
Certified Concurrent Abstraction Layers
Ronghui Gu

Yale University, USA

Columbia University, USA

Zhong Shao

Yale University

USA

Jieung Kim

Yale University

USA

Xiongnan (Newman) Wu

Yale University, USA

Jérémie Koenig

Yale University, USA

Vilhelm Sjöberg

Yale University, USA

Hao Chen

Yale University, USA

David Costanzo

Yale University, USA

Tahina Ramananandro

Microsoft Research, USA

Abstract
Concurrent abstraction layers are ubiquitous in modern

computer systems because of the pervasiveness of multi-

threaded programming and multicore hardware. Abstraction

layers are used to hide the implementation details (e.g., fine-

grained synchronization) and reduce the complex depen-

dencies among components at different levels of abstraction.

Despite their obvious importance, concurrent abstraction

layers have not been treated formally. This severely limits the

applicability of layer-based techniques and makes it difficult

to scale verification across multiple concurrent layers.

In this paper, we present CCAL—a fully mechanized pro-

gramming toolkit developed under the CertiKOS project— for

specifying, composing, compiling, and linking certified con-

current abstraction layers. CCAL consists of three technical

novelties: a new game-theoretical, strategy-based composi-

tional semantic model for concurrency (and its associated

program verifiers), a set of formal linking theorems for com-

posing multithreaded and multicore concurrent layers, and a

new CompCertX compiler that supports certified thread-safe

compilation and linking. The CCAL toolkit is implemented

in Coq and supports layered concurrent programming in

both C and assembly. It has been successfully applied to

build a fully certified concurrent OS kernel with fine-grained

locking.

CCS Concepts • Theory of computation → Logic and
verification; Abstraction; • Software and its engineer-
ing→ Functionality; Software verification;Concurrent
programming languages;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00

https://doi.org/10.1145/3192366.3192381

Keywords abstraction layer, modularity, concurrency, veri-

fication, certified OS kernels, certified compilers

ACM Reference Format:
Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu,

Jérémie Koenig, Vilhelm Sjöberg, HaoChen, David Costanzo, and Ta-

hina Ramananandro. 2018. Certified Concurrent Abstraction Layers.

In Proceedings of 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’18). ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3192366.3192381

1 Introduction
Abstraction layers (e.g., circuits, ISA, device drivers, OS

kernels, and hypervisors) are widely used in modern com-

puter systems to help reduce the complex interdependencies

among components at different levels of abstraction [3, 48].

An abstraction layer defines an interface that hides the im-

plementation details of its underlying software or hardware

components. Client programs built on top of each layer are

understood solely based on the interface, independent of the

layer implementation.

As multicore hardware and multithreaded programming

become more pervasive, many of these abstraction layers

also become concurrent in nature. Their interfaces not only

hide the concrete data representations and algorithmic de-

tails, but also create an illusion of atomicity for all of their

methods: each method call is viewed as if it completes in a

single step, even though its implementation contains com-

plex interleavings with operations done by other threads.

Herlihy et al. [19, 20] advocated using layers of these atomic

objects to construct large-scale concurrent software systems.

Figure 1 presents a few common concurrent layer objects

in a modern multicore runtime. Here we use the light gray

color to stand for thread-local (or CPU-local) objects, blue

(also with round dots in their top-right corner) for objects

shared between CPU cores, green for objects exported and

shared between threads, and orange for threads themselves.

Above the hardware layers, we must first build an efficient

and starvation-free spinlock implementation [36]. With spin-

locks, we can implement shared objects for sleep and pending

thread queues, which are then used to implement the thread

schedulers, and the primitives yield, sleep, and wakeup. On

https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/3192366.3192381

S/W
 Layers

CPU

PerCorePerCore

Core 0 Core 8…H�W Memory

CurID PCPU

Thread RdyQ

Scheduler

Spin Locks

PendQ SleepQPe
rT

hr
ea

d TCB

Stack

CtxtPe
rT

hr
ea

d TCB

Stack

Ctxt

Thread 1 Thread 2 Thread N

…

Sync. Libs QLock CV IPC…

…

QLock: Queue Lock

CV: Condition Variable
Ctxt: Threat Context

RdyQ: Ready Queue
PendQ: Pending Queue

SleepQ: Sleeping Queue
IPC: Inter-process Communication

TCB: Threat Control Block

CurID: Current IDAcronyms

Sync. Libs: Synchronization Libraries

Figure 1.An overview of concurrent abstraction layers in a modern

multithreaded and multicore environment (arrow means possible

function call from one component to another).

top of them, we can then implement high-level synchroniza-

tion libraries such as queuing locks, condition variables (CV),

and message-passing primitives [2].

Despite the importance of concurrent layers and a large

body of recent work on shared-memory concurrency verifi-

cation [5, 7, 8, 13, 23, 29, 30, 42, 45, 50, 57–59], there are no

certified programming tools that can specify, compose, and

compile concurrent layers to form awhole system [6]. Formal

reasoning across multiple concurrent layers is challenging

because different layers often exhibit different interleaving

semantics and have a different set of observable events. For

example, the spinlock module in Fig. 1 assumes a multicore

model with an overlapped execution of instruction streams

from different CPUs. This model differs significantly from

the multithreading model for building high-level synchro-

nization libraries: each thread will block instead of spinning

if a queuing lock or a CV event is not available; and it must

count on other threads to wake it up to ensure liveness.

Reasoning across these different abstraction levels requires

a general, unified compositional semantic model that can

cover all of these concurrent layers. It must also support

a general “parallel layer composition rule” that can handle

explicit thread control primitives (e.g., sleep and wakeup).

It must also support vertical composition [2] of these con-

current layer objects [19] while preserving both the lineariz-

ability and progress (e.g., starvation-freedom) properties.

Contributions. In this paper, we present CCAL—a fully

mechanized programming toolkit implemented in Coq [55]

and developed under the CertiKOS project [16] for building

certified concurrent abstraction layers. As shown in Fig. 2,

CCAL consists of a novel compositional semantic model

for concurrency, a collection of C and assembly program

verifiers, a library for building layered refinement proofs, a

thread-safe verified C compiler based on CompCertX [15],

and a set of certified linking tools for composing multi-

threaded or multicore layers.

We define a certified concurrent abstraction layer as a

triple (L1[A],M,L2[A]) plus a mechanized proof object show-

ing that the layer implementationM , running on behalf of

a thread set A over the interface L1, indeed faithfully imple-

ments the desirable interface L2 above. Our compositional

semantics model is based upon ideas from game seman-

tics [38]. It enables local reasoning such that the implemen-

tation can be first verified over a single thread t by building

(L1[{t }],M,L2[{t }]) without worrying too much about the

concurrency and the guarantees can then be propagated to

the whole concurrent machine by parallel compositions.

Following Gu et al. [15], certified concurrent layers en-

force termination-sensitive contextual correctness property.
In the concurrent setting, this means that every certified

concurrent object satisfies not only a safety property (e.g.,

linearizability) [10, 20] but also a progress property (e.g.,

starvation-freedom) [33].

The CCAL toolkit has already been used in multiple large-

scale verification projects under CertiKOS: Gu et al. [16]

have successfully used CCAL to build the world’s first fully

certified concurrent OS kernel; Sjöberg et al. [53] used CCAL

to verify the safety and liveness of a complex MCS lock

implementation [36]. Neither of these two papers [16, 53]

explained the internals of CCAL and how and why it can

work so effectively.

This paper, rather than focusing on the applications of

CCAL, gives an in-depth exploration of the CCAL toolkit

itself and how it can be used for building various certified

concurrent objects. Over Gu et al. [16], this paper presents

the following three technical contributions:

• We introduce a new compositional semantic model for

shared-memory concurrent abstract machines and prove

a general parallel layer composition rule. We show how

our new framework is used to specify, verify, and com-

pose various concurrent objects at different levels of ab-

straction (see Fig. 1).

• We showhow to apply standard simulation techniques [15,
26] to verify the safety and liveness of concurrent objects

in a unified setting. Because our environment context

specifies not just the environment’s past events but also

future events, we can readily impose temporal invariants

such as fairness requirements (for schedulers) or definite
actions [30] (for releasing locks). This allows us to give

full specifications for lock primitives and support vertical

PerCore / PerLayerPerCoreLayer L[c]

PerThread / PerLayerPerThreadLayer L[t]

C
Code

C
Spec

Thread Safe
CompCertX

Asm
Code

Asm
Code

Atomic
Spec

Atomic
Spec

Compositional
Semantic Model

⊕

C
Verifier

Asm
Verifier

Refinement
Libraries

⊕

⊕

L[A]

C
er

tifi
ed

M
ul

ti-
tr

he
ad

ed

Li
nk

in
g

⊕
L[D]

Certified
Multi-core

Linking

 PerThreadLayer L’[t] L’[A]

⊕ Certified
Multi-layer

Linking
Certified Asm

Linking

c: CPU id; D = {c1, c2, …}
t: thread id; A = {t1, t2, …} Legend

Layer

Spec

Code

Certified
Tool / Model

⊕ Linking

Refinement

Compile

Figure 2. System architecture of the CCAL programming toolkit.

composition of starvation-free atomic objects, none of

which have ever been possible before [30].

• We have also developed a new thread-safe version of

the CompCertX compiler [15] that can compile certified

concurrent C layers into assembly layers. To support

certified multithreaded linking, we have developed a

new extended algebraic memory model (for CompCertX)

whereby stack frames allocated for each thread are com-

bined to form a single coherent CompCert-style memory.

Scope and Paper Outline. While the notion of certified con-

current layer can potentially be applied to a more general

setting [34, 49], in this paper, we focus on shared-memory

concurrent program modules as described in Anderson and

Dahlin [2] and Herlihy and Shavit [19], which are sufficient

to verify layers as shown in Fig. 1. Section 7 discusses related

work and puts our work in broader perspective. Both the

CCAL toolkit and all our assembly (or C) machines assume

strong sequential consistency for shared primitives. Adding

support for relaxed memory models is left as future work.

