny
code, which compiles to ∼13K lines of C++. Additionally,
we have ∼800 lines of trusted C++ code to connect the record
layer and the protocol logic, and another ∼700 lines of trusted
C++ code to connect the protocol logic to the underlying OS
platform (shown collectively as FFI in the table).

Overall, we estimate that about 20 person-months went into
this effort, which includes the overhead of training multiple
new team members on our tools, methods, and QUIC.

B. QUIC Record Layer
Our core contribution, the QUIC record layer, performs

full stateful encryption/decryption of packets, including header
processing and protection. To evaluate its performance, we
measure the application data throughput for varying packet-
content sizes.

Figure 10 shows our results. At the typical MTU (1300
bytes), our implementation supports 1.98 GB/s of QUIC appli-
cation data, which is ∼2.4 times slower than raw AEAD.

C. File Transfer Performance
To evaluate the overall performance of our QUIC reference

implementation, we use it to transfer files over the network,
ranging in size from 512KB to 2GB, and measure throughput,

14

220 222 224 226 228 230 232
0

50

100

File Size (bytes)

T
hr

ou
gh

pu
t(

M
B

/S
) unverified ngtcp2

verified prototype

Fig. 11: QUIC prototype performance: comparison of file
transfer throughput with ngtcp2 on a 1 Gbps LAN.

comparing against an unverified baseline There are many
unverified implementations of QUIC in various languages; we
picked ngtcp2[54] as our baseline because it is a popular
and fast implementation written in C++. Using a C++ baseline
avoids performance differences due to differing runtimes. Fig-
ure 11 shows our results. Unsurprisingly, our implementation
is slower than the carefully optimized ngtcp2. We confirm
that interoperability between our implementation and ngtcp2,
which validates the faithfulness of our formal specification. On
smaller file sizes, our prototype is about twice as slow, but
on large ones, it only lags by ∼21%. Profiling shows this is
largely due to our naïve coarse-grained locking strategy, which
we plan to refine.

VII. RELATED WORK

Some papers attempt to model the security of Google
QUIC [30], but the results available for IETF QUIC are more
limited [22]. QPE is one of many extensions of nonce-based
authenticated encryption with additional data [48]. The use of
AEAD to build stateful encryption [19], [49], stream-based
channels [32], and concrete applications to protocols such
as the TLS record layer [14], [20] or SSH [10] have been
extensively studied. However, an important goal of the current
QUIC packet encryption construction is nonce confidentiality,
which is achieved by keeping some of the nonce implicit
(an idea that appeared in the CAESAR competition, and
received a proposed security definition [41]) and encrypting
the explicit part, for which several related constructions have
been proposed with security proofs [11]. Our work combines
these results with the modular type-based verification method
for cryptographic proofs of Fournet et al. [33] to create
an efficient verified implementation, building on the verified
EverCrypt [44] crypto library. An important limitation of the
methodology is that only perfect indistinguishability steps can
be mechanically verified. Other tools, notably EasyCrypt [6],
have relational semantics that can reason about advantages in
game hops, and have been used to fully prove the security of
complex constructions such as RSA-OAEP [1]. However, writ-
ing fast implementations is more difficult in EasyCrypt. The
preferred approach for implementation security has been to use
general-purpose C verification tools and prove the security of
an extracted model [28], in contrast to our implementation
switching strategy based on a shared specification.

We stress that the scope of our security analysis is limited
to the QUIC record layer, which is insufficient to conclude
that QUIC is a safe authenticated secure channel protocol. In
contrast, considerable work has gone towards proving that TLS

1.3 provides a secure channel. For example, Dowling et al. [27]
present a detailed cryptographic model of the handshake;
Bhargavan et al. [13] present a computational model verified
in CryptoVerif; and Cremers et al. [25] present a symbolic
model verified in Tamarin. These are recent instances of the
broader field of tool-assisted security proofs for cryptographic
protocols and their implementations [29], [23], [5], [8], [34],
[35], [7]. Readers can refer to the surveys of Barbosa et al. [4],
Blanchet [18] and Cortier et al. [24].

VIII. CONCLUSIONS

This paper is the first step towards a provably secure and
safe implementation of the IETF standard QUIC protocol.
Despite some weaknesses, we have proved the security of
QUIC packet encryption construction and built the first high-
performance, low-level implementation with proofs of correct-
ness, runtime safety, and security. We have also built a safe
implementation of the QUIC transport on top of our verified
packet encryption component and the verified miTLS hand-
shake. Our next steps are to write a functional specification of
the transport and verify the correctness of our implementation,
integrate the TLS handshake security model with the record
layer, and expose an idealized interface to the QUIC transport
that captures application data stream security [32].

