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General Context

Graph theory has applications in every field of science, namely in computer science but also in
physics and biology and even in linguistics. This can be attributed to the fact that a graph is a
very simple mathematical object that can be used to model a lot of situations. My internship
focuses on the study of digraphs, which provide a generalisation of the notion of graph. A lot
of results were obtained on graphs and we aim at generalising them to digraphs.

Problem studied

In 1982, Neumann-Lara [NL82| introduced the notion of dicolouring of digraphs, which is a
natural generalisation of the notion of colouring of graphs. As is standard in graph theory, we
study the minimal obstruction to dicolourability, which we call dicritical digraphs (and critical
graphs in the undirected case). Recently [KY1§], a complete description was obtained for the
sparsest critical graphs. My internship aims at obtaining the first step of such a result, namely
at describing how sparse the sparsest dicritical digraphs are.

Proposed contributions

Although I did not achieve my goal, I obtained a few results. My first achievement was to
generalise a theorem of Dirac [Dir57] (section [4)). I refined it much later as it has been done in
the undirected case [Dir74]. Then I used the potential method [KY14] to derive the currently
best known lower bound on the sparsity of the sparsest dicritical digraphs (section . Mean-
while, I also generalised a result of Stiebitz [Sti82], which was used by Krivelevich [Kri97] to
improve a Theorem of Gallai. We obtain better results by other means, but the result is still
interesting in itself. As minor results, I obtained an incremental improvement of a theorem on
list-colouring [Moh10] (section [D]) and helped disprove a conjecture on the inversion number of
a digraph during a workshop on digraphs.

Arguments Supporting Their Validity

The results in section [4] are the best possible, in the sense that some digraphs that verify their
hypotheses and turn the inequality in their conclusion into an equality. There are a few reasons
to think that Theorem is not the best possible bound. Yet it is possible to argue that it
is. In any case, it is the best known result. Besides, it is easy to pinpoint in the proof the two
arguments that block our progress.

Summary and Future Work

During my internship, I have improved the state of the art bounds on the minimum number
of arcs in a dicritical digraph as well as a complete description of the sparsest and smallest
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dicritical digraphs. It would be natural now to try to improve Theorem [5.6] Besides, the bound
we obtained has direct consequences on the dichromatic number of embedded digraphs, see for
instance a Theorem of Heawood. Hence it would be interesting to find consequences of these
bounds. Lastly, I noticed that in many places my proofs rely on very precise descriptions and
modifications of digraphs, which are tricky to check. This work may hence benefit from being
formalised. I have started a formalisation of my results in Coq, building on the graph-theory
library which provides a few basic definitions on digraphs.

Notes

The content of this report has been published as a research article. As such, it is written
in English.

Most of the results and proofs are direct adaptation of the existing work on graphs, with
the notable exception of Theorem I will not mention in detail which parts of this work is
mine. Most of it is, with corrections and improvements by my supervisor.

Although we only ever mention Theorems as contributions to a field, I would like to draw
the attention on the reader to the preliminary sections [2] and [3] They contain the basis of any
work on the subject, namely the notations that the user needs to be comfortable with in order
to manipulate objects easily, as well as the technical lemmas that hugely simplify our work.
For these reasons, I have kept them completely inside the report. Section [2] is very dense and
formal, and as such probably hard to read, so I invite the reader to have a quick first glance at
it and then go back to it when needed. For the accustomed reader, most of the notations are
standard, while a few of them were slightly changed to better suit our purposes.
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1 Introduction

A colouring of a directed graph (shortly digraph) G is a partition of the set of vertices of G
into independent subsets and the chromatic number x(G) of G is the minimum size of such a
partition. This is a very natural generalisation of the notion of colouring of graphs, but not
a very suitable one since it does not take into account the orientation of the arcs. Neumann-
Lara introduced in 1982 [NL82] the notion of dicolouring of digraphs, which is an other natural
generalisation of the concept of colouring of graphs. It is more suitable than the previous one
since it takes into account the orientation of the arcs. A dicolouring of a digraph G is a partition
of the set of vertices of G inducing acylic digraphs, and the dichromatic number ¥(G) of G is the
minimum size of such a partition. This is indeed a generalisation as, with the correspondence
between graphs and symmetric digraphs (that is digraphs obtained from undirected graphs by
replacing each edge by a digon, where a digon is a pair of antiparallel arcs),
we have, for every symmetric digraph G, x(G) = X(G).

We study minimal obstructions to dicolourability. A digraph G is dicritical if, for every
proper subdigraph H of G, ¥(H) < X(G). We also say that G is k-dicritical when G is dicritical
and ¥(G) = k. Observe that any digraph G contains a x(G)-dicritical subdigraph. This means
that many problems on the dichromatic number of digraphs reduce to problem on dicritical
digraphs, whose structure is more restricted. We are interested in their sparsity: we aim at
computing the minimum number of arcs in a k-dicritical digraph on n vertices. Lemma [3.6
shows that this value is well defined for n > k > 2.

It is well known that every vertex in a k-critical (undirected) graph have degree at least k—1,
and hence a k-critical graph G has at least 3(k — 1)|V(G)| edges. Brooks’ theorem implies a
simple characterisation of graphs G with exactly 3(k — 1)|V(G)| edges.

Theorem 1.1 ( [Bro4l]). Let G be a connected graph. Then x(G) < A(G) + 1 and equality
holds if and only if G is an odd cycle or, a complete graph.

Similarly, it is well known that every vertex in a k-dicritical digraph has degree at least
2(k — 1) and hence a k-dicritical digraph has at least (kK — 1)|V(G)| arcs. Brooks’ theorem was
generalised in [Mohl10| (see also [AA21]) to digraphs, and implies a simple characterisation of
the k-dicritical digraphs G with exactly (k — 1)|V(G)| arcs. For G a digraph, let Ay,0.(G) be
the maximum over the vertices of G of the maximum of their in-degree and their out-degree.

Theorem 1.2 (Theorem 2.3 in |[Mohl0]). Let G be a connected digraph. Then Y(G) <
Apaz(G) + 1 and equality holds if and only if G is a directed cycle, a symmetric cycle of
odd length or a symmetric complete digraph on at least 4 vertices.

In 1957, Dirac went one step further and proved the following.

Theorem 1.3 ( [Dir57]). Let k > 4 and G a k-critical graph. If G is not Ky, then

2|E(G)|> (k- 1|V(G)|+k — 3.
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We generalise this theorem to digraphs:
<
Theorem 1.4. Let k > 4 and G a k-dicritical digraph. If G is not Ky, then
[AG)[= (k = DIV(G)|+k = 3.

Dirac later identified the graphs for which the bound is tight (whose set we denote Dy, see
Section for a definition) and improved his bound:

Theorem 1.5 ( [Dir74]). Let k > 4 and let G a k-critical graph. If G is neither Ky, nor in Dy,
then
21E(G)|= (k= D|IV(Q)|+(k —1—0k.4).

It turns out that our bound is also tight exactly for the digraphs in Dy, (via the identification
between graphs and symmetric digraphs):

<~
Theorem 1.6. Let k > 4 and G be a k-dicritical digraph. If G is neither Ky nor in Dy, then:
[AG) |z (k= DIV(G)|+(k - 2).

The perspicacious reader will notice that our bound is weaker than Dirac’s when k£ > 5. Yet
our bound is tight for some digraphs (which are thus not symmetric, see Section .

It is well known that the only 3-critical graphs are odd cycles, which is the reason why
Dirac’s two mentioned results deal with k£ > 4. However, 3-dicritical digraphs are not as simple,
as witnessed by the fact that deciding if a digraph is 2-dicolourable is N P-complete [BFJT04].
We prove the following, where D} is a class of 3-dicritical digraphs defined in Section

Theorem 1.7. Let G be a 3-dicritical digraph. If G is not a symmetric cycle of odd length,
then
[AG)|= (k= DIV(G)|+1

if and only if G € Dj, and otherwise

[A(G)[= (k = DIV(G)|+2

Gallai was the first [Gal63b| to find a lower bound with a better slope than 3(k — 1). His
result was improved by Krivelevich [Kri97| using the same method together with a result of
Stiebitz [Sti82] that we were able to generalise to digraphs (see section |C)):

Theorem 1.8. Let k > 3, G a k-dicritical digraph and S = {z € G,d(x) < 2(k —1)}. Then
the number of connected components of G — S is at most the number of connected components

of G[S].

Gallai’s method works on digraphs, but we obtained better bounds through other means.
In the undirected case, Kostochka and Yancey [KY14] obtained a closed form for the mini-
mum number of edges of a k-critical graph on n vertices in an infinite set of cases:

Theorem 1.9 (Theorem 4 in [KY14]). Let k > 4 and G a k-critical graph. If G is not Ky,
then

B> | e

This bound is exact for k =4 and n > 6 and for k >5 andn=1 (mod k — 1).

(k+ 1)(k = 2)|V(G)|—k(k - 3)1 |
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Unfortunately we were not able to obtain a comparable result. Still, adapting their method,
we were able to get the following, which is the best known lower bound on the minimum number
of arcs in a k-dicritical digraphs when k > 5.

Theorem 1.10. Let k > 5 and G a k-dicritical digraph. Then

1 1 1 1
A >k—-—=-—— —k(z — ——
AG)Iz (b= 5 = =)IV(G)|-k(5 — )
The way the proof works makes it easy to identify the two arguments that do not allow us
to get a better result. It is to be noted that our proof works for k£ = 4, but in this case a better

bound is already known.

Theorem 1.11 (Theorem 1 in [KS20|). Let G be a 4-dicritical digraph with |V (G)|> 4 and
[V(G)|# 5. Then
10|V (G)|—4
A= [

This bound is tight when n =1 (mod 3) or n =2 (mod 3)

Our last result, Theorem [D.3] has a slightly different flavor than the rest since it deals with
list dicolouring. It necessitates a few more technical definitions to be introduced, so we postpone
its description to Section [D]so as not to make this section too heavy.

2 Notations

2.1 Generalities

Unless explicitly stated otherwise, all our notations should be understood as in the ISO 80000-
2:2019 standard. In particular, N = {0,1,...}. For n € N, we write [n] = {1,...,n} and &,, the
set of permutations of [n]. Set union will be denoted by + and indexed set union with J. Set
difference will be denoted by —. Excluding a bound of an interval will be denoted by a bracket
facing outwards, e.g. [0,1[= {x € R,0 < x < 1}. We use % to denote the modulo operation on
integers. For F a set and S C F, we denote 1g the indicator function of S.

2.2 Digraphs

A (simple) digraph G is a pair (V(G), A(G)) with V(G) finite and A(G) C {(u,v) € V(G)?, u #
v}. The order of G is |[V(G)|. Two digraphs G and G’ are isomorphic whenever there is
a bijection f : V(G) — V(G') such that A(G") = {(f(u), f(v)),(u,v) € A(G)}. We only
ever need to consider digraphs up to isomorphism and hence write G = G’ whenever G and
G’ are isomorphic. For X, Y C V(G), we let Ag(X,Y) = A(G)N (X xY) and Zg(X,Y) =
Aq(X,Y)+Ac(Y, X). A subdigraph of G is a digraph G’ with V/(G') C V(G) and A(G") C A(G).
For X C V(G), the subdigraph of G induced by X is G[X] = (X, A(G)NX?). For X C V(G), we
let G— X = G[V(G) — X]. For B C {(u,v) € V(G)?,u # v}, welet GUB = (V(G), A(G) + B)
and G\ B = (V(G), A(G) — B). For X disjoint from V(G), we let G+ X = (V(G) + X, A(G)).
If both X and V(G) are contained in V(G’) for some introduced digraph G’, we let G + X =
(V(G)+ X, A(G) —|—ZG/(V(G), X)). We denote C the subdigraph relation, i.e. G C H whenever
V(G) CV(H) and A(G) C A(H).

<—
We denote G = (V(G), {(v,u), (u,v) € A(G)}) the opposite of G, i.e. the digraph obtained
—
from G by reversing the orientation of all arcs. The symmetric part of G is G N G, its anti-
<—

<_
symmetric part is G\ G. G is symmetric when G = G and G is an oriented graph when
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—
G = G\ G. For any object fi parameterized by a digraph G, we let fé = meE and f& = fG\E'

“ —
We denote G = G U G the symmetric digraph obtained from G by replacing every arc by a
digon. We identify (undirected) graphs with symmetric digraphs.

2.3 Arcs, paths, neighbours and connectivity

Let G be a digraph.

We call A%(G) the set of digons in G and A*(G) the set of simple arcs of G.

A weak path in G is an alternating sequence P = (x1,a1,2,...,an_1,Ty) of vertices and
arcs of G, such that, for i € [n — 1],a; € {(zi, Ti+1), (Tit1, i)}, we write V(P) = {x1,...,zn}
and we say that it is a weak path from z to x,. It is a path when, for i € [n—1],a; = (z;, xiy1).
A (weak) cycle is a (weak) path from a vertex to itself. When P = (21, a1, 22, ...,an—1,%,) is a
(weak) path of G, we set G\ P =G\ {a1,...,an—1}.

For X1, ..., X,, C V(G), the word X;...X,, denotes X; x ... x X,. In particular, noticing that
giving a path is the same as giving a sequence of vertices, we denote paths (and cycles) in G as
words over V(G), e.g. for u,v,w € V(G), uvw denotes the path (u, (u,v),v, (v,w),w).

For X C V(G), welet NT(X) ={u € V(GQ) — X, A(X, u) # @} the out-neighbourhood of X,
N~ (X)={ueV(G)- X, A(u, X) # @} the in-neighbourhood of X, N(X) = N*(X)+ N~ (X)
the neighbourhood of X, NT[X] = NT(X) + X the closed out-neighbourhood of X, N™[X]| =
N~ (X)+ X the closed in-neighbourhood of X and N[X] = N(X)+ X the closed neighbourhood
of X.

For z € V(Q), we let d*(z) = |[N*(2)|, d”(z) = [N~ (2)|, d(z) = dT (z) + d~ (), dpin(x) =
min(d*(z),d” (x)) and dpae(z) = max(d™(z),d (z)), respectively the out-degree, in-degree,
degree, min-degree and maz-degree of x in G.

For X CV(G) welet 0t X ={ue X,NT(u) - X #0}, 0 X ={ue X,N(u) — X # 2}
and 0X = 07X + 0 X. .

G is connected if for any z,y € V(G), there is a path from x to y in G. The connected
components of G are the maximal set of vertices X such that G[X] is connected. We denote
mo(G) the set of connected components of G. G is strongly connected if there exists a path from
u to v for every distinct pair of vertices u, v.

An arc-cut of G is a set A C A(G) of arcs such that G \ A is not strongly connected. We
say that G is k-arc connected when every arc-cut of G has size at least k.

2.4 Basic classes of digraphs and operations on digraphs

© ~
For n € N, K,, = ([n],{(u,v) € [n]?,u # v}) is the complete digraph on n vertices, P, =
<~

([n+1],{(i,i +1),i € [n]}) is the path with n arcs, P, = B, U P is the symmetrlc path with

n digons, C, = (Z/nZ,{(i,i+1),i € Z/nZ) is the cycle on n vertices and Cn =C,U C is the
symmetric cycle with n vertices. A clique of a digraph G is a set of vertices inducing a complete
digraph.