2 Overview
The key challenge of verifying concurrent systems is how

to untangle the complexities of module dependencies and

interleaving, and then verify different parts independently

and locally at the layers they belong to. To address this issue,

we introduce a layer-based approach to formally specify,

certify, and compose these (concurrent) layers.

In this section, to illustrate our layered techniques, we

will walk through a small example (see Fig. 3) that uses a

lock to protect a critical section. In this example, the client

program P has two threads running on two different CPUs;

each thread makes one call to the primitive foo provided by

the concurrent layer interface L2. The interface L2 is imple-

mented by the concurrent moduleM2, which in turn is built

1 struct ticket_lock {
2 volatile uint n, t;
3 };
4 //Methods provided by L0
5 extern uint get_n();
6 extern void inc_n();
7 extern uint FAI_t();
8 extern void f();
9 extern void g();
10 extern void hold();
11 //M1 module
12 void acq () {
13 uint my_t = FAI_t();
14 while(get_n()!=my_t){};
15 hold();
16 }
17 void rel () { inc_n(); }
18 //Methods provided by L1

19 extern void acq();
20 extern void rel();
21 extern void f();
22 extern void g();
23 //M2 module
24 void foo () {
25 acq();
26 f(); g();
27 rel();
28 }
29 //Methods provided by L2
30 extern void foo();
31

32 //Client program P
33 //Thread running on CPU 1
34 void T1 () { foo(); }
35 //Thread running on CPU 2
36 void T2 () { foo(); }

Figure 3. Certified concurrent layers involving ticket locks.

on top of the interface L1. The method foo calls two prim-

itives f and g in a critical section protected by a lock. The

lock is implemented over the interface L0 using the ticket

lock algorithm [36] in moduleM1. The lock maintains two

integer variables n (the “now serving” ticket number) and

t (i.e., next ticket number). The lock acquire method acq
fetches-and-increments the next ticket number (by FAI_t)
and spins until the fetched number is served. The lock re-

lease method rel simply increments the “now serving” ticket

number by inc_n. These primitives are provided by L0 and
implemented using x86 atomic instructions. L0 also provides
the primitives f and g that are later passed on to L1, as well
as a no-op primitive hold called by acq to announce that the

lock has been taken.

Certified Abstraction Layers. Gu et al. [15] defines a certi-

fied sequential abstraction layer as a predicate “L′ ⊢R M : L”
plus a mechanized proof object for the predicate, showing
that the layer implementationM , built on top of the interface

L′ (which we call the underlay interface), indeed faithfully

implements the desirable interface L above (which we call

the overlay interface) via a simulation relation R.
Here, the implementationM is a program module written

in assembly (or C). A layer interface L consists of a set of

abstract states and primitives. An abstract layer machine

based on L is just the base assembly (or C) machine extended

with abstract states and primitives defined in L. The imple-
ments relation (⊑R) is formally defined as a forward simula-

tion [27, 35, 37, 43] with the (simulation) relation R.
A certified layer enforces a contextual correctness prop-

erty: a correct layer is like a “certified compiler,” converting

any safe client program P running on top of L into one that

has the same behavior but runs on top of L′ (i.e., by “compil-

ing” abstract primitives in L into their implementation inM).

If we use “[[·]]L” to denote the behavior of the layer machine

based on L, the correctness property of “L′ ⊢R M : L” is writ-
ten formally as “∀P .[[P ⊕ M]]L′ ⊑R [[P]]L” where ⊕ denotes

a linking operator over programs P andM .

CertifiedConcurrent Layers. To support concurrency, each
layer interface L is parameterized with a “focused” thread set

A (where A ⊆ D and D is the domain of all thread/CPU IDs).

The layer machine based on a concurrent layer interface L[A]
specifies the execution of threads in A (with threads outside

A considered as the environment). For the example in Fig. 3,

the domain D is {1, 2}. If we treat {1} as the focused thread

set, the environment contains thread 2. For readability, we

often abbreviate L[{i}] as L[i] where i ∈ D.
A concurrent layer interface extends its sequential coun-

terpart with a set of abstract shared primitives and a global

log l . Unlike calls to thread-local primitives which are not

observable by other threads, each shared primitive call (to-

gether with its arguments) is recorded as an observable event

appended to the end of the global log. For example, FAI_t (see
Fig. 3) called from thread i takes a log l to a log “l•(i .FAI_t)”
with the symbol “•” means “cons-ing” an event to the log.

To define the semantics of a concurrent program P in a

generic way, we develop a novel compositional (operational)

model based upon ideas from game semantics [38]. Each

run of P over L[D] is viewed as playing a game involving

members of D (plus a scheduler): each participant i ∈ D
contributes its play by appending events into the global log

l ; its strategy φi is a deterministic partial function from the

current log l to its next move φi (l) whenever the last event
in l transfers control back to i .

For example, suppose thread i only invokes FAI_t, its strat-
egy φi can be represented as an automaton:

?l , !i .FAI_t,↓t
?l ′, !ϵ

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●

●

●
●
●

L’[t2]

L[t2]

M:foo(){

}

●

●

●

●

E 0
2 = '0

1 � '0
0

L’[t1]

L[t1]

M:foo(){

}

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●

●

●
●
●

●

●

●

●

E 0
1 = '0

0 � '0
2

)
R R

●
●
●
●
●
●
●
●
●
●
●
●
●

M:foo(){

}

●

●

●

●

L’[{t1,t2}]

L[{t1,t2}]

M:foo(){

}

●

●

●

●

R RE 0 = '0
0

Figure 4. Environment contexts and parallel layer composition.

Suppose the global log is equal to l when the control is trans-

ferred to i (denoted as “?l”). Thread i first generates the event
i .FAI_t (denoted as “!i .FAI_t”) and returns the ticket number

t (denoted as “↓ t”) calculated from l . It then becomes idle

(denoted as a reflexive edge labeled with“?l ′, !ϵ”) and will not
produce any more events. The ticket number t is calculated
by a function that counts the fetch-and-increment events in

l . Such functions that reconstruct the current shared state

from the log are called replay functions.

The scheduler (denoted as φ0) acts as a judge of the game.

At each round, it picks one thread to make a move (and

generate events) using its strategy. The behavior of the whole
layer machine (denoted as “[[·]]L[D]”) is then just the set

of logs generated by playing the game under all possible

schedulers.

When focusing on a subset of threads A, the semantics

(or execution) of the (concurrent) layer machine based on

an interface L[A] is defined over its set of valid environment
contexts. Each environment context (denoted as E) provides a

strategy for its “environment,” i.e., the union of the strategies

by the scheduler plus those participants not in A.
For example, Fig. 4 shows a system with two threads (t1

and t2) and a scheduler. On the left, it shows one execution

of method foo over the layer machine L′[t1] under a spe-

cific environment context E ′
1
. Here, E ′

1
is the union of the

strategy φ ′
0
for the scheduler and φ ′

2
for thread t2. In the

middle, it shows the execution of foo (invoked by t2) over
L′[t2] under the environment context E ′

2
. On the right, it

shows the interleaved execution of two invocations to foo
over L′[{t1, t2}]where the environment context E ′ is just the

scheduler strategy φ ′
0
.

Given an environment context E which also contains a

specific scheduler strategy, the execution of P over L[A] is
deterministic; the concurrent machine will run P when the

control is transferred to any member of A, but will ask E
for the next move when the control is transferred to the

environment.

To enforce the safety of environmental moves, each layer

interface also specifies its set of valid environment contexts.

This validity corresponds to a generalized version of the “rely”

(or “assume”) condition in rely-guarantee-based reasoning [7,

8, 11, 51, 58]. Each layer interface can also provide its own

“guarantee” condition. These conditions are simply expressed

as invariants over the global log.

Local Layer Interface. Consider the case where the focused
thread set is a singleton {i}. Since the environmental execu-

tions (including the interleavings) are all encapsulated into

the environment context, L[i] is actually a sequential-like (or
local) interface parameterized over E. Before each move of a

client program P over this local interface, the layer machine

first repeatedly asks E for environmental events until the

control is transferred to i . It then makes the move based on

received events. Thus, the semantics of running P over L[i]
(denoted as LPML[i]) can also be viewed as a strategy.

The correctness property asserting that a concurrent mod-

ule on top of a local layer interface indeed satisfies its specifi-

cation (i.e., a more abstract strategy) is defined by the strategy
simulation via a simulation relation R for logs.

Definition 2.1. (≤R) We say a strategy φ is simulated by

another strategy φ ′ with a simulation relation R and write

“φ ≤R φ ′”, if, and only if, for any two related (by R) environ-
mental event sequences and any two related initial logs, we

have that for any log l produced by φ , there must exist a log

l ′ that can be produced by φ ′ such that l and l ′ also satisfy R.

Consider the acq method of the ticket lock module M1

running over L0[i] (see Fig. 3). Its specification can be repre-

sented as the following strategy φ ′acq[i]:

?E, !i .FAI_t,↓t

?E, !i.get_n,↓n (, t)

?E, !i .get_n,↓t ?E, !i .hold

We write ?E for querying E. We can prove that the simula-

tion “LacqML0[i] ≤id φ
′
acq[i]” holds for the identical relation:

for any equal E and equal initial state, if φ ′acq[i] takes one
step, acq can take one (or more) steps to generate the same

event and the resulting states are still equal. This correctness

property is also used to define certified concurrent layers:

L0[i] ⊢id acq : φ ′acq[i] := LacqML0[i] ≤id φ
′
acq[i]

Let “M1 := acq ⊕ rel” and “L′
1
[i] := φacq[i]

′ ⊕ φrel[i]
′
”. By

showing that the lock release satisfies its specification (i.e.,

“L0[i] ⊢id rel : φ ′rel[i]”) and by the horizontal composition

rule (see Sec. 3.3), we have:

L0[i] ⊢id M1 : L
′
1
[i] := LM1ML0[i] ≤id L′

1
[i] (2.1)

The notations are extended to a set of strategies, meaning

that each strategy of L′
1
[i] simulates the one of LM1ML0[i].