ACKNOWLEDGEMENTS

Work at CMU was supported in part by grants from a
Google Faculty Fellowship, the Alfred P. Sloan Foundation,
the Department of the Navy, Office of Naval Research un-
der Grant No. N00014-17-S-B001, and the National Science
Foundation and VMware under Grant No. CNS-1700521. We
thank Felix Günther, Markulf Kohlweiss, and the anonymous
reviewers for their feedback. We thank Christopher Wood,
Martin Thompson, and other members of the IETF QUIC
working group for supporting our proposals and helping with
the organization of the QUIC Security & Privacy workshop.
Barry Bond contributed the inital QUIC F? prototype. We also
thank Nick Banks for integrating and testing earlier versions
of this work with MsQuic.

REFERENCES
[1] J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir, “Certified

computer-aided cryptography: Efficient provably secure machine code
from high-level implementations,” in Computer & Communications
Security, ser. CCS ’13. ACM, 2013, p. 1217–1230.

[2] ——, “Verifiable side-channel security of cryptographic implementa-
tions: Constant-time MEE-CBC,” in 23rd International Conference on
Fast Software Encryption, FSE 2016, 2016, pp. 163–184.

[3] J. B. Almeida, C. Baritel-Ruet, M. Barbosa, G. Barthe, F. Dupressoir,
B. Grégoire, V. Laporte, T. Oliveira, A. Stoughton, and P.-
Y. Strub, “Machine-checked proofs for cryptographic standards:
Indifferentiability of sponge and secure high-assurance implementations
of sha-3,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1607–1622.
[Online]. Available: https://doi.org/10.1145/3319535.3363211

[4] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers,
K. Liao, and B. Parno, “SoK: Computer-aided cryptography,” in 2021
Symposium on Security and Privacy. IEEE (to apprear), 2021.

[5] G. Barthe, S. Belaïd, G. Cassiers, P.-A. Fouque, B. Grégoire, and F.-X.
Standaert, “Maskverif: Automated verification of higher-order masking
in presence of physical defaults,” in European Symposium on Research
in Computer Security (ESORICS). Springer, 2019, pp. 300–318.

[6] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P.-Y.
Strub, EasyCrypt: A Tutorial. Springer, 2014, pp. 146–166.

15

https://doi.org/10.1145/3319535.3363211

[7] G. Barthe, B. Grégoire, and V. Laporte, “Secure compilation of side-
channel countermeasures: the case of cryptographic “constant-time”,”
in Computer Security Foundations (CSF). IEEE, 2018, pp. 328–343.

[8] A. G. Bayrak, F. Regazzoni, D. Novo, and P. Ienne, “Sleuth: Automated
verification of software power analysis countermeasures,” in Workshop
on Cryptographic Hardware and Embedded Systems. Springer, 2013,
pp. 293–310.

[9] M. Bellare, F. Günther, and B. Tackmann, “Two-tier authenticated en-
cryption: nonce hiding in QUIC,” https://felixguenther.info/talks/quips_
ttae2020-02-23.pdf, 2020.

[10] M. Bellare, T. Kohno, and C. Namprempre, “Breaking and provably
repairing the SSH authenticated encryption scheme: A case study of
the Encode-Then-Encrypt-and-MAC paradigm,” ACM Trans. Inf. Syst.
Secur., vol. 7, no. 2, p. 206–241, May 2004. [Online]. Available:
https://doi.org/10.1145/996943.996945

[11] M. Bellare, R. Ng, and B. Tackmann, “Nonces are noticed: AEAD
revisited,” in Advances in Cryptology – CRYPTO 2019, A. Boldyreva
and D. Micciancio, Eds. Cham: Springer International Publishing,
2019, pp. 235–265.

[12] M. Bellare and P. Rogaway, “The security of triple encryption and
a framework for code-based game-playing proofs,” in Advances in
Cryptology – EUROCRYPT 2006, 2006, pp. 409–426.

[13] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” in 2017
IEEE Symposium on Security and Privacy (SP), May 2017, pp. 483–
502.