For G a digraph and X3, ..., X,, pairwise disjoint non-empty subsets of V(G), G/(X;,i € [n])
denotes the digraph obtained from G by merging all vertices in X;, for ¢ € [n]. Formally, let,
forue V(G)— U Xi,m(u) =wand, for i € [n] and u € X;, m(u) = X;. Then G/(X;,i € [n]) =

i€[n)
(r(V(GQ)),{(7(u), 7(v)), (u,v) € A(G)}). 7 is called the canonical projection. When n = 1, we
write G/X = G/(X). When X = {z,y}, we denote by x xy the new vertex resulting from the
merging of z and y.
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If G is a digraph and G’ = (G},)uev () is a family of digraphs indexed by the vertices of

G, the substitution G(G') of G’ in G is the digraph obtained from G by replacing every vertex
by the corresponding digraph. Formally, considering the V(G.),u € V(G) pairwise disjoint,
GG)=(U V@G, U AG)+ U V(G)V(GE,)). Considering an indexing w :
ueV(G) ueV(G) (u,0)€A(G)

[n] = V(G) of the vertices of G, we write G(G') = G(G,,

uy?

LG,

2.5 Dicolouring and greedy dicolouring

¢ : V(G) — N is a dicolouring of G if, for n € N,¢~!(n) is acyclic, i.e. has no cycle. The
dichromatic number of G is

X(G) = min{n € N,3¢ : V(G) — [n] dicolouring of G}

We say that G is dicritical when for every proper subdigraph H of G, ¥(H) < X(G). For
k € N, we say that G is k-dicritical if furthermore ¥(G) = k.

Let G be a digraph, X C V(G), (u1,...,uy) an ordering of the vertices in G — X and
¢ : X — N a dicolouring of G[X]. Extending greedily ¢ to G (with respect to the considered
ordering) means colouring iteratively wq, ..., u, so that, for 1 < i < n,¢(u;) = min(N —
S(N"(uj) N (X 4+ up + ... +ui—1)) N AN (w;) N (X + ug + ... +ui—1))), i.e. we colour a
vertex with the smallest integer that does not appear both in its in-neighbourhood and its
out-neighbourhood. When X = &, we say that we colour G greedily.

2.6 Directional duality

Any universal statement about digraphs raises a dual statement by exchanging the + and —
superscripts, both statements being simultaneously true. It is out of our scope to give a formal
meaning to this so we will use it as an ad hoc principle.

3 Generalities

This section is dedicated to basic results that are used all along the proofs.

3.1 Basic properties of k-dicritical digraphs

We start with a trivial lower bound on the minimum degree of a vertex in a dicritical digraph.
This result will be used so often that we will not refer to it when using it.

Lemma 3.1. Let G be a digraph and x € V(G) such that X(G — z) < X(G). Then, for any
X(G — x)-dicolouring ¢ of G — x and ¢ € ¢(G — z), there is a path from N*(z) to N~ (x) in
¢~ 1(c). In particular, dpyin(z) > X(G).

Proof. Assume towards a contradiction and by duality that we have such a ¢ and ¢ such that
there is no path from N*(z) to N~ () in $~!(c). Then we extend ¢ to G by setting ¢(x) =c. O

Lemma 3.2. Let G be dicritical and x € V(G). Then
Nt (x) =0 & N (2) = O

Proof. Assume one of them is not empty. By duality, we may consider y € N (z). Let
¢ : G — [X(G)—1] adicolouring of G\yx. ¢ is not a dicolouring of G, so there is a monochromatic
path from x to y in G. Let xz be the first arc of this path. We have z € NT(z). Since
d(z) = ¢(z), we also have z ¢ N~ (x). Thus N5t (z) # @. O
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Lemma 3.3. Let G be k-dicritical. Then every arc e of G is contained in an induced cycle.
Proof. 1f not, then a (k — 1)-dicolouring of G \ e is a (k — 1) dicolouring of G. O
Lemma 3.4. Let G be a digraph and S C G acyclic. Then X(G/S) > X(G).

Proof. Let m : V(G) — V(G/S) be the canonical projection. Let ¢ : V(G/S) — [X(G) — 1].
Let ¢ = ¢ om. Since X(G) > k, ¢ is not a dicolouring of G. Hence we have a monochromatic
cycle C C G. Since S is acyclic, C € S. Then, projecting C onto G/S yields a non-trivial
monochromatic cycle in G/S. Hence G/S is not (Y(G) — 1)-dicolourable. O

3.2 Basic constructions of k-dicritical digraphs

We now give a simple construction of digraphs with high dichromatic number that will be useful
shortly.

A4 < s <
Lemma 3.5. Let G be a digraph andn € N. Then X(K2(K,,G)) = X(G)+n and, if Ko(K,,G)
is dicritical, then G is dicritical.
Proof. If n = 0, the result is trivial. We show the result by induction on n € N*. Assuming the
<~ A4 <~ A4 <~ A4
result holds for n and noticing that Ko(Kp11,G) = Ko(K1, K2(K,, G)), we only have to show
x4 <~

the case n = 1. Let H = K(K 1, G).

We obviously have X(H) < X(G) + 1. Let ¢ be a X(H)-dicolouring of H. Then, ¢y () is a

A4

dicolouring of G and ¢(V(G)) and ¢(K ;) are disjoint. Hence Y(H) — 1 > ¥(G), which entails
X(H) = X(G) + 1. oL

Assume H dicritical. Let G’ be a proper subdigraph of G. Then Ky(K1,G’) is a proper

s <~

subdigraph of H. Since H is dicritical, ¥(K2(K1,G")) < X(H) — 1 = X(G) and hence y(G’) <
X(G) — 1. Thus G is dicritical. O

We also know how to construct easily dicritical digraphs of any reasonable order.

Lemma 3.6. Let n > k > 2. There exists a k-dicritical digraph with order n.

<> <> —
Proof. Ko(Kg_2,Chio—) is k-dicritical and has n vertices. O

In the symmetric case, it is known that there is no dicritical graph G with ¥(G)+ 1 vertices.
This is not the case for digraphs.

4 e —
Lemma 3.7. Let k > 2. The only k-dicritical digraph with k + 1 vertices is Ko(Kj_2,C3).

Proof. Let G be a k-dicritical digraph with k 4 1 vertices. Let x,y € V(G) such that xy ¢ G.
Let H =G —x—vy. Gis ({(H) + 1)-dicolourable (give the same colour to = and y) and
<~ 4
hence X(H) > k — 1. Since |V(H)|= k — 1, we obtain H = Kj_1. Now, since G # K1,
we have x,y € V(G) such that zy ¢ G. If yx ¢ G, since x and y have in- and out-degree at
A4

least k — 1, we obtain G = Ko(G — z — y,{x,y}). Since G is k-dicritical, we have a (k — 1)-

dicolouring ¢ of G — x. Set ¢(y) = ¢(x) to obtain a (k — 1)-dicolouring of G, a contradiction.

Hence y € N* (z) and then by Lemma Nt (z) # @. Let z € N*F(z). We proved that
e 4

G—x—y=Kp 1=G—x—2z Ifyzy € G, then G — x = K and G is not k-dicritical. Hence
A4 A4 x4

G —y — 2z = Ki_1. In other words, G = Ko(Kj_2,G[{z,y,2}]). By Lemma Gl{z,y,z}] is

2-dicritical and hence a cycle, which concludes the proof. O
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3.3 Directed Gallai Theorem and directed Gallai forest

A graph G is non-separable if it is connected and G — v is connected for all v € V(G). A block
of a graph G is a subgraph which is non-separable and is maximal with respect to this property.
A block of a digraph is a block in its underlying graph. A block with at most one separating
vertex is a leaf block, the other blocks are internal blocks. A directed Gallai tree is a digraph
whose blocks are either an arc, or a cycle, or a symmetric odd cycle, or a symmetric complete
graph. A directed Gallai forest is a digraph whose connected components are directed Gallai
tree.

Theorem 3.8 (Theorem 15 in [BJBSS19]). If G is a k-dicritical digraph, then the subdigraph
induced by vertices of degree 2(k — 1) is a directed Gallai forest.

3.4 Arc-connectivity

There are two technical results about arc-connectivity that will be useful later on: a lower
bound on the size of an arc-cut of a k-dicritical digraph and a constraint on the dicolouring of
digraphs with a small arc-cut.

This first lemma is Theorem 5 in [NL82]. We include a short proof of it.

Lemma 3.9. Let k > 2 and G be a k-dicritical digraph. Then G is (k — 1)-arc-connected.

Proof. Let (Vo, V1) be a partition of V(G). For i € {0,1}, since G[V;] is a proper subdigraph
of G that is k-dicritical, we have ¢; : V; — [k — 1] a dicolouring of G[V;]. For o € &j_1,
oo ¢ Udgy is a dicolouring of G as soon as Vzy € A(Vy, V1), 0 0 ¢1(y) # ¢o(x). Since G is not
(k — 1)-dicolourable, we have:

0 = |{o€6 1, Yoy e A(Vo, V1), g0¢1(y) # ¢o(z)}]
= (k=1!—|{o € &_1, Fzy € A(Vo, V1), 00 ¢1(y) = ¢o(2)}|
> (k=1D!'= > [{o€6k1, 00¢1(y) = ¢o(z)}|
:EyGA(Vo,V1)
= (k= 1) Ao V)G — 2)!
Hence |A(Vp, V1)|> k — 1. O

The next lemma is a generalisation of a classic result on undirected graphs, we could not
find any reference for the directed case.

Lemma 3.10. Let k > 2, G a k-dicritical digraph and (Vo, V1) a partition of V(G) such that
|[A(Vo, Vi)|= k — 1. Let Vi = 07 (Vy) and Vi* = 0~ (V1). Then there is i € {0,1} such that,
for any (k — 1)-dicolouring ¢; of Vi, |¢i(V;*)|=1 and, for any (k — 1)-dicolouring ¢1—; of Vi,
[¢1-(Vis)l=k — 1.

Proof. Let, for i € {0,1}, ¢; be a (k — 1)-dicolouring of G[V;]. Let G* be the graph on
Ll ¢i(V;*) such that, for ¢ € {0,1}, G*[¢;(V;")] is complete and, for c¢g € ¢o(Vy) and
1€{0,1}
a1 € p1(V)"), cocr € G* if and only if there exist, for i € {0,1}, z; € d)i_l({cl-}) such that
zox1 € G. Since G is not k-dicolourable, G* is not k-colourable. Since G* is bipartite, it
is perfect and hence, by the perfect graph theorem, G* is perfect. Thus there is X C G*
such that G*[X] = Kj. Since, for ¢ € {0,1},|¢;(V*)|< k& — 1, X N ¢(V;*) # @. Since
B (60(V3), o1 (VOIS & — 1 and, for i € {0,1} and ¢ € ¢i(Vy"), dri(Vi ) N N(e) # 2.
{los(V:*)|,i € {0,1}} = {1,k — 1}. This is true for any choice of ¢;,i € {0,1}, so generalising
independently in ¢g and ¢; yields the result. O
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4 Dirac-type bounds

Let k > 3, G be a k-dicritical digraph and u € V(G). We have d(u) > 2(k — 1), yielding,

by the handshake lemma, |[A(G)|= 5 > d(u) > (k — 1)|G|. This leads us to define the

ueV(G)
excess of u: e(u) = d(u) — 2(k — 1). Then, the excess of X C V(G) is e(X) = > e(u) and

ueX
£(G) = e(V(G)) = 2|A(G)|-2(k - 1)|G].

4.1 Dirac’s Theorem

We now prove Theorem that we restate here for convenience.

Theorem 4.1. Let n >k > 4 and G an n-vertex k-dicritical digraph. Then
A@)] (k= 1)|V(G)]+k - 3.
In other words: (G) > 2(k — 3).

Proof. Consider a digraph G with |V(G)|> k minimal such that e(G) < 2(k — 3).

<
Claim 4.1.1. G does not contain Ky minus one arc as a subdigraph.

Proof of claim. Assume we have W C V(G) and z,y € W such that G[W] + zy = IH(;C Since
G is k-dicritical and yxr € A(G), G \ yr admits a (k — 1)-dicolouring ¢. Since G is not (k — 1)-
dicolourable, ¢(x) = ¢(y) and there is a monochromatic path in G — yz from z to y of colour
¢(z). Since zy ¢ A(G), this path has length at least 2. Now, for each u € W — {x,y}, define
1, from ¢ by reversing the colour of u and the colour of z and y; formally: 1, (u) = ¢(x),

Yu(x) = Yuly) = ¢(u) and ¢y, (v) = ¢(v) for every v € V(G) — {z,y,u}. Since 1), is not a
dicolouring of G, either there is a path from x to y of colour ¥, (x) = ¢(u) and we set §, = 1 or
there is a cycle of colour ¢, (u) = ¢(x) going through u (which is disjoint from W — u) and we
set &, = 0.

Observe that if §, = 0, then e(u) > 2. Assume §,, = 0 for ¢ vertices. Observe that:

e(W —{x,y}) > 2¢

and,

e@)+e(y) =2 D du=2k-2-¢)
ueW—{z,y}

Hence, £(G) > 2k — 4, a contradiction. O

Note that I<_() r € G, since G # I? i and G is k-dicritical.
Claim 4.1.2. Let x # y € V(G) such that vy ¢ A(G). If G/{x,y} is not k-dicritical, then for
any G* C G/{z,y} k-dicritical, G* = I?k
Proof of claim. Assume that G/{z,y} is not k-dicritical, and let G* Q(_)G /{z,y} k-dicritical (G*

exists by Lemma . Assume towards a contradiction that G* # K. By minimality of G,
it suffices to show ¢(G*) < ¢(G). Let U = V(G) — V(G*) — x — y. Since G is k-dicritical,
we have G* Z G, ie. zxy € V(G*). Since G/{x,y} is not k-dicritical, U # &. Hence
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@ C U C V(G). By lemma[3.9, G is (k — 1)-arc-connected, so |A(U,V(G) — U)|> k — 1 and
|[A(V(G) = U,U)|> k — 1. We have:

£(G) —e(G7) = 2(JAG)|-AG)]) = 2k = 2)(IV(G)|=[V(G)))
%:UdG( u) + AU, V(G) = U)[+AV(G) - U, U)]
+2(JA(V(G) = U)|=|A(GT)]) — (2k = 2)(|U|+1)

> (2k—=2)|U|+(2k —2) — (2k = 2)(|U|+1)
=0

<~
Claim 4.1.3. G contains Ki_1 as a subdigraph.