Higher-level Strategies. Although the specifications above

(e.g., φ ′acq[i]) are abstract (i.e., language independent), low-
level implementation details and interleavings within the

module are still exposed. For example, φ ′acq[i] reveals the
loop that repeatedly interacts with the environment to check

the serving ticket number. To simplify the verification of

⊕

∥
i ∈{1,2}

(2.2) (2.3)L0[i] ⊢R1
M1 : L1[i] L1[i] ⊢R2

M2 : L2[i]

L0[i] ⊢R1◦R2
M1 ⊕ M2 : L2[i]

L0[i] ⊢R1◦R2
CompCertX(M1 ⊕ M2) : L2[i]

L0[{1, 2}] ⊢R1◦R2
CompCertX(M1 ⊕ M2) : L2[{1, 2}]

∀P , [[P ⊕ CompCertX(M1 ⊕ M2)]]L0[{1,2}] ⊑R1◦R2
[[P]]L2[{1,2}]

vertical composition

thread-safe compilation

parallel composition

soundness theorem

Figure 5. Layer verification of the ticket lock example using CCAL.

components using locks, we have to refine the strategies of
L′
1
[i] to a higher-level interface L1[i] that is atomic:

L1[i] := φacq[i] : ⊕ φrel[i] :
?E, !i .acq !i .rel,↓t

Here, φacq[i] simply queries E and produces a single event

i .acq. It then enters a so-called critical state (marked as gray)

to prevent losing the control until the lock is released. Thus,

there is no need to ask E in critical state.

To prove the strategy simulation between L′
1
[i] and L1[i],

we have to pose “rely” (i.e., validity) conditions R over the

environment context of L′
1
[i]:

• L′
1
[i].Rhs : the scheduler strategy φ

′
hs must be fair.

• L′
1
[i].Rj (j , i): lock-related events generated by φ j

must follow φacq′[j] and φrel′[j], and the held locks will
eventually be released.

These conditions ensure that the loop (waiting for the ticket

to be served) in φ ′acq[i] terminates. Also, they can be used to

prove that each run of L′
1
[i] is captured by L1[i]. For example,

if the scheduler strategy φ ′hs schedules as “1, 2, 2, 1, 1, 2, 1, 2,
1, 1, 2, 2,” running P (see Fig. 3) over L′

1
[D] generates the log:

l ′д := (1.FAI_t)•(2.FAI_t)•(2.get_n)•(1.get_n)•(1.hold)•(2.get_n)
•(1.f)•(2.get_n)•(1.g)•(1.inc_n)•(2.get_n)•(2.hold)

This interleaving can be captured by a higher-level scheduler

φhs producing “1, 2” (recall that thread 1 is in the critical state

while holding the lock), and the generated log at L1[D] is:

lд := (1.acq)•(1.f)•(1.g)•(1.rel)•(2.acq)

Although logs (and events) at these two layers are different,

the order of lock acquiring and the resulting shared state

(calculated from logs by replay functions) are exactly the

same. By defining the relationR1 over logs as mapping events

i .acq to i .hold, i .rel to i .inc_n and other lock-related events

to empty ones, we can prove:

L′
1
[i] ≤R1

L1[i]

Then by the predicate (2.1) and the weakening rule (i.e., the

Wk rule in Fig. 9), we have that:

L0[i] ⊢id◦R1 = R1
M1 : L1[i] (2.2)

Similarly, for the foo method (i.e., M2 in Fig. 3), we can

also introduce a low-level strategy φ ′foo[i] as the first step:

L′
2
[i] := φ ′foo[i] :

?E, !i .acq !i .f !i .g !i .rel

Then we prove that a high-level atomic interface φfoo:

L2[i] := φfoo[i] :
?E, !i .foo

simulates (with some R2) φ
′
foo, which in turn simulates foo:

L′
2
[i] ≤R2

L2[i] L1[i] ⊢id M2 : L
′
2
[i] (2.3)

Based on L′
2
[i], we can derive the “guarantee” condition

G of the thread i saying that held locks are always released

within three steps, which is consistent but more concrete

than the rely condition R defined above.

Parallel Layer Composition. We say that two layer inter-

faces L[t1] and L[t2] are compatible if the guarantee G of

each interface implies the other interface’s rely conditions R .

The new compositional model allows us to prove a general

parallel layer composition rule: if L′[t1] is compatible with

L′[t2], L[t1] is compatible with L[t2], and “L′[t] ⊢R M : L[t]”
holds for every t ∈ {t1, t2}, then we have “L′[{t1, t2}] ⊢R M :

L[{t1, t2}].” Figure 4 shows how to compose certified local

layers (one for t1 and another for t2) to build a certified layer
for the entire machine (with t1 and t2 both focused).

Thread-Safe CompCertX and Layer Linking. Since the

local layer interface is sequential-like, we can adapt the

CompCertX compiler [15] to be thread-safe by merging the

stack frames of threads on the same CPU into a single stack.

In this way, certified C layers can be compiled into certified

assembly layers. We can then apply the horizontal, vertical,

and the new parallel layer composition rules (see Sec. 3.3) to

construct the certified concurrent layer for the entire system

(see Fig. 5). Finally, from “L′[D] ⊢R M : L[D],” the soundness
theorem enforces a strong contextual refinement property

saying that, for any client program P , we have that for any
log l in the behavior [[P ⊕ M]]L′[D], there must exist a log l ′

in the behavior [[P]]L[D] such that l and l ′ satisfy R.

Theorem 2.2 (Soundness).

L′[D] ⊢R M : L[D] ⇒ ∀P , [[P ⊕ M]]L′[D] ⊑R [[P]]L[D]

3 Concurrent Layer Interface and Calculus
In this section we instantiate our compositional model for

the x86 multicore hardware and explain the concurrent layer

interface and the layer calculus in more detail.

1 Function σ ′pull (s: State) (b: Loc) :=

2 match s.a.status b with
3 |free=>ret s{l: s .c .pull(b)::s.l}{a.status.b: own s.c}
4 | _ => None (* get stuck*)
5 end.

Figure 6. Pseudocode of the pull specification ofMx86 in Coq.

3.1 Multiprocessor Machine Model
ThemultiprocessormachinemodelMx86 is defined by thema-

chine state, the transition relation, and the memory model.

Machine State. As shown in Fig. 7, the state ofMx86 is de-

noted as a tuple “s := (c, fρ ,m,a, l),” where the components

are the current CPU ID c , all CPUs’ private states fρ (i.e., a

partial map from CPU ID to private state ρ), a shared mem-

ory statem, an abstract state a, and a global event log l . The
private state ρ consists of CPU-private memory pm (invisi-

ble to other CPUs) and a register set rs . The shared memory

statem is shared among all CPUs. Each location b in both

local and shared memories contains a memory value v . The
abstract state a is generally used in our layered approach to

summarize in-memory data structures from lower layers. It

is not just a ghost state, because it affects program execution

when making primitive calls. The global log l is a list of ob-
servable events, recording all shared operations that affect

more than one CPU. Events generated by different CPUs

are interleaved in the log, following the actual chronological

order of events.

Transition Relation. The machineMx86 has two types of

transitions that are arbitrarily and nondeterministically in-

terleaved: program transitions and hardware scheduling.

Program transitions are one of three possible types: instruc-
tion executions, private primitive calls, and shared primitive

calls. The first two types are “silent”, in that they do not gen-

erate events. Shared primitives, on the other hand, provide

the only means for accessing and appending events to the

global log. The transitions for instructions only change ρ,
pm, andm, and are defined as standard operational semantics

for C or x86-assembly, similar to (and in fact based on) the

operational semantics used in CompCert [27]. Primitive calls

are specific to our style of verification: they directly specify

the semantics of function f from underlying layers as a rela-

tion σf defined in Coq. This relation specifies how the state

is updated after f is called with the given arguments and

what the return value is.

Hardware scheduling transitions change the current CPU

ID c to some ID c ′ (recorded as a scheduling event) and can

be arbitrarily interleaved with program transitions. In other

words, at any step,Mx86 can take either a program transition

staying on the current CPU, or a hardware scheduling to

another CPU. The behavior of a client program P over this

multicore machine (denoted as [[P]]Mx86) is a set of global logs

generated by executing P via these two kinds of transitions.

(Id, Loc) c,b ∈ Nat (Bytes) bl ∈ List Byte (Val) v := bl | b | vundef
(Mem) pm,m ∈ Loc→ Val (Reg) r := EIP | EAX | · · · (RegSet) rs ∈ Reg→ Val
(PvtSt) ρ := (pm, rs) (PvtStMap) fρ ∈ Id⇀ PvtSt (Abs) a ∈ Type
(Event) e := ϵ | c .push(b,v) | · · · (Log) l ∈ List Event (State) s := (c, fρ ,m,a, l)
(AsmFn) κx86 ∈ List x86Instr (AsmModule) Mx86 ∈ Loc⇀ AsmFn
(Prim) σ ∈ State → List Val→ State → Val→ Prop
(PrimList) L ∈ Loc⇀ Prim (Layer) L[A] := (L,R,G) (Inv) INV ∈ Log→ Prop
(Rely, Guar) R,G ∈ Id⇀ Inv (Strategy) φ ∈ Log⇀ Log (EC) E ∈ Id⇀ Strategy

Figure 7. The machine state for the concurrent machine model and the concurrent layer interface.

Memory Model. We introduce a “push/pull” memory model

for the shared memorym (the private memory is separately

handled in ρ), which encapsulates the shared memory oper-

ations into push/pull events and can detect data races.