[14] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Pan,
J. Protzenko, A. Rastogi, N. Swamy, S. Zanella-Béguelin, and J. K.
Zinzindohoué, “Implementing and proving the TLS 1.3 record layer,”
in 2017 Symposium on Security & Privacy. IEEE, 2017.

[15] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P.-
Y. Strub, “Triple handshakes and cookie cutters: Breaking and fixing
authentication over TLS,” in 2014 IEEE Symposium on Security and
Privacy, 2014, pp. 98–113.

[16] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu, “Cryptograph-
ically verified implementations for TLS,” in ACM Computer and
Communications Security, ser. CCS ’08. New York, NY, USA: ACM,
2008, pp. 459–468.

[17] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub,
“Implementing TLS with verified cryptographic security,” in 2013 IEEE
Symposium on Security and Privacy, 2013, pp. 445–459.

[18] B. Blanchet, “Security protocol verification: Symbolic and computa-
tional models,” in Principles of Security and Trust (POST). Springer,
2012, pp. 3–29.

[19] A. Boldyreva, J. P. Degabriele, K. G. Paterson, and M. Stam, “Security
of symmetric encryption in the presence of ciphertext fragmentation,”
in EUROCRYPT 2012, D. Pointcheval and T. Johansson, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 682–699.

[20] C. Boyd, B. Hale, S. F. Mjølsnes, and D. Stebila, “From stateless to
stateful: Generic authentication and authenticated encryption construc-
tions with application to tls,” in CT-RSA 2016, K. Sako, Ed. Cham:
Springer International Publishing, 2016, pp. 55–71.

[21] C. Brzuska, A. Delignat-Lavaud, C. Fournet, K. Kohbrok, and
M. Kohlweiss, “State separation for code-based game-playing proofs,”
in ASIACRYPT 2018, ser. Lecture Notes in Computer Science, vol.
11274. Springer, 2018, pp. 222–249.

[22] S. Chen, S. Jero, M. Jagielski, A. Boldyreva, and C. Nita-Rotaru,
“Secure communication channel establishment: TLS 1.3 (over TCP fast
open) vs. QUIC,” in ESORICS 2019, K. Sako, S. Schneider, and P. Y. A.
Ryan, Eds. Springer International Publishing, 2019, pp. 404–426.

[23] A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffman, C. Mac-
Cárthaigh, S. Magill, E. Mertens, E. Mullen, S. Tasiran et al., “Continu-
ous formal verification of Amazon s2n,” in Computer Aided Verification
(CAV). Springer, 2018, pp. 430–446.

[24] V. Cortier, S. Kremer, and B. Warinschi, “A survey of symbolic
methods in computational analysis of cryptographic systems,” Journal
of Automated Reasoning, vol. 46, no. 3-4, pp. 225–259, 2011.

[25] C. Cremers, M. Horvat, S. Scott, and T. v. d. Merwe, “Automated
analysis and verification of TLS 1.3: 0-RTT, resumption and delayed
authentication,” in IEEE Security and Privacy, May 2016, pp. 470–485.

[26] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” 2008.
[27] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic

analysis of the TLS 1.3 handshake protocol candidates,” in Proceedings
of the 22nd ACM SIGSAC conference on computer and communications
security. ACM, 2015, pp. 1197–1210.

[28] F. Dupressoir, A. D. Gordon, J. Jürjens, and D. A. Naumann, “Guiding
a general-purpose C verifier to prove cryptographic protocols,” Journal
of Computer Security, vol. 22, no. 5, pp. 823–866, 2014.

[29] H. Eldib, C. Wang, and P. Schaumont, “SMT-based verification of
software countermeasures against side-channel attacks,” in Tools and
Algorithms for the Construction and Analysis of Systems (TACAS).
Springer, 2014, pp. 62–77.

[30] M. Fischlin and F. Günther, “Multi-stage key exchange and the case of
google’s QUIC protocol,” in ACM CCS. ACM, 2014, pp. 1193–1204.

[31] M. Fischlin, F. Günther, and C. Janson, “Robust channels: Handling
unreliable networks in the record layers of QUIC and DTLS 1.3,”
Cryptology ePrint Archive, Report 2020/718, 2020, https://eprint.iacr.
org/2020/718.

[32] M. Fischlin, F. Günther, G. A. Marson, and K. G. Paterson, “Data
is a stream: Security of stream-based channels,” in CRYPTO 2015,
R. Gennaro and M. Robshaw, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 545–564.