Proof of claim. We have x € V(G) such that d(x) < 2k—1 (otherwise ¢(G) > 2|V (G)|> 2(k+1)).
A4
By duality, we may assume d*(x) = k — 1. If N*(z) is a clique, then G[N+( )] = Ki—1 and

we are done. Otherwise we have y,2z € NT(x) such that yz ¢ A(G). Since dG/{ (a:) <k

<~
G/{y, z} is not k-dicritical and Claim 4.1.2|yields a copy of K;_1 in G. O

Let W C V(G) such that G[W] = ?(k_l. We have z € W such that d(z) < 2k —1
(otherwise, e(G) > (W) > 2k — 2). Observe that [NT(z) — W|=1or [N~ (z) — W|= 1. Let
y € N(x)—W with y € N*(z) whenever [NT(z)—W|=1and y € N~ (z) otherwise We choose
such a triplet (W, z, y) so as to maximise the number of arcs between x and y (i.e. we choose
y € N%(z) when p0851ble) and, subject to that, maximise the cardinality of W, = W N N¢(y
Let z€¢ W — (N ( ) + x) with minimum degree (such a z exists by Claim “

By lemma [3.4) ¥(G/{y,z}) > k. Let G* be a k-dicritical subdigraph of G/{y,z} and
U =W — (V(G*) + 2).

<>
Claim 4.1.4. Uy =W — z and G* = K},

Proof of claim. We first show = € Uy. If d(x) = 2k — 2 or y € N%(z), since z € N¢(x),
da/{y,-1(x) < 2k — 3 and thus x ¢ V(G*). Otherwise we have d(z) = 2k — 1 and y ¢ N ().
Observe that in this case |[N*(z)|= 3

We may assume without loss of generality that |N*(z) — W|= 1 and hence y € NT(x).

Then NG+{ 7Z}( x) H@ and NG/{ z}( x) # &, so x ¢ G* by lemma So x € Uy. Hence, by

Claim [4.1.2) G* = K},

Assume towards a contradiction Uy C W — z. Then 1 < |Uw|< k — 3. Moreover, observe
that for every u € W — (Uw + 2), dg(u) > 2|G* — u|+2|Uw|= 2k — 2 4 2|U,,|. Hence:

e(G) > (W —(Uw +2))
= > (da(u) = (2k —2))
ueW—(Uw+2)

> (2[Uw|)

ueW —(Uw+2)
= 2\W = (Uw + 2)||Uw/|
2(k —2 — [Uw|)|Uw|
2(k —3) (by concavity of z — (k — 2 — z)x),

Y

AV

a contradiction. O

<>
Let S = V(G*) —y* 2. By Claim 4.1.4, G[S] = K;_1. Let S, = SN N%(y). The situation
is depicted in Figure
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<~
W—Z:Kk,Q

Wy

Sy

Figure 1: This figure describe the situation at the end of claim

Claim 4.1.5. ¢(z) > k — 2 — |Sy|. Moreover, if |Sy|< k — 3, equality holds only if all the arcs
between z and S — Sy have the same orientation.

x4
Proof of claim. We have W — z C N%(z) and since G* = Ky, we have S — S, C N(z). Let

s € §— 8, (such an s exists, otherwise G[S + y] = K k). We may assume without loss of
generality that s € N (z). Since G is k-dicritical, we have ¢ : G\ zs — [k — 1] a dicolouring. ¢
is not a dicolouring of GG, so there is a monochromatic path from s to z. Since W is a clique, z
is the only vertex in W on the path. Observe that s is the only element of S — S, with colour
¢(s), and thus the last but one vertex on the path is either s or not in S — S,,.

Observe moreover that, by Claim W — z is disjoint from S. Altogether, we get that
d(z) > 2(|W|=1) +|S = Sy[+1 > 2(k —2) + (k — 1) — |Sy|+1 = 3k — 4 — | S|, and thus:

e(z) =d(z) — (2k—2) > k—2—|S,|

Assume now we have £(z) = k—2—|S,|, |Sy|< k—3, and for a contradiction sy € NT(z)N(S—5Sy)

and s € N~ (2)N(S—S,). Since |S —S,|> 2, we may assume s; # s_. As previously, G\ zs™*

admits a (k—1) dicolouring, implying that either sy € N%(2) or N~ (2)—~W —S,, # @. Similarly,

either s_ € N4(z) or N*(2) — W — S, # @, which yields e(2) > k — 1 — |S,|. O
Recall that W, = N¢(y) N W.

Claim 4.1.6. ¢({y, z}) > 2|W,|—2 and equality holds only if N(y) = N(y).

> nd
Proof of claim. Since G* = Ky, |A({y, 2}, S)|> 2|S|. Hence:

e({y,z}) = 205[+2(Wy[+2(]W[-1) —4(k - 1)
= 2[W,|-2

If N(y) # N%(y), one arc incident to y is not accounted for in the previous minoration. ¢

Claim 4.1.7. There is ' € Sy such that d(z') < 2k — 1.

Proof of claim. Otherwise, £(Sy) > 2|Sy|. Recall that z has minimum degree among vertices of
W — W,. We distinguish two cases:
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o If x € W, (with w = |W,|,s = [Sy|€ [0,k — 2]):

e({y, 2}) +e(W =Wy — 2) +e(5y)
2w—2+(k—2—w)(k—2—s)+2s (using Claims [£.1.5 and [£.1.06]
ws — (k —4)(w + s) + (k —2)% — 2

= (w+s)P—(w-9)%)—(k—4)(w+s)+ (k—2)* -2

e(Q)

v Iv

Let f(w,s) be this last expression. Since, for fixed w + s, f(w, s) is decreasing in |w — s|
and symmetric in w and s, we consider w’, s’ € [0,k — 2] such that v’ + s’ = w + s and
w' € {0,k — 2} and have:

e(G) = fw',s)
> mln( (k—4)s' + (k —2)? — 2,
(k—2)s' —(k—4)(k—2+5)+ (k—2)2-2)
> min((k—2)? - (k—2)(k—4) —
(k—2)2 - (k—2)(k—4) —2)
= 2(k—23)

e Otherwise, z ¢ W), that is y ¢ N%(z). Recall that we chose (W, z,y) so as to maximise
the number of arcs between x and y. Let v € W, US,. If d(u) < 2k — 1, then either
(W,u,y) or (S,u,y) contradicts the choice of (W, z,y). Hence d(u) > 2k.

We have |W, |, |Sy|< k — 4 (otherwise e(Wy) > 2(k — 3) (resp. £(Sy) > 2(k — 3))). Then
(with w = [W,, s = |S,|€ [0,k — 4])):

e(G) e(W =Wy, —x) +(Sy)
(k—2—-w)(k—2—s)+2s (using Claim [4.1.5))
1

4

(w+8)? — (w—5)%) — (k—2)(w+s) + (k—2)%+2s

v Il

This last expression is minimised when s < w (otherwise exchange w and s) and when,
for fixed w + s, |w — s| is maximised, hence when s =0 or w = k — 4. Thus we have:

(@) > min((k—2)(k—2—-w), 2(k —2—s) + 2s)
> 2(k—2)

¢

Let 2’ € S, with d(2') < 2k — 1. Since 2’ € N%(y) and we chose (W, z,y) so as to maximise
the number of arcs between z and y, x € W, (otherwise (S,2’,y) contradicts the choice of
(W,z,y)). Since we chose (W, z,y) so as to maximise |IW,|, we have |S,|< |W,| (otherwise
(S,2',y) contradicts the choice of (W, z,y)). Also recall that z has minimum degree in W — W,.
Then:

e(G) =z e({y,z}) +e(W -W, — =)
> 2{Wy|-2+4 |W — W, — z|e(z) (using Claims [4.1.6))
> 2{Wy|—24 (k=2 —|Wy|)(k—2—1Sy|) (using Claims [4.1.5)
> 2|Wy|-2+ (k — 2 — [W,))?

(W, |—(k=3))2+2k -7

Since €(G) < 2k—6, each inequality above is an equality, so |Wy|= k—3 and then |Sy|= k—3

and equality condition in Claims[d.1.5]and [£.1.6/hold. Without loss of generality, we may assume
<

S — S, C N5t (z). Since G* = Ky, we have S — S, C N° (y). But since G is k-dicritical, by

lemma |3.2) H N3t (y) # @. This contradicts the equahty condition in Claim m O
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4.2 Refined Dirac’s bounds

The goal of this section is to state Theorems and [1.7] that we restate below, together with,
as promised in the introduction, the digraph witnessing that the bound is tight. The proofs
can be found in section [A] We first need to define the set of digraphs Dj, as announced in the
introduction.

< A4 < <

Definition 4.2. Let D3 = {82n+1,n € N} and, fork > 4, let Dy, = {85([?k_2,Kl,Kn,Kk_l_n,Kl),
1 < n < k—2} (see Figure @) It is clear that, for every k > 4 and G € Dy, with
a,b € V(G) defined as in Figure [4, ({a,b}) = 2(k — 3) and the other vertices have excess

0, thus e(G) = 2(k — 3).

Figure 2: Digraphs in D, k > 4.

i xd
Theorem 4.3. Let k > 4 and G be a k-dicritical digraph such that G # Ky and G ¢ Dy. Then:
[A(G)|= (k= DIV(G)[+(k — 2).
Equivalently: (G) > 2(k — 2).
< < -
Moreover, the bound is tight for Ko(Kj_o,Cs).

Theorem [£.3] also holds for £ = 3 but this is not interesting. In order to state Theorem
we first need to define the set of digraphs D4 mentioned in the introduction.

Definition 4.4. An extended wheel is a digraph made of a vertex x and a triangle abca together
with three symmetric paths with lengths of same parity, linking x with a, b and ¢ respectively,
and such that the three paths have only x in common. One of the paths can be of length 0, that
is x is equal to one of a, b, ¢, and the two other paths have even length.

Let Dy be the set of digraphs containing extended wheels and the all digraphs obtained from the
digraph pictured in Figure [ by replacing any digon by an odd symmetric path.

It is easy to check that digraphs in D§ are 3-dicritical, and have excess 2.

@
® &)
W W)
Figure 3: The digraph appearing in the definition of Dj

Theorem 4.5. Let G be a 3-dicritical digraph which is not a symmetric odd cycle. Then
e(G) =2 if and only if G € D}, and otherwise (G) > 4.
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5 Kostochka-Yancey-type bound

The main goal of this report is to obtain the best bounds on the minimum number of arcs in
dicritical digraphs with fixed order and dichromatic number. One way of doing so is to search
for such bounds as linear functions of the order and search for the best slope. We give here a
nice characterisation of this quantity.

The directed Hajés join describes a way to build k-critical digraphs from any two k-dicritical
digraphs, with the following properties:

Lemma 5.1 (Theorem 2 in [BJBSS19|). Let k > 2 and let G1 and Go be k-dicritical di-
graphs. Then there exists a k-dicritical digraph G with |A(G)|= |A(G1)|+|A(G2)|—1 and
V(@)= [V(GD)[+V(G2)|-1

Lemma 5.2. Let k > 2 and, for n >k, fr(n) be the minimum number of arcs in a k-dicritical
digraph of order n. Then:

|A(G)|—-1 2
T ek -1,k — ———
n—>—+>oo G k—(li?critical |V(G)’—1 < [ ’ ]

1

Efk:(”) L1

Proof. First, by Lemma [3.6] fj is well-defined. Then, by Lemma [5.1} we have, for a,b > k:
frla+b—=1) < fi(a) + fx(b) — 1

and hence, for a > b,

fl@) = fulb+b=1) |2 + (@@= 5)%b - 1)

= S a-DEB-1)+ Y (et (a—b)%B-1)+ i+ (b 1)

— fe(b+ (a—0)%(b—1)+i(b—1)))

< fulb+(a—b)%(0b—1) + | 2| () - 1)

ie.
1 fre(d) — 1 1
- < -
L) < 0214 o)
This yields lim sup  fi.(n) < o pnf K}Eg;‘j But it is immediate that:
n——4o00 -dicritica

: AG) =1 ]
f <1 f—
G h-dicritical V(G)|-1 — n>-too nfk(n)

and the result follows (the upper bound comes from Theorem ) O

5.1 Minimum number of arcs in a k-dicritical digraph

The goal of this section is to prove Theorem that we restate below for convenience, see
Theorem[5.6] Some of the proofs of this section’s claims are either redundant or highly technical.
They can be found in section [B]

Let G be a digraph. Two distinct vertices u,v € V(G) are twins in G when N*t[u] = NT[v]
and N~ [u] = N~ [v]. In particular a pair of twins are linked by a digon.
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Definition 5.3. Let G be a digraph, R C G, and ¢ : R — [k — 1] be a dicolouring of G[R].
Fori € [k —1], let X; = ¢~1(i). We define Y (G, R, ¢) as the digraph obtained from G after
contracting each X; into a single vertex x;, and adding a digon between x; and x; for every
1#£ 7.

Lemma 5.4. Let G a digraph, R C V(G), and ¢ a (k — 1)-dicolouring of G|R]. If X(G) > k,
then X(Y (G, R, 6)) > k.

Proof. By lemma [3.4] and because adding arcs does not decrease the dichromatic number. [

We will also need the following technical lemma.

Lemma 5.5 (Lemma 17 in [KY14]). Let k > 3, Ry = {u1,...,us} be a set, and w : R, — N*
such that w(uy) + -+ +w(us) > k—1. Then for each 1 <i < (k—1)/2, there exists a graph H
with V(H) = Ry and |E(H)|= 1 such that for every independent set M in H with |[M|> 2,

Z w(u) >1

Our aim is to show the following theorem:

Theorem 5.6. For every k-dicritical digraph G,

A (k— 5~ - DIV(@)| k(g — )

Proof. Let € €]0, % — ﬁ[ Define the potential of a digraph G as follows:
p(G) = (k= 1+4¢)|V(G)|-|A(G)]

and for R C V(G), the potential of R in G is pg(R) = p(G[R]).

Let us first discuss the potential of cliques.
g

Claim 5.6.1. Fori > 1, p(K;) =i(k —i+¢). In particular:
<~
o p(Ki)=Fk—1+e
<~
* p(Kp-1)=(k—1)(1+¢)
<~
o p(Ky) = ke.

x4 4 <~ And
Besides, p(Ki) < p(K1) < p(Kk-1) < 2<r'n<il£1 2p(K,-) (the last inequality can be seen easily
<i<k—
Axd

using the concavity of i — p(K;)).

Note that if G is a digraph and H is a spanning proper subdigraph of G, then p(G) < p(H).

Axd

In particular p(Ky(q)) < p(G). These two easy facts are often used in the proof.

We are going to show that, for any k-dicritical digraph G, p(G) < p(IH( x) = ke. This indeed
implies the theorem because we get that |A(G)|> 2(k — 1+ &) — ke. This being true for any
e €]0, 3 — 725, it also holds for & =  — 25, which gives |[A(G)|> (k—5—25)|V(G)|—k(3 — 225)
as wanted.
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We order the digraphs lexicographically on
G — ([V(Q)], |AG),|A%(@)], —|{(u,v) € V(G)?,d(u) = d(v) = 2(k — 1) Au and v are twins}|)

(denoting =< the ordering) and consider a <-minimal counter-example G. So p(G) > p(IH( k) and
we minimise the number of vertices, then the number of arcs, then the number of simple arcs,
and finally we maximise the number of twins of degree 2(k — 1).

Let S ={u e V(G),d(u) =2(k —1)}.

We start the proof by a lower bound on the potential of a subset of V(G).

nd
Claim 5.6.2. Let R C V(G). If |R|> 2, then pa(R) > p(K1) =k—1—¢.

We are now ready to obtain a much stronger lower bound.

Axd
Claim 5.6.3. Let R C G such that |R|> 2. If pa(R) < p(Ki—1) = (k—1)(1 + ¢), then
x4
G[R] = Ki-1.