In this model, each shared memory location b is associated
with an ownership status in the abstract state a, which can

only be manipulated by two shared primitives called pull and
push. The pull operation modifies the ownership from “free”

to “owned by c”, after which shared memory accesses can be

performed by CPU c . The push operation frees the ownership
and records its memory updates in the log. Figure 6 shows

the specification σ ′pull , where “r {i : v}” means updating the

record r at field i with value v .
If a program tries to pull a not-free location, or tries to

access or push to a location not owned by the current CPU, a

data race may occur and the machine gets stuck. One goal of
concurrent program verification is to show that a program is

data-race free; in our setting, we accomplish this by showing

that the program does not get stuck.

3.2 Concurrent Layer Interface
We now zoom in on the execution of a subset of CPUs A,
introducing the concurrent layer interface L[A] defined as

a tuple (L,R,G). The machine based on this concurrent

interface is “open” in the sense that it is eligible to capture a

subset of the CPUs and then be composed with any accept-

able execution of the rest of CPUs. The domain of the private

state map fρ is also this captured (or focused) subset. The

interface L[A] equips this open machine with a collection of

primitives that are defined in L and can be invoked at this

level, the rely condition R that specifies a set of acceptable

environment contexts, and the guarantee condition G that

the log l should hold. The instruction transitions are defined

as before, but all hardware scheduling is replaced by queries

to the environment context.

Environment Context. E is a partial function from a CPU

ID to its strategy φ . A strategy is an automata that generates

events in response to given logs.When focusing on a CPU set

A, all the observable behaviors of the hardware scheduling
and the program transitions of other CPUs can be specified

as a union of strategies (i.e., E). Thus, whenever there is a

potential interleaving, the machine can query E about the

events from other CPUs (and the scheduler).

These environmental events cannot influence the behav-

iors of instructions and private primitive calls. This also

applies to shared memory read/write, because the push/pull

memory model encapsulates other CPUs’ effects over the

shared memory into push/pull events. Thus, during the ex-
ecution of instructions and private primitives, it is unnec-

essary to query E, and the appended environmental events

will be received by the next so-called query point, that is, the
point just before executing shared primitives.

To be more specific, at each query point, the machine

repeatedly queries E. Each query takes the current log l as
the argument and returns an event (i.e., “E (c ′, l)”) from a

CPU c ′ not in A. That event is then appended to l , and this

querying continues until there is a hardware transition event

back to A (assuming the hardware scheduler is fair). In the

following, we write “E[A, l]” to mean this entire process of

extending l with multiple events from other CPUs.

Rely andGuarantee Conditions. TheR andG of the layer

interface specify the validity of the environment context and

the invariant of the log (containing the locally-generated

events). After each step of threads in A over interface L[A],
the resulting log l must satisfy the guarantee condition

L[A].G, i.e., l ∈ L[A].G (c) if c is the current CPU ID in-

dicated by l . To prove that guarantee conditions always hold,
we not only need to validate the events generated locally but

also need to rely on the validity of the environment context.

The rely condition L[A].R specifies a set of valid environ-

ment contexts, which take valid input logs and return a valid

list of events.

CPU-Local Layer Interface. When focusing on a single

CPU c , L[c] is called a CPU-local layer interface. Its ma-

chine state is (ρ,m,a, l), where ρ is the private state of the

CPU c andm is just a local copy of the shared memory.

Thism can only be accessed locally by c . The primitives

push/pull of L[c] “deliver” the effects of sharedmemory oper-

ations. Figure 8 shows their specifications, which depend on

a replay function Rshared to reconstruct the shared memory

value v for some location b and check the well-formedness

(i.e., no data race occurs) of the resulting log.

Since σpull is parameterized with E, it can also be viewed

as the following special strategy with private state updates:

1 Fixpoint Rshared (l: Log) (b: Loc) (c: Id) :=
2 match l with
3 | nil => ret (vundef, free) (* initial value *)
4 | e :: l' => (* l' • a *)
5 do r <- Rshared l' b; (* Haskell syntax sugar*)
6 match r, e with
7 | (v, free), c .pull(b) => ret (v, own c)
8 | (_, own c), c .push(b,v) => ret (v, free)
9 | _ => None (* get stuck *)
10 end
11 end.
12 Function σpull E (s: State) (b: Loc) :=
13 let l':= s .c .pull(b) :: E[s.c, s.l] in (* query E *)
14 do r <- Rshared l' b s.c; ret s {l: l'} {m.b: fst r}.
15 Function σpush E (s: State) (b: Loc) :=
16 let l':= s .c .push(b, s .m b) :: s.l in (*do not query E*)
17 do _ <- Rshared l' b s.c; ret s {l: l'}.

Figure 8. Pseudocode of push/pull specifications of L[c] in Coq.

?E, !c .pull(b),↓ (v, own c)

{m.b : v}

The layer machine enters the critical state after calling pull
by holding the ownership of a shared location. It exits the

critical state by invoking push to free the ownership.

3.3 Concurrent Layer Calculus
To build and compose concurrent layers “L[A] ⊢R M : L′[A],”
we introduce a layer calculus shown in Fig. 9. We borrow

the notations from Gu et al. [15]: “∅” stands for an empty

programmodule, “⊕” computes the union of two modules (or

two layers’ primitive collections), and “(i 7→ ·)” is a singleton
map with a pointer or location i as its domain.

Composition Rules. The vertical composition rule (Vcomp)

allows us to verify the modules M and N (where N may

depend on M) in two separate steps, while the horizontal

composition rule (Hcomp) enables local reasoning for in-

dependent modules M and N belonging to the same level.

These two composition rules can only compose layers over

the same CPU set.

Layers on different CPUs can be composed by the parallel

composition rule (Pcomp) if simulation relations are the same,

and both overlay and underlay interfaces are compatible. This
compatibility is denoted as “compat(L[A],L[B],L[A ∪ B]).”
It says that each guarantee condition of L[A] implies the

corresponding rely condition of L[B] and vice versa. The

composed interface L[A ∪ B] merges the primitives of two

layers and is equipped with stronger guarantees and weaker

rely conditions. The machine based on this composed layer

interface only queries E about the events not from A ∪ B.

Multicore Linking Theorem. By composing all the CPUs

in the machine (denoted as the set D), the resulting layer

interface does not depend on any environmental events ex-

cept those from the hardware scheduler. We construct such

a layer interface Lx86[D] using the primitives provided by

the hardwareMx86. We can then prove a contextual refine-

ment fromMx86 to Lx86[D] by picking a suitable hardware

scheduler of Lx86[D] for every interleaving (or log) ofMx86.

Theorem 3.1 (Multicore Linking).
∀P , [[P]]Mx86 ⊑R [[P]]Lx86[D]

This theorem ensures that all code verification overLx86[D]
can be propagated down to the x86 multicore hardwareMx86.

Building Leaf Certified Layers. As the unit of certified

concurrent layers, leaf layers can be built by applying the

Fun rule, which requires to prove the strategy simulation.

Two most common patterns, fun-lift and log-lift, for this
proof have already been shown in Sec. 2. The fun-lift pattern

abstracts a concrete implementation into a low-level strategy

without changing the potential interleaving. In this pattern,

language dependent details (e.g., silent moves changing tem-

poral variables) are hidden and data representation details

(e.g., memory values carried by push events) are replaced

with abstract state values.

The log-lift pattern always involves the events merging

and the interleavings shuffling to form an atomic interface.

4 Building Certified Multicore Layers
In this section, we start to show how to apply our techniques

to verify shared objects in the CCAL toolkit. All layers are

built upon the CPU-local layer interface Lx86[c].

4.1 Spinlocks
Spinlocks (e.g., the ticket lock algorithm described in Sec. 2)

are one of the most basic synchronization methods for mul-

ticore machines; they are used as building blocks for shared

objects and more sophisticated synchronizations.

A spinlock enforces mutual exclusion by restricting CPU

access to a memory location b. Therefore, lock operations

can be viewed as “safe” versions of push/pull primitives. For

example, when the lock acquire for b succeeds, the corre-

sponding shared memory is guaranteed to be “free”, meaning

that it is safe to pull the contents to the local copy at this

point (line 4 in Fig. 10). We now show how to build layers

for the spinlock in Fig. 10, which uses a ticket lock algorithm.

Note that query points are denoted as “▷” in pseudocode.

Bottom Interface Lx86[c]. We begin with the CPU-local in-

terface Lx86[c] extended with shared primitives FAI_t, get_n,
and inc_n. These primitives directly manipulate the lock

state t (next ticket) and n (now serving ticket) via x86 atomic

instructions. The lock state can be calculated by a replay

function Rticket counting c .FAI_t and c .inc_n events.

Fun-Lift to Llock_low[c]. Wehave shown how to establish the

strategy simulation for this low-level interface Llock_low[c]

L[A] ⊢id ∅ : L[A]
Empty

LκML[c] ≤R σ

L[c] ⊢id i 7→ κ : i 7→ σ
Fun

L1[A] ⊢R M : L2[A] L2[A] ⊢S N : L3[A]

L1[A] ⊢R◦S M ⊕ N : L3[A]
Vcomp

L[A] ⊢R M : L1[A] L[A] ⊢R N : L2[A]
L′[A].L = L1[A].L ⊕ tt2[A].L L′[A].R = L1[A].R = tt2[A].R L′[A].G = L1[A].G = tt2[A].G

L[A] ⊢R M ⊕ N : L′[A]
Hcomp

L′
1
[A] ≤R L1[A] L1[A] ⊢S M : L2[A] L2[A] ≤T L′

2
[A]

L′
1
[A] ⊢R◦S◦T M : L′

2
[A]

Wk

A ⊥ B ∀i ∈ A,L[B].R (i) ⊆ L[A].G (i) ∀i ∈ B,L[A].R (i) ⊆ L[B].G (i)
L[A ∪ B].L = L[A].L = L[B].L L[A ∪ B].R = L[A].R ∩ L[B].R L[A ∪ B].G = L[A].G ∪ L[B].G

compat(L[A],L[B],L[A ∪ B])
Compat

L1[A] ⊢R M : L2[A] L1[B] ⊢R M : L2[B] compat(L1[A],L1[B],L1[A ∪ B]) compat(L2[A],L2[B],L2[A ∪ B])

L1[A ∪ B] ⊢R M : L2[A ∪ B]
Pcomp

Figure 9. The fine-grained layer calculus in the concurrent setting.