[33] C. Fournet, M. Kohlweiss, and P. Strub, “Modular code-based cryp-
tographic verification,” in 18th ACM Conference on Computer and
Communications Security, CCS 2011, 2011, pp. 341–350.

[34] K. v. Gleissenthall, R. G. Kıcı, D. Stefan, and R. Jhala, “IODINE:
Verifying constant-time execution of hardware,” in USENIX Security,
2019, pp. 1411–1428.

[35] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill, “Ironclad apps: End-to-end security via automated full-
system verification,” in USENIX Operating Systems Design and Imple-
mentation (OSDI), 2014, pp. 165–181.

[36] J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and
secure transport,” IETF draft, 2019.

[37] T. Jager, J. Schwenk, and J. Somorovsky, “On the security of TLS 1.3
and QUIC against weaknesses in PKCS#1 v1.5 encryption,” in 22nd
ACM Conference on Computer and Communications Security, 2015,
pp. 1185–1196.

[38] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, and J. Iyengar, “The QUIC transport
protocol: Design and internet-scale deployment,” in SIG on Data
Communication. ACM, 2017, pp. 183–196.

[39] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Proceedings of the Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR), 2010.

[40] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru, “How secure and
quick is QUIC? provable security and performance analyses,” in 2015
Symposium on Security and Privacy. IEEE, 2015, pp. 214–231.

[41] C. Namprempre, P. Rogaway, and T. Shrimpton, “AE5 security notions:
Definitions implicit in the CAESAR call,” Cryptology ePrint Archive,
Report 2013/242, 2013, https://eprint.iacr.org/2013/242.

[42] K. Oku, “Client’s initial destination CID is unauthenticated,” QUIC
WG issue tracker, 2019. [Online]. Available: https://github.com/quicwg/
base-drafts/issues/1486

[43] A. Prado, N. Harris, and Y. Gluck, “SSL, gone in 30 seconds: a
BREACH beyond CRIME,” Black Hat USA, vol. 2013, 2013.

[44] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. y. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Four-
net, N. Kulatova, T. Ramananandro, A. Rastogi, N. Swamy, C. Win-
tersteiger, and S. Zanella-Beguelin, “EverCrypt: A fast, verified, cross-
platform cryptographic provider,” in Proceedings of the IEEE Sympo-
sium on Security and Privacy (Oakland), May 2020.

[45] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro,
P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud, C. Hriţcu, K. Bhar-
gavan, C. Fournet, and N. Swamy, “Verified low-level programming
embedded in F*,” PACMPL, vol. 1, no. ICFP, pp. 17:1–17:29, Sep.
2017.

[46] T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy, T. Cha-
jed, N. Kobeissi, and J. Protzenko, “EverParse: verified secure zero-copy

16

https://felixguenther.info/talks/quips_ttae2020-02-23.pdf
https://felixguenther.info/talks/quips_ttae2020-02-23.pdf
https://doi.org/10.1145/996943.996945
https://eprint.iacr.org/2020/718
https://eprint.iacr.org/2020/718
https://eprint.iacr.org/2013/242
https://github.com/quicwg/base-drafts/issues/1486
https://github.com/quicwg/base-drafts/issues/1486

H M N

AE.Enc K1

C

PRF K2

SampleN’

Packet

Fig. 12: The HN1[AE,PNE] construction

N

M H

AE.Enc K1

C

K2PRF

C’ C’’

Packet

Fig. 13: The HN2[AE, PNE] construction

parsers for authenticated message formats,” in 28th USENIX Security
Symposium, 2019, pp. 1465–1482.

[47] J. Rizzo and T. Duong, “The CRIME Attack,” September 2012.
[48] P. Rogaway, “Authenticated-encryption with associated-data,” in

CCS’02. ACM, 2002, pp. 98–107.
[49] P. Rogaway and Y. Zhang, “Simplifying game-based definitions: Indis-

tinguishability up to correctness and its application to stateful AE,” in
CRYPTO 2018, H. Shacham and A. Boldyreva, Eds., 2018, pp. 3–32.

[50] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K.
Zinzindohoue, and S. Zanella-Béguelin, “Dependent types and multi-
monadic effects in F*,” in 43nd ACM Symposium on Principles of
Programming Languages, POPL 2016, 2016, pp. 256–270.

[51] M. Thomson, “Version-independent properties of QUIC,” IETF draft,
2019.

[52] M. Thomson and S. Turner, “Using TLS to secure QUIC,” IETF draft,
2019.