Proof of claim. Let R € argmin pc(W). Towards a contradiction, we assume pg(R) <
WCV(G)

<>
(WI=2AGIW AR -

<~ s s
p(Kk-1). Since pa(R) < P(Kk 1) < ,in ,P(Ki) and G[R] # Kj—1, we have [R|> k.

<~ A4
Let i = ’Vpg(R) — p(Kk)-‘ — 1, so that p(Kk) +1 < pa(R) < p(Ki)+ i+ 1. By claim [5.6.2,

Axd x4
we have k — 14 ¢ = p(Kl) < pa(R) < p(Kg) + i+ 1 and hence since € < 5 — % we have

1>
i>k—1+6—k5—1> Inpart1cularz>2

Besides, we have p(Kk)—i—z < pa(R) < p(Kk,l) and hence i < (k—1)(1+¢e)—ke=k—1—¢
which gives i < k — 2.

Since by Lemmaﬂ 9 |A(OR,G—R)|> 2(k—1), Lemmaw1th w:r €OR— |A(x G —R)|
implies the existence of a set of digons A with end vertices in R of size L%J such that for every

<~ .
I C A with |I|> 2 and independant in (R, A), we have |A(OR — I,V (G) — R)|> | %].
We show that G|R|UA is (k—1)-dicolourable. If it is not the case, we have G* C G[R]UA k-

. <
dicritical. Then, p(G*) > pg(G*)—2[5]| > pa(R)—1i > p(K}), which contradicts the minimality
of G.
Let ¢ : R — [k—1] be a dicolouring of G[RJUA. Let Y =Y (G, R, ¢) and X = V(Y) -V (G).
Since X(G) = k, by lemmal5.4 we have ¥(Y') > k and hence Y contains a k-dicritical subdigraph
Y*. Since |R|> k, we have |[V(Y*)|< |V(G)|, that is Y* < G. By minimality of G, p(Y*) <

And
p(K}). Since G is k-dicritical, Y* Z G and hence X NV (Y*) # @. We have:

po(Y =X+ R) = polY* —X)+ pa(R) - |A(Y* - X, R)
= (Y —X) +pa(R) - A" - X, B)| o
= (V") = oy (Y? 1 X) + pa(R) + A" = X, Y7 N X0|-[A(* = X, R)
< p(Y") = py (V' N X) 4+ pa(R) + [A(Y* — X,Y* 0 X)|~[A(Y* — X, R)|

<~ e x4 4
If [Y* N X|> 2, we obtain: pg(Y* — X + R) < p(K}) — (Kk,l) + pa(R) < p(Ky) < p(K1), a
x4 Axd
contradiction. Hence |[Y*NX|= 1. Then: pg(Y* X+R) < p(Kk) p(K1)+p(Ky)+i+1—|%].
By claim |5.6.2] we have pg(Y™* — X + R) > p(Kk) We obtain k —1+e—ke <i+1—[L] <
¢

i+1—%:%<k+l andhence€>

ﬁ, a contradiction.
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We are now going to show some strong structural properties of G.

Claim 5.6.4. Let R C V(G) and A be a set of at most k — 2 arcs with end vertices in R. Then
G[R]U A is (k — 1)-dicolourable.

Proof of claim. Otherwise, let G* C G[R] U A be k-dicritical. We have |R|> |V (G*)|> k.

> <~
In particular G[R] # K1, so pg(R) > p(Kj—1). Hence p(G*) > pa(V(G*)) — (k — 2) >
A4 <~

p(Kp—1)—(k—=2)=(k—1)(1+¢)—(k—2) =ke+1—¢c > p(K}), and since G* < G, we get a
contradiction with the minimality of G. O

Claim 5.6.5. Let u € G with d(u) < 2k — 1. Then N*(u) = @ or N*(u) = @.

Proof of claim. We proceed by contradiction. By duality, we may assume [Nt (u)|> |N~(u)|.
Let N*T(u) = {z],1 < i <t} and N* (u) = {z;,1 < i < s} (with s <¢t). If s =0, by
lemmat:Oanst(u):Q Ifs=k—1, thenNd(u):Q Sol<s<k-—2.

Let H = G\ {ur],1 <i < s} UuN*(u). Any dicolouring of H is a dicolouring of G, so
X(H) > k. Let H* C H be k-dicritical. Since s < k — 2, we have |[uN*~ (u)|< k — 2 and thus,
by claim V(H*) = V(G). Note that H* < G (because we moved the arcs so as to create

g

digons). We have p(H*) > p(G) > p(K}), a contradiction to the minimality of G. O

Claim 5.6.6. Let z,y € V(G) such that xy € A(GQ), yx ¢ A(G), d"(z) = k—1 and d(y) <
2k — 1. Then d~(y) = k. In particular, any pair of vertices in S are either non adjacent, or
linked by a digon.

s
Claim 5.6.7. Let X = Ky, 1 C G andx,y € XNS. Then x and y are twins.

Proof of claim. By claim N(z) = N%z) and N(y) = N%y). Let u, € N(z) — X and
uy € N(y) — X. Assume towards a contradiction that u, # uy. Let H = G —x — y U upuyu,.
By claim we have ¢ : H — [k — 1] a dicolouring. We have ¢(uy) # ¢(uy). If ¢(uy) €
H(X —x —vy), we take ¢(z) € [k — 1] — ¢(X — & — y), otherwise we set ¢(x) = ¢(uy). In both
cases y has two neighbours with the same colour and hence we can extend ¢ greedily to G, a
contradiction. O

A set of vertices C of G is a cluster if C C S, C is a clique, each pair of vertices in C' are
twins, and C' is maximal with these properties.

Claim 5.6.8. Let C be a cluster of G. Then |C|< k — 3.

Proof of claim. By claim a cluster of size at least k — 2 would be at most 2 arcs away from
s
being a K, contradicting claim O

Claim 5.6.9. Let z,y € S such that there is a digon between x and y, x (resp. y) is in a cluster
x4

of size s (resp. t), x and y are not twins and t < s. Then x is in a K1 and t = 1.

Proof of claim. By claim N3(x) = @. Let G' = G —y + 2’ so that N[2'] = N%2'] = N|[z]
(i.e.  and 2/ are twins and linked by a digon). We have G’ < G (because = and 2z’ are twins
in G’ while z and y are not twins in G). Assume we have ¢/ : G’ — [k — 1] a dicolouring.
Set, for v € V(G) — {z,y}, ¢(u) = ¢'(u), then ¢(y) € [k — 1] — ¢'(N(y) — x) and finally
o(z) € {¢'(x),d' (")} — {p(y)}. Tt is easy to check that ¢ is a (k — 1)-dicolouring of G, a

contradiction.
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<~
Hence X(G') > k. Let G* C G’ be k-dicritical. We have G* < G, so p(G*) < p(K}). Besides,
Axd Axd

G is k-dicritical and hence 2’ € V(G*). We have pg(V(G*) —2') < p(Kg) —p(K1) +2(k—1) =
Axd Axd
p(Kg—_1). Since y ¢ V(G*) — 2/, by claim [5.6.3) G* — 2’ = Kj_;. Finally, since 2’ € V(G*), G*
is k-dicritical and d(z') = 2(k — 1), we have x € N[2'| = V(G*). Hence z is in a (k — 1)-clique
in G. o

Now, N[z] —y = Kj_1. If the cluster of y contains a vertex 2’ € N[z] —y, then 2’ and y are

Axd

twins and thus N|z| is K, a contradiction. So the cluster of y is disjoint from N[z| — y, but
any vertex in the cluster of y is a neighbour of x, so the cluster of y is reduced to y, i.e. t = 1.

O

Claim 5.6.10. Let C be a cluster with |C|> 2.
x4
1. If K1 € G[N[C]], then Yu € N(C),d(u) > 2(k —1+|C|).

Axd
2. If there is X C N[C] such that G[X]| = Kk_1, thenVYu € X — C,d(u) > 2(k — 1+ |C|).

We are now going to obtain a contradiction using the discharging method. Let a = =.
Each u € V(G) starts with charge d(u). We apply the following rules (observe that any charge
sent through an arc is at least a):

e Every vertex with degree at least 2k keeps 2(k — 1 4 ¢) to himself and distributes the rest

equally along its arcs: it sends charge %ﬁ;lm through each of its arcs. Note that

this expression increases with d(u) and hence is at least 1%5 > a.

e Every vertex with degree 2k —1 and k out-neighbours (resp. k in-neighbours) sends charge
a to its out-neighbours (resp. in-neighbours).

e For every u € S such that u is in a cluster of size at least 2 which is in a (k — 1)-clique X,
u sends 2« to its unique neighbour that is not in X.

The uniqueness of the neighbour of u in the last bullet is due to claim [5.6.5
Let, for u € V(G), w(u) be its resulting charge. We are going to prove that for every
ueV(QG), wu) >2(k—1+e¢).

e Let u € V(G) such that d(u) > 2k. Then by construction, w(u) = 2(k — 1+ ¢).

e Let u € V(G) such that d(u) = 2k —1 and d™ (u) = k— 1. By claim N%(u) = @. By
claim for every € N~ (u), d*(z) > k. So u receives charge (at least «) through
k — 1 arcs and sends « through k arcs. Hence w(u) > d(u) —a > 2(k —1+¢).

e Let u € S such that w is in a cluster of size 1. So u does not send any charge. Claims [5.6.5|
distinguishes two cases.
Assume first N%(u) = @. Then by claim for every y € N~ (u), either d(y) > 2k, or
d*(y) > k. In both cases y sends at least o to u. The same holds for the out-neighbours
of u. So w(u) =d(u)+2(k—1)a>2(k—1+¢).
Assume now N*(u) = @. By claim no neighbour of u has degree 2k — 1. If u is
in a (k — 1)-clique of G, by claim m every neighbour of w in this clique has degree at
least 2k, and hence sends charge to u. Hence w(u) > d(u) +2(k — 2)a > 2(k — 1 + ¢).
Assume this is not the case. Let v € N(u). If d(v) > 2k, then v sends 2« to u. Otherwise,
v € S. Since u is not in a (k — 1)-clique of G, by claim v is in a cluster of size
at least 2 and in a (k — 1)-clique. Hence, by the third rule, v sends 2« to u. Thus,
w(u) =d(u) +2(k—1Da>2(k—-1+¢).
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e Let u € S such that u is in a cluster C of size ¢ > 2. Note that by claim [5.6.5, N*(u) = @.

A4
If K1 Z G[N][C]], then u does not send any charge and, by claim 5.6.10|l|7 it has k—1+c¢
neighbours of degree at least 2(k — 1 4 ¢) > 2k and hence send charge towards u by rule
1:

2k —14¢)—2(k—1+¢)
2(k—-14+¢)

w(u) > d(u) +2(k — )

—
Otherwise, let X C N[C] such that G[X] = K1 and u € X. By claim 5.6.10 all
vertices in X — C have degree at least 2(k — 1 4+ ¢) > 2k and hence send charge towards
u. Finally, u sends charge to at most one vertex (its neighbour that is not in X):

2k —1+4c)—2(k—1+¢)

w(u) > d(u) +2(k—1-c) 20k —1+c)

— 2«

In both cases, w(u) > 2(k — 1) +2(c — E)’Zjli — 2755. We have:
w(u)>2k—-14¢) & (k=2)(c—¢e)(k—1—-¢c)—elk—1+¢c)—(k—2)(k—1+¢)e>0
s 2k-1D)k-2)+k—14ce<(k—=2)c(k—1-¢)

The first expression is concave in ¢, so by claim we only have to check it for ¢ €
{2,k—3}. Since & < £ — X5, we only need to check (2(k—1)(k—2)+k—1+c)(5—15) <
(k —2)c(k — 1 —c¢). For ¢ = 2, we obtain: (k — 3)(2k% — 7k + 7) > 0, which is true since
the degree 2 polynomial has discriminant —7 and hence is always positive. For ¢ = k — 3,
we obtain (k — 3)(2k% — 8k +7) > 0, which is true since the largest root of the polynomial
of degree 2 is 2 + %

Hence |A(G)|=% > d(u) = 3 3 w(u) > (k—1+4¢)|V(G)], i.e. p(G) <0, a contradiction.
ueG ueG
O

6 Conclusion

This internship has been my first research experience in graph combinatorics. Apart from
the work presented here, I participated in a workshop on digraphs at the end of June, where,
among other things, I helped disprove a conjecture on the inversion number of tournaments. I
also attended the seminar of the DIENS, the School on Graph Theory and the International
Colloquium on Graph Theory and combinatorics.

I would like to thank the DIENS and in particular the TALGO team for their welcome. Many
thanks to Clément RAMBAUD for the attention he gave to my work and very useful remarks.
Many thanks also to my supervisor, Pierre ABOULKER, for his very constructive work, his
presence and his unwavering enthusiasm.
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A  Proofs of the refined Dirac’s bounds

We prove Theorem

Proof. Assume the theorem is false. Let k£ be minimal such that the theorem does not hold for
k. Let G be a counterexample of minimal order. Since e(G) is even, (G) < 2(k — 3), so by
Theorem e(G) = 2(k — 3). By Theorem |1.4] we may assume that G is not symmetric.

Let S = {u € V(G)|d(u) =2(k — 1)} = {u € V(G)|e(u) = 0}. By Theorem 3.8} S induces a
directed Gallai-forest.

Claim A.0.1. k£ > 5.

Proof of claim. Assume k = 4. We have £(G) = 2. Observe that in this case a block of S is
either an arc, or a cycle, or a symmetric odd cycle. Moreover, all vertices of G have degree
6 (and thus are in 5), except for exactly one vertex of degree 8 or for exactly two vertices of
degree 7.

First consider the case where there is a vertex of degree 8, say u. Any non-separating
vertex of G[S] is in a symmetric odd cycle, since if it were in any other type of block, it would
have more than two arcs incident with w. This implies that each non-separating vertex of S is
linked to u via a digon and that each leaf block of G[S] is a symmetric odd cycle, each of them
containing at least 2 non-separating vertices. If G[S] has at most 3 non-separating vertices,

Axd Axd
we have G[S] = K3 and then G = K4, a contradiction. Hence, there are 4 of them and thus

<~
N*(u) = @. If G[S] has only one block, then this block is Cy, a contradiction. Hence G[S]

<~
has exactly two leaf blocks, which are K3. Since G is not symmetric, G[S] contains a cycle of
length at least 3, which either leads to another non separating vertex in .S or another leaf block,
a contradiction.

Now consider the case where there are two vertices of degree 7, say v and v. In particular
there are at most 14 arcs between {u,v} and S.

Let B be a block of G[S] and let # € V(B) be a non-separating vertex of G[S]. If B is
an arc, then dg(xz) < 5, a contradiction. If B is a cycle, then z is linked to both u and v
via a digon. Assume now that B is a symmetric odd cycle. Then z is incident with two arcs
incident with {u,v}. Let us prove that there is a digon linking = and {u,v}. Assume towards
a contradiction and without loss of generality that {ux,zv} C A(G). Let H be obtained from
G by removing the arcs uz and zv and adding the arc uv. Since « is incident with no other
simple arc than uz and zv, an induced cycle of G that is not a cycle of H contains uxv, and
thus any dicolouring of H is a dicolouring of G. Hence X(H) > 4 and H contains a 4-dicritical
subdigraph H*. Since each vertex of H* has degree at least 6, x ¢ V(H*) and consequently
no vertex of B is in V(H*) (by immediate induction). Since there are at least 4 arcs between
V(B) and {u,v}, dg=(u) + dg=(v) < 14 — 4 = 10. Hence u or v is not in H* and H* C G, a
contradiction.