1 void acq (uint b) {
2 uint myt=▷FAI_t(b);
3 while(▷get_n(b)!=myt){}
4 ▷pull(b);//acts as hold()
5 }

6 void rel (uint b) {
7 push(b);
8 ▷inc_n(b);
9 }

Figure 10. Pseudocode of ticket lock using push/pull.

(i.e., L′
1
[c], see Sec. 2). Note that LacqMLlock_low[c] contains extra

silent moves (e.g., assigning myt, line 2 in Fig. 10) compared

with φ ′acq[c]. The simulation relation Rlock not only states

the equality between logs but also maps the lock state in the

memory to the ones calculated by Rticket. Here we must also

handle potential integer overflows for t and n. We can prove

that, as long as the total number of CPUs (i.e., #CPU) in the

machine is less than 2
32

(determined by uint), the mutual

exclusion property will not be violated even with overflows.

Log-Lift to Llock[c]. We then lift the acq and rel primitives to

an atomic interface, meaning that each invocation produces

exactly one event in the log (see Sec. 2). These atomic lock in-

terfaces (or strategies) are similar to pull/push specifications,

except that the former ones are safe (i.e., will not get stuck).
This safety property can be proved using rely conditions

Llock[c].R saying that, for any CPU c ′ , c , its c ′.acq event

must be followed by a sequence of its own events (generated

in the critical state) ending with c ′.rel. The distance between
c ′.acq and c ′.rel in the log is less than some number n.

By enforcing the fairness of the scheduler in rely condi-

tions, saying that any CPU can be scheduled withinm steps,

we can show the liveness property (i.e., starvation-freedom):

the while-loop in acq terminates in “n ×m × #CPU ” steps.

4.2 Shared Queue Object
Shared queues are widely used in concurrent programs, e.g.,

as the list of threads in a scheduler, etc. In previous work [30],

due to the lack of layering support, the verification of any

shared object required inlining the lock implementation and

duplicating the lock-related proofs. In the following, we il-

lustrate how to utilize concurrent abstraction layers to verify

a shared queue module using fine-grained locks.

Fun-Lift to Lq[c]. The shared queues are implemented as

doubly linked lists, and are protected by spinlocks. For exam-

ple, the dequeue (deQ) operation first acquires the spinlock

associated with queue i , then performs the actual dequeue

operation in the critical state, and finally releases the lock.

Instead of directly verifying deQ in one shot, we first intro-

duce an intermediate function deQ_t, which contains code

that performs the dequeue operation over a local copy, under

the assumption that the corresponding lock is held. Since

no environmental queries are needed in the critical state,

building concurrent layers for deQ_t is similar to building a

sequential layer [15]: we first introduce the abstract states

a.tcbp and a.tdqp, which stand for the thread control block

(i.e., tcb) array and the thread queue array. The abstract tdqp
is a partial map from the queue index to an abstract queue,
which is represented as a list of tcb indices. Then we can

show that deQ_t meets its specification σdeQ_t:

1 Function σdeQ_t E (s: State) (i: Loc) :=
2 do r <- R′shared s.l i s.c; (* replay ownership *)
3 match r with
4 | (_, own s.c) => (*if the lock of queue i is held*)
5 match s.a.tdqp i with (* case over the queue*)
6 | td :: q => ret (s {s.a.tdqp.i: q}, td}
7 | _ => ret (s, -1) (* return -1 for empty queue*)
8 end
9 | _ => None (*get stuck*)
10 end.

Fun- and Log-Lift to Lq_high[c]. Finally, we have to show

that the deQ function that wraps deQ_twith lock primitives

indeed meets an atomic interface. With a simulation relation

Rlock that merges two queue-related lock events (i.e., c .acq
and c .rel) into a single event c .deQ at the higher layer, we

can prove the following strategy simulation:

LdeQMLq[c] :

φdeQ [c] :

≤Rlock

?E, !c .acq(i),↓q σdeQ_t (q) = (q′, r) !c .rel(i,q′)

?E, !c .deQ (i),↓r

5 Building Certified Multithreaded Layers
Multithreaded programs have to deal with interleavings trig-

gered by not only the hardware scheduler but also the explicit

invocation of thread scheduling primitives. In this section,

we introduce the certified layers dealing with scheduling

primitives, a new concept of thread-local layer interfaces

equipped with compositional rules, and a thread-safe ver-

sion of CompCertX.

5.1 Certified Layers for Scheduling Primitives
Based on the shared thread queues provided by the multicore

toolkit (see Sec. 4.2), we introduce a new layer interface

Lbtd[c] that supports multithreading. At this layer interface,

the transitions between threads are done using scheduling

primitives, implemented in a mix of C and assembly.

In our multithreaded setting, each CPU c has a private

ready queue rdq and a shared pending queue pendq (con-

taining the threads woken up by other CPUs). A thread yield

sends the first pending thread from pendq to rdq and then

switches to the next ready thread. There are alsomany shared

sleeping queues slpq. When a sleeping thread is woken up,

it will be directly appended to the ready queue if the thread

belongs to the currently-running CPU. Otherwise, it will be

appended to the pending queue of the CPU it belongs to.

Thread switching is implemented by the context switch

function cswitch, which saves the current thread’s kernel

context (i.e., ra, ebp, ebx, esi, edi, esp), and loads the context

of the target thread. This cswitch (invoked by yield and sleep)
can only be implemented at the assembly level, as it does

not satisfy the C calling convention. A scheduling primitive

like yield first queries E to update the log, appends its own

event, and then invokes cswitch to transfer the control.

thread 1

thread 0 yield

c.yield cswitch

yield

c.yield

cswitch

This layer interface introduces three new events c .yield,
c .sleep(i, lk) (sleep on queue i while holding the lock lk),
and c .wakeup(i) (wakeup the queue i). These events record
the thread switches, which can be used to track the currently-

running thread by a replay function Rsched.

5.2 Multithreaded Layer Interface
The CPU-local interface Lbtd[c] captures the execution of the

whole thread set of CPU c and does not support thread-local
verification. Ideally, we would like to formally reason about

each thread separately and later compose the proofs together

obtaining a global property. Thus, we introduce a new layer

interface that is compositional and only focuses on a subset

of thread running on CPU c .
Let Tc denote the whole thread set running over CPU c .

Based upon L[c], we construct a multithreaded layer inter-

face “L[c][Ta] := (L[c].L,L[c].R ∪ RTa ,L[c].G|Ta),” which
is parameterized over a focused thread set Ta ⊆ Tc . Besides
Tq , strategies of other threads running on c form a thread

context Et . Rely conditions of this multithreaded layer inter-

face extend L[c].R with a valid set of Et (denoted as “RTa ”)

and guarantee conditions replace L[c].G (c) with the invari-

ants held by threads in Ta (denoted as “L[c].G|Ta ”). Since
our machine model does not allow preemption, Et will only

be queried during the execution of scheduling primitives,

which have two kinds of behaviors depending on whether

the target thread is focused or not.

thread 1

thread 0 yield

c.yield

queries
yield

c.yield

change cid

● ● ● ●

c.yield

Ta

E , ETc

Consider the above execution with Ta = {0, 1}. Whenever

an execution switches (by yield or sleep) to a thread outside

of Ta (i.e., the yellow yield above), it takes environmental

steps (i.e., inside the red box), repeatedly appending the

events returned by the environment context E and the thread

context Et to the log until a c .yield event indicates that the

control has switched back to a focused thread. Whenever

an execution switches to a focused one (i.e., the blue yield
above), it will perform the context switch without asking

E/Et and its behavior is identical to the one of Lbtd[c].

ComposingMultithreaded Layers. Multithreaded layer in-

terfaces with disjoint focused thread sets can also be com-

posed in parallel (using an extended Pcomp rule) if the guar-

antee condition implies the rely condition for every thread.

The resulting focused thread set is the union of the composed

ones, and some environmental steps are “replaced by” the

local steps of the other thread set. For example, if we com-

pose Ta in the above example with thread 2, the previously

yellow yield of thread 0 will then switch to a focused thread.

c.yield

thread 1

thread 0
c.yield

queries

change cid

● ●

thread 2 yield

yield

c.yield
● ●

Ta [{2}

E , ETc

1 void acq_q(uint l) {
2 ▷ acq(ql_loc(l));
3 if (ql_busy[l] != -1) {
4 ▷ sleep(l);
5 } else {
6 ql_busy[l] = get_tid();
7 ▷ rel(ql_loc(l));

8 }
9 }
10 void rel_q (uint l) {
11 ▷ acq(ql_loc(l));
12 ql_busy[l] =▷ wakeup(l);
13 ▷ rel(ql_loc(l));
14 }

Figure 11. Pseudocode of queuing lock.

Here, the event list l1 generated by E and Et has been divided

into two parts: “l1a•c .yield” (generated by thread 2) and l1b
(consisting of events from threads outside {0,1,2}).

Multithreaded Linking. When the wholeTc is focused, all
scheduling primitives fall into the second case and never

switch to unfocused ones. Thus, its scheduling behaviors are

equal to the ones of Lbtd[c]. By introducing a multithreaded

layer interface Lhtd[c][Tc] that contains all the primitives of

Lbtd[c], we can prove the following theorem:

Theorem 5.1 (Multithreaded Linking).

Lbtd[c] ≤id Lhtd[c][Tc]

This theorem guarantees that, once the multithreaded ma-

chine based on Lhtd[c][Tc] captures the whole thread set, the
properties of threads running on top can be propagated down

to the layer with concrete scheduling implementations.