[53] M. Thomson, “Authenticating connection IDs,” QUIC WG issue tracker,
2020. [Online]. Available: https://github.com/quicwg/base-drafts/issues/
3439

[54] T. Tsujikawa, “ngtcp2 project is an effort to implement IETF
QUIC protocol,” GitHub, 2019. [Online]. Available: https://github.com/
ngtcp2/ngtcp2

[55] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“HACL*: A verified modern cryptographic library,” in ACM Conference
on Computer and Communications Security. ACM, 2017, pp. 1789–
1806.

APPENDIX

A. Nonce-hiding encryption (Review)
Figure 12 and 13 show the HN1 and HN2 constructions

of Bellare et al. [11], which are proved secure with respect to

AE2, defined below, under the assumptions that AE is AE1-
secure and PNE is PRF-secure.

Game AE2b(SE2)

T ← ∅; k
$← SE2.gen()

Oracle Decrypt(C,H)
if b = 1 then

M ← T [_, C,H]
else

M ← SE2.dec(k,C,H)
return M

Oracle Encrypt(N,M,H)
assert T [N, _, _] = ⊥
if b = 1 then

C
$← {0, 1}|N|+|M|+SE2.`tag

T [N,C,H]←M
else

C ← SE2.enc(k,N,M,H)
return C

B. Constant-time packet number decoding
In our constant-time implementation of packet number

decoding, we expand all expressions making use of the
packet number length and replace all conditionals with se-
cret comparisons provided by EverCrypt. As an example,
Secret≤(X,Y) (resp. Secret=,Secret<) is a secret integer
equal to 1 if X ≤ Y (resp. X = Y,X < Y) and 0
otherwise. Thus, our implementation computes Decode, 28Ln

in constant time as Secret=(Ln, 1)×28×1+Secret=(Ln, 2)×
28×2+Secret=(Ln, 3)×28×3+Secret=(Ln, 4)×28×4. using
multiplications and additions rather than masks. F* automat-
ically proves the equality of these two expressions, thanks to
Z3’s support for linear arithmetic theory. It also ensures, by
typechecking against the abstract interface of secret integers,
that the latter computation does not leak information about
LN . We similarly rewrite and verify the rest of Decode using,
e.g., (1−C) to negate some condition C ∈ {0, 1}, and using
multiplication for logical conjunction:

Decode(Ne, Ni, LN)

W ← 28LN ; X ← Ni + 1
N ← Ne+ (X&(W − 1))
C1 ← Secret≤(N,X −W/2)× Secret<(N, 262 −W)
C2 ← (1− C1)× Secret<(X +W/2, N)× Secret≤(W,N)
return N + C1 ×W − C2 ×W

After processing the header and its protection, our imple-
mentation calls EverCrypt’s AEAD to decrypt the payload,
at an offset that depends on protected header information.
Since EverCrypt does not support secret-offset decryption, this
requires us to declassify the offset at that point. Although the
resulting memory accesses during payload decryption might
be a source of cache-based side channel (in the sense that the
memory locations accessed by EverCrypt AEAD depend on
the value of the packet number length), such an attack appears
unlikely and impractical.

17

https://github.com/quicwg/base-drafts/issues/3439
https://github.com/quicwg/base-drafts/issues/3439
https://github.com/ngtcp2/ngtcp2
https://github.com/ngtcp2/ngtcp2

	I Introduction
	II QUIC Background
	III QUIC Record Layer Security
	III-A Background: QUIC Packet Encryption (QPE)
	III-B QUIC-Packet-Encryption Security
	III-C From Theorem 1 to Code Verified in F
	III-D History and Improvements to QPE

	IV Verified Correctness and Security
	IV-A F (review) and Initial QUIC Definitions
	IV-B F Specification of Packet Encryption
	IV-C Functional Correctness Properties
	IV-D Low-Level Record-Layer Implementation
	IV-E Type-Based Cryptographic Security Proofs
	IV-F Verified Implementation Correctness and Security

	V Our QUIC Reference Implementation
	V-A Implementation Overview
	V-B The QUIC Protocol Logic Module
	V-C Proof Challenges and Techniques

	VI Evaluation
	VI-A Verification Effort
	VI-B QUIC Record Layer
	VI-C File Transfer Performance

	VII Related Work
	VIII Conclusions
	References
	Appendix
	A Nonce-hiding encryption (Review)
	B Constant-time packet number decoding