To summarize, We get that a leaf block of G[S] is either a cycle, and each of its non-
separating vertex is linked to both v and v via a digon, or is a symmetric odd cycle, and each
of its (at least 2) non-separating vertex is linked to one of u or v via a digon. Moreover, there
is no simple arc between a given non-separating vertex of G[S] and {u,v}. In particular, there
are at least two digons and no simple arc between the non-separating vertices of a given leaf
block and {u,v}.

For = € {u,v}, since dg(z) = 7 is odd, N*(x) # @, then by Lemma |N*(z)|> 2 and
then since dg(x) is odd, |[N*(z)|> 3, and thus |[N4(z)|< 2.

Quentin VERMANDE 21



M2 MPRI Internship Report Minimum number of arcs in k-critical digraphs on n vertices

This implies that G[S] has at least one internal block. And since there are at least two
digons between the non-separating vertices of a given leaf block and {u,v}, we get that G[9]
has exactly two leaves blocks By and Bz, N*(u) = N*(v) = 3 and N%(u) = N¢(v) = 2, By

and By are either I<_(> 2 or I<_(> 3 and the only digons between {u,v} and S are incident with the
non-separating vertices of G[S], which are all in By or Bs.

Assume that G[S] is a symmetric digraph. Then G[S] consists in B; and By and a symmetric
path P linking By and By. Each interior vertex of P is incident to both u and v via simple
arcs. Let H = G\ A*(G) Uwuvu. Every induced cycle of length at least 3 in G contains both u
and v, hence Y(H) > 4. Let H* be a 4-dicritical subdigraph of H. Since |[N*(u)|= 3, we have a
separating vertex s of G[S] incident to u in G. Every vertex of H* has degree at least 6, hence
s ¢ V(H*). Consequently, since G[S] is connected, V(H*) N S = @, i.e. V(H*) C {u,v}, a
contradiction.

So we may assume that one of the internal block is an arc, say zy. If one of x or y, say x,

<~
is not incident with a K3, then dg(s)(z) < 3, and since there is no digon between = and {u, v},

<~
da(x) <5, a contradiction. So both x and y are incident with a K3, and thus G[S] is made of
g
two K3 linked by an arc, namely xy. But in this case there are at most 10 arcs between S and
{u,v} and thus v and v are linked by a digon, a contradiction.

O

Let
Re argmax  (e(R),|R|)
RCV(G) acyclic
Note that e(R) > 1. Note also that, by maximality of |R|, every vertex in V(G) — R has at
least one in- and one out-neighbour in R.

Claim A.0.2. ¢(R) > 2.

Proof of claim. Assume e(R) = 1. By definition of R, for every u € V(G), e(u) < 1. e7(1) is
a clique, because otherwise we would find an acyclic induced subdigraph of G with excess at

x4
least 2. Furthermore, |¢71(1)|= &(G) = 2(k — 3). Then, since K}, Z G we have 2(k —3) <k —1
<~

and thus k = 5 and ¢ (1) = K4. Let u € e~ !(1). Since d(u) =2k — 1 =9 is odd, N*(u) # @
and hence by Lemma [3.2] [N*(u)|> 2. Since d(u) is odd, [N*(u)|> 3 and thus [N*(u)|= 3. In
particular, there is no digon between e ~!(1) and S.

Since k = 5, every block of G[S] is an arc, a cycle, a symmetric odd cycle or a I<_(>4. Let
u € S be a non-separating vertex of G[S]. Since u has degree at most 6 in G[S], there are at
least two simple arcs between u and e~ '(1). Besides, each arc between u and ¢71(1) is in an
induced cycle (because G is dicritical), and thus u is incident with a simple arc in G[S]. Then,
the block of G[S] containing u is an arc or a cycle and thus there are at least 6 arcs between u
and e~1(1), which is impossible. O

x4
Claim A.0.3. K, , C G — R.
Proof of claim. Since R is acyclic, X(G — R) > k— 1. Let G* C G — R be (k — 1)-dicritical. We
Axd

may assume G* # Kj_1.

We have 2(k — 3) = x(G) = e, (V(G) — V(G*)) + ex(V(G*)). By claim er(V(G) —
V(G*)) > 2. By maximality of |R|, each vertex u € V(G) — R (and thus each vertex in V(G*))
has at least an in- and an out-neighbour in R. Hence

er(V(G)) 2 ep-1(GIV(GY)]) = er-1(G7) + 2| A(G[V(GT)]) — A(G)]
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By Theorem [4.1] e_1(G*) > 2(k — 4). Altogether, we get:

2(k=3) = &(G)

er(V(G) = V(GY)) +ex(V(GY))

2+ er-1(GIV(GM)])

2+ ep1(G7) + 2]A(GIV(GT)]) — A(GT)|
2+2(k —4) + 2[A(G[V(GY)]) — A(G™)|
2(k = 3) + 2[A(GIV(G7)]) — A(G")]
2(k — 3)

Every inequality is an equality, that is:

VIV VIV

o £, (V(G) = V(G*)) = 2, and thus g;(R) = 2 by claim

o =1 (V(GY)) = ex—1(G[V(G*)]), which implies that for every = € V(G*), ]Z(az,V(G) —
V(G"))|= Az, R)|= 2

o |A(G[V(G")]) — A(G*)|= 0, that is G* is an induced subdigraph of G, and

e ¢;_1(G*) = 2(k — 4), which implies, by minimality of k, that G* € Dy_1,

Let a and b be the vertices of G* defined as in Figure [2| (replacing k by k& — 1). Since
1A(a, V(G) = V(G*))|= |A(b, V(G) — V(G*))|= 2 and a and b are non-adjacent, by maximality
of R we have ¢(R) > eg({a,b}) = eg=x-1({a,b}) = 2(k — 4) and since ¢(R) = 2, we obtain
k <5, and thus k = 5 by claim

Hence G* € D4. Observe that D, contains a single digraph, depicted in Figure Let
z € V(G*) as in Figure[d] Since z has (exactly) one in- and one out-neighbour in R, d¢(z) = 10,
and thus e(z) = 2.

<> <> <> 4 4 4
Figure 4: G* = C5(Kq, K1, K1, K2, K1)

Since €(R) = 2, by maximality of e(R), x is linked by a digon to every vertex with non-zero
<~

excess. Moreover, since A(x, R) = 2, there is only one vertex in R with non-zero excess, say v,
and thus e(y) = 2.

Since £(G) = 2(k — 3) = 4 = e({z,y}), every vertex in V(G) — {z,y} has excess 0, i.e.
S =V(G) —{z,y}. In particular, G* — x is an induced subdigraph of G[S].

Observe that for each vertex w in S, dg(u) = 2(k — 1) = 8 and there are at most 4 arcs
between u and {z,y}, so dg[sj(u) > 4. This implies that leaf blocks of G[S] are neither P, nor

“ . “— “—
Ky, nor C,,. Hence, each leaf block of G[S] is either C,41 for some n > 1 or Kj4.
Since dg(x) = dg(y) = 10 and = and y are linked by a digon, there are 16 arcs between S
and {x,y}, 8 between y and S, and 8 between x and S that are already known (see Figure [4)).
<~

Observe that the number of arcs between the non-separating vertices of a Cg,4+1 leaf block
<
of G[S] and {x,y} is 8n. Moreover, since G* —z is a subdigraph of G[S], G[S] is not C'5. Finally,
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the number of arcs between the non-separating vertices of a K 4 leaf block of G [ ] and {z,y} is

6. Hence, G[S] has at most two leaf blocks and these blocks are either K 3 Or K 4.
Since G is not symmetric and is dicritical, G contains an induced cycle of length at least 3.
So G[S] is not symmetric. Hence one of the block of G[S], say B, with vertices in V(G*) is not

g
a leaf block. B contains one of the K3 of G* and there are 4 arcs between V(B) and x. Hence

the leaf blocks of G[S] are I<_()' 4 blocks, there is no arc between a separating vertex of S and
{z,y} and the non-separating vertices of G[S] are either in B or in a leaf block of G[S]. If G[S]
contains a Py block uv then, since G [S] has exactly two leaf blocks, v and v are in exactly two
blocks of G[S] and hence dgg(u) < 7. There is an arc between u and {z,y}, a contradiction.
If G[S] has a C,, block with n > 3, then this block contains a non-separating vertex of G[S], a
contradiction. Hence G[S] is symmetric, a contradiction. O

Let C = {x1,...,2k-1} € V(G) — R such that G[C] = I?k,l and d(z1) < ... <d(xp_1). Let
={ueV(G)|d(u) <2k -1} ={u e V(G)le(u) < 1}.

Claim A.0.4. For x; € C, g(z;) < i(f._?’). Thus, x1, 2,23 € S.

1+1
Proof of claim. Due to the ordering on the vertices in C, we have £(G) > e(R) + ¢(C) >
e(zi) + (k —i)e(x;). Hence e(z;) < i(f:’l) O

Observe that, since every vertex has in- and out-degree at least k — 1, each vertex in C' has
at least one in- and one out-neighbour in V(G) — C.

Claim A.0.5. Let y € V(G) — C such that there is x € C NS with d”(z) < d*(x) and
y € N~ (z) ordt(z) < d (z) and y € N*(x). Then for any (k — 1)-dicolouring ¢ of G — C
and ©' € C, there is a (possibly empty) monochromatic path in G — C from N*t(z') — C to
N~ (2") — C with colour ¢(y).

Proof of claim. Let x € C NS’ satisfying the hypothesis of the claim. By duality, we may assume
d=(x) <d"(z) and y € N~ ().

We first show the claim in the case 2’ # x. Assume towards a contradiction that we have
¢ a (k — 1)-dicolouring of G — C' such that there is no monochromatic path in G — C from
N*t(2') — C to N~ (2') — C with colour ¢(y). Set ¢(z’') = ¢(y). We want to colour greedily
vertices in C' — {z,2'} from x;_1 to x1. To prove this uses only colours in [k — 1] we show
that, when trying to colour a vertex, it has at most k£ — 2 coloured in- or out-neighbours. Let
4 < i <k —1. When colouring z;, {x,z1,...,2;—1} — {2} is uncoloured and contains at least
t — 2 vertices. Then:

dymin (i) — (i —2) < ) _(; _2)
= k—1+ ("“)—(z'—2)
< k_1+k1+1 (i —2) by claim [A.0.4]
- k:—1+,H+1(k 3—(k—i+1)(i—2))
< k—l+kl+1(k 3—2(k—3)) by convexity and 4 <i <k —1
< k-1

Hence we can dicolour greedily {zy, ..., zx_1 } —x. Now, for each u € {x1, z9, z3}—z, d(u) < 2k—1
by claim and wu is connected to x (that is uncoloured) by a digon. Hence we can greedily
colour u. It remains to colour z. We have x € S’ and d™(z) < d*(z). Hence d™(z) < k — 1.
Since y € N~ (z), « has two in-neighbours with the same colour (namely y and z’), so we can
colour x with a colour from [k — 1]. We obtain a (k — 1)-dicolouring of G, a contradiction.
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If 2/ = x, we apply the claim to z” € {z1, 22,23} —z and ' € N(2”) — C with colour ¢(y)
(which exists by the claim applied to x, y and z”) and = to obtain the result. O

Claim A.0.6. Let a #b € V(G) — C. There exists a (k — 1)-dicolouring of G — C' that gives
different colours to a and b.

Proof of claim. Assume not. Then Y(G — C Uaba) > k. Let G* C G — C U aba be k-dicritical.
We have:

2(k—-3) = €(G)
> V(@)
= (G7) - 2A(@) - A(Q)

+AWV(G"), V(G) = V(G [+2[AGIV(GT)]) — A(G™)]
by Lemma [3.9 and A(G*) — A(G) C aba

v
[\
—
ol

|
—_
~—

|
=~

Every inequality is an equality, in particular, £(G*) = 0, i.e. G* = IH( i by Theorem
and \Z(V(G*), V(G) = V(G*))|=2(k — 1) by Lemma Since, for x € {a,b}, dgv(g+y(z) =
2(k —1) — 2, we have a,b € 9V(G*). Since any (k — 1)-dicolouring of G[V (G*)] gives the same
colour to a and b, by Lemma any (k — 1)-dicolouring of G[V(G*)] gives the same colour
to every vertex in OV (G*), and thus 0V (G*) = {a, b}.

Let H = G — (V(G*) —a — b). Observe that since G is not (k — 1)-dicolourable, every
(k —1)-dicolouring of H gives different colours to a and b. Hence ¥(H/{a,b}) > k, i.e. H/{a,b}

A4
contains a k-dicritical digraph H*. If H* # K}, then using Theorem

e(G) > eV(H )—a*b+a+b)

> o(H*) + [A({a, b}, V(G*) — a— b)|-2(k — 1)
> 2= 3) +A(k—2)—2(b—1)

> 2(k-2)

Hence H* = I?k
Besides,
e(G) > e(a,b)
> A(k=2) ~ (k1) + dyr-(axb) + A(a, V(H*)) N A, V(H)]

+A({a, b}, V(G) = V(GT) = V(H")]

Since dp+(a*b) > 2(k—1) and £(G) = 2(k — 3), we obtain Z(a, V(H*))N A(b V(H")) =
nd
and A({a,b},V(G) —V(G*) — V(H*)) = @. We conclude G € Dy, a contradiction. O

Let y € N(C N S") — C satisfying the hypothesis of claim m (which exists since every
vertex in C' has an in- and an out-neighbour in V(G) — C and CN S # &). f CNS # 2,
we choose y to be adjacent to a vertex in C'NS. Up to re-indexing the element of C, we may
assume that, among the elements of C NS” — S, the digonal neighbours of y come first, then
those that are not adjacent to y and the simple neighbours o<f_) y come last. Let 1 <: < k-1

be minimal such that y ¢ N%(z;) (such an i exists since G # Ky).

Claim A.0.7. ¢(y) > ]A(y, C)|—e(z;) — 2.
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Proof of claim. By claim[A.0.5 G — CU (N~ (z;) — O)y(N*(z;) — C) is not (k — 1)-dicolourable
and hence contains a k-dicritical digraph G*. Since G is k-dicritical, y € G*. Then:

dy) = [A,O)l+do-cly)

|Aly, O)Hdo=(y) = [N (2i) = Cl=IN" (@) = €

[ Ay, O)|+2(k = 1) = (e(wi) + 2).

AVARIY

O

Claim A.0.8. ¢(z;) = 1, for every x € CN S, we have y € N(x) and, for every ' € C NS,
we have y € N ().