5.3 Thread-Local Layer Interface
If a multithreaded interface L[c][t] focus only on a single

thread t ∈ Tc , yield and sleep primitives always switch to an

unfocused thread and then repeatedly query E and Et until

yielding back to t .

c.yield

thread 0 yield

c.yield

c.yield
● ● ● ● ● ● ● ●

query
yield

c.yield
● ● ● ● ● ● ● ●

We can prove that this yielding back procedure in our system

always terminates. This proof relies on the fact that the

software scheduler is fair and every running thread gives up
the CPU within a finite number of steps. We call L[c][t] a
“thread-local” layer interface because scheduling primitives

always end up switching back to the same thread; they do not

modify the kernel context (i.e., ra, ebp, ebx, esi, edi, esp) and
effectively act as a “no-op”, except that the shared log gets

updated. Thus, these scheduling primitives indeed satisfy C

calling conventions.

5.4 Queuing Lock
Based upon thread-local layer interfaces, we build additional

synchronization toolkits, such as a queuing lock (see Fig. 11).

With queuing locks, waiting threads are put to sleep to avoid

busy spinning. Reasoning about this locking algorithm is

particularly challenging since its C implementation utilizes

both spinlocks and low-level scheduler primitives (i.e., sleep
and wakeup). This verification task can be decomposed into

a bunch of layers above Lhtd[c][t] using CCAL.

The correctness property of a queuing lock consists of two

parts: mutual exclusion and starvation freedom. The lock

implementation (Fig. 11) is mutually exclusive because the

busy value of the lock (ql_busy) is always equal to the lock

holder’s thread ID. This busy value is set either by the lock

requester when the lock is free (line 6 of Fig. 11) or by the

previous lock holder when releasing the lock (line 12). With

the atomic interface of the spinlock, the starvation-freedom

proof of queuing lock is mainly about the termination of

the sleep primitive call (line 4). By showing that all the lock

holders will eventually release the lock, we prove that all

the sleeping threads will be added to the pending queue or

ready queue within a finite number of steps. Thus, sleep will

terminate thanks to the fair software scheduler. Note that
all these properties proved at the C level can be propagated

down to the assembly level using the thread-safe CompCertX.

5.5 Thread-Safe Compilation and Linking
In this section, we show how to adapt Gu et al.’s CompCertX

verified separate compiler [15, §6] to handle programs that

call scheduling primitives. Section 5.3 shows how thread-

local layer interfaces allow us to give C style specifications
to scheduling primitives (yield and sleep) which are partly

implemented in assembly. Thus, code of each thread can be

verified at the C level over Lhtd[c][t] and individual threads

can then be composed into programs on Lbtd[c] by Thm. 5.1.

However, it is still challenging to show that the compiled

programs at the assembly level are also compatible with

this parallel composition because of a small snag which

we glossed over until now: stack frames. In the CompCert

memory model [28], whenever a function is called, a fresh

memory block has to be allocated in the memory for its

stack frame. This means that, on top of the thread-local layer

Lhtd[c][t], a function called within a thread will allocate its

stack frame into the thread-private memory state, and con-

versely, a thread is never aware of any newer memory blocks

allocated by other threads. In comparison, on top of the CPU-

local layer Lbtd[c], all stack frames have to be allocated in the

CPU-local memory (i.e., thread-shared memory) regardless of

which thread they belong to; thus, in the thread composition

proof, we need to account for all such stack frames.

Our solution is based on a special memory extension [28,

§5.2] that only removes the access permissions of some mem-

ory blocks. To enable the thread composition, we extended

the semantics of yield and sleep on the thread-local layer

Lhtd[c][t]. Besides generating a c .yield/c .sleep event, such

a scheduling primitive also allocates empty memory blocks

as “placeholders" for other threads’ new stack frames during

this yield/sleep. These empty blocks are the ones without

m1 ⊛m2 ≃m

nb(m) = max(nb(m1), nb(m2))
(Nb)

m1 ⊛m2 ≃m

m2 ⊛m1 ≃m
(Comm)

m1 ⊛m2 ≃m ld(m2, ℓ) = ⌊v⌋

ld(m, ℓ) = ⌊v⌋
(Ld)

m1 ⊛m2 ≃m

m1 ⊛ st(m2, ℓ,v) ≃ st(m, ℓ,v)
(St)

m1 ⊛m2 ≃m nb(m1) ≤ nb(m2)

m1 ⊛ alloc(m2, l ,h) ≃ alloc(m, l ,h)
(Alloc)

m1 ⊛m2 ≃m nb(m1) ≤ nb(m2)

m1 ⊛ liftnb(m2,n) ≃ liftnb(m,n)
(Lift-R)

m1 ⊛m2 ≃m nb(m1) ≤ nb(m2)

liftnb(m1,n) ⊛m2 ≃ liftnb(m,n − (nb(m) − nb(m1)))
(Lift-L)

Figure 12. Algebraic memory model

any access permissions. We write “nb(m)” to denote the to-

tal number of blocks in m, and write “liftnb(m,n)” as the
memory extended fromm by allocating n new empty blocks.

With the extended semantics for scheduling primitives,

we can prove that a ternary relation “m1 ⊛m2 ≃ m” holds

between the private memory statesm1,m2 of two disjoint

thread sets and the thread-shared memory statem after the

parallel composition. This relation among memory states is

called the “algebraic memory model”, which is defined by

the axioms shown in Fig. 12.

Rule Nb states that the block number of the composed

memorym is equal to “max(nb(m1), nb(m2)).” Rule Comm
says that the parallel memory composition is commutative.

Rule Ld and St state that the behaviors of memory load and

store (overm1 orm2) are preserved by the composedmemory

m. It is because that every non-shared memory block ofm1

either does not exist inm2 or corresponds to an empty block

inm2, and vice versa.

All the remaining rules in Fig. 12 share the condition

“nb(m1) ≤ nb(m2).” This condition indicates that thread 2

is “more-recently scheduled/running” because only running
thread can allocate memory blocks. Thus, memory alloca-

tions onm2 can be preserved by the composed memorym
(see Rule Alloc). In addition, if thread 2 is still the next

scheduled thread and there are n new stack frames allocated

by threads other than {1, 2}, we can then simply allocate n
empty blocks inm2, which will be preserved bym (see Rule

Lift-R). If thread 1 is the next thread to run, after allocating

n new empty blocks tom1, the composed memorym only

need to allocate the blocks that have not been captured by

m2 (see Rule Lift-L).

Based on the parallel composition for two memory states,

we can use Rule Lift-R and Lift-L to generalize to N threads

by saying that m is a composition of the private memory

states “m1, . . . ,mN ” of N threads (on a single processor) if,

and only if, there exists a memory statem′ such thatm′ is a
composition of “m1, . . . ,mN−1” andmN ⊛m′ ≃m holds.

6 Evaluation and Experience
We have implemented the CCAL toolkit (see Fig. 2) in the

Coq proof assistant. Table 1 presents the number of lines

Component LOC Component LOC

Auxiliary library 6,200 Multilayer linking 17,000

C verifier 2,200 Multithread linking 10,000

Asm verifier 800 Multicore linking 7,000

Simulation library 1,800 Thread-safe CompCertX 7,500

Table 1. Lines of proofs in Coq for the toolkit.

C&Asm

Source

Spec.

Invariant

Proof

C & Asm

Proof

Simulation

Proof

Ticket lock 74 615 1,080 1,173 2,296

MCS lock 287 1,569 2,299 1,899 3,049

Local queue 377 554 748 2,821 3,647

Shared queue 20 107 190 171 419

Scheduler 62 153 166 1,724 2,042

Queuing lock 112 255 992 328 464

Table 2. Statistics for implemented components.

(in Coq) for each component in Fig. 2. The auxiliary library

contains the common tactics and lemmas for 64 bit integers,

lists, maps, integer arithmetic, etc.

Case Studies. To evaluate the framework itself, we have

implemented, specified, and verified various concurrent pro-

grams in the framework. Table 2 presents some of the statis-

tics with respect to the implemented components. As for lock

implementations, their source code contains not only the

code of the associated functions, but also the data structures

and their initialization. In addition to the top-level interface,

the specification contains all the specifications used in the

intermediate layers. For both the ticket and MCS locks, the

simulation proof column includes the proof of starvation

freedom (about 1,500 lines) in addition to the correctness

proof. The gap between the underlying C implementation

and the high-level specification of the locks also contributes

to the large proof size for these components. For example, in-

termediate specification of the ticket lock uses an unbounded

integer for the ticket field, while the implementation uses a

binary integer which wraps back to zero. Similarly, the queue

is represented as a logical list in the specification, while it is

implemented as a doubly linked list.

Our development is compositional. Both ticket and MCS

locks share the same high-level atomic specifications (or

strategies) shown in Sec. 2. Thus the lock implementations

can be freely interchanged without affecting any proof in

the higher-level modules using locks. When implementing

the shared queue library, we also reuse the implementation

and proof of the local (or sequential) queue library: to im-

plement the atomic queue object, we simply wrap the local

queue operations with lock acquire and release statements.

As shown in Table 2, using verified lock modules to build

atomic objects such as shared queues is relatively simple and

does not require many lines of code.

Following the same philosophy, Gu et al. [16] has further

extended our work with paging-based dynamically allocated

virtual memory, device drivers with in-kernel interrupts, a

synchronous inter-process communication (IPC) protocol

using the queuing lock, a shared-memory IPC protocol with

a shared page, and Intel hardware virtualization support;

our CCAL toolkit was used to produce the world’s first fully

certified concurrent OS kernel with fine-grained locking.

Performance Evaluation. We have measured the perfor-

mance of the ticket lock on an Intel 4-Core i7-2600S (2.8GHz)

processor with 16GB memory. Initially, the ticket lock imple-

mentation incurred a latency of 87 CPU cycles in the single

core case. After a short investigation, we found that we forgot

to remove some function calls to “logical primitives” used for

manipulating ghost abstract states. After we removed these

extra null calls, the latency dropped down to only 35 CPU

cycles. Gu et al. [16] also presented performance evaluations

of their OS kernel built using CCAL.