Proof of claim. By claimMand definition of 4, e(y) > 2(i—2)—e(x;). Now, assume (x;) > 2.
Since z; ¢ R and {z;,y} is acyclic, there is z € G — C — y with £(z) > 1. We have:

e(G) = e(y) +e(C) +e(2)
> 2(i—2) —e(x;) + (k—i)e(x;) +1
> 2(k—3)+1,

a contradiction.
Let z € CN S and assume y ¢ N%(z). Let z € N(z) — C —y. By claim@ we have ¢ a
(k — 1)-dicolouring of G — C such that ¢(y) # ¢(z), which contradicts claim [A.0.5]
As a consequence, by the definition of i, e(x;) = 1. Now, assume y and z; are not adjacent.
Then by claims [A.0.6/and [A.0.5] z; has at least two in- and out-neighbours in V(G) — C, hence
e(x;) > 2, a contradiction. Thus, by the choice of the ordering on the vertices in C'N S’ and the
definition of 7, y is adjacent to every vertex in C'N S’. O

By claims |A.0.7] and [A.0.8] we have e(y) > 2|S N C|+|(S" — S) N C|—3. Hence:

e(G) > e(y)+e(C)
> 21SNCH|(S"=S)NC|-3+|(S"=S)NnC|+2|C - 5|
= 2|C|-3
= 2(k—1)-3
> 2(k—3),

a contradiction.

Now we prove Theorem We will also use the following theorem.
Theorem A.1. [ABHR22] If G is a 3-dicritical oriented graph, then

< IV (G)|+2

4G S

Proof. Assume we have a counterexample G of minimal order.

By Brooks’ Theorem, £(G) > 1, and since ¢(G) is even, £(G) = 2. Thus, either G contains
a vertex with excess 2 or two vertices with excess 1. As usual, let S = ¢71(0). By Theorem
G[S] is a directed Gallai forest. Note that, since odd symmetric cycles are 3-dicritical, the

o

blocks of G[S] are either K1, P;, or cycles. This implies in particular that a non-separating
vertex of G[S] is incident with at least 2 arcs incident with vertices in V(G) — S. These facts
are constantly used during the proof.
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Claim A.1.1. G has at least one digon.

Proof of claim. Assume towards a contradiction that G has no digon, i.e. G is an oriented graph.
By Theorem |A(G)|> M Moreover, since ¢(G) = 2, we have |A(G)|= 2|V (G)|+2.
We then have |V(G)|< 4 Wthh is clearly impossible. O

<~
Claim A.1.2. Let P be a Ps in G. Then the interior vertices of P are not both in S.

Proof of claim. We proceed by contradiction. Assume for contradiction that G contains a I<_3>3 on
vertices a, b, ¢, d such that b and c are its interior vertices and are in S. Let H = G—{b, ¢} +ada.

Since dg(b) = dg(c) =4, di(a) = dg(a) and dg(d) = di(d), we have e(G) = e(H).

Assume that we have a 2-dicolouring ¢ of H. Then, by giving colour ¢(a) to ¢, colour ¢(d)
to b, and colour ¢(v) to every v € V(G) —{b, c}, we obtain a 2-dicolouring of G, a contradiction.
So X(H) = 3.

Let e be an arc of H. If e ¢ {ad,da}, then e € A(G), G — e is 2-dicolourable, and any
2-dicolouring of G — e gives distinct colours to a and d, so H — e is also 2-dicolourable. If
e € {ad,da}, then a 2-dicolouring of G — {b, ¢} gives distinct colours to a and d (otherwise we
can easily extend it to a 2-dicolouring of G), and thus is a 2-dicolouring of H — e. Since H has
no isolated vertex, H is 3-dicritical.

Finally, H is not in Dj, for otherwise G is too, contradicting the minimality of G. %

Claim A.1.3. Vz € V(G),e(z) < 1.

Proof of claim. We assume towards a contradiction that there is x € V(G) such that e(z) = 2,
i.e. d(z) = 6. Since ¢(G) = 2, we have V(G) —x = S.
For every s € S, dg[s) > 2 (because s is incident with at most 2 arcs incident with z, and

© "
has degree 4 in G). This implies that no connected component of G[S] is a Ky or a Py and no
leaf block of G[S] is a Py. In particular the leaf blocks of G[5] are cycles.

If a connected component of G[S] is a K 2, then it forms a K 3 with z, a contradiction. If a
connected component of G[S] is a Cl, then it forms an extended wheel with , a contradiction.
If a connected component of G[S] is a cycle of length at least 4, then z is linked by a digon to
each of its vertices, implying that d(z) > 8, a contradiction. So the connected components of
G|[S] have at least two leaf blocks.

A leaf block C_"n, n > 2 has n — 1 non-separating vertices, each of them being connected to
z via a digon. Thus, G[S] has at most 3 non-separating vertices, and its leaf blocks are either
K 9 Or Cg More precisely, G[S] is connected and its leaf blocks are either three I<_(> 9, Or two I<_(>' 2,
or one K o and one Cg .

Assume first G has two leaf blocks, one K9 and one C_"g. Then the two leaf blocks have a
common vertex, say u, and x is not adjacent to u, and linked by a digon to all other vertices.
This gives us a full description of G, and G is 2-dicolourable, a contradiction.

Assume now that G[S] has three 1%2 leaf blocks {a1,b1}, {az2,b2} and {as,bs} such that,
for i = 1,2,3, a; is a separating vertex of G[S] and b; is linked by a digon to x. Since G is
3-dicritical, for every 2-dicolouring ¢ of G — z, we have {¢(b1), @(b2), (bs3)} = {1,2}, and thus
{#(ar), d(az2), p(az)} = {1,2}, and no proper subdigraph of G — x has this property. Hence, the
digraph H obtained from G by deleting by, bs, b3 and adding digons between x and a; for ¢ =
1,2, 3 is 3-dicritical. Moreover, since £({b1, b2, b3}) = 0 and, for u € V(G) —{b1, b2, b3}, dc(u) =
dp(u), we have e(H) = ¢(G) = 2, a contradiction to the minimality of G.
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Finally, assume that G[S] has two K 9 leaf blocks, say {a,b} and {c,d} where b and c are
separating vertices of G[S]. Then a and d are linked to x via a digon. By claim b is not
linked to a vertex of S — {a} by a digon, and similarly, ¢ is not linked to a vertex of S — {d}
by a digon. Hence, since d(z) = 6, we get that b and ¢ are linked by an arc, as well as b and z,
and ¢ and z, and this gives us a full description of G up to the orientation of the three simple
arcs. If G[{b,c,z}] = Cs, then G is an extended wheel (in which one of the symmetric paths
has length 0), and otherwise G is 2-dicolourable. A contradiction in both cases.

¢

From the previous claim, we get that G has two vertices, say x and y, with excess 1 (i.e.
degree 5), and the other vertices have excess 0, that is S = V(G) — {z,y}. For u € {z,y}, since
d(u) =5 is odd, N*(u) # @ and hence, by Lemma [3.2 [N*(u)|> 2 and then, since d(u) is odd,

|N®(u)|> 3. In particular, = and y are incident with at most one digon.

g
Claim A.1.4. Let u be a non-separating vertex of G[S]| in a Ko block. Then N*(u) = &, and
thus u is linked to (exactly) one of x, y by a digon.

Proof of claim. Assume not. Then N*(u) = {z,y}. Since the arc between u and z is contained
in an induced cycle, we may assume that yu,uzr € A(G), and any induced cycle containing yu
or ux contains both yu and uz.

This implies that H = G \ {yu, ux} U yz is not 2-dicolourable (for otherwise G is too) and
hence contains a 3-dicritical digraph H*. Observe that u has degree 2 in H, so u ¢ V(H*)
and by immediate induction, denoting S,, the connected component of G[S] containing u, we
have that S, N V(H*) = @. Since |S,|> 2, S, contains at least one other non-separating
vertex of G[S], say w, and w is incident with two arcs incident with {x,y}. This implies that
dp+(x)+dg-(y) <10+2—4 = 8. Since x and y are in V(H™*) (for otherwise H* is a subdigraph
of ), the inequality is an equality, which implies firstly that all vertices of H* have degree 4
in H*, and thus H* is a symmetric odd cycle by Theorem and secondly that G[S,] has
exactly two non-separating vertices, i.e. G[S,] is a symmetric path with extremities v and w.

@

Figure 5: The digraph at the end of the proof of claim We don’t know the orientation of
the two red arcs, and there might be a symmetric path of length 2 linking v and w instead of
a digon.

By claim |A.1.2] we have H* = I(_{)g. Since x and y are incident to at most one digon, we
have N*(w) = {x,y}. Besides, zy € A(G) and hence, V(G) = S, UV (H*). By claim
we have |S,|< 3. If |S,|= 3, colouring x,y and the vertex in S, — u — w with colour 1 and the
other vertices with colour 2 yields a 2-dicolouring of G, a contradiction. Hence S, = {u,w}. If
ywzr C G, then G € D5, a contradiction. Hence, by Lemma zwy C G. Every induced cycle
containing zw contains yux and hence has a chord (namely xy), a contradiction. Hence G is
not dicritical, a contradiction. O

4
Claim A.1.5. G[S] has no K;-block.
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Proof of claim. Assume G[S] contains a K 1 block {u}. Then wu is connected to x and y by
digons. So, there is no digon between {z,y} and S — u. By claim the leaf blocks of
G[S] are cycle of length at least 3. Since there are at most 6 arcs between {z,y} and S — u,
G[S —u] = Cs. Since z has degree 5, it cannot be adjacent with y and with the three vertices of
the 53. So there exists v € S — u such that z is not adjacent with either y or v. Hence {x,y, v}
is acyclic. Now, colouring {z,y,v} with colour 1 and the other vertices with colour 2 yields a
2-dicolouring of (G, a contradiction. O

Axd
Claim A.1.6. G[S] has no K1 leaf block.

<~
Proof of claim. Assume towards a contradiction that G[S] contains a K9 leaf block, say {u,v},
with u non-separating in G[S]. By claim we may assume without loss of generality that
there is a digon between = and u.

If there exists w € Nd(v) — u, then w # x because G has no I<_(>3, and {x,u,v,w} contradicts
claim So [N4(v)|=1 and thus |N*(v)|= 2. By claim v is separating in G[5].

Write N*(v) = {a, b}, with b € S. By Lemma [3.2] and duality, we may assume that bv,va €
A(G), and we get that every induced cycle containing bv or va contains both bv and va. This
implies that H = G \ bva U ba is not 2-dicolourable, for otherwise so is G. So ¥(H) = 3. Let
H* be a 3-dicritical subdigraph of H. Note that every vertex in V(H*) has degree at least 4 in
H*. Hence v ¢ V(H*), which implies u ¢ V(H*). Since for any g € V(G), du(g) < dg(g) and
dp—u(x) +dp—_u(y) <8, we have e(H*) < 1. By parity, e(H*) = 0 and hence, by Theorem
H* is a symmetric odd cycle. Since u € N%(z) and |[N%(z)|= 1, a # x. Hence dy_,(x) < 3,
which implies x ¢ V (H*).

Assume a € S. There is a symmetric path P from a to b in G. Since |[N%(z)|= |[N%(y)|= 1,
we have P C S. Adding v to P yields a cycle in 8, hence v and the vertices of P are all in
the same block, which is impossible because P contains a digon and the arc between a and v is
simple.

So a ¢ S and thus @ = y. Since H* is not a subdigraph of G, y,b € V(H*), and by
claim |A.1.2} it is ?(3. Name z the third vertex of H*. Then, H* \ by is a subdigraph of G
and more precisely the digraph depicted in Figure |§| is a subdigraph of G. So G[{u,v,b,z}]
is a connected component of G[S]. Since there are 6 arcs between {z,y} and {u,v,b,z} and
d(x) + d(y) = 10, there are at most 4 arcs between {z,y} and S — {u,v,b, z}. By claim
G[S — {u,v,b,z}] has at least 2 non-separating vertices. Hence it has at least two of them.
Since there are digons between x and u and between y and z and |[N%(x)|= |[N%(y)|= 1, there is
no digon between {z,y} and S — {u,v,b, z}. Hence the separating vertices of G[S — {u, v,b, z}]

— x4

are not in a P, block and, by claim they are not in a K9 block either. Hence they are in
cycles of length at least 3, which yields a third non-separating vertex, a contradiction.

b—2

)

Figure 6: Case where a = y in the proof of claim
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Claim A.1.7. G[S] has no Py leaf block.

Proof of claim. Assume there is a P; leaf block in G[S], say {u,v} with u non-separating in
G[S]. We may assume without loss of generality that there is a digon between u and z, and a
simple arc between v and y. Moreover, since the arc between u and v is in an induced cycle,
we may assume that vuy C G and we get that all induced cycle going through vu goes through
uy. This implies that H = G \ vu U yu is not 2-dicolourable and hence contains a 3-dicritical
digraph H*. Let S, be the connected component of v in G[S]. Every vertex in H* has degree
at least 4 in H*, and v has degree 3 in H, so v ¢ V(H*) and an immediate induction shows
that V(S,) N V(G*) = {u}. In G, S, — u contains a non-separating vertex of G[S], which is
incident with (at least) two arcs incident with {z,y}. So dpg+(z) + dg-(y) <10—-2+4+1 = 0.
Hence e(H*) < 1. Since e(H*) is even, e(H*) = 0 and thus H* is a symmetric odd cycle. Now,
since u € V(H*) (for otherwise H* is a subgraph of G), we get that x € V(H*). So z is incident
with two digons in H* and thus in GG, a contradiction. O

Claim A.1.8. G[S] has exactly two leaf blocks, which are cycles of length at least 3. Moreover,
there are at least 8 arc between the non-separating vertices of G[S] and {z,y}.

Proof of claim. By claims [A.1.5 |[A.1.6{ and [A.1.7] every leaf block of G[S] is a cycle of length
<~

at least 3. For each such block B, we have |A(B, {z,y})|> 4 and since d(z) + d(y) = 10, there
are at most two of them.

Assume towards a contradiction that G[S] has only one leaf block. Then G[S] has only one
block which is a cycle of length at least 3.

Assume first that there is no arc between 2 and y. Then G[S] = C5. Since |N%(z)|=
IN(y)|= 1, we have s € S — N%(z) — N%(y). Then, colouring z, ¥, s with colour 1 and all other
vertices with colour 2 yields a 2-dicolouring of GG, a contradiction.

Assume now that there is a simple arc between z and v, say zy € A(G). Then G[S] = Cj,
say G[S] = s1s2538481. By claim G contains a digon. Assume without loss of generality
that there is a digon between x and s;. So x is non-adjacent with one of the vertices s; of S,
1 # 1. If there is no digon between y and s;, then colouring z, ¥y, s; with colour 1, and the other
vertices with colour 2 yields a 2-dicolouring of G, a contradiction. So there is a digon between
y and s;. Hence y is non-adjacent to some vertex in S. Let s; € S with j # 1 and j # 7 such
that y is non-adjacent to a vertex in S — s; — s; (which exists since |S|= 4). Then, colouring
x, s; and s; with colour 1 and the other vertices with colour 2 yields a 2-dicolouring of G, a
contradiction.

Finally, assume that there is a digon between = and y. Then G[S] is a cycle of length 3
and there is no digon between S and {z,y} (because |[N%(x)|= |N%(y)|=1)). By Lemma
x has both an in- and an out-neighbour in S. By duality, we may assume |N*"(z)|= 2. Now,
colouring N [z] with colour 1 and the rest of the vertices with colour 2 yields a 2-dicolouring
of GG, a contradiction.

Hence, G[S] has exactly two leaf blocks, which are cycles of length at least 3. Each of these
leaf blocs have at least two non-separating vertices, and each of these vertices are incident with
two arcs incident with {z,y}. So the second part of the statement holds. O

Claim A.1.9. There is no digon between S and {x,y}.

Proof of claim. Assume there is such a digon. Without loss of generality, assume there exists
u€ N4z)n S.

If w is separating in G[S], then w is in two P, blocks and hence, by claim its neighbours
in S are separating in G[S] and are each incident with at least one arc incident with {z,y}.
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Hence there are at most 6 arcs between the non-separating vertices of G[S] and {x,y}, which
is impossible by claim

Hence u is non-separating in G[S]. Let B be the block of G[S] containing u. If B is a leaf
block of G[S], then B is a cycle of length at least 3, otherwise it is again a cycle of length
at least 3. Let u~ € N* (u) and w* € N°"(u). Since the only induced cycle going through
wul or ww is B, H = G\ vu® Uuu~ is not 2-dicolourable and hence contains a 3-dicritical
digraph H*. Since every vertex in H* has degree at least 4, an immediate induction on the path
from u™ to v~ in B shows that V(H*) NV (B) C {u,u”}. In particular, dg«(u~) < 4. Since
ut ¢ V(H*), there is a non-separating vertex of G[S] that is not in H*. Hence, if z,y € V(H*),
then dp«(x) + du+(y) < 9. In any case, e(G*) < 1. So ¢(G*) = 0 and thus H* is a symmetric
odd cycle. We have u,u™ € V(H*), for otherwise H* is a subdigraph of G. Since dg~(u) = 4,
x € V(H*) and thus z is incident with two digons, a contradiction. O

Claim A.1.10. There is no digon in S.

Proof of claim. Let P be a maximal symmetric path in G[S] and let u and v its extremities.
Assume towards a contradiction that P has length at least 1, i.e. u # v. If both u and v are in
P blocks, then the extremities of these two P, are non separating vertices by claim and
thus each of (the four of) them are incident with an arc incident with {x, y}. Hence there are at
most 6 arcs between the non-separating vertices of G[S]| and {z,y}, contradicting claim

Hence we may assume that « is not in a Py block. By maximality of P, it is not in a second

IH(Q block. Hence it is in a cycle of length at least 3. Let u~ € N*(u) and u™ € N**(u). Since
an induced cycle containing uu™* or u~u contains both uu™ and v~ u, H = G\ v uu’™ Uu u™
is not 2-dicolourable. So H contains a 3-dicritical digraph H*. Since every vertex in H* has
degree at least 4, an immediate induction on the component of G[S]\ v~ uu™ containing u finds
a separating vertex of G[S] which is not in H*. So e(H*) < 1, and thus ¢(H*) = 0 and thus H*
is a symmetric odd cycle. If V(H*) C S, then G[S] contains a symmetric cycle minus one arc,
which is impossible. Hence V(H*) N {x,y} # @, which contradicts claim

¢

By claim G contains a digon. By claims [A.1.9] and [A.1.10] there is a digon between
x and y. Hence there are 6 arcs between S and {z,y}, a contradiction to claim

0

B Missing proofs of section
x4
Claim B.0.1 (Claim [5.6.2)). Let R C V(G). If |R|> 2, then pg(R) > p(K1) =k —1—¢.
s
Proof of claim. Let R € argmin pg(W). Towards a contradiction, we assume pg(R) < p(K1).
WCV(Q)
[W|>2

A4 A4 A4
Since p(K|gr)) < pa(R) < p(K1) < 2<H2£ 1p(Ki), we have |R|> k. Since R C V(G)

and G is k-dicritical, we have a dicolouring ¢ : G[R] — [k —1]. Let Y = Y (G, R, ¢) and
X =V(Y) - V(G). Since Y(G) = k, by lemma [5.4] we have ¥(Y) > k and hence Y contains a
k-dicritical subdigraph Y*.

Since |lﬂz k, VYIS [V(Y)|= |V(G)|—|R|+(k — 1) < |[V(G)], so Y* < G and hence

p(Y*) < p(Kk).
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x4 s
Since G is k-dicritical, Y* ¢ G and hence X N V(Y™) # @. So, p(K1) < p(K|yy+)nx|) <
py=(V(Y*) N X).
We have:

pa(V(Y*) = X) + pa(R) — [Ac(V(Y*) - X, R)|
p(Y™) —HPY*(V(Y*) NX)+ pa(R) o
—i—\Ay*((_)V(Y*) _<—>X’ V(Y*) ﬂX)\—\Ag(V(Y*) - X, R)]
pc(R) + p(Ky) — p(K1)
pc(R)

Since 2 < |R|< |V(Y*) — X + R|, by minimality of R, V(Y*) — X + R = V(G) and thus:

pa(V(Y") = X + R)

IA I

VANNVAN

p(G) < /)(I(_%k) + pc(R) — p(?ﬁ) < p(f?k),

a contradiction.

O

Claim B.0.2 (Claim [5.6.6). Let x,y € V(G) such that vy € A(G), yr ¢ A(G), d*(z) =k —1
and d(y) < 2k — 1. Then d~(y) = k. In particular, any pair of vertices in S are either non
adjacent, or linked by a digon.

Proof of claim. Assume towards a contradiction that d~(y) = k — 1. By claim we have
2€ N (y) —x. Let H=G —x —yUzN*t(y).

We have x(H) > k. Otherwise, consider ¢ : H — [k—1] a dicolouring. Since dgfy(a:) < k-1,
we can extend ¢ into a (k — 1)-dicolouring of G — y. Since ¢ cannot be extended into a (k — 1)-
dicolouring of G, we have ¢(N~(y)) = [k — 1]. Since [N~ (y)|=k — 1, ¢ is injective on N~ (y).
Set ¢(y) = ¢(z). Let C be a monochromatic cycle. We have 2’ € N*(y) such that zyz' C C.
Then C'\ zyz' U 22’ is a monochromatic cycle in G — y, a contradiction.

Let H* C H k-dicritical. Since H* is not a subdigraph of G, z € V(H*) and at least one of
the added arc is in A(H*). Then:

pa(VIH") +y) = p(H) + p(E1) = ([Ac(V(HT) +y)[=|AH)))
< AEk)+p(K) —1
= p(Kk_l) +2c—1
< p(Kk—l)’
a contradiction to Claim O

Claim B.0.3 (Claim [5.6.10). Let C be a cluster with |C|> 2.
g
1. If Kp_1 € G[N[C]], then Yu € N(C),d(u) > 2(k — 14 |C]).

A4
2. If there is X C N|[C] such that G[X] = Ki_1, thenVu € X — C,d(u) > 2(k — 1+ |C]).

Proof of claim. Assume towards a contradiction that we have u € N(C) such that d(u) <

x4
2(k — 1+ |C|) and, if there is X C N[C] such that G[X]| = K;_1,ue X — C.
Assume u € S. For ¢ € C'N N(u), since |C|> 2, by claim u € N%c). By claimm
4

<~
since |C|# 1, GIC] € Ky—1. Then Kj_1 C G[N|[C]] and hence by definition of u, there is
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x4
X C N[C] such that G[X] = Kj_; and u € X — C. Since d(u) = 2(k — 1), there is c € C' N X.
By claim u and c are twins, i.e. u € C, a contradiction. So d(u) > 2k — 1.

Let ¢ € C and G’ = G — u + ¢ where ¢ is a new vertex such that NT[¢] = NT|[¢] and
N7[d] = N7 [c], i.e. ¢ and ¢ are twins. Assume we have ¢ a (k — 1)-dicolouring of G’. Set, for
x € G—C—u, ¢(x) = ¢'(z). Then take ¢(u) € [k—1]—(¢(NT(u)—C)NG(N~ (u)—C)) (which is
not empty since d(u) < 2(k—1+|C|)) and then colour C' with colours in ¢'(C'+¢’) — ¢(u). This
is a (k — 1)-dicolouring of G, a contradiction. Hence Y(G’) > k and G’ contains a k-dicritical
digraph G*. Since d(u) > 2k —1 > 2(k — 1) = dg (), |A(G")|< |A(G)| and hence G’ < G.

g
Hence p(G*) < p(Ky). Since G* € G, we have ¢ € V(G*). Since d(c) = 2(k — 1), we obtain
<> Axd
C CV(G*). We have: pg(G*—) < p(G*)—p(K1)+2(k—1) < p(Kk—1). Hence by claim [5.6.3|
s >
G*—d = Kj_1. We have N[C] —u = Kj_;. Hence, by the choice of u, there is X C N[C] such
A4 A4
that G[X] = Ki—1 and u € X. Let v € N[C] — X. Then N[C]Uuwvu = K}, A contradiction to
claim ¢

C Generalising a result of Stiebitz

The goal of this section is to prove Theorem
Recall that mo(G) denotes the set of connected components of G. We are actually going to
prove the following stronger statement:

Theorem C.1. Let G be a connected digraph, k > 3 and X C V(G) such that:
o Vue X, d(u) <2(k—1).
o VS € mp(G[X]),X(G—-95)<k-1
o [70(G — X)|> Imo(GIX])
Then X(G) <k —1.
We will need the following definition.

Definition C.2. For G a digraph, X C V(G) and P a partition of mo(G — X), we define the
following (undirected) bipartite graph:

B(G, X, P) = (mo(G[X]) + P, {STIS € mo(G[X]), T € P, A(S, | ] C) # @}).
CeT

Let B be a bipartite graph with partite sets U and V. A 2-forest of B with respect to U is a
spanning forest of B in which every vertex in U has degree 2.

The following remark describes a method to extend the dicolouring of a partially dicoloured
digraph that will be used a lot duting the proof.

Remark C.3. Let G be a digraph, H C G connected, x € V(H) and ¢ a (k—1)-dicolouring of
G — H. Assume that, for every u € V(H),dg(u) < 2(k —1). Then, given the reverse ordering
of a BFS of the underlying graph of H starting in x, ¢ can be be greedily extended to G — x
(because, when colouring u € V(H), u is incident with at most 2k — 3 arcs incident with an

already coloured vertezx).
Moreover, if 9(NT(z)) # [1,k — 1] or ¢(N~(x)) # [k — 1], then ¢ can be extended to G.
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The next Lemma is a strong version Theorem in the case where |mo(G[X])|= 1.
Lemma C.4. Let G be a connected digraph and X C V(G) such that:

o Vue X, d(u) <2(k-1)

o G[X] is connected

e G — X s disconnected

Then, for any (k — 1)-dicolouring ¢ of G — X, there is a (k — 1)-dicolouring v of G so that
VC € 7T0(G — X), do € 6k—1;¢|0 =00 ¢|C

Proof. We proceed by induction on | X|. The result is trivial when X = @. Let ¢ be a (k — 1)-
dicolouring of G — X. Let x € X such that G[X — z] is connected (any leaf on a spanning tree
of G[X] suits).

Assume first that G — (X — z) is disconnected. Let S € (G — (X — x)) such that x € S.
Since G is connected, X — x # @ and hence, since G[X] is connected, dgs)(7) < 2(k —1). So
we can extend ¢ to G — (X — z) and then apply induction on X — z.

Assume now that G — (X — ) is connected. So, for all S € mp(G — X), SN N(x) # @. Let
So # S1 € mo(G — X). We can permute colours in Sy and in S; so that x has neighbours in both
So and S7 with the same colour, say 1. Call 9 the obtained colouring. Now, greedily extend
to G — x as in Remark We may assume that (Nt (z)) = [k — 1] or (N~ (z)) = [k — 1].
Since d(z) < 2(k—1), 1 ¢ ¥(N(x) N X). Set ¥(z) = 1. We may assume that 1 is not a
dicolouring of G. So we have an induced cycle C' containing z. z has exactly two neighbours
with colour 1, one in Sy, the other in S;. Hence V(C) NSy # @ and V(C)N Sy # &. Since
G — X is disconnected, V(C) N (X — z) # @. Let y be the last vertex of V(C)N (X — x) to
be coloured. Since the neighbours of x in C' are not in X, the neighbours of y in V(C) were

coloured when colouring y. Since we extended 1 greedily, 1(y) # 1, a contradiction.
O

We need the following technical lemma on (undirected) bipartite graphs.

Lemma C.5 (Lemma 3.6 in [Sti82]). Let B be a bipartite graph with partite sets S and T, such
that |T|= |S|+1 and B contains a 2-forest with respect to S. There exists s € S such that for
every t,t' € N(s), B contains a 2-forest with respect to S containing st and st'.

The next lemma is again a strong version of Theorem in a particular case.

Lemma C.6. Let G be a connected digraph, X C V(G), n = |mo(G[X])| and P = (P, ..., Py)
a partition of mo(G — X)) such that:

o Vue X,du) <2(k—1).
e B(G, X, P) contains a 2-forest with respect to mo(G[X]).

Then, for any (k — 1)-dicolouring ¢ of G — X, there is a (k — 1)-dicolouring v of G so that
VO <1=n,30 € Gr—1,PUgep ¢ = T Y| Ugep, C-

Proof. We show the claim by induction on | X|.
By Lemmal|C.4] we may assume G[X] disconnected. Set B = B(G, X, P). Let ¢ be a (k—1)-
dicolouring of G — X. By Lemma we have S € mp(G[X]) such that, for any 0 <i#j<n
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such that SP;, SP; € E(B), B contains a 2-forest with respect to mo(G[X]) containing SP; and
SPj. Let s be a non-separating vertex of G[S]. We distinguish two cases:

Assume first that [{0 < i < n,Z(s, Ucep, C) # @} < 1. Since B contains a 2-forest with
respect to mo(G[X]), dg(S) > 2 and thus |S|> 2. Since S is connected, dg_g4+s(s) < 2(k — 1),
so we can extend greedily ¢ to G — (X —s). Since s is non-separating in G[S], |mo(G[X — s])|=
|mo(G[X])]. If N(s) C S, then {s} is a connected component of G — X + s, and we set P’ =
(Py+{s}, P1,..., Py). Otherwise, let C' € mo(G—(X—s)) such that s € V(C). Up to reindexing P,
we may assume that C—s C |J C'andset P’ = ({C' € P),C'NC = 3}+C, Py, ..., P,). Now,

C'ePy
B(G, X, P) is isomorphic to a spanning subdigraph of B(G, X —s, P') and hence B(G, X —s, P’)
contains a 2-forest. We conclude by induction.

Assume now that [{0 < i < n, Z(s, Ucep, C) # @}> 2. Up to reindexing P, we may assume

Z(s, U C) # @ and Z(s, U C)#@. Letup e N(s)N |J Candwu; € N(s)n |J C and
CePy CePy CePy CePy
Co, Cy € mo(G — X) containing ug and u; respectively. By duality, we may assume ug € N*(s).