Limitations. Our concurrentmachinemodels assume strong

sequential consistency (SC) for atomic primitives. Previous

work [52] demonstrated that race-free programs on a TSO

model do indeed behave as if executing on a sequentially

consistent machine. Since safe programs on our push/pull

model are race-free, we believe extending our work from SC

to TSO is promising. In our future work, we will formalize

and integrate this proof in Coq. Furthermore, the current

event-based contextual refinement proofs still require quite

a bit of manual proof. We are working on developing more

automation tactics to further cut down the proof effort. In

addition to this general toolkit that can support a broad

range of concurrent programs, we also plan to provide more

aggressive automation for commonly-used concurrent pro-

gramming patterns, either through additional tactic libraries

or using specific program logics targeting such patterns.

7 Related Work and Conclusions
Certified Abstraction Layers. Gu et al. [15] presented the

first formal account of certified abstraction layers and showed

how to apply layer-based techniques to build certified system

software. The layer-based approach differs from Hoare-style

program verification [4, 21, 40, 46] in several significant ways.

First, it uses the termination-sensitive forward simulation

techniques [26, 35] and proves a stronger contextual correct-

ness property rather than simple partial or total correctness

properties (as done for Hoare logics). Second, the overlay

interface of a certified layer object completely removes the

internal concrete memory block (for the object) and replaces

it with an abstract state suitable for reasoning; this abstract

state differs from auxiliary or ghost states (in Hoare logic)

because it is actually used to define the semantics of the

overlay abstract machine and the corresponding contextual

refinement property. Third, as we move up the abstraction

hierarchy by composing more layers, each layer interface

provides a new programming language that gets closer to

the specification language—it can call primitives at higher

abstraction levels while still supporting general-purpose pro-

gramming in C and assembly.

Our CCAL toolkit follows the same layer-based method-

ologies. Each time we introduce a new concrete concurrent

object implementation, we replace it with an abstract atomic

object in its overlay interface. All shared abstract states are

represented as a single global log, so the semantics of each

atomic method call would need to replay the entire global

log to find out the return value. This seemingly “inefficient”

way of treating shared atomic objects is actually great for

compositional specification. Indeed, it allows us to apply

game-semantic ideas and define a general semantics that

supports parallel layer composition.

Abstraction for Concurrent Objects. Herlihy and Wing

[20] introduced linearizability as a key technique for building
abstraction over concurrent objects. Developing concurrent

software using a stack of shared atomic objects has since

become the best practice in the system community [2, 19].

Linearizability is quite difficult to reason about, and it is not

until 20 years later that Filipovic et al. [10] showed that lin-

earizability is actually equivalent to a termination-insensitive

version of the contextual refinement property. Gotsman and

Yang [14] showed that such equivalence also holds for con-

current languages with ownership transfers [42]. Liang et

al. [30, 33] showed that linearizability plus various progress

properties [19] for concurrent objects is equivalent to various

termination-sensitive versions of the contextual refinement

property. These results convinced us that we should prove

termination-sensitive (contextual) simulation when building

certified concurrent layers as well.

RGSim and LiLi. Building contextual refinement proofs for

concurrent programs (and program transformations) is chal-

lenging. Liang et al. [30–32] developed the Rely-Guarantee-

based Simulation (RGSim) that can support both parallel

composition and contextual refinement of concurrent ob-

jects. Our contextual simulation proofs between two con-

current layers can be viewed as an instance of RGSim if we

extend RGSimwith auxiliary states such as environment con-

texts and shared logs. This extension, of course, is the main

innovation of our new compositional layered model. Also,

all existing RGSim systems are limited to reasoning about

atomic objects at one layer; their client program context can-

not be the method body of another concurrent object, so they

cannot support the same general vertical layer composition

as our work does.

Treatment of Parallel Composition. Most concurrent lan-

guages (including those used by RGSim) use a parallel compo-

sition command (C1∥C2) to create and terminate new threads.

In contrast, we provide thread spawn and join primitives, and

assign every new thread a unique ID (e.g., t , which must be

a member of the full thread-ID domain set D). Parallel layer
composition in our work is always done over the whole pro-

gram P and over all members of D. This allows us to reason

about the current thread’s behaviors over the environment’s

full strategies (i.e., both past and future events). Even if a

thread t is never created, the semantics for running P over

L[t] is still well defined since it will simply always query its

environment context to construct a global log.

ProgramLogics for Shared-MemoryConcurrency. A large

body of new program logics [5, 7, 8, 13, 18, 22, 23, 29, 39, 42,

44, 45, 50, 51, 56–59] have been developed to support mod-

ular verification of shared-memory concurrent programs.

Most of these follow Hoare-style logics so they do not prove

the same strong contextual simulation properties as RGSim

and our layered framework do. Very few of them (e.g., [45])

can reason about progress properties. Nevertheless, many

of these logics support advanced language features such

as higher-order functions and sophisticated non-blocking

synchronization, both of which will be useful for verifying

specific concurrent objects within our layered framework.

Our use of a global log is similar to the use of compositional

subjective history traces [51]; the main difference is again

that our environment context can talk about both past and

future events but a history trace can only specify past events.

Both CIVL [18] and FCSL [50] attempt to build proofs of

concurrent programs in a “layered” way, but their notions of

layers are different from ours in three different ways: (1) they

do not provide formal foundational contextual refinement

proofs of linearizability as shown by Filipovic et al. [10]

and Liang et al. [33]; (2) they do not address the liveness

properties; (3) they have not be connected to any verified

compilers.

Compositional CompCert. Stewart et al. [54] developed a

new compositional extension of the original CompCert com-

piler [26] with the goal of providing thread-safe compilation

of concurrent Clight programs. Their interaction semantics

also treats all calls to synchronization primitives as external

calls. Their compiler does not support a layered ClightX lan-

guage as our CompCertX does, so they cannot be used to

build concurrent layers as shown in Fig. 1.

Game Semantics. Even thoughwe have used game-semantic

concepts (e.g., strategies) to describe our compositional se-

mantics, our concurrent machine and the layer simulation

is still defined using traditional small-step semantics. This

is in contrast to several past efforts [1, 12, 41, 47] of model-

ing concurrency in the game semantics community which

use games to define the semantics of a complete language.

Modeling higher-order sequential features as games is great

for proving full abstraction, but it is still unclear how it

would affect large-scale verification as done in the certified

software community. We believe there are great potential

synergies between the two communities and hope our work

will promote such interaction.

OS Kernel Verification. There has been a large body of re-

cent work on OS kernel verification including seL4 [24, 25],

Verve [60], and Ironclad [17]. None of these works have

addressed the issues on concurrency with fine-grained lock-

ing. Very recently, Xu et al. [59] developed a new verifica-

tion framework based on RGSim and Feng et al.’s program

logic [9] for reasoning about interrupts; they have success-

fully verified many keymodules (in C) in the µC/OS-II kernel,
though so far, they have not proved any progress properties.

Conclusions. Abstraction layers are key techniques used in

building large-scale concurrent software and hardware. In

this paper, we have presented CCAL—a novel programming

toolkit developed under the CertiKOS project for building

certified concurrent abstraction layers. We have developed a

new compositional model for concurrency, program verifiers

for concurrent C and assembly, certified linking tools, and

a thread-safe verified C compiler. We believe these are criti-

cal technologies for developing large-scale certified system

infrastructures in the future.

Acknowledgments
We would like to thank our shepherd Grigore Rosu and

anonymous referees for helpful feedbacks that improved this

paper significantly. This research is based on work supported

in part by NSF grants 1521523 and 1715154 and DARPA

grants FA8750-12-2-0293, FA8750-16-2-0274, and FA8750-15-

C-0082. Tahina Ramananandro’s work was completed while

he was employed at Reservoir Labs, Inc. Hao Chen’s work

is also supported in part by China Scholarship Council. The

U.S. Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any

copyright notation thereon. The views and conclusions con-

tained herein are those of the authors and should not be

interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of DARPA or

the U.S. Government.

References
[1] Samson Abramsky and Paul-Andre Mellies. 1999. Concurrent Games

and Full Completeness. In Proc. 14th IEEE Symposium on Logic in
Computer Science (LICS’99). 431–442.

[2] Thomas Anderson and Michael Dahlin. 2011. Operating Systems Prin-
ciples and Practice. Recursive Books.

[3] Carliss Y. Baldwin and Kim B. Clark. 2000. Design Rules: Volume 1, The
Power of Modularity. MIT Press.

[4] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,

and K. Rustan M. Leino. 2005. Boogie: A Modular Reusable Verifier for

Object-Oriented Programs. In Proc. 4th Symposium on Formal Methods
for Components and Objects (FMCO’05). 364–387.

[5] Stephen Brookes. 2004. A Semantics for Concurrent Separation Logic.

In Proc. 15th International Conference on Concurrency Theory (CON-
CUR’04). 16–34.

[6] Stephen Chong, Joshua Guttman, Anupam Datta, Andrew Myers,

Benjamin Pierce, Patrick Schaumont, Tim Sherwood, and Nickolai

Zeldovich. 2016. Report on the NSF Workshop on Formal Methods

for Security. people.csail.mit.edu/nickolai/papers/chong-nsf-sfm.pdf.
(2016).

[7] Xinyu Feng. 2009. Local Rely-Guarantee Reasoning. In Proc. 36th
ACM Symposium on Principles of Programming Languages (POPL’09).
315–327.

[8] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. 2007. On the

Relationship Between Concurrent Separation Logic and Assume-

Guarantee Reasoning. In Proc. 16th European Symposium on Program-
ming (ESOP’07). 173–188.

[9] Xinyu Feng, Zhong Shao, Yuan Dong, and Yu Guo. 2008. Certify-

ing Low-Level Programs with Hardware Interrupts and Preemptive

Threads. In Proc. 2008 ACM Conference on Programming Language
Design and Implementation (PLDI’08). 170–182.