Up to permuting colours in Cy and Cj, we may assume ¢(ug) = ¢(u;) = 1. Let G' =
G Uugu; — S and X' = X — S. Note that Cy + C; is a connected component of G'. We set
P =P —Co+ P —C1+ (Cy+ C),P,,...,P,). Note that ¢ is a dicolouring of G’ — X'
and P’ is a partition of mo(G' — X'). As B(G', X', P') = B(G, X, P) — S/{Py, P, }, the 2-forest
in B(G, X, P) containing SPy and SP; yields a 2-forest in B(G', X', P'). Hence, by induction
hypothesis, we may turn ¢ into a dicolouring 1 of G’ with the properties of the output of the
theorem.

Note that v is a dicolouring of G —.S. We extend v to G — s as in remark and we may
assume that (N~ (s)) = [k — 1] and (N T (s)) = [k — 1]. Set ¥ (s) =1 = ¥(up) = ¥ (u1). Since
(N (s)) = [k — 1] and ug € NT(s), we have that u; € N~ (s).

We may assume that there is a monochromatic induced cycle R containing s (otherwise we
are done). Observe that s has exactly two neighbours with colour 1, namely uy and uq, so R
contains uj sug. Since 1 is also a dicolouring of G’ and uguy € A(G’), there is no monochromatic
path from uy to ug in G — S. So there is a vertex y € V(R) N (V(S) — s). Assume y is the last
vertex in V(R) N (V(S) — s) to be coloured. Since the neighbours of s in R are not in S, the
neighbours of y in R were coloured when colouring y. Since we extended 1 greedily, 1 (y) # 1,
a contradiction.

g

We need a second technical lemma on (undirected) bipartite graphs before concluding.

Lemma C.7 (Lemmas 3.4 and 3.5 in [Sti82]). Let B be a bipartite graph with partite sets S
and T such that |T|> |S|+1 and, for any S" € P(S) — {2, S}, |mo(G — 5)|< |S|. Let s € S
andt #t' € T. Then B contains a 2-forest with respect to S which contains st and st'.

Proof of Theorem [C_1. We prove the result by induction on | X|. By claim we may assume
G[X] disconnected. By induction hypothesis, we may assume that, for any P € P(m(G[X]) —

{@,m(G[X])}, we have |m7o(G— |J C)|< |P|, for otherwise we can apply inductionon |J V(C).
CeP CeP

Let P = (Py, ..., Pry(cix])) be a partition of mo(G — X). By Lemma B(G, X, P) has a 2-

forest. Since X(G — X) < k — 1, by Lemma X(G) <k-—1. O

D List-dicolouring

Let G be a digraph. A list assignment of G is a mapping L : V(G) — P(C), where C is a
set of colours. An L-dicolouring of G is a dicolouring ¢ of G such that ¢(v) € L(v) for all
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v € V(G). If G admits an L-dicolouring, then it is L-dicolourable. If H is a subgraph of G, we
abuse notations and write L for the restriction of L to H. Recall that, given a vertex x of a
digraph, dpae(z) = max(d*(x),d™(z)) and dpin(z) = min(d*(z),d™ (z)).

In [HM11], Mohar and Harutyunyan proved the following, generalising a fundamental result
of Gallai [Gal63a).

Theorem D.1 (Theorem 2.1 in [HM11)). Let G be a connected digraph, and L a list-assignment
for G such that |L(v)|> dmaz(v) for every v € V(G). If D is not L-dicolourable, then d*(v) =
d~ (v) for every v € V(G) and every block of G is a cycle, a symmetric odd cycle, or a complete
digraph.

Observe that, in the above theorem, the blocks can not be arcs, so the output is a particular
type of directed Gallai forest. Later on, Bang-Jensen et al. generalised the result of Mohar and
Harutyunyan by proving Theorem that we restate here for convenience.

Theorem D.2 (Bang-Jensen, Bellitto, Schweser and Stiebitz [BJBSS19]). If G is a k-dicritical
digraph, then the subdigraph induced by vertices of degree 2(k — 1) is a directed Gallai forest.

Interestingly, contrary to the directed case, the undirected analogues of the two previous
results both output an (undirected) Gallai forest, that is a graph whose blocks are odd (undi-
rected) cycles or complete graphs.

The goal of this section is to generalise the result of Bang-Jensen et al. by generalising a
theorem proved by Thomassen [Tho97] in the undirected case.

Theorem D.3. Let G be a connected digraph, X C V(G) connected and L a list-assignment
of G such that G — X is L-dicolourable, G is not L-dicolourable and Vx € X, |L(x)|> dmax ().
Then G[X] is a directed Gallai forest.

The next proposition states some easy yet important facts that will be often used during
the proof.

Proposition D.4. Let G be a connected digraph, X C V(G) connected and L a list-assignment
of G such that G — X is L-dicolourable, G is not L-dicolourable and Yz € X, |L(x)|> dmax ().
Then, for every x € X, the following statements hold:

1 |L(z)|= d*(z) = d~(2),
2. G — x is L-dicolourable.
3. For every L-dicolouring of G — x, every colour of L(z) appears in both Nt (z) and N~ (z).

4. Given an L-dicolouring ¢ of G —x and y € X N N(x), uncolouring y and colouring x with
the colour of y yields an L-dicolouring of G — y.

Proof. Let z € X.

To prove (1}, it suffices to show that |L(x)|< dmin(z). We prove it for any G, X, L and = by
induction on |V(G)|. If |V(G)|< 2, the result is clear, so assume |V(G)|> 3 Assume towards a
contradiction that |L(z)|> dmin(z). Let G’ = G — z. We can greedily extend any L-dicolouring
of G’ to an L-dicolouring of G, so G’ is not L-dicolourable. Hence G’ has a connected component
C’ that is not L-dicolourable. Since G — X is L-dicolourable, C' N X # &. Furthermore, since
X is connected, we have y € C' N X N N(z). By the induction hypothesis applied to G[C'],
C'NX and L, we have |L(y)|= dg[c,] (y) = da[c,] (y). By directional duality, we may assume
x € Nt (y). Then: dg[c,} (y) = |L(y)|> dt(y) > dJ(E[(J/] (y) + 1, a contradiction. This proves the
first statement.
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We now prove 2 It suffices to prove that every connected component of G — x is L-
dicolourable. Let C' € mo(G — ). Let Dy, ..., D, be the connected components of G[C'NX]. We
prove by induction on ¢ € [0,n] that G[C'— X + Dy + --- 4+ D;] is L-dicolourable. Since G — X
is L-dicolourable, G[C' — X] is too. Now, let i € [0,n — 1] and assume G[C — X + Dy +-- -+ D]
L-dicolourable. Since X is connected, we have y € D;1; N N(z). We have |L(y)|= dt(y) =
d™(y) > dwmin,c(c)(y), so the first statement applied to G[C'— X + D1 + -+ + D], D41, L and
y yields that G[C' — X + Dy + -+ - + D;] is L-dicolourable, which concludes the proof.

Statement (3| follows easily from the fact that G is not L-dicolourable.

For the proof of |4 assume (by symmetry) that zy € A(G). It follows from the third
statement that, after uncolouring y, = has no out-neighbour coloured ¢(y), and thus giving
colour ¢(y) to x does not create a monochromatic cycle. O

In the rest of the proof, we will call the procedure that is described in Proposition [D.4][4]
shifting the colour from y to z, and sometimes write briefly y — x. Moreover, given G, X and
L as in the statement of Proposition a weak cycle C' = (v1,a1,v9,...0, ak,v1) in G[X]
and an L-colouring of G — vy, we can shift each vertex of C one after another, starting with
v — v1 and get a new L-dicolouring of G — v. We say that we clockwise shift colours around
C, see Figure[7] Starting with ve — v1, we say that we counter-clockwise shift colours around

@ - @ O
| |
(%1} V3 i (%1 V3 i (%1} V3
| |
| |
| |
| |
Vs V4 : Vs V4 : Vs V4

Vs — U1 V4 — Vs
V2 U2 U2
@ - ® - ©®
! !
| |
U1 V3 : (%] VU3 : V1 V3
! !
| |
! !
! !
V5 V4 I Vs V4 I Vs V4
V3 — U4 Vo — U3 V1 — V2

Figure 7: The white vertex denotes the uncoloured vertex during the clockwise shifting around
the weak cycle.

Lemma D.5. Let G be a connected digraph, X C V(G) connected and L a list-assignment for
G such that G — X is L-dicolourable, G is not L-dicolourable and Vx € X, |L(x)|> dmax(z). Let
C be a weak cycle in G[X]| of length k > 3 that is not a cycle. Then V(C) is either a clique or
mduces an odd symmetric cycle.

Proof. Write C' = (v1,a1,v2...,v, ak,v1). We prove the result by induction on k. All along the
proof, subscripts are taken modulo k. In particular, v; and vy are considered to be consecutive
vertices of C.
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Claim D.5.1. For every i € [k] and any L-dicolouring ¢ of G —v;, no two consecutive vertices
of C receive the same colour. Moreover, ¢p(vi—1) # P(vit1).

Proof of claim. Let ¢ € [k] and let L be an L-dicolouring of G — v;. Assume towards a contra-
diction that two consecutive vertices in C' have the same colour. Since C' is not a cycle of G,
there exists j € [k] such that v;_; and vj;1 are both in-neighbours of v; or both out-neighbours
of vj. We may shift colours around C' until v; is left uncoloured and v;_; and v;y; have the
same colour, a contradiction to Proposition Now, if ¢(vi—1) = ¢(vi+1), we can simply
shift the colour from v;_1 to v,, and get a contradiction with the first fact. O

By Proposition [D.4)[2] we have an L-dicolouring ¢ of G — vy.

First suppose that k£ is odd. Up to shifting colours and renaming the vertices, we may
assume that a = vpv1 and a; = vive. We consider two cases.

Assume first that there is an arc a € A(G) between v; and v; for some 2 < i < k. Let
Co = (v1,a1,v9,...,v,a,v1) and C; = (v1,a, v,y , Vit1, ...V, 0k, v1). One of Cy and C is
not a cycle and hence, by induction, viv;v; € A(G). By symmetry, we may assume that Cj is
even and C7 odd. Choosing the appropriate arc between v; and v; makes Cy acyclic and hence,
by induction, V' (Cp) is a clique. Similarly, V' (C7) induces a symmetric cycle or is a clique. For
J € [2,i—1], let Cj = (v1, vjv1, vj, vivj, Vi, A, Vig1, - - -, Vk, Gk, v1). Since C is odd, C; is even,
so by induction, V(C}) is a clique. Hence V(C) is a clique.

Now, suppose there is no arc between v; and v; for i € [3,k — 1]. By claim o(vg) #
¢(vg). If the (unique) out-neighbour of v; with colour ¢(vy) is not vy, then we shift colours
clockwise around C' and get two out-neighbours of v; with the same colour, a contradiction
to Proposition Thus, vivg € A(G). Similarly, vov; € A(G). Hence, we have either
v1vevs C A(G) or vsvavy € A(G), so we can repeat the argument and get a digon between v
and vs. This way, we get that there is a digon between each pair of consecutive vertices of C
and thus G[C] is a symmetric odd cycle.

Suppose now that k is even. Up to shifting colours and renaming the vertices, we may assume
that a;, = vgv1 and a; = vovr. By claim [D.5.1] ¢(vg) # ¢(v2) and |[{¢(v;),2 < i < k}|> 3. Let
3 < j < k—1such that ¢(vj) ¢ {p(v2), p(vk—1)}. We shift colours around C until vy is coloured
¢(vj). By Proposition ¢(v2) and ¢(v) still appear in the in-neighbourhood of v; and
thus we have 3 <1i < k — 1 such that v;v; € A(G).

Assume first that 7 is even. Then both (v1, a1, va, ..., v, viv1,v1) and (v1, viv1, V5, G5y Vig1, - - -,
vg, Gk, v1) are even and are not a cycle, so by induction, {vi,va...,v;} and {v;,vit1,..., v}
are cliques. Hence (v1,v1vs,,03,..., Uk, ag,v1) is odd, and {v1,vs,v4...,vx} does not induce a
symmetric odd cycle (because vz and vy are adjacent). So, by induction, {vi,vs,v4,..., v} is
a clique. The same holds for (vi,ai,ve,...,vi—2, Vi—2V;, Vi, Qj, Vit1, ...,V ag,v1), so V(C) is a
clique.

Assume now that i is odd. So, (v1,a1,va,...,v;,v;v1,v1) and (v1, VU1, Vi, Qi Vigl, - .., Vk, Ak, V1)

are odd cycles and thus, by induction, each pair of consecutive vertices of C' induces a digon
and viv;v; C G. If k = 4, then the argument of the paragraph following the assumption that k
is even finds a digon between vy and v4. So we may assume k > 6.

Assume that both {v1,v,...,v;} and {vi, v, vit1,..., v} induce a symmetric cycle. Since
k > 6, one of (vi,a1,ve,...,v;,v;v1,v1) and (vy,vv1, Vi, i, Vit1,-- ., Vg, Gk, v1) has length at
least 5. Assume without loss of generality that it is (v1,a1,v2,...,v;,vv1,v1) (so @ > 5).
Counter-clockwise shifting colours around (vy,a1,ve,...,v;,v;v1,v1), and noticing that in the

new L-dicolouring of G — v, the in-neighbours of v; have the same colours as in the previ-
ous one, we get that ¢(v3) = ¢(v;). Now, counter-clockwise shifting colours (of ¢) around
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(v1, viv1, Vi, Ay Vi1, - . -, Vg, Gk, V1), the same argument yields ¢(v3) = ¢(vit1). So ¢(v;) =
®(vit1), a contradiction to claim

Hence, we may assume without loss of generality that {vi,vs,...,v;} does not induce a
symmetric odd cycle. In particular ¢ > 5. By induction, {vj,vs,...,v;} induces a clique.
By applying induction to (v, vsvi,vs, as,va,. .., vk, ag, v1), we get that V(C) — vg is a clique.
Finally, by applying induction on (v, a1, ve, v4v2, V4, . .., Uk, ag, v1), we get that V(C) — v3 is a
clique and thus that V(C) is a clique. O

Proof of Theorem[D.3. Let B be a block of G[X]. If | B|< 3, B is either an simple arc, a digon,
<>

a Cs, or a K3 by Lemma [D.5| So we assume |V (B)|> 4. By Lemma [D.5, we may assume that
B is not a cycle. So there are two vertices in V(B) linked by three internally vertex-disjoint
weak paths. Call Py, Pi, P> these three weak paths. Two of these paths form a weak cycle that
is not a cycle. Hence by Lemma they are symmetric. Two of Py, P; and Ps, say Py and
Py, form a weak cycle C' of even length. One of Py and P; is symmetric, so up to choosing
the arcs in it, C' is not a cycle. By Lemma V(C) is a clique and observe that [V (C)|> 4.
Let R be a maximal clique containing V' (C). We may assume R # V(B). Let v € V(B) — R.
Since B is a block, there are two weak paths P and ) from v to R whose only common vertex
is v. Let p and ¢ their respective end-vertices in R. Let w € R. We have 2 €¢ R —p — q — w.
One of vPpwqQu or vPpwzqQu is odd, and both can be chosen undirected and none of them
is an induced cycle (because p and q are adjacent). Hence, by Lemma the vertices of one
of them induce a clique, and thus w is linked by digon to V(P)U V(Q). So RUV(P)UV(Q)
is a clique, a contradiction to the maximality of R. ]
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