[10] Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok

Yang. 2010. Abstraction for Concurrent Objects. Theor. Comput. Sci.
411, 51-52 (2010), 4379–4398.

[11] Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010.

Reasoning about Optimistic Concurrency Using a Program Logic for

History. In Proc. 21st International Conference on Concurrency Theory
(CONCUR’10). 388–402.

[12] Dan R. Ghica and Andrzej S. Murawski. 2008. Angelic Semantics of

Fine-Grained Concurrency. Annals of Pure and Applied Logic 151, 2-3
(2008), 89–114.

[13] Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. 2013. Verifying

Concurrent Memory Reclamation Algorithms with Grace. In Proc. 22nd
European Symposium on Programming (ESOP’13). 249–269.

[14] Alexey Gotsman and Hongseok Yang. 2012. Linearizability with Own-

ership Transfer. In Proc. 23rd International Conference on Concurrency
Theory (CONCUR’12). 256–271.

[15] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,

Xiongnan(Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu

Guo. 2015. Deep Specifications and Certified Abstraction Layers. In

Proc. 42nd ACM Symposium on Principles of Programming Languages
(POPL’15). 595–608.

[16] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jie-

ung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An

Extensible Architecture for Building Certified Concurrent OS Kernels.

In Proc. 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’16). 653–669.

[17] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan

Parno, Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-

End Security via Automated Full-System Verification. In Proc. 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI’14). 165–181.

[18] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serar Tasiran. 2015.

Automated and Modular Refinement Reasoning for Concurrent Pro-

grams. In Proc. 27th International Conference on Computer Aided Verifi-
cation (CAV’15). 449–465.

[19] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann.

[20] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A

Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst. 12, 3 (1990), 463–492.

[21] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming.

Commun. ACM 12, 10 (Oct. 1969), 576–580.

[22] Bart Jacobs and Frank Piessens. 2011. Expressive Modular Fine-grained

Concurrency Specification. In Proc. 38th ACM Symposium on Principles
of Programming Languages (POPL’11). 133–146.

[23] Ralf Jung, David Swasey, Filip Sieczkowski, Ksper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-

ants as an Orthogonal Basis for Concurrent Reasoning. In Proc. 42nd
ACM Symposium on Principles of Programming Languages (POPL’15).
637–650.

[24] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,

Thomas Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Compre-

hensive Formal Verification of an OS Microkernel. ACM Transactions
on Computer Systems 32, 1 (Feb. 2014), 2:1–2:70.

[25] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D.

Elkaduwe, K. Engelhardt, et al. 2009. seL4: Formal Verification of an OS

Kernel. In Proc. 22nd ACM Symposium on Operating System Principles
(SOSP’09). 207–220.

[26] Xavier Leroy. 2005–2018. The CompCert verified compiler. http:
//compcert.inria.fr/. (2005–2018).

[27] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107–115.

[28] Xavier Leroy and Sandrine Blazy. 2008. Formal verification of a C-like

memory model and its uses for verifying program transformations.

Journal of Automated Reasoning 41, 1 (2008), 1–31.

[29] Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective Auxiliary

State for Coarse-Grained Concurrency. In Proc. 40th ACM Symposium
on Principles of Programming Languages (POPL’13). 561–574.

[30] Hongjin Liang and Xinyu Feng. 2016. A Program Logic for Concur-

rent Objects under Fair Scheduling. In Proc. 43rd ACM Symposium on
Principles of Programming Languages (POPL’16). 385–399.

[31] Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A Rely-Guarantee-

Based Simulation for Verifying Concurrent Program Transformations.

In Proc. 39th ACM Symposium on Principles of Programming Languages
(POPL’12). 455–468.

[32] Hongjin Liang, Xinyu Feng, and Zhong Shao. 2014. Compositional

Verification of Termination-Preserving Refinement of Concurrent Pro-

grams. In Proc. Joint Meeting of the 23rd EACSL Annual Conference on
Computer Science Logic and 29th IEEE Symposium on Logic in Computer
Science (CSL-LICS’14). 65:1–65:10.

[33] Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao. 2013.

Characterizing Progress Properties of Concurrent Objects via Contex-

tual Refinements. In Proc. 24th International Conference on Concurrency
Theory (CONCUR’13). 227–241.

[34] Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann

Publishers, Inc.

[35] Nancy A. Lynch and Frits W. Vaandrager. 1995. Forward and Backward

Simulations: I. Untimed Systems. Inf. Comput. 121, 2 (1995), 214–233.
[36] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for

Scalable Synchronization on Shared-Memory Multiprocessors. ACM
Transactions on Computer Systems 9, 1 (Feb. 1991), 21–65.

[37] Robin Milner. 1971. An Algebraic Definition of Simulation Between

Programs. In Proc. 2nd International Joint Conference on Artificial Intel-
ligence (IJCAI’71). 481–489.

people.csail.mit.edu/nickolai/papers/chong-nsf-sfm.pdf
http://compcert.inria.fr/
http://compcert.inria.fr/

[38] Andrzej S. Murawski and Nikos Tzevelekos. 2016. An invitation to

game semantics. ACM SIGLOG News 3, 2 (2016), 56–67.
[39] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and German Andres

Delbianco. 2014. Communicating State Transition Systems for Fine-

Grained Concurrent Resources. In Proc. 23rd European Symposium on
Programming (ESOP’14). 290–310.

[40] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. 2006. Poly-

morphism and Separation in Hoare Type Theory. In Proc. 2006
ACM SIGPLAN International Conference on Functional Programming
(ICFP’06). 62–73.

[41] Susumu Nishimura. 2013. A Fully Abstract Game Semantics for Par-

allelism with Non-Blocking Synchronization on Shared Variables. In

CSL 2013. 578–596.
[42] Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning.

In Proc. 15th International Conference on Concurrency Theory (CON-
CUR’04). 49–67.

[43] David Michael Ritchie Park. 1981. Concurrency and Automata on

Infinite Sequences. In Theoretical Computer Science, 5th GI-Conference,
Karlsruhe, Germany, March 23-25, 1981, Proceedings. 167–183.

[44] Pedro Da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.

2014. TaDA: A Logic for Time and Data Abstraction. In Proc. 28th
European Conference on Object-Oriented Programming (ECOOP’14).
207–231.

[45] Pedro Da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner,

and Julian Sutherland. 2016. Modular Termination Verification for

Non-blocking Concurrency. In Proc. 25th European Symposium on
Programming (ESOP’16). 176–201.

[46] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable

Data Structures. In Proc. 17th IEEE Symposium on Logic in Computer
Science (LICS’02). 55–74.

[47] Silvin Rideau and Glynn Winskel. 2011. Concurrent Strategies. In Proc.
26th IEEE Symposium on Logic in Computer Science (LICS’11). 409–418.

[48] Jerome H. Saltzer and M. Frans Kaashoek. 2009. Principles of Computer
System Design. Morgan Kaufmann.

[49] Davide Sangiorgi and David Walker. 2003. The Pi-Calculus: A Theory
of Mobile Processes. Cambridge University Press, Cambridge, England.

[50] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mech-

anized Verification of Fine-grained Concurrent Programs. In Proc. 2015

ACM Conference on Programming Language Design and Implementation
(PLDI’15). 77–87.

[51] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Speci-

fying and Verifying Concurrent Algorithms with Histories and Subjec-

tivity. In Proc. 24th European Symposium on Programming (ESOP’15).
333–358.

[52] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,

and Magnus O. Myreen. 2010. x86-TSO: A Rigorous and Usable Pro-

grammer’s Model for x86 Multiprocessors. Commun. ACM 53, 7 (2010),

89–97.

[53] Vilhelm Sjöberg, Jieung Kim, Ronghui Gu, and Zhong Shao. 2017.

Safety and Liveness of MCS Lock—Layer by Layer. In Proc. 15th Asian
Symposium on Programming Languages and Systems (APLAS’17). 273–
297.

[54] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W.

Appel. 2015. Compositional CompCert. In Proc. 42nd ACM Symposium
on Principles of Programming Languages (POPL’15). 275–287.

[55] The Coq development team. 1999 – 2018. The Coq proof assistant.

http://coq.inria.fr. (1999 – 2018).

[56] Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying Re-

finement and Hoare-style Reasoning in a Logic for Higher-Order Con-

currency. In Proc. 2013 ACM SIGPLAN International Conference on
Functional Programming (ICFP’13). 377–390.

[57] Aaron Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and

Derek Dreyer. 2013. Logical Relations for Fine-Grained Concurrency.

In Proc. 40th ACM Symposium on Principles of Programming Languages
(POPL’13). 343–356.

[58] Viktor Vafeiadis and Matthew Parkinson. 2007. A Marriage of Re-

ly/Guarantee and Separation Logic. In Proc. 18th International Confer-
ence on Concurrency Theory (CONCUR’07). 256–271.

[59] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and

Zhaohui Li. 2016. A Practical Verification Framework for Preemptive

OS Kernels. In Proc. 28th International Conference on Computer Aided
Verification (CAV’16), Part II. 59–79.

[60] Jean Yang and Chris Hawblitzel. 2010. Safe to the Last Instruction:

Automated Verification of a Type-Safe Operating System. In Proc. 2010
ACM Conference on Programming Language Design and Implementation
(PLDI’10). 99–110.

http://coq.inria.fr

	Abstract
	1 Introduction
	2 Overview
	3 Concurrent Layer Interface and Calculus
	3.1 Multiprocessor Machine Model
	3.2 Concurrent Layer Interface
	3.3 Concurrent Layer Calculus

	4 Building Certified Multicore Layers
	4.1 Spinlocks
	4.2 Shared Queue Object

	5 Building Certified Multithreaded Layers
	5.1 Certified Layers for Scheduling Primitives
	5.2 Multithreaded Layer Interface
	5.3 Thread-Local Layer Interface
	5.4 Queuing Lock
	5.5 Thread-Safe Compilation and Linking

	6 Evaluation and Experience
	7 Related Work and Conclusions
	References

